1
|
Faua C, Fafi-Kremer S, Gantner P. Antigen specificities of HIV-infected cells: A role in infection and persistence? J Virus Erad 2023; 9:100329. [PMID: 37440870 PMCID: PMC10334354 DOI: 10.1016/j.jve.2023.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
Antigen-experienced memory CD4+ T cells are the major target of HIV infection and support both productive and latent infections, thus playing a key role in HIV dissemination and persistence, respectively. Here, we reviewed studies that have shown direct association between HIV infection and antigen specificity. During untreated infection, some HIV-specific cells host productive infection, while other pathogen-specific cells such as cytomegalovirus (CMV) and Mycobacterium tuberculosis also contribute to viral persistence on antiretroviral therapy (ART). These patterns could be explained by phenotypic features differing between these pathogen-specific cells. Mechanisms involved in these preferential infection and selection processes include HIV entry and restriction, cell exhaustion, survival, self-renewal and immune escape. For instance, MIP-1β expressing cells such as CMV-specific memory cells were shown to resist infection by HIV CCR5 coreceptor downregulation/inhibition. Conversely, HIV-infected CMV-specific cells undergo clonal expansion during ART. We have identified several research areas that need further focus such as the role of other pathogens, viral genome intactness, inducibility and phenotypic features. However, given the sheer diversity of both the CD4+ T cell repertoire and antigenic history of each individual, studying HIV-infected, antigen-experienced cells still imposes numerous challenges.
Collapse
Affiliation(s)
- Clayton Faua
- INSERM UMR_S1109, University of Strasbourg, Strasbourg, France
| | - Samira Fafi-Kremer
- INSERM UMR_S1109, University of Strasbourg, Strasbourg, France
- Medical Virology Laboratory, University Hospital of Strasbourg, Strasbourg, France
| | - Pierre Gantner
- INSERM UMR_S1109, University of Strasbourg, Strasbourg, France
- Medical Virology Laboratory, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
T-cell evasion and invasion during HIV-1 infection: The role of HIV-1 Tat protein. Cell Immunol 2022; 377:104554. [DOI: 10.1016/j.cellimm.2022.104554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
|
3
|
Renault C, Veyrenche N, Mennechet F, Bedin AS, Routy JP, Van de Perre P, Reynes J, Tuaillon E. Th17 CD4+ T-Cell as a Preferential Target for HIV Reservoirs. Front Immunol 2022; 13:822576. [PMID: 35197986 PMCID: PMC8858966 DOI: 10.3389/fimmu.2022.822576] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Among CD4+ T-cells, T helper 17 (Th17) cells play a sentinel role in the defense against bacterial/fungal pathogens at mucosal barriers. However, Th17 cells are also highly susceptible to HIV-1 infection and are rapidly depleted from gut mucosal sites, causing an imbalance of the Th17/Treg ratio and impairing cytokines production. Consequently, damage to the gut mucosal barrier leads to an enhanced microbial translocation and systemic inflammation, a hallmark of HIV-1 disease progression. Th17 cells’ expression of mucosal homing receptors (CCR6 and α4β7), as well as HIV receptors and co-receptors (CD4, α4β7, CCR5, and CXCR4), contributes to susceptibility to HIV infection. The up-regulation of numerous intracellular factors facilitating HIV production, alongside the downregulation of factors inhibiting HIV, helps to explain the frequency of HIV DNA within Th17 cells. Th17 cells harbor long-lived viral reservoirs in people living with HIV (PLWH) receiving antiretroviral therapy (ART). Moreover, cell longevity and the proliferation of a fraction of Th17 CD4 T cells allow HIV reservoirs to be maintained in ART patients.
Collapse
Affiliation(s)
- Constance Renault
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Nicolas Veyrenche
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
| | - Franck Mennechet
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Anne-Sophie Bedin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Research Institute and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
| | - Jacques Reynes
- Virology Laboratory, CHU de Montpellier, Montpellier, France
- IRD UMI 233, INSERM U1175, University of Montpellier, Montpellier, France
- Infectious Diseases Department, CHU de Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
- *Correspondence: Edouard Tuaillon,
| |
Collapse
|
4
|
Siliciano JD, Siliciano RF. In Vivo Dynamics of the Latent Reservoir for HIV-1: New Insights and Implications for Cure. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:271-294. [PMID: 34736342 DOI: 10.1146/annurev-pathol-050520-112001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although antiretroviral therapy (ART) can reduce viremia to below the limit of detection and allow persons living with HIV-1 (PLWH) to lead relatively normal lives, viremia rebounds when treatment is interrupted. Rebound reflects viral persistence in a stable latent reservoir in resting CD4+ T cells. This reservoir is now recognized as the major barrier to cure and is the focus of intense international research efforts. Strategies to cure HIV-1 infection include interventions to eliminate this reservoir, to prevent viral rebound from the reservoir, or to enhance immune responses such that viral replication is effectively controlled. Here we consider recent developments in understanding the composition of the reservoir and how it can be measured in clinical studies. We also discuss exciting new insights into the in vivo dynamics of the reservoir and the reasons for its remarkable stability. Finally we discuss recent discoveries on the complex processes that govern viral rebound. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; .,Howard Hughes Medical Institute, Baltimore, Maryland 21205, USA
| |
Collapse
|
5
|
García M, Morcilla V, Navarrete-Muñoz MÁ, Fisher K, Cabello A, López-Bernaldo JC, De La Hera F, Barros C, Fernández-Guerrero M, Estrada V, Górgolas M, Benito JM, Palmer S, Rallón N. HIV-DNA content in pTfh cells is associated with residual viremia in elite controllers. AIDS 2021; 35:393-398. [PMID: 33252487 DOI: 10.1097/qad.0000000000002776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The source of residual HIV viremia is highly debated and its potential relationship with the HIV reservoir has not been clarified. Herein, we analysed the cell-associated HIV-DNA content in two important cell compartments of the HIV reservoir, resting CD4+ T memory (Trm) and peripheral T follicular helper (pTfh) cells, and the association with the residual HIV viremia in individuals with spontaneous HIV replication control (elite controllers, EC group) and in individuals with antiretroviral therapy (ART)-mediated HIV replication control (cART group). DESIGN A cross-sectional study. METHODS Seventeen chronically HIV-infected patients with suppressed HIV replication were included. Cell-associated HIV-DNA was measured by ultrasensitive digital-droplet-PCR in purified Trm and pTfh cells. Residual HIV plasma viremia was quantified using a single-copy assay with a sensitivity of 0.3 HIV-RNA copies/ml. RESULTS A significant and positive correlation was demonstrated between HIV-DNA levels in pTfh cells and residual plasma viral load (rpVL) (rho = 0.928, P = 0.008) in HIV-positive elite controllers, but not in HIV-positive treated patients, despite the lower levels of cell-associated HIV-DNA found in elite controllers compared with cART patients in pTfh cells [176 (77-882) vs. 608 (361-860) copies/million cells, respectively; P = 0.05]. CONCLUSION This association suggests that pTfh cells could have an important contribution to persistent viremia in elite controllers. This could be the consequence of a more limited control of HIV replication in elite controllers with higher transcriptional activity of HIV in pTfh cells of elite controllers than that in cART patients.
Collapse
Affiliation(s)
- Marcial García
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Vincent Morcilla
- The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Maria Ángeles Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Katie Fisher
- The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | | | | | | | | | | | | | | | - José Miguel Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Sarah Palmer
- The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
6
|
LILAC pilot study: Effects of metformin on mTOR activation and HIV reservoir persistence during antiretroviral therapy. EBioMedicine 2021; 65:103270. [PMID: 33662832 PMCID: PMC7930590 DOI: 10.1016/j.ebiom.2021.103270] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic inflammation and residual HIV transcription persist in people living with HIV (PLWH) receiving antiretroviral therapy (ART), thus increasing the risk of developing non-AIDS co-morbidities. The mechanistic target of rapamycin (mTOR) is a key regulator of cellular metabolism and HIV transcription, and therefore represents an interesting novel therapeutic target. METHODS The LILAC pilot clinical trial, performed on non-diabetic ART-treated PLWH with CD4+/CD8+ T-cell ratios <0.8, evaluated the effects of metformin (12 weeks oral administration; 500-850 mg twice daily), an indirect mTOR inhibitor, on the dynamics of immunological/virological markers and changes in mTOR activation/phosphorylation in blood collected at Baseline, Week 12, and 12 weeks after metformin discontinuation (Week 24) and sigmoid colon biopsies (SCB) collected at Baseline and Week 12. FINDINGS CD4+ T-cell counts, CD4+/CD8+ T-cell ratios, plasma markers of inflammation/gut damage, as well as levels of cell-associated integrated HIV-DNA and HIV-RNA, and transcriptionally-inducible HIV reservoirs, underwent minor variations in the blood in response to metformin. The highest levels of mTOR activation/phosphorylation were observed in SCB at Baseline. Consistently, metformin significantly decreased CD4+ T-cell infiltration in the colon, as well as mTOR activation/phosphorylation, especially in CD4+ T-cells expressing the Th17 marker CCR6. Also, metformin decreased the HIV-RNA/HIV-DNA ratios, a surrogate marker of viral transcription, in colon-infiltrating CD4+ T-cells of 8/13 participants. INTERPRETATION These results are consistent with the fact that metformin preferentially acts on the intestine and that mTOR activation/phosphorylation selectively occurs in colon-infiltrating CCR6+CD4+ T-cells. Future randomized clinical trials should evaluate the benefits of long-term metformin supplementation of ART.
