1
|
Collazo BJ, Ortiz-Valentín L, Negrón-Rodríguez CG, Medina-Colón JC, Cantres-Rosario YM, Rodríguez E, Wojna V, Gerena Y. Influence of plasma exosomes from women living with HIV Stratified by HAND on monocyte subpopulations from healthy women without HIV. J Neurovirol 2025:10.1007/s13365-024-01240-9. [PMID: 39885101 DOI: 10.1007/s13365-024-01240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025]
Abstract
The role of plasma exosomes from people living with HIV (PLWH) with HAND in the phenotypic profile of uninfected monocytes remains unknown. We hypothesized that these exosomes influence the CD14/CD16 phenotypical profile of uninfected monocytes in a time-dependent manner. Exosomes were collected via ultracentrifugation from the plasma of women living with HIV (WLWH) and healthy controls stratified according to their cognition into normal cognition (NC) or symptomatic neurocognitive impairment (SNI) groups. Monocyte subsets were identified via flow cytometry by using anti-CD14 and anti-CD16 fluorescent antibodies. Exosome uptake and changes in the percentages of monocyte subpopulations were analyzed from 1 to 24 h. The following results were obtained. (1) The uptake of HIV-negative exosomes by total uninfected monocytes was observed at 24 h, whereas the uptake of HIV-positive exosomes was observed at an earlier time point at 6 h. (2) HIV-positive exosomes significantly decreased the percentage of classical monocytes and increased intermediate and nonclassical monocytes at 24 h. (3) The uptake of NC exosomes was observed at an early time point at 6 h compared with SNI in all of the monocyte subsets. (4) Higher percentages of monocyte subsets were observed when cells were exposed to NC exosomes at 1 h, 6 h, or 24 h than when monocytes were exposed to exosomes from SNI patients. Our findings may help to identify new targets and molecular mechanisms that are involved in the pathogenesis of HAND.
Collapse
Affiliation(s)
- Bryan Jael Collazo
- Department of Pharmacology and Toxicology, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Lorivette Ortiz-Valentín
- Department of Pharmacology and Toxicology, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Cristhian G Negrón-Rodríguez
- Department of Pharmacology and Toxicology, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Juan Carlos Medina-Colón
- Department of Pharmacology and Toxicology, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Yisel M Cantres-Rosario
- Department of Microbiology and Medical Zoology, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Elaine Rodríguez
- Neurology Division, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Valerie Wojna
- Neurology Division, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico
| | - Yamil Gerena
- Department of Pharmacology and Toxicology, Medical Sciences Campus, University of Puerto Rico, San Juan, 00936-5067, Puerto Rico.
| |
Collapse
|
2
|
Rosario-Rodríguez LJ, Cantres-Rosario YM, Carrasquillo-Carrión K, Rodríguez-De Jesús AE, Cartagena-Isern LJ, García-Requena LA, Roche-Lima A, Meléndez LM. Quantitative Proteomics Reveal That CB2R Agonist JWH-133 Downregulates NF-κB Activation, Oxidative Stress, and Lysosomal Exocytosis from HIV-Infected Macrophages. Int J Mol Sci 2024; 25:3246. [PMID: 38542221 PMCID: PMC10970132 DOI: 10.3390/ijms25063246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) affect 15-55% of HIV-positive patients and effective therapies are unavailable. HIV-infected monocyte-derived macrophages (MDM) invade the brain of these individuals, promoting neurotoxicity. We demonstrated an increased expression of cathepsin B (CATB), a lysosomal protease, in monocytes and post-mortem brain tissues of women with HAND. Increased CATB release from HIV-infected MDM leads to neurotoxicity, and their secretion is associated with NF-κB activation, oxidative stress, and lysosomal exocytosis. Cannabinoid receptor 2 (CB2R) agonist, JWH-133, decreases HIV-1 replication, CATB secretion, and neurotoxicity from HIV-infected MDM, but the mechanisms are not entirely understood. We hypothesized that HIV-1 infection upregulates the expression of proteins associated with oxidative stress and that a CB2R agonist could reverse these effects. MDM were isolated from healthy women donors (n = 3), infected with HIV-1ADA, and treated with JWH-133. After 13 days post-infection, cell lysates were labeled by Tandem Mass Tag (TMT) and analyzed by LC/MS/MS quantitative proteomics bioinformatics. While HIV-1 infection upregulated CATB, NF-κB signaling, Nrf2-mediated oxidative stress response, and lysosomal exocytosis, JWH-133 treatment downregulated the expression of the proteins involved in these pathways. Our results suggest that JWH-133 is a potential alternative therapy against HIV-induced neurotoxicity and warrant in vivo studies to test its potential against HAND.
Collapse
Affiliation(s)
- Lester J. Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico;
| | - Yadira M. Cantres-Rosario
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (A.R.-L.)
| | - Ana E. Rodríguez-De Jesús
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Luz J. Cartagena-Isern
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico; (L.J.C.-I.); (L.A.G.-R.)
| | - Luis A. García-Requena
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico; (L.J.C.-I.); (L.A.G.-R.)
| | - Abiel Roche-Lima
- Integrated Informatics Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (A.R.-L.)
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| |
Collapse
|
3
|
Opsteen S, Moylan D, Taiwo BO, Robertson KR, Overton ET, Cutter GR, Sabbaj S, Heath SL, Shacka JJ. Brief Report: Intracellular Cystatin B Levels Are Altered in HIV-Infected Participants With Respect to Neurocognitive Status and Antiretroviral Therapy. J Acquir Immune Defic Syndr 2022; 91:485-489. [PMID: 36083516 PMCID: PMC9649855 DOI: 10.1097/qai.0000000000003086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/26/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT With advances in HIV treatment, people with HIV (PWH) are living longer but experience aging-related comorbidities, including cognitive deficits, at higher rates than the general population. Previous studies have shown alterations in lysosomal proteins in blood from PWH with severe dementia. However, these markers have not been evaluated in PWH with milder neurocognitive impairment. We sought to determine whether levels of the lysosomal cysteine protease cathepsin B (CatB) and its endogenous inhibitor cystatin B (CysB) were altered in PWH with neurocognitive impairment and whether antiretroviral therapy (ART) further influenced these levels. Peripheral blood mononuclear cells were obtained from the tenofovir arm of a multicenter clinical trial in which ART-naive, HIV+ participants received treatment for 48 weeks (ACTG A5303, NCT01400412). PWH were divided by neurocognitive status (eg, with or without neurocognitive impairment) before ART initiation. Intracellular levels of CatB and CysB were measured in T cells and monocytes by means of flow cytometry. Levels of CysB were significantly decreased in both CD4 + T cells and CD8 + T cells after 48 weeks of ART in HIV+ participants without neurocognitive impairment but not in participants with neurocognitive impairment. Levels of CysB were increased in CD14 + monocytes from the participants with neurocognitive impairment after ART. Levels of CysB and CatB positively correlated regardless of HIV, neurocognitive status, or exposure to ART. These findings suggest that CysB has the potential to provide mechanistic insight into HIV-associated neurocognitive disorders or provide a molecular target for systemic monitoring or treatment of neurocognitive impairment in the context of ART and should be investigated further.
