1
|
Sadri Nahand J, Khanaliha K, Khatami A, Aminjavaheri P, Abbasi-Kolli M, Mirzaei H, Motlaghzadeh S, Nahid-Samiei R, Bokharaei-Salim F. Expression pattern analysis of the long non-coding RNAs (TINCR, RP11-573D15.8, RP11-156E8.1), and their target genes (AKT1, FOXO1 and MAPK3) in patients with HIV infection, and elite controllers. Heliyon 2024; 10:e30900. [PMID: 38803943 PMCID: PMC11128862 DOI: 10.1016/j.heliyon.2024.e30900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Elite controllers (ECs) defined as a small subclass of subjects with HIV capable of controlling human immunodeficiency virus (HIV) replication in the lack of antiretroviral treatment. One class of RNA molecules that serve as vital components in the network of HIV-related transcriptional regulation, are long noncoding RNAs (lncRNAs). The critical part that they take is in transcriptional regulation of HIV through monitoring various cellular signaling pathways. Reportedly, AKT and MAPK signaling pathways serve a crucial role in modulation of HIV infection. In the current investigation, we utilized bioinformatics tools to predict the lncRNAs that have the ability to interact with MAPK3, AKT, and FOXO1. Then, PBMC expression levels of lncRNAs and their target genes (AKT, FOXO1 and MAPK3) measured in the ECs (n = 15), HIV-positive (n = 40) patients and healthy control subjects (n = 40). We found a significant increase and decrease in the level of AKT and FOXO1 expression within the ECs group, respectively than in the HIV + group (P-value <0.0001 and 0.04, respectively). In the ECs group, the level of TINCR and RP11-156E8.1 was overexpressed compared to the HIV + group (P-value: 0.004 and 0.001, respectively). While RP11-573D15.8 level in ECs exhibited a significant suppression in contrast to HIV + group (P-value: 0.02). According to the receiver-operating characteristic (ROC) curve results, AKT and TINCR could serve as useful biomarkers for screening ECs groups from HIV + patients and healthy control groups. Overall, different expression patterns of selected factors and ROC curve results showed these factors could critically contribute to HIV controlling and be considered as diagnostic markers for ECs from HIV + samples.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisasadat Aminjavaheri
- Department of Microbial Biotechnology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Mohammad Abbasi-Kolli
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rahil Nahid-Samiei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Mendes EA, Tang Y, Jiang G. The integrated stress response signaling during the persistent HIV infection. iScience 2023; 26:108418. [PMID: 38058309 PMCID: PMC10696111 DOI: 10.1016/j.isci.2023.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV) infection is a chronic disease under antiretroviral therapy (ART), during which active HIV replication is effectively suppressed. Stable viral reservoirs are established early in infection and cannot be eradicated in people with HIV (PWH) by ART alone, which features residual immune inflammation with disease-associated secondary comorbidities. Mammalian cells are equipped with integrated stress response (ISR) machinery to detect intrinsic and extrinsic stresses such as heme deficiency, nutrient fluctuation, the accumulation of unfolded proteins, and viral infection. ISR is the part of the innate immunity that defends against pathogen infection or environmental alteration, thereby maintaining homeostasis to avoid diseases. Here, we describe how this machinery responds to the off-target effects of ART and persistent HIV infection in both the peripheral compartments and the brain. The latter may be important for us to better understand the mechanisms of stable HIV reservoirs and HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Erica A. Mendes
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Yuyang Tang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases and the Department of Biochemistry and Biophysics, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599- 7042, USA
| |
Collapse
|
3
|
Ghahari N, Telittchenko R, Loucif H, Isnard S, Routy JP, Olagnier D, van Grevenynghe J. Harnessing Autophagy to Overcome Antigen-Specific T-Cell Dysfunction: Implication for People Living with HIV-1. Int J Mol Sci 2023; 24:11018. [PMID: 37446195 DOI: 10.3390/ijms241311018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Like other chronic viral infections, HIV-1 persistence inhibits the development of antigen-specific memory T-cells, resulting in the exhaustion of the immune response and chronic inflammation. Autophagy is a major lysosome-dependent mechanism of intracellular large-target degradation such as lipid and protein aggregates, damaged organelles, and intracellular pathogens. Although it is known that autophagy may target HIV-1 for elimination, knowledge of its function as a metabolic contributor in such viral infection is only in its infancy. Recent data show that elite controllers (EC), who are HIV-1-infected subjects with natural and long-term antigen (Ag)-specific T-cell protection against the virus, are characterized by distinct metabolic autophagy-dependent features in their T-cells compared to other people living with HIV-1 (PLWH). Despite durable viral control with antiretroviral therapy (ART), HIV-1-specific immune dysfunction does not normalize in non-controller PLWH. Therefore, the hypothesis of inducing autophagy to strengthen their Ag-specific T-cell immunity against HIV-1 starts to be an enticing concept. The aim of this review is to critically analyze promises and potential limitations of pharmacological and dietary interventions to activate autophagy in an attempt to rescue Ag-specific T-cell protection among PLWH.