Collapse
|
7
|
Diallo MS, Samri A, Charpentier C, Bertine M, Cheynier R, Thiébaut R, Matheron S, Collin F, Braibant M, Candotti D, Brun-Vézinet F, Autran B, Appay V, Autran B, Brun-Vezinet F, Chaghil N, Descamps D, Hosmalin A, Pancino G, Manel N, Marchand L, Pedroza-Martins L, Sàez-Cirion A, Vieillard V, Agut H, Clauvel JP, Costagliola D, Debré P, Theodorou I, Sicard D, Viard JP, Barin F, Vieillard V, Autran B. A Comparison of Cell Activation, Exhaustion, and Expression of HIV Coreceptors and Restriction Factors in HIV-1- and HIV-2-Infected Nonprogressors. AIDS Res Hum Retroviruses 2021; 37:214-223. [PMID: 33050708 DOI: 10.1089/aid.2020.0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency viruses induce rare attenuated diseases due either to HIV-1 in the exceptional long-term nonprogressors (LTNPs) or to HIV-2 in West Africa. To better understand characteristics of these two disease types we performed a multiplex comparative analysis of cell activation, exhaustion, and expression of coreceptors and restriction factors in CD4 T cells susceptible to harbor those viruses. We analyzed by flow cytometry the expression of HLA-DR, PD1, CCR5, CXCR6, SAMHD1, Blimp-1, and TRIM5α on CD4 T cell subsets from 10 HIV-1+ LTNPs and 14 HIV-2+ (12 nonprogressors and 2 progressors) of the ANRS CO-15 and CO-5 cohorts, respectively, and 12 HIV- healthy donors (HD). The V3 loop of the HIV-1 envelope from 6 HIV-1+ LTNPs was sequenced to determine the CXCR6-binding capacity. Proportions of HLA-DR+ and PD1+ cells were higher in memory CD4 T subsets from HIV-1 LTNPs compared with HIV-2 and HD. Similar findings were observed for CCR5+ cells although limited to central-memory CD4 T cell (TCM) and follicular helper T cell subsets, whereas all major subsets from HIV-1 LTNPs contained less CXCR6+ cells compared with HIV-2. All six V3 loop sequences from HIV-1 LTNPs contained a proline at position 326. Proportions of SAMHD1+ cells were higher in all resting CD4 T subsets from HIV-1 LTNPs compared with the other groups, whereas Blimp-1+ and Trim5α+ cells did not differ. The CD4 T cell subsets from HIV-1 LTNPs differ from those of HIV-2-infected subjects by higher levels of activation, exhaustion, and SAMHD1 expression that can reflect the distinct patterns of host/virus relationships.
Collapse
Affiliation(s)
- Mariama Sadjo Diallo
- Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, Paris, France
| | - Assia Samri
- Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, Paris, France
| | - Charlotte Charpentier
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mélanie Bertine
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Rémi Cheynier
- Institut Cochin, Inserm, U1016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Rodolphe Thiébaut
- Inserm U1219 Bordeaux Population Health, INRIA SISTM, University of Bordeaux, Bordeaux, France
| | - Sophie Matheron
- Inserm, IAME, UMR 1137, University of Paris Diderot, Sorbonne Paris Cité, Assistance Publique -Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Bichat, HUPNVS, Paris, France
| | - Fidéline Collin
- Inserm, IAME, UMR 1137, University of Paris Diderot, Sorbonne Paris Cité, Assistance Publique -Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Bichat, HUPNVS, Paris, France
| | - Martine Braibant
- Université François-Rabelais, Inserm U1259 & CHRU de Tours, Tours, France
| | | | | | - Brigitte Autran
- Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bortlik M, Copertino DC, Brailey PM, Beckerle GA, Ormsby CE, Rosenberg MG, Wiznia AA, Raposo RAS, Nixon DF, de Mulder Rougvie M. Restriction Factor Expression in Vertically Infected Children Living With HIV-1. Pediatr Infect Dis J 2021; 40:144-146. [PMID: 33395209 DOI: 10.1097/inf.0000000000002924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Around 1.7 million children are estimated to live with HIV-1 worldwide, and about 160,000 infants are newly infected every year. Since adaptive immunity takes time to mature and develop in infants, and maternal antibodies provide limited antiviral activity, innate and intrinsic immunity against HIV-1 in the young is of critical importance. Intrinsic restriction factors are cellular proteins that effectively inhibit HIV-1 replication in vitro, but there is limited understanding of their role in vivo, and little to no data has been reported on the expression of host restriction factors in children. We hypothesized that restriction factor expression might be particularly important in children living with HIV-1 and correlate with disease progression. METHODS We analyzed gene expression of APOBEC3A, APOBEC3C, APOBEC3G, APOBEC3H, SAMHD1, ISG15, CDKN1A, MX2, TRIM5, and SLFN11 by qPCR in 121 samples of CD4+ T cells from vertically infected children living with HIV-1. Cell surface expression of BST-2/tetherin and markers of CD4+ T-cell activation were analyzed by flow cytometry. RESULTS After adjusting for gender and age, BST-2/tetherin expression on CD4+ T cells showed significant positive correlation with viral load (P = 0.0006; ρ = 0.33), CD4+ T-cell activation (P < 0.0001; ρ = 0.53), CD8+ T-cell activation (P < 0.0001; ρ = 0.53), and a negative correlation with CD4+ T-cell counts (P = 0.0008; ρ = -0.33). The expression of SAMHD1 correlated negatively with markers of T-cell activation (P = 0.046; ρ = -0.22). DISCUSSION These results suggest an important role of some restriction factors in the pathogenesis of HIV-1 in children.
Collapse
Affiliation(s)
- Martin Bortlik
- From the Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC
- Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
- Department of Dermatology, Military University Hospital, Prague, Czech Republic
| | - Dennis C Copertino
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Phillip M Brailey
- From the Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC
- The Peter Gorer Department of Immunology, King's College, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Greta A Beckerle
- From the Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Christopher E Ormsby
- Centre for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases (INER), Mexico City, CDMX, Mexico
| | - Michael G Rosenberg
- Department of Pediatrics, Division of Infectious Diseases, Jacobi Medical Center, Bronx, NY
- Albert Einstein College of Medicine, Bronx, New York, NY
| | - Andrew A Wiznia
- Albert Einstein College of Medicine, Bronx, New York, NY
- Department of Pediatrics, Division of Allergy-Immunology, Jacobi Medical Center, Bronx, NY
| | - Rui André Saraiva Raposo
- From the Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC
| | - Douglas F Nixon
- From the Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Miguel de Mulder Rougvie
- From the Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
9
|
Li J, Gao C, Huang S, Jin L, Jin C. SAMHD1 expression is associated with low immune activation but not correlated with HIV‑1 DNA levels in CD4+ T cells of patients with HIV‑1. Mol Med Rep 2020; 22:879-885. [PMID: 32468062 PMCID: PMC7339818 DOI: 10.3892/mmr.2020.11153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Sterile α motif and histidine/aspartic acid domain‑containing protein 1 (SAMHD1) can inhibit reverse transcription of human immunodeficiency virus‑1 (HIV‑1) by hydrolyzing intracellular deoxy‑ribonucleoside triphosphate. However, its role in HIV‑1 disease progression has not been extensively studied. To study the impacts of SAMHD1 on HIV‑1 disease progression, especially on DNA levels, we investigated SAMHD1 levels in the peripheral blood of HIV‑1 elite controllers (ECs), antiretroviral therapy (ART) naive viremic progressors (VPs) and patients with HIV‑1 receiving ART (HIV‑ARTs) compared with healthy controls. In addition, the present study analyzed the relationship between SAMHD1 and interferon‑α, immune activation and HIV‑1 DNA levels. The results of the present study demonstrated elevated SAMHD1 expression in the peripheral blood mononuclear cells of all patients withHIV‑1, but higher SAMHD1 expression in the CD4+ T cells of only ECs compared with healthy controls. Immune activation was increased in the VPs and decreased in the ECs compared with healthy controls. Substantially lower HIV‑1 DNA levels were identified in ECs compared with those in VPs and HIV‑ARTs. SAMHD1 expression was associated with low levels of immune activation. No significant correlation was observed between SAMHD1 and HIV‑1 DNA levels. Overall, the findings of the present study indicated that SAMHD1 was highly expressed in ECs, which may be associated with low immune activation levels, but was not directly related to HIV‑1 DNA levels.
Collapse
Affiliation(s)
- Jie Li
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Chuanhua Gao
- Laboratory of Biochemistry and Biomaterials, Department of Materials, College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, P.R. China
| | - Shanshan Huang
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Longteng Jin
- Department of Childhood Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review highlights current knowledge on the dichotomous role played by T helper 17 cells (Th17)-polarized CD4 T cells in maintaining mucosal immunity homeostasis versus fueling HIV/simian immunodeficiency virus (SIV) replication/persistence during antiretroviral therapy (ART), with a focus on molecular mechanisms underlying these processes. RECENT FINDING Th17 cells bridge innate and adaptive immunity against pathogens at mucosal barrier surfaces. Th17 cells are located at portal sites of HIV/SIV entry, express a unique transcriptional/metabolic status compatible with viral replication, and represent the first targets of infection. The paucity of Th17 cells during HIV/SIV infection is caused by infection itself, but also by an altered Th17 differentiation, survival, and trafficking into mucosal sites. This causes major alterations of mucosal barrier integrity, microbial translocation, and disease progression. Unless initiated during the early acute infection phases, ART fails to restore the frequency/functionality of mucosal Th17 cells. A fraction of Th17 cells is long-lived and carry HIV reservoir during ART. Recent studies identified Th17-specific host factors controlling HIV transcription, a step untargeted by current ART. SUMMARY The identification of molecular mechanisms contributing to HIV replication/persistence in mucosal Th17 cells paves the way toward the design of new Th17-specific therapeutic strategies aimed at improving mucosal immunity in HIV-infected individuals.
