1
|
Yang M, Xu Z, Wu D, Dong Y, Wang Z, Du M. Characterizations and the Mechanism Underlying Osteogenic Activity of Peptides from Enzymatic Hydrolysates of Stichopus japonicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15611-15623. [PMID: 34928143 DOI: 10.1021/acs.jafc.1c06028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sea cucumber (Stichopus japonicus) is a kind of fishery product with high nutritional value. It exhibits a wide range of biological activity and has potential application in the food, pharmaceutical, and biomedical industries. However, there are no reports available on the effects of S. japonicus peptides (SJP) on bone mineral density regulations. The purpose of this work was to analyze the composition and osteogenic activity of SJP and explore its underlying mechanism. The results showed that SJP stimulated cell proliferation, differentiation, and mineralization in a dose-dependent manner. In addition, SJP could promote the proliferation of MC3T3-E1 cells by altering the cell cycle progression and regulating the expression of Cyclins. Besides, SJP activated the WNT/β-catenin pathway and increased the nuclear level of the active form β-catenin. Furthermore, SJP also induced the expression of bone morphogenetic protein (BMP-2) and increase the phosphorylation levels of p38, JNK, and ERK, suggesting that the osteogenic activity of SJP may be achieved through the activation of WNT/β-catenin and BMP/MAPK signal pathways. In vivo, SJP significantly inhibited the serum levels of RANKL, ALP, and TRAP, whereas it increased the levels of osteocalcin and osteoprotegerin in OVX-mice. These results indicate that SJP may have the potential to stimulate bone formation and regeneration, and may be used as a functional food or nutritional supplement to prevent osteoporosis.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zhe Xu
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116029, China
| | - Di Wu
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Dong
- Dalian Feide Biological Industry Co., Ltd., Dalian 116085, China
| | - Zhenyu Wang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Application of Human Adipose-Derived Stem cells for Bone Regeneration of the Skull in Humans. J Craniofac Surg 2021; 33:360-363. [PMID: 34636755 DOI: 10.1097/scs.0000000000008114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Archeological archives report cranioplasty as 1 of the oldest surgical procedures; however, it was not until the last century that true advances have been made. Alternative approaches are necessary to achieve optimal closure of the defect with fewer adverse effects. We aim to evaluate the use of human adipose-derived stem cells (hADSCs) alone or seeded in scaffolds as the main treatment for cranial bone defects and to assess human patient outcomes. METHODS A systematic review was performed by querying PubMed, Ovid MEDLINE, EMBASE, and Cumulative Index to Nursing and Allied Health Literature databases with the MeSH terms: "adipose-derived stem cells," "cranial bone defect," "stromal vascular factor," "fat grafting," as well as synonyms in combinations determined by our search strategy. We included human models that used hADSCs as primary therapy. We excluded studies in languages other than English. RESULTS One hundred ninety-four studies were identified after removal of duplicates. Four articles that used hADSCs as the main therapy to treat calvarial defects in humans were included. One article applied the cell therapy alone, and 3 used β-tricalcium phosphate granules as a scaffold to seed the hADSCs. CONCLUSIONS Bone regeneration was reached in a short and intermediate period using autologous hADSCs in humans with no major adverse effects in all 4 articles included. A long-term follow-up study (6 years) exhibited late infections and reabsorption of the β-tricalcium phosphate scaffold seeded with hADSCs.