Collapse
Affiliation(s)
- Nazanin Ghahari
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1M7, Canada
| | - Roman Telittchenko
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1M7, Canada
| | - Hamza Loucif
- EVAH Corp., 500 Boulevard Cartier Ouest, Laval, QC H7V 5B7, Canada
| | - Stephane Isnard
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen Site, Montreal, QC H4A 3J1, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen Site, Montreal, QC H4A 3J1, Canada
| | - David Olagnier
- Department of Biomedicine, Research Center for Innate Immunology, Aarhus University, 8000 Aarhus, Denmark
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1M7, Canada
| |
Collapse
|
4
|
Biological Aging in People Living with HIV on Successful Antiretroviral Therapy: Do They Age Faster? Curr HIV/AIDS Rep 2023; 20:42-50. [PMID: 36695947 PMCID: PMC10102129 DOI: 10.1007/s11904-023-00646-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW In the absence of a prophylactic/therapeutic vaccine or cure, the most amazing achievement in the battle against HIV was the discovery of effective, well-tolerated combination antiretroviral therapy (cART). The primary research question remains whether PLWH on prolonged successful therapy has accelerated, premature, or accentuated biological aging. In this review, we discuss the current understanding of the immunometabolic profile in PLWH, potentially associated with biological aging, and a better understanding of the mechanisms and temporal dynamics of biological aging in PLWH. RECENT FINDINGS Biological aging, defined by the epigenetic alterations analyzed by the DNA methylation pattern, has been reported in PLWH with cART that points towards epigenetic age acceleration. The hastened development of specific clinical geriatric syndromes like cardiovascular diseases, metabolic syndrome, cancers, liver diseases, neurocognitive diseases, persistent low-grade inflammation, and a shift toward glutamate metabolism in PLWH may potentiate a metabolic profile at-risk for accelerated aging.
Collapse
|
5
|
Chan YT, Cheong HC, Tang TF, Rajasuriar R, Cheng KK, Looi CY, Wong WF, Kamarulzaman A. Immune Checkpoint Molecules and Glucose Metabolism in HIV-Induced T Cell Exhaustion. Biomedicines 2022; 10:0. [PMID: 36359329 PMCID: PMC9687279 DOI: 10.3390/biomedicines10112809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2023] Open
Abstract
The progressive decline of CD8+ cytotoxic T cells in human immunodeficiency virus (HIV)-infected patients due to infection-triggered cell exhaustion and cell death is significantly correlated with disease severity and progression into the life-threatening acquired immunodeficiency syndrome (AIDS) stage. T cell exhaustion is a condition of cell dysfunction despite antigen engagement, characterized by augmented surface expression of immune checkpoint molecules such as programmed cell death protein 1 (PD-1), which suppress T cell receptor (TCR) signaling and negatively impact the proliferative and effector activities of T cells. T cell function is tightly modulated by cellular glucose metabolism, which produces adequate energy to support a robust reaction when battling pathogen infection. The transition of the T cells from an active to an exhausted state following pathogen persistence involves a drastic change in metabolic activity. This review highlights the interplay between immune checkpoint molecules and glucose metabolism that contributes to T cell exhaustion in the context of chronic HIV infection, which could deliver an insight into the rational design of a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (R.R.); (A.K.)
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kian-Kai Cheng
- Innovation Centre in Agritechnology (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Malaysia;
| | - Chung Yeng Looi
- School of Bioscience, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Adeeba Kamarulzaman
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (R.R.); (A.K.)
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
6
|
The Variation of Transcriptomic Perturbations is Associated with the Development and Progression of Various Diseases. DISEASE MARKERS 2022; 2022:2148627. [PMID: 36204511 PMCID: PMC9530920 DOI: 10.1155/2022/2148627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Background Although transcriptomic data have been widely applied to explore various diseases, few studies have investigated the association between transcriptomic perturbations and disease development in a wide variety of diseases. Methods Based on a previously developed algorithm for quantifying intratumor heterogeneity at the transcriptomic level, we defined the variation of transcriptomic perturbations (VTP) of a disease relative to the health status. Based on publicly available transcriptome datasets, we compared VTP values between the disease and health status and analyzed correlations between VTP values and disease progression or severity in various diseases, including neurological disorders, infectious diseases, cardiovascular diseases, respiratory diseases, liver diseases, kidney diseases, digestive diseases, and endocrine diseases. We also identified the genes and pathways whose expression perturbations correlated positively with VTP across diverse diseases. Results VTP values were upregulated in various diseases relative to their normal controls. VTP values were significantly greater in define than in possible or probable Alzheimer's disease. VTP values were significantly larger in intensive care unit (ICU) COVID-19 patients than in non-ICU patients, and in COVID-19 patients requiring mechanical ventilatory support (MVS) than in those not requiring MVS. VTP correlated positively with viral loads in acquired immune deficiency syndrome (AIDS) patients. Moreover, the AIDS patients treated with abacavir or zidovudine had lower VTP values than those without such therapies. In pulmonary tuberculosis (TB) patients, VTP values followed the pattern: active TB > latent TB > normal controls. VTP values were greater in clinically apparent than in presymptomatic malaria. VTP correlated negatively with the cardiac index of left ventricular ejection fraction (LVEF). In chronic obstructive pulmonary disease (COPD), VTP showed a negative correlation with forced expiratory volume in the first second (FEV1). VTP values increased with H. pylori infection and were upregulated in atrophic gastritis caused by H. pylori infection. The genes and pathways whose expression perturbations correlated positively with VTP scores across diseases were mainly involved in the regulation of immune, metabolic, and cellular activities. Conclusions VTP is upregulated in the disease versus health status, and its upregulation is associated with disease progression and severity in various diseases. Thus, VTP has potential clinical implications for disease diagnosis and prognosis.