Collapse
|
11
|
Despite early antiretroviral therapy effector memory and follicular helper CD4 T cells are major reservoirs in visceral lymphoid tissues of SIV-infected macaques. Mucosal Immunol 2020; 13:149-160. [PMID: 31723251 PMCID: PMC6914669 DOI: 10.1038/s41385-019-0221-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023]
Abstract
Whereas antiretroviral therapy (ART) suppresses viral replication, ART discontinuation results in viral rebound, indicating the presence of viral reservoirs (VRs) established within lymphoid tissues. Herein, by sorting CD4 T-cell subsets from the spleen, mesenteric and peripheral lymph nodes (LNs) of SIVmac251-infected rhesus macaques (RMs), we demonstrate that effector memory (TEM) and follicular helper (TFH) CD4+ T cells harbor the highest frequency of viral DNA and RNA, as well of early R-U5 transcripts in ART-naïve RMs. Furthermore, our results highlight that these two CD4 T cells subsets harbor viral DNA and early R-U5 transcripts in the spleen and mesenteric LNs (but not in peripheral LN) of RMs treated with ART at day 4 post infection suggesting that these two anatomical sites are important for viral persistence. Finally, after ART interruption, we demonstrate the rapid and, compared to peripheral LNs, earlier seeding of SIV in spleen and mesenteric LNs, thereby emphasizing the importance of these two anatomical sites for viral replication dynamics. Altogether our results advance understanding of early viral seeding in which visceral lymphoid tissues are crucial in maintaining TEM and TFH VRs.
Collapse
|
12
|
Hani L, Chaillon A, Nere ML, Ruffin N, Alameddine J, Salmona M, Lopez Zaragoza JL, Smith DM, Schwartz O, Lelièvre JD, Delaugerre C, Lévy Y, Seddiki N. Proliferative memory SAMHD1low CD4+ T cells harbour high levels of HIV-1 with compartmentalized viral populations. PLoS Pathog 2019; 15:e1007868. [PMID: 31220191 PMCID: PMC6605680 DOI: 10.1371/journal.ppat.1007868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/02/2019] [Accepted: 05/24/2019] [Indexed: 11/24/2022] Open
Abstract
We previously reported the presence of memory CD4+ T cells that express low levels of SAMHD1 (SAMHD1low) in peripheral blood and lymph nodes from both HIV-1 infected and uninfected individuals. These cells are enriched in Th17 and Tfh subsets, two populations known to be preferentially targeted by HIV-1. Here we investigated whether SAMHD1low CD4+ T-cells harbour replication-competent virus and compartimentalized HIV-1 genomes. We sorted memory CD4+CD45RO+SAMHD1low, CD4+CD45RO+SAMHD1+ and naive CD4+CD45RO-SAMHD1+ cells from HIV-1-infected patients on anti-retroviral therapy (c-ART) and performed HIV-1 DNA quantification, ultra-deep-sequencing of partial env (C2/V3) sequences and phenotypic characterization of the cells. We show that SAMHD1low cells include novel Th17 CCR6+ subsets that lack CXCR3 and CCR4 (CCR6+DN). There is a decrease of the % of Th17 in SAMHD1low compartment in infected compared to uninfected individuals (41% vs 55%, p<0.05), whereas the % of CCR6+DN increases (7.95% vs 3.8%, p<0.05). Moreover, in HIV-1 infected patients, memory SAMHD1low cells harbour high levels of HIV-1 DNA compared to memory SAMHD1+ cells (4.5 vs 3.8 log/106cells, respectively, p<0.001), while naïve SAMHD1+ showed significantly lower levels (3.1 log/106cells, p<0.0001). Importantly, we show that SAMHD1low cells contain p24-producing cells. Moreover, phylogenetic analyses revealed well-segregated HIV-1 DNA populations with compartmentalization between SAMHD1low and SAMHD1+ memory cells, and limited viral exchange. As expected, the % of Ki67+ cells was significantly higher in SAMHD1low compared to SAMHD1+ cells. There was positive association between levels of HIV-1 DNA and Ki67+ in memory SAMHD1low cells, but not in memory and naïve SAMHD1+ CD4+ T-cells. Altogether, these data suggest that proliferative memory SAMHD1low cells contribute to viral persistence. In our previous results we reported that memory CD4+ T cells expressing low levels of SAMHD1 (SAMHD1low) are present in peripheral blood and lymph nodes from HIV-1 infected and uninfected individuals. These cells were enriched in Th17 and Tfh, two populations targeted by HIV-1. Here we used purified memory CD4+CD45RO+SAMHD1low, CD4+CD45RO+SAMHD1+ and naive CD4+CD45RO-SAMHD1+ cells from HIV-1-infected and treated patients to perform cell-associated HIV-1 DNA quantification, p24-producing cells detection, ultra-deep-sequencing of partial env (C2/V3) HIV-1 DNA and further phenotypic characterization. Our results demonstrate that (i) Th17 and CCR6+DN-expressing transcriptional signature of early Th17, two major populations that are susceptible to HIV-1 infection, are present in SAMHD1low cells, and while the former decreased significantly in c-ART HIV-1 infected compared to uninfected individuals, the latter significantly increased; (ii) memory SAMHD1low cells from c-ART patients carry high levels of HIV-1 DNA compared to SAMHD1+ cells, and these levels positively and significantly correlated with Ki67 expression; (iii) memory SAMHD1low cells from patients harbour p24-producing cells; (iv) phylogenetic analyses revealed well-segregated HIV-1 DNA populations with significant compartmentalization between SAMHD1low and SAMHD1+ cells and limited viral exchange. Our data demonstrate that memory SAMHD1low cells contribute to HIV-1 persistence.
Collapse
Affiliation(s)
- Lylia Hani
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Antoine Chaillon
- Vaccine Research Institute (VRI), Créteil, France
- Department of Medicine, University of California San Diego, CA, United States of America
| | - Marie-Laure Nere
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - Nicolas Ruffin
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Joudy Alameddine
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Maud Salmona
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - José-Luiz Lopez Zaragoza
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, CA, United States of America
| | - Olivier Schwartz
- Vaccine Research Institute (VRI), Créteil, France
- Unité Virus et Immunité, Département de Virologie, Institut Pasteur, Paris, France
| | - Jean-Daniel Lelièvre
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Constance Delaugerre
- Vaccine Research Institute (VRI), Créteil, France
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - Yves Lévy
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Nabila Seddiki
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- * E-mail:
| |
Collapse
|
13
|
Boucau J, Madouasse J, Kourjian G, Carlin CS, Wambua D, Berberich MJ, Le Gall S. The Activation State of CD4 T Cells Alters Cellular Peptidase Activities, HIV Antigen Processing, and MHC Class I Presentation in a Sequence-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2019; 202:2856-2872. [PMID: 30936293 DOI: 10.4049/jimmunol.1700950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
CD4 T cell activation is critical to the initiation of adaptive immunity. CD4 T cells are also the main targets of HIV infection, and their activation status contributes to the maintenance and outcome of infection. Although the role of activation in the differentiation and proliferation of CD4 T cells is well studied, its impact on the processing and MHC class I (MHC-I) presentation of epitopes and immune recognition by CD8 T cells are not investigated. In this study, we show that the expression and hydrolytic activities of cellular peptidases are increased upon TCR-dependent and MHC-peptide activation of primary CD4 T cells from healthy or HIV-infected persons. Changes in peptidase activities altered the degradation patterns of HIV Ags analyzed by mass spectrometry, modifying the amount of MHC-I epitopes produced, the antigenicity of the degradation products, and the coverage of Ags by degradation peptides presentable by MHC-I. The computational analysis of 2237 degradation peptides generated during the degradation of various HIV-antigenic fragments in CD4 T cells identified cleavage sites that were predictably enhanced, reduced, or unchanged upon cellular activation. Epitope processing and presentation by CD4 T cells may be modulated by the activation state of cells in a sequence-dependent manner. Accordingly, cellular activation modified endogenous Ag processing and presentation and killing of HIV-infected CD4 T cells by CD8 T cells in a way that mirrored differences in in vitro epitope processing. The clearance of HIV-infected cells may rely on different immune responses according to activation state during HIV infection.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | | | | | | | - Daniel Wambua
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | | | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| |
Collapse
|
14
|
BCL6 Inhibitor-Mediated Downregulation of Phosphorylated SAMHD1 and T Cell Activation Are Associated with Decreased HIV Infection and Reactivation. J Virol 2019; 93:JVI.01073-18. [PMID: 30355686 DOI: 10.1128/jvi.01073-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Clearance of HIV-infected germinal center (GC) CD4+ follicular helper T cells (Tfh) after combination antiretroviral therapy (ART) is essential to an HIV cure. Blocking B cell lymphoma 6 (BCL6; the master transcription factor for Tfh cells) represses HIV infection of tonsillar CD4+ Tfh ex vivo, reduces GC formation, and limits immune activation in vivo We assessed the anti-HIV activity of a novel BCL6 inhibitor, FX1, in Tfh/non-Tfh CD4+ T cells and its impact on T cell activation and SAMHD1 phosphorylation (Thr592). FX1 repressed HIV-1 infection of peripheral CD4+ T cells and tonsillar Tfh/non-Tfh CD4+ T cells (P < 0.05) and total elongated and multispliced HIV-1 RNA production during the first round of viral life cycle (P < 0.01). Using purified circulating CD4+ T cells from uninfected donors, we demonstrate that FX1 treatment resulted in downregulation pSAMHD1 expression (P < 0.05) and T cell activation (HLA-DR, CD25, and Ki67; P < 0.01) ex vivo corresponding with inhibition of HIV-1 and HIV-2 replication. Ex vivo HIV-1 reactivation using purified peripheral CD4+ T cells from HIV-infected ART-suppressed donors was also blocked by FX1 treatment (P < 0.01). Our results indicate that BCL6 function contributes to Tfh/non-Tfh CD4+ T cell activation and cellular susceptibility to HIV infection. BCL6 inhibition represents a novel therapeutic strategy to potentiate HIV suppression in Tfh/non-Tfh CD4+ T cells without reactivation of latent virus.IMPORTANCE The expansion and accumulation of HIV-infected BCL6+ Tfh CD4+ T cells are thought to contribute to the persistence of viral reservoirs in infected subjects undergoing ART. Two mechanisms have been raised for the preferential retention of HIV within Tfh CD4+ T cells: (i) antiretroviral drugs have limited tissue distribution, resulting in insufficient tissue concentration and lower efficacy in controlling HIV replication in lymphoid tissues, and (ii) cytotoxic CD8+ T cells within lymphoid tissues express low levels of chemokine receptor (CXCR5), thus limiting their ability to enter the GCs to control/eliminate HIV-infected Tfh cells. Our results indicate that the BCL6 inhibitor FX1 can not only repress HIV infection of tonsillar Tfh ex vivo but also suppress HIV infection and reactivation in primary, non-Tfh CD4+ T cells. Our study provides a rationale for targeting BCL6 protein to extend ART-mediated reduction of persistent HIV and/or support strategies toward HIV remission beyond ART cessation.