Collapse
Affiliation(s)
- S. Opsteen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham
| | - D. Moylan
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham
| | - B. O. Taiwo
- Department of Medicine, Northwestern University
| | - K. R. Robertson
- Department of Neurology, University of North Carolina at Chapel Hill
| | - E. T. Overton
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham
| | - G. R. Cutter
- Department of Biostatistics, University of Alabama at Birmingham
| | - S. Sabbaj
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham
| | - S. L. Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham
| | - J. J. Shacka
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham
| |
Collapse
|
4
|
Hernandez CA, Eliseo E. The Role of Pannexin-1 Channels in HIV and NeuroHIV Pathogenesis. Cells 2022; 11:2245. [PMID: 35883688 PMCID: PMC9323506 DOI: 10.3390/cells11142245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV) enters the brain shortly after infection, leading to long-term neurological complications in half of the HIV-infected population, even in the current anti-retroviral therapy (ART) era. Despite decades of research, no biomarkers can objectively measure and, more importantly, predict the onset of HIV-associated neurocognitive disorders. Several biomarkers have been proposed; however, most of them only reflect late events of neuronal damage. Our laboratory recently identified that ATP and PGE2, inflammatory molecules released through Pannexin-1 channels, are elevated in the serum of HIV-infected individuals compared to uninfected individuals and other inflammatory diseases. More importantly, high circulating ATP levels, but not PGE2, can predict a decline in cognition, suggesting that HIV-infected individuals have impaired ATP metabolism and associated signaling. We identified that Pannexin-1 channel opening contributes to the high serological ATP levels, and ATP in the circulation could be used as a biomarker of HIV-associated cognitive impairment. In addition, we believe that ATP is a major contributor to chronic inflammation in the HIV-infected population, even in the anti-retroviral era. Here, we discuss the mechanisms associated with Pannexin-1 channel opening within the circulation, as well as within the resident viral reservoirs, ATP dysregulation, and cognitive disease observed in the HIV-infected population.
Collapse
Affiliation(s)
| | - Eugenin Eliseo
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA;
| |
Collapse
|
5
|
Hook G, Reinheckel T, Ni J, Wu Z, Kindy M, Peters C, Hook V. Cathepsin B Gene Knockout Improves Behavioral Deficits and Reduces Pathology in Models of Neurologic Disorders. Pharmacol Rev 2022; 74:600-629. [PMID: 35710131 PMCID: PMC9553114 DOI: 10.1124/pharmrev.121.000527] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cathepsin B (CTSB) is a powerful lysosomal protease. This review evaluated CTSB gene knockout (KO) outcomes for amelioration of brain dysfunctions in neurologic diseases and aging animal models. Deletion of the CTSB gene resulted in significant improvements in behavioral deficits, neuropathology, and/or biomarkers in traumatic brain injury, ischemia, inflammatory pain, opiate tolerance, epilepsy, aging, transgenic Alzheimer's disease (AD), and periodontitis AD models as shown in 12 studies. One study found beneficial effects for double CTSB and cathepsin S KO mice in a multiple sclerosis model. Transgenic AD models using amyloid precursor protein (APP) mimicking common sporadic AD in three studies showed that CTSB KO improved memory, neuropathology, and biomarkers; two studies used APP representing rare familial AD and found no CTSB KO effect, and two studies used highly engineered APP constructs and reported slight increases in a biomarker. In clinical studies, all reports found that CTSB enzyme was upregulated in diverse neurologic disorders, including AD in which elevated CTSB was positively correlated with cognitive dysfunction. In a wide range of neurologic animal models, CTSB was also upregulated and not downregulated. Further, human genetic mutation data provided precedence for CTSB upregulation causing disease. Thus, the consilience of data is that CTSB gene KO results in improved brain dysfunction and reduced pathology through blockade of CTSB enzyme upregulation that causes human neurologic disease phenotypes. The overall findings provide strong support for CTSB as a rational drug target and for CTSB inhibitors as therapeutic candidates for a wide range of neurologic disorders. SIGNIFICANCE STATEMENT: This review provides a comprehensive compilation of the extensive data on the effects of deleting the cathepsin B (CTSB) gene in neurological and aging mouse models of brain disorders. Mice lacking the CTSB gene display improved neurobehavioral deficits, reduced neuropathology, and amelioration of neuronal cell death and inflammatory biomarkers. The significance of the compelling CTSB evidence is that the data consilience validates CTSB as a drug target for discovery of CTSB inhibitors as potential therapeutics for treating numerous neurological diseases.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Thomas Reinheckel
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Junjun Ni
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Zhou Wu
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Mark Kindy
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Christoph Peters
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Vivian Hook
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| |
Collapse
|
6
|
Cannabinoid receptor type 2 agonist JWH-133 decreases cathepsin B secretion and neurotoxicity from HIV-infected macrophages. Sci Rep 2022; 12:233. [PMID: 34996989 PMCID: PMC8741953 DOI: 10.1038/s41598-021-03896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are prevalent despite combined antiretroviral therapy (cART), affecting 52% of people living with HIV. Our laboratory has demonstrated increased expression of cathepsin B (CATB) in postmortem brain tissue with HAND. Increased secretion of CATB from in vitro HIV-infected monocyte-derived macrophages (MDM) induces neurotoxicity. Activation of cannabinoid receptor type 2 (CB2R) inhibits HIV-1 replication in macrophages and the neurotoxicity induced by viral proteins. However, it is unknown if CB2R agonists affect CATB secretion and neurotoxicity in HIV-infected MDM. We hypothesized that HIV-infected MDM exposed to CB2R agonists decrease CATB secretion and neurotoxicity. Primary MDM were inoculated with HIV-1ADA and treated with selective CB2R agonists JWH-133 and HU-308. HIV-1 p24 and CATB levels were determined from supernatants using ELISA. MDM were pre-treated with a selective CB2R antagonist SR144528 before JWH-133 treatment to determine if CB2R activation is responsible for the effects. Neuronal apoptosis was assessed using a TUNEL assay. Results show that both agonists reduce HIV-1 replication and CATB secretion from MDM in a time and dose-dependent manner and that CB2R activation is responsible for these effects. Finally, JWH-133 decreased HIV/MDM-CATB induced neuronal apoptosis. Our results suggest that agonists of CB2R represent a potential therapeutic strategy against HIV/MDM-induced neurotoxicity.