Collapse
|
7
|
De La Torre-Tarazona E, Ayala-Suárez R, Díez-Fuertes F, Alcamí J. Omic Technologies in HIV: Searching Transcriptional Signatures Involved in Long-Term Non-Progressor and HIV Controller Phenotypes. Front Immunol 2022; 13:926499. [PMID: 35844607 PMCID: PMC9284212 DOI: 10.3389/fimmu.2022.926499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
This article reviews the main discoveries achieved by transcriptomic approaches on HIV controller (HIC) and long-term non-progressor (LTNP) individuals, who are able to suppress HIV replication and maintain high CD4+ T cell levels, respectively, in the absence of antiretroviral therapy. Different studies using high throughput techniques have elucidated multifactorial causes implied in natural control of HIV infection. Genes related to IFN response, calcium metabolism, ribosome biogenesis, among others, are commonly differentially expressed in LTNP/HIC individuals. Additionally, pathways related with activation, survival, proliferation, apoptosis and inflammation, can be deregulated in these individuals. Likewise, recent transcriptomic studies include high-throughput sequencing in specific immune cell subpopulations, finding additional gene expression patterns associated to viral control and/or non-progression in immune cell subsets. Herein, we provide an overview of the main differentially expressed genes and biological routes commonly observed on immune cells involved in HIV infection from HIC and LTNP individuals, analyzing also different technical aspects that could affect the data analysis and the future perspectives and gaps to be addressed in this field.
Collapse
Affiliation(s)
- Erick De La Torre-Tarazona
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rubén Ayala-Suárez
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Francisco Díez-Fuertes
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Francisco Díez-Fuertes,
| | - José Alcamí
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Human Immunodeficiency Virus (HIV) Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Perdomo-Celis F, Passaes C, Monceaux V, Volant S, Boufassa F, de Truchis P, Marcou M, Bourdic K, Weiss L, Jung C, Bourgeois C, Goujard C, Meyer L, Müller-Trutwin M, Lambotte O, Sáez-Cirión A. Reprogramming dysfunctional CD8+ T cells to promote properties associated with natural HIV control. J Clin Invest 2022; 132:e157549. [PMID: 35380989 PMCID: PMC9151687 DOI: 10.1172/jci157549] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/29/2022] [Indexed: 01/21/2023] Open
Abstract
Virus-specific CD8+ T cells play a central role in HIV-1 natural controllers to maintain suppressed viremia in the absence of antiretroviral therapy. These cells display a memory program that confers them stemness properties, high survival, polyfunctionality, proliferative capacity, metabolic plasticity, and antiviral potential. The development and maintenance of such qualities by memory CD8+ T cells appear crucial to achieving natural HIV-1 control. Here, we show that targeting the signaling pathways Wnt/transcription factor T cell factor 1 (Wnt/TCF-1) and mTORC through GSK3 inhibition to reprogram HIV-specific CD8+ T cells from noncontrollers promoted functional capacities associated with natural control of infection. Features of such reprogrammed cells included enrichment in TCF-1+ less-differentiated subsets, a superior response to antigen, enhanced survival, polyfunctionality, metabolic plasticity, less mTORC1 dependency, an improved response to γ-chain cytokines, and a stronger HIV-suppressive capacity. Thus, such CD8+ T cell reprogramming, combined with other available immunomodulators, might represent a promising strategy for adoptive cell therapy in the search for an HIV-1 cure.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance, Paris, France
| | - Caroline Passaes
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance, Paris, France
| | - Valérie Monceaux
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance, Paris, France
| | - Stevenn Volant
- Institut Pasteur, Université Paris Cité, Hub Bioinformatique et Biostatistique, Paris, France
| | - Faroudy Boufassa
- Université Paris Saclay, INSERM Centre de Recherche en Épidémiologie et Santé des Populations (CESP) U1018, Assistance Publique–Hôpitaux de Paris (AP-HP), Department of Public Health, Bicêtre Hospital, Paris, France
| | - Pierre de Truchis
- Université Paris-Saclay, AP-HP Hôpital Raymond Poincaré, Garches, France
| | - Morgane Marcou
- Université Paris-Saclay, AP-HP Hôpital Raymond Poincaré, Garches, France
| | - Katia Bourdic
- Université Paris-Saclay, AP-HP, Bicêtre Hospital, UMR1184 INSERM Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Le Kremlin Bicêtre, France
| | - Laurence Weiss
- Université de Paris Cité, AP-HP, Paris Centre, Hôtel Dieu, Paris, France
| | - Corinne Jung
- Université de Paris Cité, AP-HP, Paris Centre, Hôtel Dieu, Paris, France
| | - Christine Bourgeois
- Université Paris-Saclay, AP-HP, Bicêtre Hospital, UMR1184 INSERM Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Le Kremlin Bicêtre, France
| | - Cécile Goujard
- Université Paris-Saclay, AP-HP, Hôpital Bicêtre, Départements Médico-Universitaires (DMU) 7, INSERM U1018, CESP, Le Kremlin Bicêtre, France
| | - Laurence Meyer
- Université Paris Saclay, INSERM Centre de Recherche en Épidémiologie et Santé des Populations (CESP) U1018, Assistance Publique–Hôpitaux de Paris (AP-HP), Department of Public Health, Bicêtre Hospital, Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance, Paris, France