Collapse
|
15
|
Increased SAMHD1 transcript expression correlates with interferon-related genes in HIV-1-infected patients. Med Microbiol Immunol 2018; 208:679-691. [PMID: 30564919 DOI: 10.1007/s00430-018-0574-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/24/2018] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate the contribution of SAMHD1 to HIV-1 infection in vivo and its relationship with IFN response, the expression of SAMHD1 and IFN-related pathways was evaluated in HIV-1-infected patients. METHODS Peripheral blood mononuclear cells (PBMC) from 388 HIV-1-infected patients, both therapy naïve (n = 92) and long-term HAART treated (n = 296), and from 100 gender and age-matched healthy individuals were examined. CD4+ T cells, CD14+ monocytes and gut biopsies were also analyzed in HIV-1-infected subjects on suppressive antiretroviral therapy. Gene expression levels of SAMDH1, ISGs (MxA, MxB, HERC5, IRF7) and IRF3 were evaluated by real-time RT-PCR assays. RESULTS SAMHD1 levels in HIV-1-positive patients were significantly increased compared to those in healthy donors. SAMHD1 expression was enhanced in treated patients compared to naïve patients (p < 0.0001) and healthy donors (p = 0.0038). Virologically suppressed treated patients exhibited higher SAMHD1 levels than healthy donors (p = 0.0008), viraemic patients (p = 0.0001) and naïve patients (p < 0.0001). SAMHD1 levels were also increased in CD4+ T cells compared to those in CD14+ monocytes and in PBMC compared to those of GALT. Moreover, SAMHD1 was expressed more strongly than ISGs in HIV-1-infected patients and positive correlations were found between SAMHD1, ISGs and IRF3 levels. CONCLUSIONS SAMHD1 is more strongly expressed than the classical IFN-related genes, increased during antiretroviral therapy and correlated with ISGs and IRF3 in HIV-1-infected patients.
Collapse
|
16
|
Aid M, Dupuy FP, Moysi E, Moir S, Haddad EK, Estes JD, Sekaly RP, Petrovas C, Ribeiro SP. Follicular CD4 T Helper Cells As a Major HIV Reservoir Compartment: A Molecular Perspective. Front Immunol 2018; 9:895. [PMID: 29967602 PMCID: PMC6015877 DOI: 10.3389/fimmu.2018.00895] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/10/2018] [Indexed: 01/05/2023] Open
Abstract
Effective antiretroviral therapy (ART) has prevented the progression to AIDS and reduced HIV-related morbidities and mortality for the majority of infected individuals. However, a lifelong administration of ART is necessary, placing an inordinate burden on individuals and public health systems. Therefore, discovering therapeutic regimens able to eradicate or functionally cure HIV infection is of great importance. ART interruption leads to viral rebound highlighting the establishment and maintenance of a latent viral reservoir compartment even under long-term treatment. Follicular helper CD4 T cells (TFH) have been reported as a major cell compartment contributing to viral persistence, consequent to their susceptibility to infection and ability to release replication-competent new virions. Here, we discuss the molecular profiles and potential mechanisms that support the role of TFH cells as one of the major HIV reservoirs.
Collapse
Affiliation(s)
- Malika Aid
- Beth Israel Deaconess Medical Center, Center for Virology and Vaccine Research, Harvard Medical School, Boston, MA, United States
| | - Frank P Dupuy
- Centre hospitalier de l'Université de Montréal, Montreal, QC, United States
| | - Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIH, Bethesda, MD, United States
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Elias K Haddad
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jacob D Estes
- Oregon National Primate Research Center, Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Rafick Pierre Sekaly
- Pathology Department, Case Western Reserve University, Cleveland, OH, United States
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIH, Bethesda, MD, United States
| | | |
Collapse
|
17
|
García M, Buzón MJ, Benito JM, Rallón N. Peering into the HIV reservoir. Rev Med Virol 2018; 28:e1981. [PMID: 29744964 DOI: 10.1002/rmv.1981] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Abstract
The main obstacle to HIV eradication is the establishment of a long-term persistent HIV reservoir. Although several therapeutic approaches have been developed to reduce and eventually eliminate the HIV reservoir, only a few have achieved promising results. A better knowledge of the mechanisms involved in the establishment and maintenance of HIV reservoir is of utmost relevance for the design of new therapeutic strategies aimed at purging it with the ultimate goal of achieving HIV eradication or alternatively a functional cure. In this regard, it is also important to take a close look into the cellular HIV reservoirs other than resting memory CD4 T-cells with key roles in reservoir maintenance that have been recently described. Unraveling the special characteristics of these HIV cellular compartments could aid us in designing new therapeutic strategies to deplete the latent HIV reservoir.
Collapse
Affiliation(s)
- Marcial García
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | - José M Benito
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Norma Rallón
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
18
|
Rustanti L, Jin H, Li D, Lor M, Sivakumaran H, Harrich D. Differential Effects of Strategies to Improve the Transduction Efficiency of Lentiviral Vector that Conveys an Anti-HIV Protein, Nullbasic, in Human T Cells. Virol Sin 2018. [PMID: 29541943 DOI: 10.1007/s12250-018-0004-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nullbasic is a mutant form of HIV-1 Tat that has strong ability to protect cells from HIV-1 replication by inhibiting three different steps of viral replication: reverse transcription, Rev export of viral mRNA from the nucleus to the cytoplasm and transcription of viral mRNA by RNA polymerase II. We previously showed that Nullbasic inhibits transduction of human cells including T cells by HIV-1-based lentiviral vectors. Here we investigated whether the Nullbasic antagonists huTat2 (a Tat targeting intrabody), HIV-1 Tat or Rev proteins or cellular DDX1 protein could improve transduction by a HIV-1 lentiviral vector conveying Nullbasic-ZsGreen1 to human T cells. We show that overexpression of huTat2, Tat-FLAG and DDX1-HA in virus-like particle (VLP) producer cells significantly improved transduction efficiency of VLPs that convey Nullbasic in Jurkat cells. Specifically, co-expression of Tat-FLAG and DDX1-HA in the VLP producer cell improved transduction efficiency better than if used individually. Transduction efficiencies could be further improved by including a spinoculation step. However, the same optimised protocol and using the same VLPs failed to transduce primary human CD4+ T cells. The results imply that the effects of Nullbasic on VLPs on early HIV-1 replication are robust in human CD4+ T cells. Given this significant block to lentiviral vector transduction by Nullbasic in primary CD4+ T cells, our data indicate that gammaretroviral, but not lentiviral, vectors are suitable for delivering Nullbasic to primary human T cells.
Collapse
Affiliation(s)
- Lina Rustanti
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
- National Institute of Health Research and Development, the Ministry of Health of Republic of Indonesia, Central Jakarta, DKI Jakarta, 10560, Indonesia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Haran Sivakumaran
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.