Collapse
|
3
|
Liu W, Shi K, Zhu X, Zhao H, Zhang H, Jones A, Liu L, Li G. Adipose Tissue-derived Stem cells in Plastic and Reconstructive Surgery: A Bibliometric Study. Aesthetic Plast Surg 2021; 45:679-689. [PMID: 31980863 DOI: 10.1007/s00266-020-01615-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Due to the evolving nature of the applications of adipose tissue-derived stem cells (ADSCs) and the rapidly growing body of scientific literature, it is difficult to generate a manual compilation and systematic review of ADSCs in plastic and reconstructive surgery. METHODS Bibliographic records were retrieved from the Web of Science Core Collection and analyzed with CiteSpace. RESULTS We retrieved 691 publications and their references. We identified 52 research categories. Interdisciplinary studies were common. The journals clustered into 13 subnetworks. The top institutions were Stanford University; University of Pittsburgh; University of Tokyo; University of California, Los Angeles; University of California, Davis; New York University; Tulane University; and University of Michigan. National Institutes of Health and National Natural Science Foundation of China provided the most generous financial support. Studies clustered into 22 topics. Emerging trends may include improvement of fat grafting, and application of ADSCs in wound healing, scleroderma, and facial rejuvenation. CONCLUSION The present study provides a panoramic view of ADSCs in plastic and reconstructive surgery. Analysis of journals, institutions, and grants could help researchers in different ways. Researchers may consider the emerging trends when deciding the direction of their study. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ke Shi
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xuran Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hongyan Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Andrew Jones
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, 97239, USA
| | - Linbo Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Guangshuai Li
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
4
|
Menger MM, Laschke MW, Orth M, Pohlemann T, Menger MD, Histing T. Vascularization Strategies in the Prevention of Nonunion Formation. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:107-132. [PMID: 32635857 DOI: 10.1089/ten.teb.2020.0111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delayed healing and nonunion formation are major challenges in orthopedic surgery, which require the development of novel treatment strategies. Vascularization is considered one of the major prerequisites for successful bone healing, providing an adequate nutrient supply and allowing the infiltration of progenitor cells to the fracture site. Hence, during the last decade, a considerable number of studies have focused on the evaluation of vascularization strategies to prevent or to treat nonunion formation. These involve (1) biophysical applications, (2) systemic pharmacological interventions, and (3) tissue engineering, including sophisticated scaffold materials, local growth factor delivery systems, cell-based techniques, and surgical vascularization approaches. Accumulating evidence indicates that in nonunions, these strategies are indeed capable of improving the process of bone healing. The major challenge for the future will now be the translation of these strategies into clinical practice to make them accessible for the majority of patients. If this succeeds, these vascularization strategies may markedly reduce the incidence of nonunion formation. Impact statement Delayed healing and nonunion formation are a major clinical problem in orthopedic surgery. This review provides an overview of vascularization strategies for the prevention and treatment of nonunions. The successful translation of these strategies in clinical practice is of major importance to achieve adequate bone healing.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Marcel Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
5
|
Nejadnik H, Tseng J, Daldrup-Link H. Magnetic resonance imaging of stem cell-macrophage interactions with ferumoxytol and ferumoxytol-derived nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1552. [PMID: 30734542 PMCID: PMC6579657 DOI: 10.1002/wnan.1552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 01/07/2023]
Abstract
"Off the shelf" allogeneic stem cell transplants and stem cell nano-composites are being used for the treatment of degenerative bone diseases. However, major and minor histocompatibility antigens of therapeutic cell transplants can be recognized as foreign and lead to their rejection by the host immune system. If a host immune response is identified within the first week post-transplant, immune modulating therapies could be applied to prevent graft failure and support engraftment. Ferumoxytol (Feraheme™) is an FDA approved iron oxide nanoparticle preparation for the treatment of anemia in patients. Ferumoxytol can be used "off label" as an magnetic resonance (MR) contrast agent, as these nanoparticles provide measurable signal changes on magnetic resonance imaging (MRI). In this focused review article, we will discuss three methods to localize and identify innate immune responses to stem cell transplants using ferumoxytol-enhanced MRI, which are based on tracking stem cells, tracking macrophages or detecting mediators of cell death: (a) monitor MRI signal changes of ferumoxytol-labeled stem cells in the presence or absence of innate immune responses, (b) monitor influx of ferumoxytol-labeled macrophages into stem cell implants, and (c) monitor apoptosis of stem cell implants with caspase-3 activatable nanoparticles. These techniques can detect transplant failure at an early stage, when immune-modulating interventions can potentially preserve the viability of the cell transplants and thereby improve bone and cartilage repair outcomes. Approaches 1 and 2 are immediately translatable to clinical practice. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Cells at the Nanoscale Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Jessica Tseng