Collapse
|
7
|
Anderson AM, Ma Q, Letendre SL, Iudicello J. Soluble Biomarkers of Cognition and Depression in Adults with HIV Infection in the Combination Therapy Era. Curr HIV/AIDS Rep 2021; 18:558-568. [PMID: 34780037 PMCID: PMC8860504 DOI: 10.1007/s11904-021-00581-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Cognitive impairment and depression continue to be common among people with HIV (PWH) in the combination antiretroviral therapy (ART) era. A better understanding of the biological mechanisms that may underpin these disorders is needed. The purpose of this review is to describe published findings on soluble biomarkers from blood and cerebrospinal fluid (CSF) that have been associated with either cognition or depression among PWH in the setting of ART. RECENT FINDINGS Several biomarkers, including those that reflect viral persistence, monocyte/macrophage activation, and other processes, are associated with cognition and depressive symptoms. Some but not all results have been consistent across multiple studies. More research has been published on biomarkers of cognition relative to biomarkers of depression (particularly from CSF). More studies are needed that investigate multiple biomarkers to understand the role of distinct but additive pathways in these disorders and to guide the development of new therapies.
Collapse
Affiliation(s)
- Albert M Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 341 Ponce de Leon Avenue, Atlanta, GA, 30308, USA.
| | - Qing Ma
- University at Buffalo, Buffalo, NY, USA
| | - Scott L Letendre
- Departments of Medicine and Psychiatry, University of California at San Diego, San Diego, CA, USA
| | - Jennifer Iudicello
- Departments of Medicine and Psychiatry, University of California at San Diego, San Diego, CA, USA
| |
Collapse
|
8
|
Aldous AM, Joy C, Daniels J, Jais M, Simmens SJ, Magnus M, Roberts A, Connors K, Capozzi B, Mohamed H, Juzumaite M, Devore H, Moriarty T, Hatch Schultz C, Zumer M, Simon G, Ghosh M. Recent sexual violence exposure is associated with immune biomarkers of HIV susceptibility in women. Am J Reprod Immunol 2021; 86:e13432. [PMID: 33894020 DOI: 10.1111/aji.13432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022] Open
Abstract
PROBLEM HIV/AIDS and sexual violence act synergistically and compromise women's health. Yet, immuno-biological mechanisms linking sexual violence and increased HIV susceptibility are poorly understood. METHODS We conducted a cross-sectional pilot study of HIV-uninfected women, comparing 13 women exposed to forced vaginal penetration within the past 12 weeks (Exposed) with 25 Non-Exposed women. ELISA assays were conducted for 49 biomarkers associated with HIV pathogenesis in plasma and cervicovaginal lavage (CVL). Differences between Exposed and Non-Exposed were analyzed by linear and logistic regression, using propensity score weighting to control for age, race, socioeconomic status, menstrual cycle, and contraceptive use. RESULTS In CVL, Exposed women had significantly reduced chemokines MIP-3α (p < .01), MCP-1 (p < .01), and anti-HIV/wound-healing thrombospondin-1 (p = .03). They also had significantly increased inflammatory cytokine IL-1α (p < 0.01) and were more likely to have detectable wound-healing PDGF (p = .02). In plasma, Exposed women had reduced chemokines MIP-3α (p < .01) and IL-8 (p < .01), anti-inflammatory cytokine TGF-β (p = .02), anti-HIV/antimicrobial HBD-2 (p = .02), and wound-healing MMP-1 (p = 0.02). They also had increased thrombospondin-1 (p < .01) and Cathepsin B (p = .01). After applying the stringent method of false discovery rate adjustment, differences for IL-1α (p = .05) and MCP-1 (p = .03) in CVL and MIP-3α (p = .03) in plasma remained significant. CONCLUSIONS We report systemic and mucosal immune dysregulation in women exposed to sexual violence. As these biomarkers have been associated with HIV pathogenesis, dysregulation may increase HIV susceptibility.
Collapse
Affiliation(s)
- Annette M Aldous
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Christopher Joy
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Jason Daniels
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Mariel Jais
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Samuel J Simmens
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Manya Magnus
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Afsoon Roberts
- Division of Infectious Diseases, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Kaleigh Connors
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Brendan Capozzi
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Hani Mohamed
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Monika Juzumaite
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Heather Devore
- District of Columbia Forensic Nurse Examiners, Washington, DC, USA
| | | | | | - Maria Zumer
- Medical Faculty Associates, Inc., The George Washington University, Washington, DC, USA
| | - Gary Simon
- Division of Infectious Diseases, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Mimi Ghosh
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| |
Collapse
|
9
|
Tarasova O, Ivanov S, Filimonov DA, Poroikov V. Data and Text Mining Help Identify Key Proteins Involved in the Molecular Mechanisms Shared by SARS-CoV-2 and HIV-1. Molecules 2020; 25:E2944. [PMID: 32604797 PMCID: PMC7357070 DOI: 10.3390/molecules25122944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Viruses can be spread from one person to another; therefore, they may cause disorders in many people, sometimes leading to epidemics and even pandemics. New, previously unstudied viruses and some specific mutant or recombinant variants of known viruses constantly appear. An example is a variant of coronaviruses (CoV) causing severe acute respiratory syndrome (SARS), named SARS-CoV-2. Some antiviral drugs, such as remdesivir as well as antiretroviral drugs including darunavir, lopinavir, and ritonavir are suggested to be effective in treating disorders caused by SARS-CoV-2. There are data on the utilization of antiretroviral drugs against SARS-CoV-2. Since there are many studies aimed at the identification of the molecular mechanisms of human immunodeficiency virus type 1 (HIV-1) infection and the development of novel therapeutic approaches against HIV-1, we used HIV-1 for our case study to identify possible molecular pathways shared by SARS-CoV-2 and HIV-1. We applied a text and data mining workflow and identified a list of 46 targets, which can be essential for the development of infections caused by SARS-CoV-2 and HIV-1. We show that SARS-CoV-2 and HIV-1 share some molecular pathways involved in inflammation, immune response, cell cycle regulation.
Collapse
Affiliation(s)
- Olga Tarasova
- Department for Bioinformatics, Institute of Biomedical Chemistry, 107076 Moscow, Russia; (S.I.); (D.A.F.); (V.P.)
| | - Sergey Ivanov
- Department for Bioinformatics, Institute of Biomedical Chemistry, 107076 Moscow, Russia; (S.I.); (D.A.F.); (V.P.)