| |
Collapse
|
19
|
Abstract
Germinal centers (GCs) are organized lymphoid tissue microstructures where B cells proliferate and differentiate into memory B cells and plasma cells. A few distinctive subsets of highly specialized T cells gain access to the GCs by expressing the B cell zone–homing C-X-C chemokine receptor type 5 (CXCR5) while losing the T cell zone–homing chemokine receptor CCR7. Help from T cells is critical to induce B cell proliferation and somatic hyper mutation and to limit GC reactions. CD4+ T follicular helper (TFH) cells required for the formation of GCs and for the generation of long-lived, high-affinity B cells. Regulatory CD4+ (TFR) and CD8+ T cells co-localize with TFH cells and keep their expansion in check, thus limiting GC reactions. A cytotoxic CXCR5pos CD8+ T cell subset has been described in GCs in humans: although low in number, GC CD8+ T cells can expand rapidly during certain viral infections. Because these subsets find their home in secondary lymphoid tissues (lymph nodes and spleen) that are difficult to obtain in humans, GC–homing T cells have been extensively studied in mice. Nevertheless, significant limitations in using this model, such as evolutionary divergences between mice and humans and the lack of an optimal mouse model for certain human diseases, have prompted investigators to characterize GC–homing T cells in macaques instead. This review will focus on discoveries made in macaques, particularly in the non-human primate models of simian immunodeficiency virus and simian–human immunodeficiency virus infection. Indeed, experimental studies in these models have allowed researchers to gain insight into the relative role of follicular T cell subsets in HIV progression, virus persistence, and specific B cell responses induced by HIV vaccines. These discoveries have prompted the testing of novel approaches aimed to manipulate follicular T cells to increase the efficacy of HIV vaccines and to eliminate HIV reservoirs.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
20
|
HIV-1 Infection of Primary CD4 + T Cells Regulates the Expression of Specific Human Endogenous Retrovirus HERV-K (HML-2) Elements. J Virol 2017; 92:JVI.01507-17. [PMID: 29046457 DOI: 10.1128/jvi.01507-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/14/2017] [Indexed: 11/20/2022] Open
Abstract
Endogenous retroviruses (ERVs) occupy extensive regions of the human genome. Although many of these retroviral elements have lost their ability to replicate, those whose insertion took place more recently, such as the HML-2 group of HERV-K elements, still retain intact open reading frames and the capacity to produce certain viral RNA and/or proteins. Transcription of these ERVs is, however, tightly regulated by dedicated epigenetic control mechanisms. Nonetheless, it has been reported that some pathological states, such as viral infections and certain cancers, coincide with ERV expression, suggesting that transcriptional reawakening is possible. HML-2 elements are reportedly induced during HIV-1 infection, but the conserved nature of these elements has, until recently, rendered their expression profiling problematic. Here, we provide comprehensive HERV-K HML-2 expression profiles specific for productively HIV-1-infected primary human CD4+ T cells. We combined enrichment of HIV-1 infected cells using a reporter virus expressing a surface reporter for gentle and efficient purification with long-read single-molecule real-time sequencing. We show that three HML-2 proviruses-6q25.1, 8q24.3, and 19q13.42-are upregulated on average between 3- and 5-fold in HIV-1-infected CD4+ T cells. One provirus, HML-2 12q24.33, in contrast, was repressed in the presence of active HIV replication. In conclusion, this report identifies the HERV-K HML-2 loci whose expression profiles differ upon HIV-1 infection in primary human CD4+ T cells. These data will help pave the way for further studies on the influence of endogenous retroviruses on HIV-1 replication.IMPORTANCE Endogenous retroviruses inhabit big portions of our genome. Moreover, although they are mainly inert, some of the evolutionarily younger members maintain the ability to express both RNA and proteins. We have developed an approach using long-read single-molecule real-time (SMRT) sequencing that produces long reads that allow us to obtain detailed and accurate HERV-K HML-2 expression profiles. We applied this approach to study HERV-K expression in the presence or absence of productive HIV-1 infection of primary human CD4+ T cells. In addition to using SMRT sequencing, our strategy also includes the magnetic selection of the infected cells so that levels of background expression due to uninfected cells are kept at a minimum. The results presented here provide a blueprint for in-depth studies of the interactions of the authentic upregulated HERV-K HML-2 elements and HIV-1.
Collapse
|
21
|
Cenker JJ, Stultz RD, McDonald D. Brain Microglial Cells Are Highly Susceptible to HIV-1 Infection and Spread. AIDS Res Hum Retroviruses 2017; 33:1155-1165. [PMID: 28486838 DOI: 10.1089/aid.2017.0004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Macrophages are a target of human immunodeficiency virus type 1 (HIV-1) infection and may serve as an important reservoir of the virus in the body, particularly after depletion of CD4+ T cells in HIV/AIDS. Recently, sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1) was identified as the major restriction factor of HIV-1 infection in myeloid cells. SAMHD1 is targeted for proteolytic degradation by Vpx, a viral protein encoded by HIV-2 and many simian immunodeficiency viruses but not HIV-1. In this study, we assessed SAMHD1 restriction in in vitro differentiated macrophages and in freshly isolated macrophages from the lungs, abdomen, and brain. We found that infection and spread in in vitro cultured monocyte-derived macrophages were highly limited and that Vpx largely relieved the restriction to initial infection, as expected. We observed nearly identical infection and restriction profiles in freshly isolated peripheral blood monocytes, as well as lung (alveolar) and abdominal (peritoneal) macrophages. In contrast, under the same infection conditions, primary brain macrophages (microglia) were highly susceptible to HIV-1 infection despite levels of endogenous SAMHD1 comparable to the other macrophage populations. Addition of Vpx further increased HIV-1 infection under conditions of limiting virus input, and viral spread was robust whether or not SAMHD1 was depleted. These results suggest that HIV-1 infection of peripherally circulating macrophages is effectively restricted by SAMHD1; however, microglia are highly susceptible to infection despite SAMHD1 expression. These data may explain the long-standing observation that HIV-1 infection is often detected in macrophages in the brain, but seldom in other tissues of the body.
Collapse
Affiliation(s)
- Jennifer J. Cenker
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ryan D. Stultz
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - David McDonald
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
22
|
Rocha-Perugini V, Suárez H, Álvarez S, López-Martín S, Lenzi GM, Vences-Catalán F, Levy S, Kim B, Muñoz-Fernández MA, Sánchez-Madrid F, Yáñez-Mó M. CD81 association with SAMHD1 enhances HIV-1 reverse transcription by increasing dNTP levels. Nat Microbiol 2017; 2:1513-1522. [PMID: 28871089 PMCID: PMC5660623 DOI: 10.1038/s41564-017-0019-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
In this study, we report that the tetraspanin CD81 enhances human immunodeficiency virus (HIV)-1 reverse transcription in HIV-1-infected cells. This is enabled by the direct interaction of CD81 with the deoxynucleoside triphosphate phosphohydrolase SAMHD1. This interaction prevents endosomal accumulation and favours the proteasome-dependent degradation of SAMHD1. Consequently, CD81 depletion results in SAMHD1 increased expression, decreasing the availability of deoxynucleoside triphosphates (dNTP) and thus HIV-1 reverse transcription. Conversely, CD81 overexpression, but not the expression of a CD81 carboxy (C)-terminal deletion mutant, increases cellular dNTP content and HIV-1 reverse transcription. Our results demonstrate that the interaction of CD81 with SAMHD1 controls the metabolic rate of HIV-1 replication by tuning the availability of building blocks for reverse transcription, namely dNTPs. Together with its role in HIV-1 entry and budding into host cells, the data herein indicate that HIV-1 uses CD81 as a rheostat that controls different stages of the infection.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, 28006, Spain
- Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, 28029, Spain
| | - Henar Suárez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Centro de Biología Molecular Severo Ochoa, Madrid, 28049, Spain
| | - Susana Álvarez
- Servicio de Inmunobiología Molecular del Hospital Universitario Gregorio Marañón, Madrid, 28007, Spain
| | - Soraya López-Martín
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Centro de Biología Molecular Severo Ochoa, Madrid, 28049, Spain
| | - Gina M Lenzi
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Felipe Vences-Catalán
- Division of Oncology, Center for Clinical Sciences Research, Stanford University, Stanford, CA, 94305-5151, USA
| | - Shoshana Levy
- Division of Oncology, Center for Clinical Sciences Research, Stanford University, Stanford, CA, 94305-5151, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - María A Muñoz-Fernández
- Servicio de Inmunobiología Molecular del Hospital Universitario Gregorio Marañón, Madrid, 28007, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, 28006, Spain
- Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, 28029, Spain
- CIBER Cardiovascular, Madrid, Spain
| | - Maria Yáñez-Mó
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Centro de Biología Molecular Severo Ochoa, Madrid, 28049, Spain.