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Heike Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| |
Collapse
|
6
|
Huang M, Zhang X, Li J, Li Y, Wang Q, Teng W. Comparison of osteogenic differentiation induced by siNoggin and pBMP-2 delivered by lipopolysaccharide-amine nanopolymersomes and underlying molecular mechanisms. Int J Nanomedicine 2019; 14:4229-4245. [PMID: 31239677 PMCID: PMC6559258 DOI: 10.2147/ijn.s203540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose: Gene therapies via Noggin small interfering (si)RNA (siNoggin) and bone morphogenetic protein (BMP)-2 plasmid DNA (pBMP-2) may be promising strategies for bone repair/regeneration, but their ideal delivery vectors, efficacy difference, and underlying mechanisms have not been explored, so these issues were probed here. Methods: This study used lipopolysaccharide-amine nanopolymersomes (LNPs), an efficient cytosolic delivery vector developed by the research team, to mediate siNoggin and pBMP-2 to transfect MC3T3-E1 cells, respectively. The cytotoxicity, cell uptake, and gene knockdown efficiency of siNoggin-loaded LNPs (LNPs/siNoggin) were studied, then the osteogenic-differentiation efficacy of MC3T3-E1 cells treated by LNPs/pBMP-2 and LNPs/siNoggin, respectively, were compared by measuring the expression of osteogenesis-related genes and proteins, alkaline phosphatase (ALP) activity, and mineralization of the extracellular matrix at all osteogenic stages. Finally, the possible signaling pathways of the two treatments were explored. Results: LNPs delivered siNoggin into cells efficiently to silence 50% of Noggin expression without obvious cytotoxicity. LNPs/siNoggin and LNPs/pBMP-2 enhanced the osteogenic differentiation of MC3T3 E1 cells, but LNPs/siNoggin was better than LNPs/pBMP-2. BMP/Mothers against decapentaplegic homolog (Smad) and glycogen synthase kinase (GSK)-3β/β-catenin signaling pathways appeared to be involved in osteogenic differentiation induced by LNPs/siNoggin, but GSK-3β/β-catenin was not stimulated upon LNPs/pBMP-2 treatment. Conclusion: LNPs are safe and efficient delivery vectors for DNA and RNA, which may find wide applications in gene therapy. siNoggin treatment may be a more efficient strategy to enhance osteogenic differentiation than pBMP-2 treatment. LNPs loaded with siNoggin and/or pBMP-2 may provide new opportunities for the repair and regeneration of bone.
Collapse
Affiliation(s)
- Mingdi Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xinchun Zhang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing Li
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yanshan Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qinmei Wang
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei Teng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Murphy MP, Quarto N, Longaker MT, Wan DC. * Calvarial Defects: Cell-Based Reconstructive Strategies in the Murine Model. Tissue Eng Part C Methods 2017; 23:971-981. [PMID: 28825366 DOI: 10.1089/ten.tec.2017.0230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calvarial defects pose a continued clinical dilemma for reconstruction. Advancements within the fields of stem cell biology and tissue engineering have enabled researchers to develop reconstructive strategies using animal models. We review the utility of various animal models and focus on the mouse, which has aided investigators in understanding cranial development and calvarial bone healing. The murine model has also been used to study regenerative approaches to critical-sized calvarial defects, and we discuss the application of stem cells such as bone marrow-derived mesenchymal stromal cells, adipose-derived stromal cells, muscle-derived stem cells, and pluripotent stem cells to address deficient bone in this animal. Finally, we highlight strategies to manipulate stem cells using various growth factors and inhibitors and ultimately how these factors may prove crucial in future advancements within calvarial reconstruction using native skeletal stem cells.
Collapse
Affiliation(s)
- Matthew P Murphy
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University , Stanford, California.,2 Lorry I. Lokey Stem Cell Research Building, Stanford Stem Cell Biology and Regenerative Medicine Institute, Stanford University , Stanford, California
| | - Natalina Quarto
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University , Stanford, California
| | - Michael T Longaker
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University , Stanford, California.,2 Lorry I. Lokey Stem Cell Research Building, Stanford Stem Cell Biology and Regenerative Medicine Institute, Stanford University , Stanford, California
| | - Derrick C Wan
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University , Stanford, California
| |
Collapse
|
8
|
Pollock K, Dahlenburg H, Nelson H, Fink KD, Cary W, Hendrix K, Annett G, Torrest A, Deng P, Gutierrez J, Nacey C, Pepper K, Kalomoiris S, D Anderson J, McGee J, Gruenloh W, Fury B, Bauer G, Duffy A, Tempkin T, Wheelock V, Nolta JA. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models. Mol Ther 2016; 24:965-77. [PMID: 26765769 PMCID: PMC4881765 DOI: 10.1038/mt.2016.12] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/05/2015] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies.