- Department of Bioinformatics of Pirogov Russian National Research Medical University, 107076 Moscow, Russia
| | - Dmitry A. Filimonov
- Department for Bioinformatics, Institute of Biomedical Chemistry, 107076 Moscow, Russia; (S.I.); (D.A.F.); (V.P.)
| | - Vladimir Poroikov
- Department for Bioinformatics, Institute of Biomedical Chemistry, 107076 Moscow, Russia; (S.I.); (D.A.F.); (V.P.)
| |
Collapse
|
10
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
11
|
Awori V, Nakigozi G, Kisakye A, Batte J, Anok A, Mayanja R, Nakasujja N, Robertson KR, Gray RH, Wawer MJ, Sacktor N, Saylor D. The Veterans Aging Cohort Study Index is not associated with HIV-associated neurocognitive disorders in Uganda. J Neurovirol 2019; 26:252-256. [PMID: 31721082 DOI: 10.1007/s13365-019-00806-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
Abstract
The Veterans Aging Cohort Study (VACS) Index has been associated with HIV-associated neurocognitive disorder (HAND) in some populations but has not been studied in sub-Saharan Africa. We investigated whether the VACS Index is associated with HAND in a rural population in Rakai, Uganda. HIV-infected (HIV+) adults on antiretroviral therapy underwent a neurocognitive battery for determination of HAND stage using Frascati criteria. VACS component scores were recorded for all participants. Out of 156 study participants, HAND stages were 49% normal cognition, 15% asymptomatic neurocognitive impairment, 31% minor neurocognitive disorder, and 7% HIV-associated dementia. There was no significant association between VACS Index and any HAND stage. In this first study of the VACS Index in sub-Saharan Africa, we found no association between VACS Index score and HAND.
Collapse
Affiliation(s)
| | | | | | - James Batte
- Rakai Health Sciences Program, Kalisizo, Uganda
| | - Aggrey Anok
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | | | - Kevin R Robertson
- Department of Neurology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Ronald H Gray
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maria J Wawer
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ned Sacktor
- Department of Neurology, Johns Hopkins University School of Medicine, Meyer 6-113, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Deanna Saylor
- Department of Neurology, Johns Hopkins University School of Medicine, Meyer 6-113, 600 N. Wolfe Street, Baltimore, MD, 21287, USA. .,Department of Medicine, University of Zambia School of Medicine, Lusaka, Zambia.
| |
Collapse
|
12
|
Bandera A, Taramasso L, Bozzi G, Muscatello A, Robinson JA, Burdo TH, Gori A. HIV-Associated Neurocognitive Impairment in the Modern ART Era: Are We Close to Discovering Reliable Biomarkers in the Setting of Virological Suppression? Front Aging Neurosci 2019; 11:187. [PMID: 31427955 PMCID: PMC6687760 DOI: 10.3389/fnagi.2019.00187] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/10/2019] [Indexed: 11/24/2022] Open
Abstract
The prevalence of the most severe forms of HIV-associated neurocognitive disorders (HAND) is decreasing due to worldwide availability and high efficacy of antiretroviral treatment (ART). However, several grades of HIV-related cognitive impairment persist with effective ART and remain a clinical concern for people with HIV (PWH). The pathogenesis of these cognitive impairments has yet to be fully understood and probably multifactorial. In PWH with undetectable peripheral HIV-RNA, the presence of viral escapes in cerebrospinal fluid (CSF) might explain a proportion of cases, but not all. Many other mechanisms have been hypothesized to be involved in disease progression, in order to identify possible therapeutic targets. As potential indicators of disease staging and progression, numerous biomarkers have been used to characterize and implicate chronic inflammation in the pathogenesis of neuronal injuries, such as certain phenotypes of activated monocytes/macrophages, in the context of persistent immune activation. Despite none of them being disease-specific, the correlation of several CSF cellular biomarkers to HIV-induced neuronal damage has been investigated. Furthermore, recent studies have been evaluating specific microRNA (miRNA) profiles in the CSF of PWH with neurocognitive impairment (NCI). The aim of the present study is to review the body of evidence on different biomarkers use in research and clinical settings, focusing on PWH on ART with undetectable plasma HIV-RNA.
Collapse
Affiliation(s)
- Alessandra Bandera
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Lucia Taramasso
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Infectious Diseases Clinic, Department of Health Sciences, School of Medical and Pharmaceutical Sciences, Policlinico Hospital San Martino, University of Genova (DISSAL), Genova, Italy
| | - Giorgio Bozzi
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Muscatello
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jake A Robinson
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Tricia H Burdo
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Andrea Gori
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| |
Collapse
|
13
|
López OV, Gorantla S, Segarra AC, Andino Norat MC, Álvarez M, Skolasky RL, Meléndez LM. Sigma-1 Receptor Antagonist (BD1047) Decreases Cathepsin B Secretion in HIV-Infected Macrophages Exposed to Cocaine. J Neuroimmune Pharmacol 2019; 14:226-240. [PMID: 30306495 PMCID: PMC6488453 DOI: 10.1007/s11481-018-9807-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
Abstract
Pathogenesis of HIV-associated neurocognitive disorders (HAND) is mediated through the infiltration of perivascular macrophages into the brain with the secretion of viral, neurotoxic and inflammatory proteins. One of these proteins is cathepsin B (CATB), a lysosomal cysteine protease that induces neuronal apoptosis, and increases in plasma and cerebrospinal fluid from HIV-1 infected patients (Cantres-Rosario et al. AIDS 27(3):347-356, 2013). Cocaine further potentiates CATB neurotoxicity in vitro and in vivo (Zenón et al. J NeuroImmune Pharmacol 9(5):703-715, 2014). Modulation of sigma-1 (Sig1R) by cocaine increases oxidative species, cytokines and other factors that promote lysosomal disruption. However, the role of Sig1R in CATB secretion and HIV-1 replication in macrophages exposed to cocaine is unknown. We hypothesized that pharmacological modulation of Sig1R would alter CATB secretion from HIV-1 infected macrophages in vitro and in vivo. To test our hypothesis, monocyte derived-macrophages (MDM) from HIV-1 seronegative donors were isolated, infected with HIV-1ADA, and pretreated with Sig1R antagonist (BD1047) or Sig1R agonist (PRE-084) prior to cocaine exposure and followed for 3,6,9 and 11 days post-infection (dpi). Experiments in vivo were conducted using the HIV encephalitis mouse model (HIVE) with BD1047 treatments prior to cocaine for 14 days. Results demonstrate that in presence of cocaine, BD1047 decreases CATB secretion at 11 dpi, while PRE-084 did not have an effect. In the mouse model, BD1047 treatment prior to cocaine decreased CATB expression, cleaved caspase-3 an p24 antigen levels, reduced astrocytosis, but did not increase MAP-2 or synaptophysin. Results demonstrate that Sig1R plays a role in the modulation of CATB levels in HIV-1 infected MDM exposed to cocaine in vitro and in vivo. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Omar Vélez López
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, 00936-5067, Puerto Rico
| | - Santhi Gorantla
- University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Annabell C Segarra
- Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, 00921, Puerto Rico
| | - María C Andino Norat
- Department of Biology, University of Puerto Rico Bayamón Campus, Bayamón, 00959, Puerto Rico
| | - Manuel Álvarez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, 00921, Puerto Rico
| | - Richard L Skolasky
- Orthopaedic Surgery and Physical Medicine & Rehabilitation Director, Spine Outcomes Research Center, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Loyda M Meléndez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, 00936-5067, Puerto Rico.