| |
Collapse
|
23
|
Yaseen MM, Abuharfeil NM, Alqudah MA, Yaseen MM. Mechanisms and Factors That Drive Extensive Human Immunodeficiency Virus Type-1 Hypervariability: An Overview. Viral Immunol 2017; 30:708-726. [PMID: 29064351 DOI: 10.1089/vim.2017.0065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extensive hypervariability of human immunodeficiency virus type-1 (HIV-1) populations represents a major barrier against the success of currently available antiretroviral therapy. Moreover, it is still the most important obstacle that faces the development of an effective preventive vaccine against this infectious virus. Indeed, several factors can drive such hypervariability within and between HIV-1 patients. These factors include: first, the very low fidelity nature of HIV-1 reverse transcriptase; second, the extremely high HIV-1 replication rate; and third, the high genomic recombination rate that the virus has. All these factors together with the APOBEC3 proteins family and the immune and antiviral drugs pressures drive the extensive hypervariability of HIV-1 populations. Studying these factors and the mechanisms that drive such hypervariability will provide valuable insights that may guide the development of effective therapeutic and preventive strategies against HIV-1 infection in the near future. To this end, in this review, we summarized recent advances in this area of HIV-1 research.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- 1 Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Jordan University of Science and Technology , Irbid, Jordan
| | - Nizar Mohammad Abuharfeil
- 2 Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology , Irbid, Jordan
| | - Mohammad Ali Alqudah
- 3 Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology , Irbid, Jordan
| | - Mohammad Mahmoud Yaseen
- 4 Department of Public Health, College of Medicine, Jordan University of Science and Technology , Irbid, Jordan
| |
Collapse
|
24
|
Rouers A, Jeger-Madiot R, Moris A, Graff-Dubois S. [Follicular helper T cells and HIV - United for better and worse]. Med Sci (Paris) 2017; 33:878-886. [PMID: 28994384 DOI: 10.1051/medsci/20173310020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Follicular helper T cells (Tfh) have been discovered in lymph nodes and, since then, are the focus of very intensive research to understand their origin, differentiation and functions. Tfh interact with B cells in the secondary lymphoid organs leading to B cell differentiation and maturation. Tfh are particularly studied in pathological contexts such as autoimmune diseases and infection by the human immunodeficiency virus (HIV). In the context of HIV infection, broadly neutralizing antibodies have been identified in a few patients. The generation of these broadly neutralizing antibodies requires a long and complex maturation of B cells in the secondary lymphoid organs. Characterizing Tfh functions and the relation with the quality of antibodies in HIV infection might help in designing novel immunotherapies and vaccination strategies to induce broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Angeline Rouers
- Sorbonne universités, UPMC Univ Paris 06, Inserm U1135, CNRS ERL 8255, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, 91, boulevard de l'Hôpital, 75013 Paris, France
| | - Raphaël Jeger-Madiot
- Sorbonne universités, UPMC Univ Paris 06, Inserm U1135, CNRS ERL 8255, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, 91, boulevard de l'Hôpital, 75013 Paris, France
| | - Arnaud Moris
- Sorbonne universités, UPMC Univ Paris 06, Inserm U1135, CNRS ERL 8255, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, 91, boulevard de l'Hôpital, 75013 Paris, France
| | - Stéphanie Graff-Dubois
- Sorbonne universités, UPMC Univ Paris 06, Inserm U1135, CNRS ERL 8255, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, 91, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
25
|
Planas D, Zhang Y, Monteiro P, Goulet JP, Gosselin A, Grandvaux N, Hope TJ, Fassati A, Routy JP, Ancuta P. HIV-1 selectively targets gut-homing CCR6+CD4+ T cells via mTOR-dependent mechanisms. JCI Insight 2017; 2:93230. [PMID: 28768913 PMCID: PMC5543920 DOI: 10.1172/jci.insight.93230] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
Gut-associated lymphoid tissues are enriched in CCR6+ Th17-polarized CD4+ T cells that contribute to HIV-1 persistence during antiretroviral therapy (ART). This raises the need for Th17-targeted immunotherapies. In an effort to identify mechanisms governing HIV-1 permissiveness/persistence in gut-homing Th17 cells, we analyzed the transcriptome of CCR6+ versus CCR6- T cells exposed to the gut-homing inducer retinoic acid (RA) and performed functional validations in colon biopsies of HIV-infected individuals receiving ART (HIV+ART). Although both CCR6+ and CCR6- T cells acquired gut-homing markers upon RA exposure, the modulation of unique sets of genes coincided with preferential HIV-1 replication in RA-treated CCR6+ T cells. This molecular signature included the upregulation of HIV-dependency factors acting at entry/postentry levels, such as the CCR5 and PI3K/Akt/mTORC1 signaling pathways. Of note, mTOR expression/phosphorylation was distinctively induced by RA in CCR6+ T cells. Consistently, mTOR inhibitors counteracted the effect of RA on HIV replication in vitro and viral reactivation in CD4+ T cells from HIV+ART individuals via postentry mechanisms independent of CCR5. Finally, CCR6+ versus CCR6- T cells infiltrating the colons of HIV+ART individuals expressed unique molecular signatures, including higher levels of CCR5, integrin β7, and mTOR phosphorylation. Together, our results identify mTOR as a druggable key regulator of HIV permissiveness in gut-homing CCR6+ T cells.
Collapse
Affiliation(s)
- Delphine Planas
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Département of microbiologie, infectiologie et immunologie, Université de Montréal, Faculté de Médecine, Montreal, Québec, Canada
| | - Yuwei Zhang
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Département of microbiologie, infectiologie et immunologie, Université de Montréal, Faculté de Médecine, Montreal, Québec, Canada
| | - Patricia Monteiro
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Département of microbiologie, infectiologie et immunologie, Université de Montréal, Faculté de Médecine, Montreal, Québec, Canada
| | | | - Annie Gosselin
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Nathalie Grandvaux
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Faculté de Médecine, Département of biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Thomas J. Hope
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Jean-Pierre Routy
- Chronic Viral Illness Service and Research Institute and
- Division of Hematology, McGill University Health Centre, Montreal, Québec, Canada
| | - Petronela Ancuta
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Département of microbiologie, infectiologie et immunologie, Université de Montréal, Faculté de Médecine, Montreal, Québec, Canada
| |
Collapse
|
26
|
Leong YA, Atnerkar A, Yu D. Human Immunodeficiency Virus Playing Hide-and-Seek: Understanding the T FH Cell Reservoir and Proposing Strategies to Overcome the Follicle Sanctuary. Front Immunol 2017; 8:622. [PMID: 28620380 PMCID: PMC5449969 DOI: 10.3389/fimmu.2017.00622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/10/2017] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) infects millions of people worldwide, and new cases continue to emerge. Once infected, the virus cannot be cleared by the immune system and causes acquired immunodeficiency syndrome. Combination antiretroviral therapeutic regimen effectively suppresses viral replication and halts disease progression. The treatment, however, does not eliminate the virus-infected cells, and interruption of treatment inevitably leads to viral rebound. The rebound virus originates from a group of virus-infected cells referred to as the cellular reservoir of HIV. Identifying and eliminating the HIV reservoir will prevent viral rebound and cure HIV infection. In this review, we focus on a recently discovered HIV reservoir in a subset of CD4+ T cells called the follicular helper T (TFH) cells. We describe the potential mechanisms for the emergence of reservoir in TFH cells, and the strategies to target and eliminate this viral reservoir.
Collapse
Affiliation(s)
- Yew Ann Leong
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anurag Atnerkar
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Di Yu
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
27
|
Amet T, Son YM, Jiang L, Cheon IS, Huang S, Gupta SK, Dent AL, Montaner LJ, Yu Q, Sun J. BCL6 represses antiviral resistance in follicular T helper cells. J Leukoc Biol 2017; 102:527-536. [PMID: 28550121 DOI: 10.1189/jlb.4a1216-513rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 01/15/2023] Open
Abstract
Follicular Th (Tfh) cells are a distinct subset of Th cells that help B cells produce class-switched antibodies. Studies have demonstrated that Tfh cells are highly prone to HIV infection and replication. However, the molecular mechanisms underlying this phenomenon are largely unclear. Here, we show that murine and human Tfh cells have diminished constitutive expression of IFN-stimulated genes (ISGs) inclusive of antiviral resistance factor MX dynamin-like GTPase 2 (MX2) and IFN-induced transmembrane 3 (IFITM3) compared with non-Tfh cells. A lower antiviral resistance in Tfh was consistent with a higher susceptibility to retroviral infections. Mechanistically, we found that BCL6, a master regulator of Tfh cell development, binds to ISG loci and inhibits the expression of MX2 and IFITM3 in Tfh cells. We demonstrate further that inhibition of the BCL6 BR-C, ttk, and bab (BTB) domain function increases the expression of ISGs and suppresses HIV infection and replication in Tfh cells. Our data reveal a regulatory role of BCL6 in inhibiting antiviral resistance factors in Tfh cells, thereby promoting the susceptibility Tfh cells to viral infections. Our results indicate that the modulation of BCL6 function in Tfh cells could be a potential strategy to enhance Tfh cell resistance to retroviral infections and potentially decrease cellular reservoirs of HIV infection.
Collapse
Affiliation(s)
- Tohti Amet
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Young Min Son
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Thoracic Disease Research Unit, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Li Jiang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Thoracic Disease Research Unit, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - In Su Cheon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Thoracic Disease Research Unit, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Su Huang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Thoracic Disease Research Unit, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Samir K Gupta
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jie Sun
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA; .,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Thoracic Disease Research Unit, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
28
|
Zaunders J, Xu Y, Kent SJ, Koelsch KK, Kelleher AD. Divergent Expression of CXCR5 and CCR5 on CD4 + T Cells and the Paradoxical Accumulation of T Follicular Helper Cells during HIV Infection. Front Immunol 2017; 8:495. [PMID: 28553284 PMCID: PMC5427074 DOI: 10.3389/fimmu.2017.00495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 04/10/2017] [Indexed: 12/23/2022] Open
Abstract
Viral infection sets in motion a cascade of immune responses, including both CXCR5+CD4+ T follicular helper (Tfh) cells that regulate humoral immunity and CCR5+CD4+ T cells that mediate cell-mediated immunity. In peripheral blood mononuclear cells, the majority of memory CD4+ T cells appear to fall into either of these two lineages, CCR5−CXCR5+ or CCR5+CXCR5−. Very high titers of anti-HIV IgG antibodies are a hallmark of infection, strongly suggesting that there is significant HIV-specific CD4+ T cell help to HIV-specific B cells. We now know that characteristic increases in germinal centers (GC) in lymphoid tissue (LT) during SIV and HIV-1 infections are associated with an increase in CXCR5+PD-1high Tfh, which expand to a large proportion of memory CD4+ T cells in LT, and are presumably specific for SIV or HIV epitopes. Macaque Tfh normally express very little CCR5, yet are infected by CCR5-using SIV, which may occur mainly through infection of a subset of PD-1intermediateCCR5+Bcl-6+ pre-Tfh cells. In contrast, in human LT, a subset of PD-1high Tfh appears to express low levels of CCR5, as measured by flow cytometry, and this may also contribute to the high rate of infection of Tfh. Also, we have found, by assessing fine-needle biopsies of LT, that increases in Tfh and GC B cells in HIV infection are not completely normalized by antiretroviral therapy (ART), suggesting a possible long-lasting reservoir of infected Tfh. In contrast to the increase of CXCR5+ Tfh, there is no accumulation of proliferating CCR5+ CD4 T HIV Gag-specific cells in peripheral blood that make IFN-γ. Altogether, CXCR5+CCR5− CD4 T cells that regulate humoral immunity are allowed greater freedom to operate and expand during HIV-1 infection, but at the same time can contain HIV DNA at levels at least as high as in other CD4 subsets. We argue that early ART including a CCR5 blocker may directly reduce the infected Tfh reservoir in LT and also interrupt cycles of antibody pressure driving virus mutation and additional GC responses to resulting neoantigens.