Collapse
Affiliation(s)
- Kari Pollock
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Heather Dahlenburg
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Haley Nelson
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Kyle D Fink
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Whitney Cary
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Kyle Hendrix
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Geralyn Annett
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Audrey Torrest
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Peter Deng
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Joshua Gutierrez
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Catherine Nacey
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Karen Pepper
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Stefanos Kalomoiris
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Johnathon D Anderson
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Jeannine McGee
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - William Gruenloh
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Brian Fury
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Gerhard Bauer
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| | - Alexandria Duffy
- Department of Neurology, University of California Davis Health System, Sacramento, California, USA
| | - Theresa Tempkin
- Department of Neurology, University of California Davis Health System, Sacramento, California, USA
| | - Vicki Wheelock
- Department of Neurology, University of California Davis Health System, Sacramento, California, USA
| | - Jan A Nolta
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health System, Sacramento, California, USA
| |
Collapse
|
9
|
Donneys A, Blough JT, Nelson NS, Perosky JE, Deshpande SS, Kang SY, Felice PA, Figueredo C, Peterson JR, Kozloff KM, Levi B, Chepeha DB, Buchman SR. Translational treatment paradigm for managing non-unions secondary to radiation injury utilizing adipose derived stem cells and angiogenic therapy. Head Neck 2015; 38 Suppl 1:E837-43. [PMID: 25917284 DOI: 10.1002/hed.24110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Bony non-unions arising in the aftermath of collateral radiation injury are commonly managed with vascularized free tissue transfers. Unfortunately, these procedures are invasive and fraught with attendant morbidities. This study investigated a novel, alternative treatment paradigm utilizing adipose-derived stem cells (ASCs) combined with angiogenic deferoxamine (DFO) in the rat mandible. METHODS Rats were exposed to a bioequivalent dose of radiation and mandibular osteotomy. Those exhibiting non-unions were subsequently treated with surgical debridement alone or debridement plus combination therapy. Radiographic and biomechanical outcomes were assessed after healing. RESULTS Significant increases in biomechanical strength and radiographic metrics were observed in response to combination therapy (p < .05). Importantly, combined therapy enabled a 65% reduction in persisting non-unions when compared to debridement alone. CONCLUSION We support the continued investigation of this promising combination therapy in its potential translation for the management of radiation-induced bony pathology. © 2015 Wiley Periodicals, Inc. Head Neck 38: E837-E843, 2016.
Collapse
Affiliation(s)
- Alexis Donneys
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Jordan T Blough
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Noah S Nelson
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Joseph E Perosky
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Sagar S Deshpande
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Stephen Y Kang
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Peter A Felice
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan.,Department of General Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Christian Figueredo
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Jonathan R Peterson
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Kenneth M Kozloff
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Benjamin Levi
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Douglas B Chepeha
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Steven R Buchman
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Cun X, Xie J, Lin S, Fu N, Deng S, Xie Q, Zhong J, Lin Y. Gene profile of soluble growth factors involved in angiogenesis, in an adipose-derived stromal cell/endothelial cell co-culture, 3D gel model. Cell Prolif 2015; 48:405-12. [PMID: 26037311 DOI: 10.1111/cpr.12193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/05/2015] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate gene expressions of growth factors for angiogenesis, in a three-dimensional (3D) gel populated with adipose-derived stromal cells (ASCs) and endothelial cells (ECs) in co-culture. MATERIALS AND METHODS The 3D gel, mixed with green fluorescent protein (GFP)-positive ASCs and DsRed-Express-positive ECs, 1:1 ratio, was established in vitro. The phenomenon of angiogenesis was observed using confocal microscopy. To detect gene expressions for growth factor proteins in both ASCs and ECs, transwell co-culture was used, and cell lysate samples were collected at 1, 3, 5 and 7 days. Semi-quantitative polymerase chain reaction (PCR) was conducted to quantify mRNA expressions of the growth factors. RESULTS Angiogenesis was first observed in the gels by 7 days post-implantation. Over this time in ECs, genes coding for VEGFA/B, IGF-1, HIF-1α, FGF-1/-2 and BMP-5/-7 significantly increased. Meanwhile in ASCs, genes coding for VEGFA/B, IGF-1, HIF-1α, FGF-1/-2 and BMP-6 also were significantly enhanced. In particular, increased amounts of IGF-1 and HIF-1α in both ECs and ASCs were prominent relative to other factors. CONCLUSIONS Contact co-culture with ASCs and ECs at 1:1 ratio, in the 3D gel promoted angiogenesis; non-contact co-culture further confirmed gene expressions for growth factors, VEGFA/B, IGF-1, HIF-1α and FGF-1/-2 in both ASCs and ECs; BMP-5/-7 in ECs and BMP-6 in ASCs were also confirmed. This establishment of growth factor expression seemed to be responsible for enhancement of angiogenesis. This indicates that these factors could be utilized as targets for engineered angiogenesis.