| |
Collapse
|
14
|
Cantres-Rosario YM, Acevedo-Mariani FM, Pérez-Laspiur J, Haskins WE, Plaud M, Cantres-Rosario YM, Skolasky R, Méndez-Bermúdez I, Wojna V, Meléndez LM. Microwave & magnetic proteomics of macrophages from patients with HIV-associated cognitive impairment. PLoS One 2017; 12:e0181779. [PMID: 28746408 PMCID: PMC5528838 DOI: 10.1371/journal.pone.0181779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE HIV-infected monocytes can infiltrate the blood brain barrier as differentiated macrophages to the central nervous system, becoming the primary source of viral and cellular neurotoxins. The final outcome is HIV-associated cognitive impairment (HACI), which remain prevalent today, possibly due to the longer life-span of the patients treated with combined anti-retroviral therapy. Our main goal was to characterize the proteome of monocyte-derived macrophages (MDM) from HACI patients, and its association with their cognitive status, to find novel targets for therapy. METHODS MDM were isolated from the peripheral blood of 14 HIV-seropositive women characterized for neurocognitive function, including: four normal cognition (NC), five asymptomatic (A), and five with cognitive impaired (CI). Proteins from macrophage lysates were isobaric-labeled with the microwave and magnetic (M2) sample preparation method followed by liquid chromatography-tandem mass spectrometry-based protein identification and quantification. Differences in protein abundance across groups classified by HACI status were determined using analysis of variance. RESULTS A total of 2,519 proteins were identified with 2 or more peptides and 28 proteins were quantified as differentially expressed. Statistical analysis revealed increased abundance of 17 proteins in patients with HACI (p<0.05), including several enzymes associated to the glucose metabolism. Western blot confirmed increased expression of 6-Phosphogluconate dehydrogenase and L-Plastin in A and CI patients over NC and HIV seronegatives. CONCLUSIONS This is the first quantitative proteomics study exploring the changes in protein abundance of macrophages isolated from patients with HACI. Further studies are warranted to determine if these proteins may be target candidates for therapy development against HACI.
Collapse
Affiliation(s)
- Yisel M. Cantres-Rosario
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | | - Juliana Pérez-Laspiur
- RCMI Translational Proteomics Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | | | - Marines Plaud
- RCMI Translational Proteomics Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Yadira M. Cantres-Rosario
- RCMI Translational Proteomics Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Richard Skolasky
- John Hopkins University, Department of Orthopedic Surgery, Baltimore, Maryland, United States of America
| | - Israel Méndez-Bermúdez
- Department of Biostatistics and Epidemiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Valerie Wojna
- Department of Medicine, Neurology Division, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- RCMI Translational Proteomics Center, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
15
|
Higher Cystatin C Levels Are Associated With Neurocognitive Impairment in Older HIV+ Adults. J Acquir Immune Defic Syndr 2017; 74:243-249. [PMID: 27861242 DOI: 10.1097/qai.0000000000001235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The study aims to determine whether cystatin C is associated with HIV disease and HIV-associated neurocognitive impairment (NCI). METHODS Participants included 124 (HIV+ n = 77; HIV- n = 47) older adults (age ≥ 50 years) examined at the University of California, San Diego HIV Neurobehavioral Research Program. Cystatin C, a biomarker of kidney functioning that has been linked to poor health outcomes, was measured in blood. Participants completed a comprehensive neurocognitive assessment that was used to define both global and domain NCI. RESULTS The HIV+ group had significantly higher cystatin C concentrations than the HIV- group (d = 0.79 P < 0.001). Among HIV+ participants, those with NCI had higher cystatin C concentrations than those without NCI (d = 0.42, P = 0.055), particularly among participants taking tenofovir (d = 0.78, P = 0.004). A receiver-operator characteristic curve identified that cystatin C levels ≥0.75 mg/L were associated with NCI in the HIV+ group. Using this binary variable and including relevant covariates, multivariate modeling confirmed that NCI was associated with higher cystatin C levels (OR = 3.0; P = 0.03). CONCLUSIONS Our results confirm that HIV+ older adults have higher cystatin C than HIV- older adults and further identify that cystatin C may be associated with NCI in this population, particularly if they use tenofovir. This blood biomarker may be a useful clinical tool to identify older HIV+ persons at greater risk for cognitive decline.
