1
|
Mohapatra P, Rawat P, Sah S, Satapathy P. Naegleria fowleri infections in Kerala, India: a call for global surveillance and response. Infect Dis (Lond) 2024; 56:925-927. [PMID: 39052355 DOI: 10.1080/23744235.2024.2383720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Affiliation(s)
| | - Pramod Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
- Department of Allied Sciences, Graphic Era Hill University, Dehradun, India
| | - Sanjit Sah
- SR Sanjeevani Hospital, Siraha, Nepal
- Department of Paediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Prakasini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
2
|
Trujillo-Gómez J, Navarro CE, Atehortúa-Muñoz S, Florez ID. Acute infections of the central nervous system in children and adults: diagnosis and management. Minerva Med 2024; 115:476-502. [PMID: 39376101 DOI: 10.23736/s0026-4806.24.09097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Central nervous system infections are due to different microorganisms such as viruses, bacteria, mycobacteria, fungi, amoebas, and other parasites. The etiology depends on multiple risk factors, and it defines the infection location because some microorganisms prefer meninges, brain tissue, cerebellum, brain stem or spinal cord. The microorganisms induce diseases in the nervous system through direct invasion, neurotoxin production, and the triggered immune response. To determine the infection etiology, there are several diagnostic tests which may be conducted with cerebrospinal fluid, blood, respiratory and stool samples. These tests include but are not limited to direct microscopic examination of the sample, stains, cultures, antigenic tests, nucleic acid amplification tests, metagenomic next-generation sequencing, immunologic biomarker and neuroimaging, especially contrast-enhanced magnetic resonance imaging. The treatment may consist of specific antimicrobial treatment and supportive standard care. Since viruses have no specific antiviral treatment, antimicrobial treatment is mainly targeted at non-viral infections. This article will focus on diagnosis and treatment of acute acquired infections of the central nervous system beyond the neonatal period. The discussion defines the disease, provides the clinical presentation, explains the etiology and risk factors, and briefly mentions potential complications. This updated review aims to provide the reader with all the elements needed to adequately approach a patient with a central nervous system infection. Mycobacterium tuberculosis infection, Cryptococcus spp. infection and vaccines are not within the scope of this article.
Collapse
Affiliation(s)
- Juliana Trujillo-Gómez
- Hospital General de Medellín, Medellín, Colombia
- School of Medicine, University of Antioquia, Medellín, Colombia
| | - Cristian E Navarro
- School of Medicine, University of Antioquia, Medellín, Colombia
- Grupo de Investigación, ESE Hospital Emiro Quintero Cañizares, Ocaña, Colombia
| | - Santiago Atehortúa-Muñoz
- Hospital Pablo Tobón Uribe, Medellín, Colombia
- Clínica Universitaria Bolivariana, Medellín, Colombia
| | - Ivan D Florez
- Department of Pediatrics, University of Antioquia, Medellín, Colombia -
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
- Pediatric Intensive Care Unit, Clínica Las Américas AUNA, Medellín, Colombia
| |
Collapse
|
3
|
Ashraf H, Zaidi E, Rasheed A, Eman E, Khan F. Naegleria fowleri: Understanding the Amoeba's Threat in Recreational Waters. Asia Pac J Public Health 2024; 36:522-523. [PMID: 38623038 DOI: 10.1177/10105395241247129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Affiliation(s)
- Hamza Ashraf
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Erum Zaidi
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Aden Rasheed
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Eisha Eman
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Farah Khan
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| |
Collapse
|
4
|