Collapse
Affiliation(s)
- Xiangzhu Cun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Na Fu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuwen Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiang Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Juan Zhong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Engendering allograft ignorance in a mouse model of allogeneic skin transplantation to the distal hind limb. Ann Surg 2015; 261:611-8. [PMID: 24509194 DOI: 10.1097/sla.0000000000000572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of this study was to demonstrate lymphatic isolation in a model of hind limb lymph node (LN) excision, consisting of ipsilateral popliteal and inguinal LN excision and to evaluate the immunologic response to allogeneic skin transplanted onto this region of lymphatic isolation. METHODS To study lymphatic flow, C57BL/6 mice underwent lymphadenectomy (n = 5), sham lymphadenectomy (n = 5), or no intervention (n = 5), followed by methylene blue injection. Mice were dissected to determine whether methylene blue traveled to the iliac LN. To study host response to skin transplantation, C57BL/6 mice underwent allogeneic skin transplantation with LN excision (n = 6), allogeneic skin transplantation alone (n = 6), or syngeneic skin transplantation (n = 4). Skin grafts were placed distal to the popliteal fossa and mice were euthanized at day 10. Grafts were stained for endothelial cell and proliferation markers (CD31 and Ki67, respectively). Secondary lymphoid tissues (spleen, ipsilateral axillary LN, and contralateral inguinal LN) were removed and rechallenged with BALB/c alloantigen in vitro with subsequent assay of interferon-γ and interleukin 4 cell expression using ELISPOT technique. RESULTS Mice that underwent LN excision had no evidence of methylene blue in the iliac nodes; mice without surgical intervention or with sham LN excision consistently had methylene blue visible in the ipsilateral iliac nodes. Mice treated with allogeneic skin transplantation and LN excision had lower expression of interferon-γ and interleukin 4 in the secondary lymphoid tissues. CONCLUSIONS Lymph node excision completely interrupts lymphatic flow of the hind limb. This model of lymphatic isolation impairs the ability of the transplant recipient to acutely mount a Th1 or Th2 response to allogeneic skin transplants.
Collapse
|
12
|
Yang Y, Jin G, Cao X, Wang P, Yang X, Wu J. In vitro evaluation of rhBMP-2-induced expression of VEGF in human adipose-derived stromal cells. Int J Clin Exp Med 2015; 8:222-230. [PMID: 25784991 PMCID: PMC4358446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Bone Morphogenetic Protein 2 (BMP-2) plays a key role in skeletal development, repair and regeneration. Our previous studies indicate that recombinant human BMP-2 (rhBMP-2) can stimulate osteogenic differentiation and promote angiogenesis through the up-regulation of Vascular Endothelial Growth Factor (VEGF), while the underlying mechanism of the BMP-2 effect on human cells is not well understood. To gain a better understanding of BMP-2-induced angiogenesis, we further characterized the effect of rhBMP-2 on VEGF expression in human adipose-derived stromal cells (hASCs) by RT-PCR and ELISA. VEGF expression was induced by rhBMP-2 in a dose- and time-dependent manner, with the highest induction observed using 100 ng/ml of rhBMP-2 at 18-24 h post stimulation. In addition, Western blot analyses revealed that the phosphorylation of p38 was closely related to the expression of VEGF, and blocking the p38MAPK pathway with the specific inhibitor sb203580 resulted in the decreased VEGF expression. Our data suggest that p38 activation may be required for rhBMP-2-induced VEGF expression and angiogenesis. Information derived from this study may shed light on understanding the effect of rhBMP-2 in the angiogenesis of hASCs, which is important for designing new strategies to increase the angiogenesis of tissue engineering bone.