Collapse
|
16
|
Fan Y, He JJ. HIV-1 Tat Promotes Lysosomal Exocytosis in Astrocytes and Contributes to Astrocyte-mediated Tat Neurotoxicity. J Biol Chem 2016; 291:22830-22840. [PMID: 27609518 DOI: 10.1074/jbc.m116.731836] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/05/2016] [Indexed: 12/20/2022] Open
Abstract
Tat interaction with astrocytes has been shown to be important for Tat neurotoxicity and HIV/neuroAIDS. We have recently shown that Tat expression leads to increased glial fibrillary acidic protein (GFAP) expression and aggregation and activation of unfolded protein response/endoplasmic reticulum (ER) stress in astrocytes and causes neurotoxicity. However, the exact molecular mechanism of astrocyte-mediated Tat neurotoxicity is not defined. In this study, we showed that neurotoxic factors other than Tat protein itself were present in the supernatant of Tat-expressing astrocytes. Two-dimensional gel electrophoresis and mass spectrometry revealed significantly elevated lysosomal hydrolytic enzymes and plasma membrane-associated proteins in the supernatant of Tat-expressing astrocytes. We confirmed that Tat expression and infection of pseudotyped HIV.GFP led to increased lysosomal exocytosis from mouse astrocytes and human astrocytes. We found that Tat-induced lysosomal exocytosis was tightly coupled to astrocyte-mediated Tat neurotoxicity. In addition, we demonstrated that Tat-induced lysosomal exocytosis was astrocyte-specific and required GFAP expression and was mediated by ER stress. Taken together, these results show for the first time that Tat promotes lysosomal exocytosis in astrocytes and causes neurotoxicity through GFAP activation and ER stress induction in astrocytes and suggest a common cascade through which aberrant astrocytosis/GFAP up-regulation potentiates neurotoxicity and contributes to neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Fan
- From the Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Johnny J He
- From the Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
17
|
5α-reduced progestogens ameliorate mood-related behavioral pathology, neurotoxicity, and microgliosis associated with exposure to HIV-1 Tat. Brain Behav Immun 2016; 55:202-214. [PMID: 26774528 PMCID: PMC4899138 DOI: 10.1016/j.bbi.2016.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 02/05/2023] Open
Abstract
Human immunodeficiency virus (HIV) is associated with motor and mood disorders, likely influenced by reactive microgliosis and subsequent neural damage. We have recapitulated aspects of this pathology in mice that conditionally express the neurotoxic HIV-1 regulatory protein, trans-activator of transcription (Tat). Progestogens may attenuate Tat-related behavioral impairments and reduce neurotoxicity in vitro, perhaps via progesterone's 5α-reductase-dependent metabolism to the neuroprotective steroid, allopregnanolone. To test this, ovariectomized female mice that conditionally expressed (or did not express) central HIV-1 Tat were administered vehicle or progesterone (4mg/kg), with or without pretreatment of a 5α-reductase inhibitor (finasteride, 50mg/kg). Tat induction significantly increased anxiety-like behavior in an open field, elevated plus maze and a marble burying task concomitant with elevated protein oxidation in striatum. Progesterone administration attenuated anxiety-like effects in the open field and elevated plus maze, but not in conjunction with finasteride pretreatment. Progesterone also attenuated Tat-promoted protein oxidation in striatum, independent of finasteride pretreatment. Concurrent experiments in vitro revealed Tat (50nM)-mediated reductions in neuronal cell survival over 60h, as well as increased neuronal and microglial intracellular calcium, as assessed via fura-2 AM fluorescence. Co-treatment with allopregnanolone (100nM) attenuated neuronal death in time-lapse imaging and blocked the Tat-induced exacerbation of intracellular calcium in neurons and microglia. Lastly, neuronal-glial co-cultures were labeled for Iba-1 to reveal that Tat increased microglial numbers in vitro and co-treatment with allopregnanolone attenuated this effect. Together, these data support the notion that 5α-reduced pregnane steroids exert protection over the neurotoxic effects of HIV-1 Tat.
Collapse
|
18
|
Rivera LE, Kraiselburd E, Meléndez LM. Cystatin B and HIV regulate the STAT-1 signaling circuit in HIV-infected and INF-β-treated human macrophages. J Neurovirol 2016; 22:666-673. [PMID: 27137788 DOI: 10.1007/s13365-016-0443-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 03/20/2016] [Accepted: 04/04/2016] [Indexed: 11/28/2022]
Abstract
Cystatin B is a cysteine protease inhibitor that induces HIV replication in monocyte-derived macrophages (MDM). This protein interacts with signal transducer and activator of transcription (STAT-1) factor and inhibits the interferon (IFN-β) response in Vero cells by preventing STAT-1 translocation to the nucleus. Cystatin B also decreases the levels of tyrosine-phosphorylated STAT-1 (STAT-1PY). However, the mechanisms of cystatin B regulation on STAT-1 phosphorylation in MDM are unknown. We hypothesized that cystatin B inhibits IFN-β antiviral responses and induces HIV replication in macrophage reservoirs through the inhibition of STAT-1 phosphorylation. Macrophages were transfected with cystatin B siRNA prior to interferon-β treatment or infected with HIV-ADA to determine the effect of cystatin B modulation in STAT-1 localization and activation using immunofluorescence and proximity ligation assays. Cystatin B decreased STAT-1PY and its transportation to the nucleus, while HIV infection retained unphosphorylated STAT (USTAT-1) in the nucleus avoiding its exit to the cytoplasm for eventual phosphorylation. In IFN-β-treated MDM, cystatin B inhibited the nuclear translocation of both, USTAT-1 and STAT-1PY. These results demonstrate that cystatin B interferes with the STAT-1 signaling and IFN-β-antiviral responses perpetuating HIV in macrophage reservoirs.
Collapse
Affiliation(s)
- L E Rivera
- Universidad del Este, Carolina, PR, 00984, USA
| | - E Kraiselburd
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, 00935, USA
| | - L M Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, 00935, USA.
| |
Collapse
|
19
|
Zenón F, Jorge I, Cruz A, Suárez E, Segarra AC, Vázquez J, Meléndez LM, Serrano H. 18O proteomics reveal increased human apolipoprotein CIII in Hispanic HIV-1+ women with HAART that use cocaine. Proteomics Clin Appl 2015; 10:144-55. [PMID: 26255783 DOI: 10.1002/prca.201400204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/26/2015] [Accepted: 07/27/2015] [Indexed: 11/09/2022]
Abstract
PURPOSE Drug abuse is a major risk factor in the development and progression of HIV-1. This study defines the alterations in the plasma proteome of HIV-1-infected women that use cocaine. EXPERIMENTAL DESIGN Plasma samples from 12 HIV-seropositive Hispanic women under antiretroviral therapy were selected for this study. Six sample pairs were matched between nondrug users and cocaine users. After IgG and albumin depletion, SDS-PAGE, and in-gel digestion, peptides from nondrug users and cocaine users were labeled with (16) O and (18) O, respectively, and subjected to LC-MS/MS and quantitation using Proteome Discover and QuiXoT softwares and validated by ELISA. RESULTS A total of 1015 proteins were identified at 1% false discovery rates (FDR). Statistical analyses revealed 13 proteins with significant changes between the two groups, cocaine and noncocaine users (p < 0.05). The great majority pertained to protection defense function and the rest pertained to transport, homeostatic, regulation, and binding of ligands. Apolipoprotein CIII was increased in plasma of HIV+ Hispanic women positive for cocaine compared to HIV+ nondrug users (p ≤ 0.05). CONCLUSIONS AND CLINICAL RELEVANCE Increased human apolipoprotein CIII warrants that these patients be carefully monitored to avoid the increased risk of cardiovascular events associated with HIV, HAART, and cocaine use.