Collapse
Affiliation(s)
- John Zaunders
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Yin Xu
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Kersten K Koelsch
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Anthony D Kelleher
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
29
|
Xu Y, Phetsouphanh C, Suzuki K, Aggrawal A, Graff-Dubois S, Roche M, Bailey M, Alcantara S, Cashin K, Sivasubramaniam R, Koelsch KK, Autran B, Harvey R, Gorry PR, Moris A, Cooper DA, Turville S, Kent SJ, Kelleher AD, Zaunders J. HIV-1 and SIV Predominantly Use CCR5 Expressed on a Precursor Population to Establish Infection in T Follicular Helper Cells. Front Immunol 2017; 8:376. [PMID: 28484447 PMCID: PMC5399036 DOI: 10.3389/fimmu.2017.00376] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/15/2017] [Indexed: 01/28/2023] Open
Abstract
Background T follicular helper (Tfh) cells are increasingly recognized as a major reservoir of HIV infection that will likely need to be addressed in approaches to curing HIV. However, Tfh express minimal CCR5, the major coreceptor for HIV-1, and the mechanism by which they are infected is unclear. We have previously shown that macaque Tfh lack CCR5, but are infected in vivo with CCR5-using SIV at levels comparable to other memory CD4+ T cells. Similarly, human splenic Tfh cells are highly infected with HIV-1 DNA. Therefore, we set out to examine the mechanism of infection of Tfh cells. Methodology Tfh and other CD4+ T cell subsets from macaque lymph nodes and spleens, splenic Tfh from HIV+ subjects, and tonsillar Tfh from HIV-uninfected subjects were isolated by cell sorting prior to cell surface and molecular characterization. HIV proviral gp120 sequences were submitted to genotypic and phenotypic tropism assays. Entry of CCR5- and CXCR4-using viruses into Tfh from uninfected tonsillar tissue was measured using a fusion assay. Results Phylogenetic analysis, genotypic, and phenotypic analysis showed that splenic Tfh cells from chronic HIV+ subjects were predominantly infected with CCR5-using viruses. In macaques, purified CCR5+PD-1intermediate(int)+ memory CD4+ T cells were shown to include pre-Tfh cells capable of differentiating in vitro to Tfh by upregulation of PD-1 and Bcl6, confirmed by qRT-PCR and single-cell multiplex PCR. Infected PD-1int cells survive, carry SIV provirus, and differentiate into PD-1hi Tfh after T cell receptor stimulation, suggesting a pathway for SIV infection of Tfh. In addition, a small subset of macaque and human PD-1hi Tfh can express low levels of CCR5, which makes them susceptible to infection. Fusion assays demonstrated CCR5-using HIV-1 entry into CCR5+ Tfh and pre-Tfh cells from human tonsils. Conclusion The major route of infection of Tfh in macaques and humans appears to be via a CCR5-expressing pre-Tfh population. As the generation of Tfh are important for establishing effective immune responses during primary infections, Tfh are likely to be an early target of HIV-1 following transmission, creating an important component of the reservoir that has the potential to expand over time.
Collapse
Affiliation(s)
- Yin Xu
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | | | - Kazuo Suzuki
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia.,St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Anu Aggrawal
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Stephanie Graff-Dubois
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France
| | - Michael Roche
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Michelle Bailey
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Kieran Cashin
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Rahuram Sivasubramaniam
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Kersten K Koelsch
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Brigitte Autran
- Sorbonne Universités, UPMC University Paris 06, INSERM U1135, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France.,AP-HP, Hôpital Pitié-Salpêtière, Department of Immunology, Paris, France
| | - Richard Harvey
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Paul R Gorry
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Bundoora, VIC, Australia
| | - Arnaud Moris
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France.,AP-HP, Hôpital Pitié-Salpêtière, Department of Immunology, Paris, France
| | - David A Cooper
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia.,St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Stuart Turville
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Anthony D Kelleher
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia.,St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - John Zaunders
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia.,St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
30
|
Ruffin N, Hani L, Seddiki N. From dendritic cells to B cells dysfunctions during HIV-1 infection: T follicular helper cells at the crossroads. Immunology 2017; 151:137-145. [PMID: 28231392 DOI: 10.1111/imm.12730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
T follicular helper (Tfh) cells are essential for B-cell differentiation and the subsequent antibody responses. Their numbers and functions are altered during human and simian immunodeficiency virus (HIV/SIV) infections. In lymphoid tissues, Tfh cells are present in germinal centre, where they are the main source of replicative HIV-1 and represent a major reservoir. Paradoxically, Tfh cell numbers are increased in chronically infected individuals. Understanding the fate of Tfh cells in the course of HIV-1 infection is essential for the design of efficient strategies toward a protective HIV vaccine or a cure. The purpose of this review is to summarize the recent advance in our understanding of Tfh cell dynamics during HIV/SIV infection. In particular, to explore the possible causes of their expansion in lymphoid tissues by discussing the impact of HIV-1 infection on dendritic cells, to identify the molecular players rendering Tfh cells highly susceptible to HIV-1 infection, and to consider the contribution of regulatory follicular T cells in shaping Tfh cell functions.
Collapse
Affiliation(s)
- Nicolas Ruffin
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Lylia Hani
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| | - Nabila Seddiki
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| |
Collapse
|
31
|
SUN2 Silencing Impairs CD4 T Cell Proliferation and Alters Sensitivity to HIV-1 Infection Independently of Cyclophilin A. J Virol 2017; 91:JVI.02303-16. [PMID: 28077629 DOI: 10.1128/jvi.02303-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/29/2016] [Indexed: 11/20/2022] Open
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes connect the nucleus to the cytoskeleton in eukaryotic cells. We previously reported that the overexpression of SUN2, an inner nuclear membrane protein and LINC complex component, inhibits HIV infection between the steps of reverse transcription and nuclear import in a capsid-specific manner. We also reported that SUN2 silencing does not modulate HIV infection in several cell lines. Silencing of SUN2 was recently reported to decrease HIV infection of CD4 T cells, an effect which was suggested to result from modulation of cyclophilin A (CypA)-dependent steps of HIV infection. We confirm here that HIV infection of primary CD4 T cells is compromised in the absence of endogenous SUN2, and we extend these findings to additional viral strains. However, we find that CypA is not required for the decreased infection observed in SUN2-silenced cells and, conversely, that endogenous SUN2 is not required for the well-documented positive modulation of HIV infection by CypA. In contrast, CD4 T cells lacking SUN2 exhibit a considerable defect in proliferative capacity and display reduced levels of activation markers and decreased viability. Additionally, SUN2-silenced CD4 T cells that become infected support reduced levels of viral protein expression. Our results demonstrate that SUN2 is required for the optimal activation and proliferation of primary CD4 T cells and suggest that the disruption of these processes explains the contribution of endogenous SUN2 to HIV infection in primary lymphocytes.IMPORTANCE Linker of nucleoskeleton and cytoskeleton (LINC) complexes connect the nucleus to the cytoskeleton. We previously reported that the overexpression of the LINC complex protein SUN2 inhibits HIV infection by targeting the viral capsid and blocking infection before the virus enters the nucleus. A recent report showed that the depletion of endogenous SUN2 in primary CD4 T cells results in decreased HIV infection and that this involves cyclophilin A (CypA), a host protein that interacts with the capsid of HIV to promote infection. We confirm that HIV infection is reduced in CD4 T cells lacking SUN2, but we find no role for CypA. Instead, SUN2 silencing results in CD4 T cells with decreased viability and much lower proliferation rates. Our results show that SUN2 is required for optimal CD4 T cell activation and proliferation and explain the reduced level of HIV infection in the absence of SUN2.
Collapse
|
32
|
Fu W, Qiu C, Zhou M, Zhu L, Yang Y, Qiu C, Zhang L, Xu X, Wang Y, Xu J, Zhang X. Immune Activation Influences SAMHD1 Expression and Vpx-mediated SAMHD1 Degradation during Chronic HIV-1 Infection. Sci Rep 2016; 6:38162. [PMID: 27922067 PMCID: PMC5138643 DOI: 10.1038/srep38162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
SAMHD1 restricts human immunodeficiency virus type 1 (HIV-1) replication in myeloid cells and CD4+ T cells, while Vpx can mediate SAMHD1 degradation to promote HIV-1 replication. Although the restriction mechanisms of SAMHD1 have been well-described, SAMHD1 expression and Vpx-mediated SAMHD1 degradation during chronic HIV-1 infection were poorly understood. Flow cytometric analysis was used to directly visualize ex vivo, and after in vitro SIV-Vpx treatment, SAMHD1 expression in CD4+ T cells and monocytes. Here we report activated CD4+ T cells without SAMHD1 expression were severely reduced, and SAMHD1 in CD4+ T cells became susceptible to SIV-Vpx mediated degradation during chronic HIV-1 infection, which was absent from uninfected donors. These alterations were irreversible, even after long-term fully suppressive antiretroviral treatment. Although SAMHD1 expression in CD4+ T cells and monocytes was not found to correlate with plasma viral load, Vpx-mediated SAMHD1 degradation was associated with indicators of immune activation. In vitro assays further revealed that T-cell activation and an upregulated IFN-I pathway contributed to these altered SAMHD1 properties. These findings provide insight into how immune activation during HIV-1 infection leads to irreparable aberrations in restriction factors and in subsequent viral evasion from host antiviral defenses.