Collapse
Affiliation(s)
- Yi Yang
- Orthopaedic Centre, The First Affiliated Hospital of Xinjiang Medical UniversityChina
| | - Gele Jin
- Orthopaedic Centre, The First Affiliated Hospital of Xinjiang Medical UniversityChina
| | - Xin Cao
- Central Hospital of Shengli Oil FieldDongying, China
| | - Peng Wang
- Central Hospital of Shengli Oil FieldDongying, China
| | - Xinming Yang
- Orthopaedic Centre, The First Affiliated Hospital of Xinjiang Medical UniversityChina
| | - Jiang Wu
- School of West China Basic Medicine and Forensic Medicine, Sichuan UniversityChengdu 610041, China
| |
Collapse
|
13
|
Maan ZN, Rennert RC, Koob TJ, Januszyk M, Li WW, Gurtner GC. Cell recruitment by amnion chorion grafts promotes neovascularization. J Surg Res 2014; 193:953-962. [PMID: 25266600 DOI: 10.1016/j.jss.2014.08.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/07/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nonhealing wounds are a significant health burden. Stem and progenitor cells can accelerate wound repair and regeneration. Human amniotic membrane has demonstrated efficacy in promoting wound healing, though the underlying mechanisms remain unknown. A dehydrated human amnion chorion membrane (dHACM) was tested for its ability to recruit hematopoietic progenitor cells to a surgically implanted graft in a murine model of cutaneous ischemia. METHODS dHACM was subcutaneously implanted under elevated skin (ischemic stimulus) in either wild-type mice or mice surgically parabiosed to green fluorescent protein (GFP) + reporter mice. A control acellular dermal matrix, elevated skin without an implant, and normal unwounded skin were used as controls. Wound tissue was harvested and processed for histology and flow cytometric analysis. RESULTS Implanted dHACMs recruited significantly more progenitor cells compared with controls (*P < 0.05) and displayed in vivo SDF-1 expression with incorporation of CD34 + progenitor cells within the matrix. Parabiosis modeling confirmed the circulatory origin of recruited cells, which coexpressed progenitor cell markers and were localized to foci of neovascularization within implanted matrices. CONCLUSIONS In summary, dHACM effectively recruits circulating progenitor cells, likely because of stromal derived factor 1 (SDF-1) expression. The recruited cells express markers of "stemness" and localize to sites of neovascularization, providing a partial mechanism for the clinical efficacy of human amniotic membrane in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Zeshaan N Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Robert C Rennert
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | | | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - William W Li
- Angiogenesis Foundation, Cambridge, Massachusetts
| | - Geoffrey C Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
14
|
Abstract
Angiogenesis is a vital component of bone healing. The formation of the new blood vessels at the fracture site restores the hypoxia and nutrient deprivation found at the early stages after fracture whilst at a later stage facilitates osteogenesis by the activity of the osteoprogenitor cells. Emerging evidence suggests that there are certain molecules and gene therapies that could promote new blood vessel formation and as a consequence enhance the local bone healing response. This article summarizes the current in vivo evidence on therapeutic approaches aiming at the augmentation of the angiogenic signalling during bone repair.
Collapse
|
15
|
Abstract
OBJECTIVE To demonstrate the pro-osteogenic effect of burn injury on heterotopic bone formation using a novel burn ossicle in vivo model. BACKGROUND Heterotopic ossification (HO), or the abnormal formation of bone in soft tissue, is a troubling sequela of burn and trauma injuries. The exact mechanism by which burn injury influences bone formation is unknown. The aim of this study was to develop a mouse model to study the effect of burn injury on heterotopic bone formation. We hypothesized that burn injury would enhance early vascularization and subsequent bone formation of subcutaneously implanted mesenchymal stem cells. METHODS Mouse adipose-derived stem cells were harvested from C57/BL6 mice, transfected with a BMP-2 adenovirus, seeded on collagen scaffolds (ossicles), and implanted subcutaneously in the flank region of 8 adult mice. Burn and sham groups were created with exposure of 30% surface area on the dorsum to 60°C water or 30°C water for 18 seconds, respectively (n = 4/group). Heterotopic bone volume was analyzed in vivo by micro-computed tomography for 3 months. Histological analysis of vasculogenesis was performed with platelet endothelial cell adhesion molecule staining. Osteogenic histological analysis was performed by Safranin O, Picrosirius red, and aniline blue staining. Qualitative analysis of heterotopic bone composition was completed with ex vivo Raman spectroscopy. RESULTS Subcutaneously implanted ossicles formed heterotopic bone. Ossicles from mice with burn injuries developed significantly more bone than sham control mice, analyzed by micro-computed tomography at 1, 2, and 3 months (P < 0.05), and had enhanced early and late endochondral ossification as demonstrated by Safranin O, Picrosirius red, and aniline blue staining. In addition, burn injury enhanced vascularization of the ossicles (P < 0.05). All ossicles demonstrated chemical composition characteristic of bone as demonstrated by Raman spectroscopy. CONCLUSIONS Burn injury increases the predilection to osteogenic differentiation of ectopically implanted ossicles. Early differences in vascularity correlated with later bone development. Understanding the role of burn injury on heterotopic bone formation is an important first step toward the development of treatment strategies aimed to prevent unwanted and detrimental heterotopic bone formation.