| | - Olivier Lambotte
- Université Paris-Saclay, AP-HP, Bicêtre Hospital, UMR1184 INSERM Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Le Kremlin Bicêtre, France
| | - Asier Sáez-Cirión
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance, Paris, France
| |
Collapse
|
9
|
Masip J, Rallón N, Yeregui E, Olona M, Resino S, Benito JM, Viladés C, García-Pardo G, Alcamí J, Ruiz-Mateos E, Gómez-Bertomeu F, Vargas M, Navarro M, Oteo JA, Pineda JA, Martí A, Alba V, Vidal F, Peraire J, Rull A. Elevated α-Ketoglutaric Acid Concentrations and a Lipid-Balanced Signature Are the Key Factors in Long-Term HIV Control. Front Immunol 2022; 13:822272. [PMID: 35514981 PMCID: PMC9065415 DOI: 10.3389/fimmu.2022.822272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Long-term elite controllers (LTECs) are a fascinating small subset of HIV individuals with viral and immunological HIV control in the long term that have been designated as models of an HIV functional cure. However, data on the LTEC phenotype are still scarce, and hence, the metabolomics and lipidomics signatures in the LTEC-extreme phenotype, LTECs with more than 10 years of viral and immunological HIV control, could be pivotal to finding the keys for functional HIV remission. Metabolomics and lipidomics analyses were performed using high-resolution mass spectrometry (ultra-high-performance liquid chromatography-electrospray ionization-quadrupole time of flight [UHPLC-(ESI) qTOF] in plasma samples of 13 patients defined as LTEC-extreme, a group of 20 LTECs that lost viral and/or immunological control during the follow-up study (LTEC-losing) and 9 EC patients with short-term viral and immunological control (less than 5 years; no-LTEC patients). Long-term viral and immunological HIV-1 control was found to be strongly associated with elevated tricarboxylic acid (TCA) cycle function. Interestingly, of the nine metabolites identified in the TCA cycle, α-ketoglutaric acid (p = 0.004), a metabolite implicated in the activation of the mTOR complex, a modulator of HIV latency and regulator of several biological processes, was found to be a key metabolite in the persistent control. On the other hand, a lipidomics panel combining 45 lipid species showed an optimal percentage of separation and an ability to differentiate LTEC-extreme from LTEC-losing, revealing that an elevated lipidomics plasma profile could be a predictive factor for the reignition of viral replication in LTEC individuals.
Collapse
Affiliation(s)
- Jenifer Masip
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Elena Yeregui
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Montserrat Olona
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Consuelo Viladés
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Graciano García-Pardo
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - José Alcamí
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Instituto de Salud Carlos III, AIDS Immunopathology Unit, National Center of Microbiology, Madrid, Spain.,HIV Unit, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, Seville, Spain
| | - Frederic Gómez-Bertomeu
- Universitat Rovira i Virgili, Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Montserrat Vargas
- Universitat Rovira i Virgili, Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Marta Navarro
- Servicio de Enfermedades Infecciosas, Parc Tauli Hospital Universitari, Sabadell, Spain
| | - José A Oteo
- Hospital Universitario San Pedro, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Juan A Pineda
- Unidad de Investigación Hospital Universitario de Valme, Sevilla, Spain
| | - Anna Martí
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Verónica Alba
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Francesc Vidal
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joaquin Peraire
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Anna Rull
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
10
|
Distinct Plasma Concentrations of Acyl-CoA-Binding Protein (ACBP) in HIV Progressors and Elite Controllers. Viruses 2022; 14:v14030453. [PMID: 35336860 PMCID: PMC8949460 DOI: 10.3390/v14030453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/28/2022] Open
Abstract
HIV elite controllers (ECs) are characterized by the spontaneous control of viral replication, and by metabolic and autophagic profiles which favor anti-HIV CD4 and CD8 T-cell responses. Extracellular acyl coenzyme A binding protein (ACBP) acts as a feedback inhibitor of autophagy. Herein, we assessed the circulating ACBP levels in ECs, compared to people living with HIV (PLWH) receiving antiretroviral therapy (ART) or not. We found lower ACBP levels in ECs compared to ART-naïve or ART-treated PLWH (p < 0.01 for both comparisons), independently of age and sex. ACBP levels were similar in ECs and HIV-uninfected controls. The expression of the protective HLA alleles HLA-B*27, *57, or *58 did not influence ACBP levels in ECs. ACBP levels were not associated with CD4 or CD8 T-cell counts, CD4 loss over time, inflammatory cytokines, or anti-CMV IgG titers in ECs. In ART-treated PLWH, ACBP levels were correlated with interleukin (IL)-1β levels, but not with other inflammatory cytokines such as IL-6, IL-8, IL-32, or TNF-α. In conclusion, ECs are characterized by low ACBP plasma levels compared to ART-naïve or ART-treated PLWH. As autophagy is key to anti-HIV CD4 and CD8 T-cell responses, the ACBP pathway constitutes an interesting target in HIV cure strategies.