Collapse
Affiliation(s)
- Weihui Fu
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology of Ministry of Education/Health at Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qiu
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology of Ministry of Education/Health at Shanghai Medical College, Fudan University, Shanghai, China.,Huashan Hospital, Fudan University, Shanghai, China.,Minhang Hospital, Fudan University, Shanghai, China
| | - Mingzhe Zhou
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology of Ministry of Education/Health at Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyan Zhu
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Health at Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Yang
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Health at Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenli Qiu
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Health at Shanghai Medical College, Fudan University, Shanghai, China
| | - Linxia Zhang
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Health at Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuan Xu
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Health at Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Wang
- Shanghai Municipal Center for Disease Control &Prevention, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology of Ministry of Education/Health at Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology of Ministry of Education/Health at Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Cleret-Buhot A, Zhang Y, Planas D, Goulet JP, Monteiro P, Gosselin A, Wacleche VS, Tremblay CL, Jenabian MA, Routy JP, El-Far M, Chomont N, Haddad EK, Sekaly RP, Ancuta P. Identification of novel HIV-1 dependency factors in primary CCR4(+)CCR6(+)Th17 cells via a genome-wide transcriptional approach. Retrovirology 2015; 12:102. [PMID: 26654242 PMCID: PMC4676116 DOI: 10.1186/s12977-015-0226-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/22/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The HIV-1 infection is characterized by profound CD4(+) T cell destruction and a marked Th17 dysfunction at the mucosal level. Viral suppressive antiretroviral therapy restores Th1 but not Th17 cells. Although several key HIV dependency factors (HDF) were identified in the past years via genome-wide siRNA screens in cell lines, molecular determinants of HIV permissiveness in primary Th17 cells remain to be elucidated. RESULTS In an effort to orient Th17-targeted reconstitution strategies, we investigated molecular mechanisms of HIV permissiveness in Th17 cells. Genome-wide transcriptional profiling in memory CD4(+) T-cell subsets enriched in cells exhibiting Th17 (CCR4(+)CCR6(+)), Th1 (CXCR3(+)CCR6(-)), Th2 (CCR4(+)CCR6(-)), and Th1Th17 (CXCR3(+)CCR6(+)) features revealed remarkable transcriptional differences between Th17 and Th1 subsets. The HIV-DNA integration was superior in Th17 versus Th1 upon exposure to both wild-type and VSV-G-pseudotyped HIV; this indicates that post-entry mechanisms contribute to viral replication in Th17. Transcripts significantly enriched in Th17 versus Th1 were previously associated with the regulation of TCR signaling (ZAP-70, Lck, and CD96) and Th17 polarization (RORγt, ARNTL, PTPN13, and RUNX1). A meta-analysis using the NCBI HIV Interaction Database revealed a set of Th17-specific HIV dependency factors (HDFs): PARG, PAK2, KLF2, ITGB7, PTEN, ATG16L1, Alix/AIP1/PDCD6IP, LGALS3, JAK1, TRIM8, MALT1, FOXO3, ARNTL/BMAL1, ABCB1/MDR1, TNFSF13B/BAFF, and CDKN1B. Functional studies demonstrated an increased ability of Th17 versus Th1 cells to respond to TCR triggering in terms of NF-κB nuclear translocation/DNA-binding activity and proliferation. Finally, RNA interference studies identified MAP3K4 and PTPN13 as two novel Th17-specific HDFs. CONCLUSIONS The transcriptional program of Th17 cells includes molecules regulating HIV replication at multiple post-entry steps that may represent potential targets for novel therapies aimed at protecting Th17 cells from infection and subsequent depletion in HIV-infected subjects.
Collapse
Affiliation(s)
- Aurélie Cleret-Buhot
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Yuwei Zhang
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Delphine Planas
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | | | - Patricia Monteiro
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Annie Gosselin
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Vanessa Sue Wacleche
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Cécile L Tremblay
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Mohammad-Ali Jenabian
- Département des sciences biologiques, Université du Québec à Montréal, Montreal, QC, Canada.
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada. .,Research Institute, McGill University Health Centre, Montreal, QC, Canada. .,Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.
| | - Mohamed El-Far
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Elias K Haddad
- Division of infectious Diseases and HIV Medicine, Drexel University, Philadelphia, PA, USA.
| | | | - Petronela Ancuta
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| |
Collapse
|
34
|
Dragin L, Munir-Matloob S, Froehlich J, Morel M, Sourisce A, Lahouassa H, Bailly K, Mangeney M, Ramirez BC, Margottin-Goguet F. Evidence that HIV-1 restriction factor SAMHD1 facilitates differentiation of myeloid THP-1 cells. Virol J 2015; 12:201. [PMID: 26606981 PMCID: PMC4660839 DOI: 10.1186/s12985-015-0425-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/15/2015] [Indexed: 12/12/2022] Open
Abstract
Background SAMHD1 counteracts HIV-1 or HIV-2/SIVsmm that lacks Vpx by depleting the intracellular pool of nucleotides in myeloid cells and CD4+ quiescent T cells, thereby inhibiting the synthesis of retroviral DNA by reverse transcriptase. Depletion of nucleotides has been shown to underline the establishment of quiescence in certain cellular systems. These observations led us to investigate whether SAMHD1 could control the transition between proliferation and quiescence using the THP-1 cell model. Findings The entry of dividing THP-1 myeloid cells into a non-dividing differentiated state was monitored after addition of phorbol-12-myristate-13-acetate (PMA), an inducer of differentiation. Under PMA treatment, cells overexpressing SAMHD1 display stronger and faster adhesion to their support, compared to cells expressing a catalytically inactive form of SAMHD1, or cells depleted of SAMHD1, which appear less differentiated. After PMA removal, cells overexpressing SAMHD1 maintain low levels of cyclin A, in contrast to other cell lines. Interestingly, SAMHD1 overexpression slightly increases cell adhesion even in the absence of the differentiation inducer PMA. Finally, we found that levels of SAMHD1 are reduced in proliferating primary CD4+ T cells after T cell receptor activation, suggesting that SAMHD1 may also be involved in the transition from a quiescent state to a dividing state in primary T cells. Conclusions Altogether, we provide evidence that SAMHD1 may facilitate some aspects of THP-1 cell differentiation. Restriction of HIV-1 by SAMHD1 may rely upon its ability to modify cell cycle parameters, in addition to the direct inhibition of reverse transcription. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0425-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loic Dragin
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Soundasse Munir-Matloob
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Jeanne Froehlich
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Marina Morel
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Adèle Sourisce
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Hichem Lahouassa
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Karine Bailly
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Marianne Mangeney
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Bertha Cecilia Ramirez
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Florence Margottin-Goguet
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
35
|
Badia R, Angulo G, Riveira-Muñoz E, Pujantell M, Puig T, Ramirez C, Torres-Torronteras J, Martí R, Pauls E, Clotet B, Ballana E, Esté JA. Inhibition of herpes simplex virus type 1 by the CDK6 inhibitor PD-0332991 (palbociclib) through the control of SAMHD1. J Antimicrob Chemother 2015; 71:387-94. [PMID: 26542306 DOI: 10.1093/jac/dkv363] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) has been shown to restrict retroviruses and DNA viruses by decreasing the pool of intracellular deoxynucleotides. In turn, SAMHD1 is controlled by cyclin-dependent kinases (CDK) that regulate the cell cycle and cell proliferation. Here, we explore the effect of CDK6 inhibitors on the replication of herpes simplex virus type 1 (HSV-1) in primary monocyte-derived macrophages (MDM). METHODS MDM were treated with palbociclib, a selective CDK4/6 inhibitor, and then infected with a GFP-expressing HSV-1. Intracellular deoxynucleotide triphosphate (dNTP) content was determined using a polymerase-based method. RESULTS CDK6 inhibitor palbociclib blocked SAMHD1 phosphorylation, intracellular dNTP levels and HSV-1 replication in MDM at subtoxic concentrations. Treatment of MDM with palbociclib reduced CDK2 activation, measured as the phosphorylation of the T-loop at Thr160. The antiviral activity of palbociclib was lost when SAMHD1 was degraded by viral protein X. Similarly, palbociclib did not block HSV-1 replication in SAMHD1-negative Vero cells at subtoxic concentrations, providing further evidence for a role of SAMHD1 in mediating the antiviral effect. CONCLUSIONS SAMHD1-mediated HSV-1 restriction is controlled by CDK and points to a preferential role for CDK6 and CDK2 as mediators of SAMHD1 activation. Similarly, the restricting activity of SAMHD1 against DNA viruses suggests that control of dNTP availability is the major determinant of its antiviral activity. This is the first study describing the anti-HSV-1 activity of palbociclib.
Collapse
Affiliation(s)
- Roger Badia
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Guillem Angulo
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Riveira-Muñoz
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Pujantell
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Teresa Puig
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Cristina Ramirez
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Pauls
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José A Esté
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
36
|
Ballana E, Esté JA. SAMHD1: at the crossroads of cell proliferation, immune responses, and virus restriction. Trends Microbiol 2015; 23:680-692. [PMID: 26439297 DOI: 10.1016/j.tim.2015.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 12/31/2022]
Abstract
SAMHD1 is a triphosphohydrolase enzyme that controls the intracellular level of deoxyribonucleoside triphosphates (dNTPs) and plays a role in innate immune sensing and autoimmune disease. SAMHD1 has also been identified as an intrinsic virus restriction factor, inactivated through degradation by HIV-2 Vpx or through a post-transcriptional regulatory mechanism. Phosphorylation of SAMHD1 by cyclin-dependent kinases has been strongly associated with inactivation of the virus restriction mechanism, providing an association between virus replication and cell proliferation. Tight regulation of cell proliferation suggests that viruses, particularly HIV-1 replication, latency, and reactivation, may be similarly controlled by multiple checkpoint mechanisms that, in turn, regulate dNTP levels. In this review, we discuss how SAMHD1 is a viral restriction factor, the mechanism associated with viral restriction, the pathway leading to its inactivation in proliferating cells, and how strategies aimed at controlling virus restriction could lead to a functional cure for HIV.
Collapse
Affiliation(s)
- Ester Ballana
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - José A Esté
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
| |
Collapse
|