Collapse
|
16
|
Follin B, Tratwal J, Haack-Sørensen M, Elberg JJ, Kastrup J, Ekblond A. Identical effects of VEGF and serum-deprivation on phenotype and function of adipose-derived stromal cells from healthy donors and patients with ischemic heart disease. J Transl Med 2013; 11:219. [PMID: 24047149 PMCID: PMC3852830 DOI: 10.1186/1479-5876-11-219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/11/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adipose-derived stromal cells (ASCs) stimulated with vascular endothelial growth factor (VEGF) and serum-deprived, are applied in the first in-man double-blind placebo-controlled MyStromalCell Trial, as a novel therapeutic option for treatment of ischemic heart disease (IHD). This in vitro study explored the effect of VEGF and serum deprivation on endothelial differentiation capacity of ASCs from healthy donors and IHD patients. METHODS ASCs stimulated with rhVEGF(A165) in serum-deprived medium for one to three weeks were compared with ASCs in serum-deprived (2% fetal bovine serum) or complete medium (10% fetal bovine serum). Expression of VEGF receptors, endothelial and stem cell markers was measured using qPCR, flow cytometry and immunocytochemistry. In vitro tube formation and proliferation was also measured. RESULTS ASCs from VEGF-stimulated and serum-deprived medium significantly increased transcription of transcription factor FOXF1, endothelial marker vWF and receptor VEGFR1 compared with ASCs from complete medium. ASCs maintained stem cell characteristics in all conditions. Tube formation of ASCs occurred in VEGF-stimulated and serum-deprived medium. The only difference between healthy and patient ASCs was a variation in proliferation rate. CONCLUSIONS ASCs from IHD patients and healthy donors proved equally inclined to differentiate in endothelial direction by serum-deprivation, however with no visible additive effect of VEGF stimulation. The treatment did not result in complete endothelial differentiation, but priming towards endothelial lineage.
Collapse
Affiliation(s)
- Bjarke Follin
- Cardiology Stem Cell Center, The Heart Center, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
17
|
Zhang X, Guo J, Zhou Y, Wu G. The roles of bone morphogenetic proteins and their signaling in the osteogenesis of adipose-derived stem cells. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:84-92. [PMID: 23758605 DOI: 10.1089/ten.teb.2013.0204] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Large-size bone defects can severely compromise both aesthetics and musculoskeletal functions. Adipose-derived stem cells (ASCs)-based bone tissue engineering has recently become a promising treatment strategy for the above situation. As robust osteoinductive cytokines, bone morphogenetic proteins (BMPs) are commonly used to promote the osteogenesis of ASCs. In this process, BMP signaling plays a pivotal role. However, it remains ambiguous how the pleiotrophic BMPs are involved in the commitment of ASCs along osteogenesis instead of other lineages, such as adipogenesis. BMP receptor type-IB, extracellular signal-regulated kinase, and Wnt5a appear to be the main switches controlling the in vitro osteogenic commitment of ASCs. Tumor necrosis factor-alpha, an acute inflammatory cytokine, is reported to play an important role in mediating osteogenic commitment of ASCs in vivo. In addition, various active agents and methods have been used to enhance and accelerate the osteogenesis of ASCs through promoting BMP signaling. In this review, we summarize the current knowledge on the roles of BMPs and their signaling in the osteogenesis of ASCs in vitro and in vivo.
Collapse
Affiliation(s)
- Xiao Zhang
- 1 Department of Prosthodontics, Peking University School and Hospital of Stomatology , Beijing, P.R. China
| | | | | | | |
Collapse
|
18
|
Purmessur D, Cornejo MC, Cho SK, Hecht AC, Iatridis JC. Notochordal cell-derived therapeutic strategies for discogenic back pain. Global Spine J 2013; 3:201-18. [PMID: 24436871 PMCID: PMC3854597 DOI: 10.1055/s-0033-1350053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/11/2013] [Indexed: 12/23/2022] Open
Abstract
An understanding of the processes that occur during development of the intervertebral disk can help inform therapeutic strategies for discogenic pain. This article reviews the literature to identify candidates that are found in or derived from the notochord or notochordal cells and evaluates the theory that such factors could be isolated and used as biologics to target the structural disruption, inflammation, and neurovascular ingrowth often associated with discogenic back pain. A systematic review using PubMed was performed with a primary search using keywords "(notochordal OR notochord) And (nerves OR blood vessels OR SHH OR chondroitin sulfate OR notch OR CTGF) NOT chordoma." Secondary searches involved keywords associated with the intervertebral disk and pain. Several potential therapeutic candidates from the notochord and their possible targets were identified. Studies are needed to further identify candidates, explore mechanisms for effect, and to validate the theory that these candidates can promote structural restoration and limit or inhibit neurovascular ingrowth using in vivo studies.