Collapse
|
11
|
Akusjärvi SS, Ambikan AT, Krishnan S, Gupta S, Sperk M, Végvári Á, Mikaeloff F, Healy K, Vesterbacka J, Nowak P, Sönnerborg A, Neogi U. Integrative proteo-transcriptomic and immunophenotyping signatures of HIV-1 elite control phenotype: A cross-talk between glycolysis and HIF signaling. iScience 2022; 25:103607. [PMID: 35005552 PMCID: PMC8718889 DOI: 10.1016/j.isci.2021.103607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Natural control of HIV-1 is a characteristic of <1% of HIV-1-infected individuals, so called elite controllers (EC). In this study, we sought to identify signaling pathways associated with the EC phenotype using integrative proteo-transcriptomic analysis and immunophenotyping. We found HIF signaling and glycolysis as specific traits of the EC phenotype together with dysregulation of HIF target gene transcription. A higher proportion of HIF-1α and HIF-1β in the nuclei of CD4+ and CD8+ T cells in the male EC were observed, indicating a potential increased activation of the HIF signaling pathway. Furthermore, intracellular glucose levels were elevated in EC even as the surface expression of the metabolite transporters Glut1 and MCT-1 were decreased on lymphocytes indicative of unique metabolic uptake and flux profile. Combined, our data show that glycolytic modulation and altered HIF signaling is a unique feature of the male EC phenotype that may contribute to natural control of HIV-1. Proteo-transcriptomic integration identifying features of EC phenotype Sex-specific differences in EC phenotypes Enrichment of glycolysis and HIF signaling, a unique feature in the male EC Enrichment of HIF signaling independent on HIF-1α protein levels in EC
Collapse
Affiliation(s)
- Sara Svensson Akusjärvi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Anoop T Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Soham Gupta
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Maike Sperk
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Campus Solna, 171 65 Stockholm, Sweden
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Katie Healy
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Jan Vesterbacka
- Department of Medicine Huddinge, Division of Infectious Disease, Karolinska Institutet, I73, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Piotr Nowak
- Department of Medicine Huddinge, Division of Infectious Disease, Karolinska Institutet, I73, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden.,Department of Medicine Huddinge, Division of Infectious Disease, Karolinska Institutet, I73, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden.,Manipal Institute of Virology (MIV), Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
12
|
Li JZ, Blankson JN. How elite controllers and posttreatment controllers inform our search for an HIV-1 cure. J Clin Invest 2021; 131:e149414. [PMID: 34060478 DOI: 10.1172/jci149414] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A small percentage of people living with HIV-1 can control viral replication without antiretroviral therapy (ART). These patients are called elite controllers (ECs) if they are able to maintain viral suppression without initiating ART and posttreatment controllers (PTCs) if they control HIV replication after ART has been discontinued. Both types of controllers may serve as a model of a functional cure for HIV-1 but the mechanisms responsible for viral control have not been fully elucidated. In this review, we highlight key lessons that have been learned so far in the study of ECs and PTCs and their implications for HIV cure research.
Collapse
Affiliation(s)
- Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel N Blankson
- Center for AIDS Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Ivanov S, Filimonov D, Tarasova O. A computational analysis of transcriptional profiles from CD8(+) T lymphocytes reveals potential mechanisms of HIV/AIDS control and progression. Comput Struct Biotechnol J 2021; 19:2447-2459. [PMID: 34025935 PMCID: PMC8113781 DOI: 10.1016/j.csbj.2021.04.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/06/2023] Open
Abstract
Cytotoxic and noncytotoxic CD8+ T lymphocyte responses are essential for the control of HIV infection. Understanding the mechanisms underlying HIV control in elite controllers (ECs), which maintain undetectable viral load in the absence of antiretroviral therapy, may facilitate the development of new effective therapeutic strategies. We developed an original pipeline for an analysis of the transcriptional profiles of CD8+ cells from ECs, treated and untreated progressors. Hierarchical cluster analysis of CD8+ cells' transcription profiles allowed us to identify five distinct groups (EC groups 1-5) of ECs. The transcriptional profiles of EC group 1 were opposite to those of groups 2-4 and similar to those of the treated progressors, which can be associated with residual activation and dysfunction of CD8+ T-lymphocytes. The profiles of groups 2-4 were associated with different numbers of differentially expressed genes compared to healthy controls, but the corresponding genes shared the same cellular processes. These three groups were associated with increased metabolism, survival, proliferation, and the absence of an "exhausted" phenotype, compared to both untreated progressors and healthy controls. The CD8+ lymphocytes from these groups of ECs may contribute to the control under HIV replication and slower disease progression. The EC group 5 was indistinguishable from normal. Application of master regulator analysis allowed us to identify 22 receptors, including interferon-gamma, interleukin-2, and androgen receptors, which may be responsible for the observed expression changes and the functional states of CD8+ cells from ECs. These receptors can be considered potential targets of therapeutic intervention, which may decelerate disease progression.