Collapse
Affiliation(s)
- Frances Zenón
- Department of Microbiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Inmaculada Jorge
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ailed Cruz
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Erick Suárez
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Annabell C Segarra
- Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Loyda M Meléndez
- Department of Microbiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Horacio Serrano
- Department of Internal Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
20
|
Cantres-Rosario YM, Hernandez N, Negron K, Perez-Laspiur J, Leszyk J, Shaffer SA, Meléndez LM. Interacting partners of macrophage-secreted cathepsin B contribute to HIV-induced neuronal apoptosis. AIDS 2015. [PMID: 26208400 DOI: 10.1097/qad.0000000000000823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE HIV-1 infection of macrophages increases cathepsin B secretion and induces neuronal apoptosis, but the molecular mechanism remains unclear. DESIGN We identified macrophage-secreted cathepsin B protein interactions extracellularly and their contribution to neuronal death in vitro. METHODS Cathepsin B was immunoprecipitated from monocyte-derived macrophage supernatants after 12 days postinfection. The cathepsin B interactome was identified by label-free tandem mass spectrometry and compared with uninfected supernatants. Proteins identified were validated by western blot. Neurons were exposed to macrophage-conditioned media in presence or absence of antibodies against cathepsin B and interacting proteins. Apoptosis was measured using TUNEL labeling. Immunohistochemistry of postmortem brain tissue samples from healthy, HIV-infected and Alzheimer's disease patients was performed to observe the ex-vivo expression of the proteins identified. RESULTS Nine proteins co-immunoprecipitated differentially with cathepsin B between uninfected and HIV-infected macrophages. Serum amyloid P component (SAPC)-cathepsin B interaction increased in HIV-infected macrophage supernatants, while matrix metalloprotease 9 (MMP-9)-cathepsin B interaction decreased. Pre-treatment of HIV-infected macrophage-conditioned media with antibodies against cathepsin B and SAPC decreased neuronal apoptosis. The addition of MMP-9 antibodies was not neuro-protective SAPC was overexpressed in postmortem brain tissue from HIV-positive neurocognitive impaired patients compared with HIV positive with normal cognition and healthy controls, although MMP-9 expression was similar in all tissues. CONCLUSION Inhibiting SAPC-cathepsin B interaction protects against HIV-induced neuronal death and may help to find alternative treatments for HIV-associated neurocognitive disorders.
Collapse
|
21
|
HIV-infected microglia mediate cathepsin B-induced neurotoxicity. J Neurovirol 2015; 21:544-58. [PMID: 26092112 DOI: 10.1007/s13365-015-0358-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/14/2015] [Accepted: 05/29/2015] [Indexed: 12/17/2022]
Abstract
HIV-1-infected mononuclear phagocytes release soluble factors that affect the homeostasis in tissue. HIV-1 can prompt metabolic encephalopathy with the addition of neuronal dysfunction and apoptosis. Recently, we reported that HIV-1 enhances the expression and secretion of bioactive cathepsin B in monocyte-derived macrophages, ultimately contributing to neuronal apoptosis. In this research, we asked if microglia respond to HIV infection similarly by modifying the expression, secretion, and neurotoxic potential of cathepsin B and determined the in vivo relevance of these findings. HIV-1ADA-infected human primary microglia and CHME-5 microglia cell line were assessed for expression and activity of cathepsin B, its inhibitors, cystatins B and C, and the neurotoxicity associated with these changes. Human primary neurons were exposed to supernatants from HIV-infected and uninfected microglia in the presence of cathepsin B inhibitors and apoptosis was assessed by TUNEL. Microglial expression of cathepsin B was validated in brain tissue from HIV encephalitis (HIVE) patients. HIV-infected microglia secreted significantly greater levels of cathepsin B, cystatin B, and cystatin C compared to uninfected cells. Increased apoptosis was observed in neurons exposed to supernatants from HIV-1 infected microglia at day 12 post-infection. The cathepsin B inhibitor CA-074 and cathepsin B antibody prevented neuronal apoptosis. Increased microglia-derived cathepsin B, cystatin B, and cystatin C and caspase-3+ neurons were detected in HIVE brains compared to controls. Our results suggest that HIV-1-induced cathepsin B production in microglia contributes to neuronal apoptosis and may be an important factor in neuronal death associated with HIVE.
Collapse
|
22
|
Zenón F, Segarra AC, Gonzalez M, Meléndez LM. Cocaine potentiates cathepsin B secretion and neuronal apoptosis from HIV-infected macrophages. J Neuroimmune Pharmacol 2014; 9:703-15. [PMID: 25209871 PMCID: PMC4209444 DOI: 10.1007/s11481-014-9563-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/17/2014] [Indexed: 12/16/2022]
Abstract
Substance abuse is a risk factor for HIV infection and progression to AIDS. Recent evidence establishes that cocaine use promotes brain perivascular macrophage infiltration and microglia activation. The lysosomal protease cathepsin B is increased in monocytes from patients with HIV dementia and its secretion induces 10-15% of neurotoxicity. Here we asked if cocaine potentiates cathepsin B secretion from HIV-infected monocyte-derived macrophages (MDM) and its effect in neuronal apoptosis. Samples of plasma, CSF, and post-mortem brain tissue from HIV positive patients that used cocaine were tested for cathepsin B and its inhibitors to determine the in vivo relevance of these findings. MDM were inoculated with HIV-1ADA, exposed to cocaine, and the levels of secreted and bioactive cathepsin B and its inhibitors were measured at different time-points. Cathepsin B expression (p < 0.001) and activity (p < 0.05) increased in supernatants from HIV-infected cocaine treated MDM compared with HIV-infected cocaine negative controls. Increased levels of cystatin B expression was also found in supernatants from HIV-cocaine treated MDM (p < 0.05). A significant increase in 30% of apoptotic neurons was obtained that decreased to 5% with the specific cathepsin B inhibitor (CA-074) or with cathepsin B antibody. Cathepsin B was significantly increased in the plasma and post-mortem brain tissue of HIV/cocaine users over non-drug users. Our results demonstrated that cocaine potentiates cathepsin B secretion in HIV-infected MDM and increase neuronal apoptosis. These findings provide new evidence that cocaine synergize with HIV-1 infection in increasing cathepsin B secretion and neurotoxicity.
Collapse
Affiliation(s)
- Frances Zenón
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico
- NeuroAIDS Program, Medical Sciences Campus, San Juan PR
| | | | | | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico
- NeuroAIDS Program, Medical Sciences Campus, San Juan PR
| |
Collapse
|
23
|
Crowell CS, Malee KM, Yogev R, Muller WJ. Neurologic disease in HIV-infected children and the impact of combination antiretroviral therapy. Rev Med Virol 2014; 24:316-31. [PMID: 24806816 DOI: 10.1002/rmv.1793] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 11/10/2022]
Abstract
The prevalence of HIV-associated neurocognitive impairment in perinatally HIV-infected children has declined since the introduction of combination antiretroviral therapy (cART). Early initiation of cART in infancy has been shown to positively impact neurodevelopment; however, children continue to be diagnosed with HIV outside of the early infancy period and can experience subtle to severe neurocognitive deficits despite cART. The causes of these neurocognitive deficits despite effective cART are multifactorial and likely include continued viral replication in the CNS, ongoing neuroinflammation, irreversible CNS injury prior to cART initiation, neurotoxic effects of cART, and socioeconomic and psychosocial effects. Many aspects of our understanding of HIV-associated neurocognitive disorders have emerged from research in adult patients, but perinatally HIV-infected children represent a very different population. These children were exposed to HIV during a period of rapid brain development and have lifelong infection and potential lifelong cART exposure. HIV is no longer a rapidly fatal disease, and most HIV-infected children in resource-rich countries are living into adulthood. It is therefore critical to optimize neurocognitive outcomes of these youth. This review summarizes current understanding of the pathogenesis of HIV-associated CNS infection and the impact of cART on neurocognitive function in children and adolescents and discusses important areas for future research.