Collapse
Affiliation(s)
- D. Purmessur
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - M. C. Cornejo
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - S. K. Cho
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - A. C. Hecht
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J. C. Iatridis
- Orthopaedic Research Laboratory, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States,Address for correspondence James Iatridis, PhD Professor and Director of Spine Research, Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029United States
| |
Collapse
|
19
|
Donneys A, Weiss DM, Deshpande SS, Ahsan S, Tchanque-Fossuo CN, Sarhaddi D, Levi B, Goldstein SA, Buchman SR. Localized deferoxamine injection augments vascularity and improves bony union in pathologic fracture healing after radiotherapy. Bone 2013; 52:318-25. [PMID: 23085084 PMCID: PMC3513581 DOI: 10.1016/j.bone.2012.10.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Medically based efforts and alternative treatment strategies to prevent or remediate the corrosive effects of radiotherapy on pathologic fracture healing have failed to produce clear and convincing evidence of success. Establishing an effective pharmacologic option to prevent or treat the development of non-unions in this setting could have immense therapeutic potential. Experimental studies have shown that deferoxamine (DFO), an iron-chelating agent, bolsters vascularity and subsequently enhances normal fracture healing when injected locally into a fracture callus in long bone animal models. Since radiotherapy is known to impede angiogenesis, we hypothesized that the pharmacologic addition of DFO would serve to mitigate the effects of radiotherapy on new vessel formation in vitro and in vivo. MATERIALS AND METHODS In vitro investigation of angiogenesis was conducted utilizing HUVEC cells in Matrigel. Endothelial tubule formation assays were divided into four groups: Control, Radiated, Radiated+Low-Dose DFO and Radiated+High-Dose DFO. Tubule formation was quantified microscopically and video recorded for the four groups simultaneously during the experiment. In vivo, three groups of Sprague-Dawley rats underwent external fixator placement and fracture osteotomy of the left mandible. Two groups received pre-operative fractionated radiotherapy, and one of these groups was treated with DFO after fracture repair. After 40 days, the animals were perfused and imaged with micro-CT to calculate vascular radiomorphometrics. RESULTS In vitro, endothelial tubule formation assays demonstrated that DFO mitigated the deleterious effects of radiation on angiogenesis. Further, high-dose DFO cultures appeared to organize within 2h of incubation and achieved a robust network that was visibly superior to all other experimental groups in an accelerated fashion. In vivo, animals subjected to a human equivalent dose of radiotherapy (HEDR) and left mandibular fracture demonstrated quantifiably diminished μCT metrics of vascular density, as well as a 75% incidence of associated non-unions. The addition of DFO in this setting markedly improved vascularity as demonstrated with 3D angiographic modeling. In addition, we observed an increased incidence of bony unions in the DFO treated group when compared to radiated fractures without treatment (67% vs. 25% respectively). CONCLUSION Our data suggest that selectively targeting angiogenesis with localized DFO injections is sufficient to remediate the associated severe vascular diminution resulting from a HEDR. Perhaps the most consequential and clinically relevant finding was the ability to reduce the incidence of non-unions in a model where fracture healing was not routinely observed.
Collapse
Affiliation(s)
- Alexis Donneys
- Craniofacial Research Laboratory, Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniela M. Weiss
- Craniofacial Research Laboratory, Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Sagar S. Deshpande
- Craniofacial Research Laboratory, Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Salman Ahsan
- Craniofacial Research Laboratory, Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Catherine N. Tchanque-Fossuo
- Craniofacial Research Laboratory, Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Deniz Sarhaddi
- Craniofacial Research Laboratory, Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin Levi
- Craniofacial Research Laboratory, Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven A. Goldstein
- Orthopedic Research Laboratory, Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven R. Buchman
- Craniofacial Research Laboratory, Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
In vivo directed differentiation of pluripotent stem cells for skeletal regeneration. Proc Natl Acad Sci U S A 2012; 109:20379-84. [PMID: 23169671 DOI: 10.1073/pnas.1218052109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pluripotent cells represent a powerful tool for tissue regeneration, but their clinical utility is limited by their propensity to form teratomas. Little is known about their interaction with the surrounding niche following implantation and how this may be applied to promote survival and functional engraftment. In this study, we evaluated the ability of an osteogenic microniche consisting of a hydroxyapatite-coated, bone morphogenetic protein-2-releasing poly-L-lactic acid scaffold placed within the context of a macroenvironmental skeletal defect to guide in vivo differentiation of both embryonic and induced pluripotent stem cells. In this setting, we found de novo bone formation and participation by implanted cells in skeletal regeneration without the formation of a teratoma. This finding suggests that local cues from both the implanted scaffold/cell micro- and surrounding macroniche may act in concert to promote cellular survival and the in vivo acquisition of a terminal cell fate, thereby allowing for functional engraftment of pluripotent cells into regenerating tissue.
Collapse
|