Collapse
Affiliation(s)
- Sergey Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry Filimonov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Olga Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
14
|
Immunologic Control of HIV-1: What Have We Learned and Can We Induce It? Curr HIV/AIDS Rep 2021; 18:211-220. [PMID: 33709324 DOI: 10.1007/s11904-021-00545-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW A large amount of data now exists on the virus-specific immune response associated with spontaneous or induced immunologic control of lentiviruses. This review focuses on how the current understanding of HIV-specific immunity might be leveraged into induction of immunologic control and what further research is needed to accomplish this goal. RECENT FINDINGS During chronic infection, the function most robustly associated with immunologic control of HIV-1 is CD8+ T cell cytotoxic capacity. This function has proven difficult to restore in HIV-specific CD8+ T cells of chronically infected progressors in vitro and in vivo. However, progress has been made in inducing an effective CD8+ T cell response prior to lentiviral infection in the macaque model and during acute lentiviral infection in non-human primates. Further study will likely accelerate the ability to induce an effective CD8+ T cell response as part of prophylactic or therapeutic strategies.
Collapse
|
15
|
Makinde J, Nduati EW, Freni-Sterrantino A, Streatfield C, Kibirige C, Dalel J, Black SL, Hayes P, Macharia G, Hare J, McGowan E, Abel B, King D, Joseph S, Hunter E, Sanders EJ, Price M, Gilmour J. A Novel Sample Selection Approach to Aid the Identification of Factors That Correlate With the Control of HIV-1 Infection. Front Immunol 2021; 12:634832. [PMID: 33777023 PMCID: PMC7991997 DOI: 10.3389/fimmu.2021.634832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Individuals infected with HIV display varying rates of viral control and disease progression, with a small percentage of individuals being able to spontaneously control infection in the absence of treatment. In attempting to define the correlates associated with natural protection against HIV, extreme heterogeneity in the datasets generated from systems methodologies can be further complicated by the inherent variability encountered at the population, individual, cellular and molecular levels. Furthermore, such studies have been limited by the paucity of well-characterised samples and linked epidemiological data, including duration of infection and clinical outcomes. To address this, we selected 10 volunteers who rapidly and persistently controlled HIV, and 10 volunteers each, from two control groups who failed to control (based on set point viral loads) from an acute and early HIV prospective cohort from East and Southern Africa. A propensity score matching approach was applied to control for the influence of five factors (age, risk group, virus subtype, gender, and country) known to influence disease progression on causal observations. Fifty-two plasma proteins were assessed at two timepoints in the 1st year of infection. We independently confirmed factors known to influence disease progression such as the B*57 HLA Class I allele, and infecting virus Subtype. We demonstrated associations between circulating levels of MIP-1α and IL-17C, and the ability to control infection. IL-17C has not been described previously within the context of HIV control, making it an interesting target for future studies to understand HIV infection and transmission. An in-depth systems analysis is now underway to fully characterise host, viral and immunological factors contributing to control.
Collapse
Affiliation(s)
- Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Eunice W Nduati
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Anna Freni-Sterrantino
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Claire Streatfield
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Catherine Kibirige
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - S Lucas Black
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Gladys Macharia
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Edward McGowan
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Brian Abel
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Sarah Joseph
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | | | - Eric Hunter
- Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, United States.,Zambia-Emory HIV Research Project, Lusaka, Zambia
| | - Eduard J Sanders
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Matt Price
- IAVI, New York, NY, United States.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Immunological Fingerprints of Controllers Developing Neutralizing HIV-1 Antibodies. Cell Rep 2020; 30:984-996.e4. [PMID: 31995767 PMCID: PMC6990401 DOI: 10.1016/j.celrep.2019.12.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 10/27/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
The induction of broadly neutralizing antibodies (bnAbs) is highly desired for an effective vaccine against HIV-1. Typically, bnAbs develop in patients with high viremia, but they can also evolve in some untreated HIV-1 controllers with low viral loads. Here, we identify a subgroup of neutralizer-controllers characterized by myeloid DCs (mDCs) with a distinct inflammatory signature and a superior ability to prime T follicular helper (Tfh)-like cells in an STAT4-dependent fashion. This distinct immune profile is associated with a higher frequency of Tfh-like cells in peripheral blood (pTfh) and an enrichment for Tfh-defining genes in circulating CD4+ T cells. Correspondingly, monocytes from this neutralizer controller subgroup upregulate genes encoding for chemotaxis and inflammation, and they secrete high levels of IL-12 in response to TLR stimulation. Our results suggest the existence of multi-compartment immune networks between mDCs, Tfh, and monocytes that may facilitate the development of bnAbs in a subgroup of HIV-1 controllers. HIV-1 controllers with neutralizing Abs are subdivided in two subgroups (Nt1 and Nt2) HIV-1-specific antibodies from Nt2 individuals display superior neutralization potency Nt2 exhibit distinct transcriptional signatures in DC, monocytes, and CD4 T cells Transcriptional and functional data suggest improved DC-pTFH interactions in Nt2