Collapse
Affiliation(s)
- Claudia S Crowell
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | |
Collapse
|
24
|
Rivera LE, Colon K, Cantres-Rosario YM, Zenon FM, Melendez LM. Macrophage derived cystatin B/cathepsin B in HIV replication and neuropathogenesis. Curr HIV Res 2014; 12:111-20. [PMID: 24862331 PMCID: PMC4122617 DOI: 10.2174/1570162x12666140526120249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 11/22/2022]
Abstract
Mononuclear phagocytes including monocytes and macrophages, are important defense components of innate immunity, but can be detrimental in HIV-1 infection by serving as the principal reservoirs of virus in brain and triggering a strong immune response. These viral reservoirs represent a challenge to HIV-1 eradication since they continue producing virus in tissue despite antiretroviral therapy. HIV-1 associated neurocognitive disorders (HAND) involve alterations to the blood-brain barrier and migration of activated HIV-1 infected monocytes to the brain with subsequent induced immune activation response. Our group recently showed that HIV replication in monocyte-derived macrophages is associated with increased cystatin B. This cysteine protease inhibitor also inhibits the interferon-induced antiviral response by decreasing levels of tyrosine phosphorylated STAT-1. These recent discoveries reveal novel mechanisms of HIV persistence that could be targeted by new therapeutic approaches to eliminate HIV in macrophage reservoirs. However, cystatin B has been also associated with neuroprotection. Cystatin B is an inhibitor of the cysteine protease cathepsin B, a potent neurotoxin. During HIV-1 infection cystatin B and cathepsin B are upregulated in macrophages. Reduction in cystatin/cathepsin interactions in infected macrophages leads to increased cathepsin B secretion and activity which contributes to neuronal apoptosis. Increased intracellular expression of both proteins was recently found in monocytes from Hispanic women with HAND. These findings provide new evidence for the role of cathepsin /cystatin system in the neuropathogenesis induced by HIV-infected macrophages. We summarize recent research on cystatin B and one of its substrates, cathepsin B, in HIV replication in macrophages and neuropathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Loyda M Melendez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, 00935, Puerto Rico.
| |
Collapse
|
25
|
Eaves-Pyles T, Patel J, Arigi E, Cong Y, Cao A, Garg N, Dhiman M, Pyles RB, Arulanandam B, Miller AL, Popov VL, Soong L, Carlsen ED, Coletta C, Szabo C, Almeida IC. Immunomodulatory and antibacterial effects of cystatin 9 against Francisella tularensis. Mol Med 2013; 19:263-75. [PMID: 23922243 DOI: 10.2119/molmed.2013.00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 12/26/2022] Open
Abstract
Cystatin 9 (CST9) is a member of the type 2 cysteine protease inhibitor family, which has been shown to have immunomodulatory effects that restrain inflammation, but its functions against bacterial infections are unknown. Here, we report that purified human recombinant (r)CST9 protects against the deadly bacterium Francisella tularensis (Ft) in vitro and in vivo. Macrophages infected with the Ft human pathogen Schu 4 (S4), then given 50 pg of rCST9 exhibited significantly decreased intracellular bacterial replication and increased killing via preventing the escape of S4 from the phagosome. Further, rCST9 induced autophagy in macrophages via the regulation of the mammalian target of rapamycin (mTOR) signaling pathways. rCST9 promoted the upregulation of macrophage proteins involved in antiinflammation and antiapoptosis, while restraining proinflammatory-associated proteins. Interestingly, the viability and virulence of S4 also was decreased directly by rCST9. In a mouse model of Ft inhalation, rCST9 significantly decreased organ bacterial burden and improved survival, which was not accompanied by excessive cytokine secretion or subsequent immune cell migration. The current report is the first to show the immunomodulatory and antimicrobial functions of rCST9 against Ft. We hypothesize that the attenuation of inflammation by rCST9 may be exploited for therapeutic purposes during infection.
Collapse
Affiliation(s)
- Tonyia Eaves-Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Valcour VG, Ananworanich J, Agsalda M, Sailasuta N, Chalermchai T, Schuetz A, Shikuma C, Liang CY, Jirajariyavej S, Sithinamsuwan P, Tipsuk S, Clifford DB, Paul R, Fletcher JLK, Marovich MA, Slike BM, DeGruttola V, Shiramizu B. HIV DNA reservoir increases risk for cognitive disorders in cART-naïve patients. PLoS One 2013; 8:e70164. [PMID: 23936155 PMCID: PMC3729685 DOI: 10.1371/journal.pone.0070164] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/15/2013] [Indexed: 11/19/2022] Open
Abstract
Objectives Cognitive impairment remains frequent in HIV, despite combination antiretroviral therapy (cART). Leading theories implicate peripheral monocyte HIV DNA reservoirs as a mechanism for spread of the virus to the brain. These reservoirs remain present despite cART. The objective of this study was to determine if the level of HIV DNA in CD14+ enriched monocytes predicted cognitive impairment and brain injury. Methods We enrolled 61 cART-naïve HIV-infected Thais in a prospective study and measured HIV DNA in CD14+ enriched monocyte samples in a blinded fashion. We determined HAND diagnoses by consensus panel and all participants underwent magnetic resonance spectroscopy (MRS) to measure markers of brain injury. Immune activation was measured via cytokines in cerebrospinal fluid (CSF). Results The mean (SD) age was 35 (6.9) years, CD4 T-lymphocyte count was 236 (139) and log10 plasma HIV RNA was 4.8 (0.73). Twenty-eight of 61 met HAND criteria. The log10 CD14+ HIV DNA was associated with HAND in unadjusted and adjusted models (p = 0.001). There was a 14.5 increased odds ratio for HAND per 1 log-value of HIV DNA (10-fold increase in copy number). Plasma CD14+ HIV DNA was associated with plasma and CSF neopterin (p = 0.023) and with MRS markers of neuronal injury (lower N-acetyl aspartate) and glial dysfunction (higher myoinositol) in multiple brain regions. Interpretation Reservoir burden of HIV DNA in monocyte-enriched (CD14+) peripheral blood cells increases risk for HAND in treatment-naïve HIV+ subjects and is directly associated with CSF immune activation and both brain injury and glial dysfunction by MRS.
Collapse
Affiliation(s)
- Victor G Valcour
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|