Collapse
|
17
|
Kang S, Tang H. HIV-1 Infection and Glucose Metabolism Reprogramming of T Cells: Another Approach Toward Functional Cure and Reservoir Eradication. Front Immunol 2020; 11:572677. [PMID: 33117366 PMCID: PMC7575757 DOI: 10.3389/fimmu.2020.572677] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023] Open
Abstract
With the emerging of highly active antiretroviral therapy, HIV-1 infection has transferred from a fatal threat to a chronic disease that could be managed. Nevertheless, inextricable systemic immune activation and chronic inflammation despite viral suppression render patients still at higher risk of HIV-1-associated non-AIDS complications. Immunometabolism has nowadays raised more and more attention for that targeting metabolism may become a promising approach to modulate immune system and play a role in treating cancer, HIV-1 infection and autoimmune diseases. HIV-1 mainly infects CD4+ T cells and accumulating evidence has brought to light the association between T cell metabolism reprogramming and HIV-1 pathogenesis. Here, we will focus on the interplay of glycometabolism reprogramming of T cells and HIV-1 infection, making an effort to delineate the possibility of utilizing immunometabolism as a new target towards HIV-1 management and even sterilizing cure through eliminating viral reservoir.
Collapse
Affiliation(s)
- Shuang Kang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Abstract
Antiretroviral therapies efficiently block HIV-1 replication but need to be maintained for life. Moreover, chronic inflammation is a hallmark of HIV-1 infection that persists despite treatment. There is, therefore, an urgent need to better understand the mechanisms driving HIV-1 pathogenesis and to identify new targets for therapeutic intervention. In the past few years, the decisive role of cellular metabolism in the fate and activity of immune cells has been uncovered, as well as its impact on the outcome of infectious diseases. Emerging evidence suggests that immunometabolism has a key role in HIV-1 pathogenesis. The metabolic pathways of CD4+ T cells and macrophages determine their susceptibility to infection, the persistence of infected cells and the establishment of latency. Immunometabolism also shapes immune responses against HIV-1, and cell metabolic products are key drivers of inflammation during infection. In this Review, we summarize current knowledge of the links between HIV-1 infection and immunometabolism, and we discuss the potential opportunities and challenges for therapeutic interventions.
Collapse
|
19
|
Judge M, Parker E, Naniche D, Le Souëf P. Gene Expression: the Key to Understanding HIV-1 Infection? Microbiol Mol Biol Rev 2020; 84:e00080-19. [PMID: 32404327 PMCID: PMC7233484 DOI: 10.1128/mmbr.00080-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression profiling of the host response to HIV infection has promised to fill the gaps in our knowledge and provide new insights toward vaccine and cure. However, despite 20 years of research, the biggest questions remained unanswered. A literature review identified 62 studies examining gene expression dysregulation in samples from individuals living with HIV. Changes in gene expression were dependent on cell/tissue type, stage of infection, viremia, and treatment status. Some cell types, notably CD4+ T cells, exhibit upregulation of cell cycle, interferon-related, and apoptosis genes consistent with depletion. Others, including CD8+ T cells and natural killer cells, exhibit perturbed function in the absence of direct infection with HIV. Dysregulation is greatest during acute infection. Differences in study design and data reporting limit comparability of existing research and do not as yet provide a coherent overview of gene expression in HIV. This review outlines the extraordinarily complex host response to HIV and offers recommendations to realize the full potential of HIV host transcriptomics.
Collapse
Affiliation(s)
- Melinda Judge
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Erica Parker
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Denise Naniche
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação de Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Peter Le Souëf
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
20
|
Modulation of mTORC1 Signaling Pathway by HIV-1. Cells 2020; 9:cells9051090. [PMID: 32354054 PMCID: PMC7291251 DOI: 10.3390/cells9051090] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cellular proliferation and survival which controls cellular response to different stresses, including viral infection. HIV-1 interferes with the mTORC1 pathway at every stage of infection. At the same time, the host cells rely on the mTORC1 pathway and autophagy to fight against virus replication and transmission. In this review, we will provide the most up-to-date picture of the role of the mTORC1 pathway in the HIV-1 life cycle, latency and HIV-related diseases. We will also provide an overview of recent trends in the targeting of the mTORC1 pathway as a promising strategy for HIV-1 eradication.
Collapse
|
21
|
Loucif H, Dagenais-Lussier X, Beji C, Telittchenko R, Routy JP, van Grevenynghe J. Plasticity in T-cell mitochondrial metabolism: A necessary peacekeeper during the troubled times of persistent HIV-1 infection. Cytokine Growth Factor Rev 2020; 55:26-36. [PMID: 32151523 DOI: 10.1016/j.cytogfr.2020.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023]
Abstract
The notion of immuno-metabolism refers to the crosstalk between key metabolic pathways and the development/maintenance of protective immunity in the context of physiological processes and anti-microbial defenses. Enthusiasm for immuno-metabolism in the context of HIV-1 infection, especially among T-cell lineages, continues to grow over time as science opens new therapeutic perspectives to limit viral pathogenesis and to boost anti-viral responses. The idea of "metabolism as a therapeutic target" is called metabolic reprogramming and is based on the use of specific metabolism-targeting drugs that are currently available for cancer therapy. In this review, we will focus on the evidence that shows the key role of mitochondria, the cell's powerhouses, and their ability to use diverse metabolic resources (referred to as metabolic plasticity) in providing optimal immune T-cell protection among HIV-1-infected patients. Conversely, we highlight observations indicating that mitochondria metabolic dysfunction associated with excessive glucose dependency, a phenomenon reported as "Warburg effect", results in the inability to mount and maintain effective T-cell-dependent immunity during persistent HIV-1 infection. Therefore, helping mitochondria to regain the metabolic plasticity and allow specific T-cells to adapt and thrive under unfavorable environmental conditions during HIV-1 infection may represent the next generation of combinatory treatment options for patients.
Collapse
Affiliation(s)
- Hamza Loucif
- Institut National la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7 QC, Canada
| | - Xavier Dagenais-Lussier
- Institut National la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7 QC, Canada
| | - Cherifa Beji
- Institut National la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7 QC, Canada
| | - Roman Telittchenko
- Institut National la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7 QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, Montréal, QC, Canada
| | - Julien van Grevenynghe
- Institut National la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7 QC, Canada.
| |
Collapse
|
22
|
Spontaneous HIV controllers might be the key to prevent accelerated immunosenescence of effector CD8+ T cells. AIDS 2019; 33:2253-2255. [PMID: 31688042 DOI: 10.1097/qad.0000000000002343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Balasubramaniam M, Pandhare J, Dash C. Immune Control of HIV. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:4-37. [PMID: 31468033 PMCID: PMC6714987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human immunodeficiency virus (HIV) infection of the immune cells expressing the cluster of differentiation 4 cell surface glycoprotein (CD4+ cells) causes progressive decline of the immune system and leads to the acquired immunodeficiency syndrome (AIDS). The ongoing global HIV/AIDS pandemic has already claimed over 35 million lives. Even after 37 years into the epidemic, neither a cure is available for the 37 million people living with HIV (PLHIV) nor is a vaccine discovered to avert the millions of new HIV infections that continue to occur each year. If left untreated, HIV infection typically progresses to AIDS and, ultimately, causes death in a majority of PLHIV. The recommended combination antiretroviral therapy (cART) suppresses virus replication and viremia, prevents or delays progression to AIDS, reduces transmission rates, and lowers HIV-associated mortality and morbidity. However, because cART does not eliminate HIV, and an enduring pool of infected resting memory CD4+ T cells (latent HIV reservoir) is established early on, any interruption to cART leads to a relapse of viremia and disease progression. Hence, strict adherence to a life-long cART regimen is mandatory for managing HIV infection in PLHIV. The HIV-1-specific cytotoxic T cells expressing the CD8 glycoprotein (CD8+ CTL) limit the virus replication in vivo by recognizing the viral antigens presented by human leukocyte antigen (HLA) class I molecules on the infected cell surface and killing those cells. Nevertheless, CTLs fail to durably control HIV-1 replication and disease progression in the absence of cART. Intriguingly, <1% of cART-naive HIV-infected individuals called elite controllers/HIV controllers (HCs) exhibit the core features that define a HIV-1 "functional cure" outcome in the absence of cART: durable viral suppression to below the limit of detection, long-term non-progression to AIDS, and absence of viral transmission. Robust HIV-1-specific CTL responses and prevalence of protective HLA alleles associated with enduring HIV-1 control have been linked to the HC phenotype. An understanding of the molecular mechanisms underlying the CTL-mediated suppression of HIV-1 replication and disease progression in HCs carrying specific protective HLA alleles may yield promising insights towards advancing the research on HIV cure and prophylactic HIV vaccine.
Collapse
Affiliation(s)
- Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| |
Collapse
|
24
|
Routy JP, Isnard S, Ramendra R. Following the elite: Targeting immunometabolism to limit HIV pathogenesis. EBioMedicine 2019; 42:8-9. [PMID: 30910485 PMCID: PMC6491710 DOI: 10.1016/j.ebiom.2019.03.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/13/2023] Open
Affiliation(s)
- Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada; Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.
| | - Stéphane Isnard
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Rayoun Ramendra
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
CD8+ T cells: mechanistic target of rapamycin and eukaryotic initiation factor 2 in elite HIV-1 control. AIDS 2018; 32:2835-2838. [PMID: 30407253 DOI: 10.1097/qad.0000000000002008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
New insight into the mechanisms of achieving antiretroviral therapy-free HIV-1 control. AIDS 2018; 32:2839-2840. [PMID: 30407254 DOI: 10.1097/qad.0000000000002009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|