Pezeshki A, Tajic S, Farahmandian P, Haniloo A, Mahmmodzadeh A, Niyyati M, Behniafar H. Phylogenetic analysis of Acanthamoeba isolated from soil samples and nasal cavities of patients with malignancy: a public health concern in the northwest of Iran. Trans R Soc Trop Med Hyg 2024; 118:367-375. [PMID: 38240056 DOI: 10.1093/trstmh/trad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/28/2023] [Accepted: 12/22/2023] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The genus Acanthamoeba is reported from various environmental sources and can cause multiple complications, including chronic amoebic aeratitis and amoebic granulomatous encephalitis. This study investigated the presence and genotyping of Acanthamoeba in the soil of parks and patients with malignancies referred to health centers in Zanjan city, Iran. METHODS In this cross-sectional study, 200 soil samples were collected from amusement parks in Zanjan city from September 2017 to May 2018. Samples were cultured on 1.5% non-nutrient agar, and the Acanthamoeba genus was identified using the morphological method. PCR was performed on all positive environmental samples, and six microscopically positive clinical samples belonged to our previous study. DNA sequencing of 18S rRNA was performed to analyze the genetic pattern of some PCR-positive isolates. RESULTS Microscopic results showed that 96 (48%) soil samples were positive. PCR confirmed all positive cases of clinical samples and 84 soil samples. Out of the PCR-positive samples, 20 soil samples and five clinical samples were sequenced successfully. All soil isolates belonged to the T4 genotype, and three and two clinical samples belonged to T4 and T5 genotypes, respectively. CONCLUSION : The presence of Acanthamoeba in both the environment and clinical samples of Zanjan city suggests paying greater attention to the infections caused by it.
Collapse
Affiliation(s)
- Ali Pezeshki
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Shadi Tajic
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Parvin Farahmandian
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Ali Haniloo
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Abbas Mahmmodzadeh
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, 1701706 Tehran, Iran
| | - Hamed Behniafar
- Department of Medical Parasitology, Sarab Faculty of Medical Sciences, 54731 Sarab, East Azerbaijan, Iran
| |
Collapse
|
5
|
Tongkrajang N, Kobpornchai P, Dubey P, Chaisri U, Kulkeaw K. Modelling amoebic brain infection caused by Balamuthia mandrillaris using a human cerebral organoid. PLoS Negl Trop Dis 2024; 18:e0012274. [PMID: 38900784 PMCID: PMC11218984 DOI: 10.1371/journal.pntd.0012274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The lack of disease models adequately resembling human tissue has hindered our understanding of amoebic brain infection. Three-dimensional structured organoids provide a microenvironment similar to human tissue. This study demonstrates the use of cerebral organoids to model a rare brain infection caused by the highly lethal amoeba Balamuthia mandrillaris. Cerebral organoids were generated from human pluripotent stem cells and infected with clinically isolated B. mandrillaris trophozoites. Histological examination showed amoebic invasion and neuron damage following coculture with the trophozoites. The transcript profile suggested an alteration in neuron growth and a proinflammatory response. The release of intracellular proteins specific to neuronal bodies and astrocytes was detected at higher levels postinfection. The amoebicidal effect of the repurposed drug nitroxoline was examined using the human cerebral organoids. Overall, the use of human cerebral organoids was important for understanding the mechanism of amoeba pathogenicity, identify biomarkers for brain injury, and in the testing of a potential amoebicidal drug in a context similar to the human brain.
Collapse
Affiliation(s)
- Nongnat Tongkrajang
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Porntida Kobpornchai
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj-Long Read Lab, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pratima Dubey
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Urai Chaisri
- Department of Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj-Long Read Lab, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Lê HG, Kim W, Kang JM, Võ TC, Yoo WG, Cheong H, Na BK. The anti-amoebic activity of Pinus densiflora leaf extract against the brain-eating amoeba Naegleria fowleri. PARASITES, HOSTS AND DISEASES 2024; 62:169-179. [PMID: 38835258 DOI: 10.3347/phd.23103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 06/06/2024]
Abstract
Naegleria fowleri invades the brain and causes a fatal primary amoebic meningoencephalitis (PAM). Despite its high mortality rate of approximately 97%, an effective therapeutic drug for PAM has not been developed. Approaches with miltefosine, amphotericin B, and other antimicrobials have been clinically attempted to treat PAM, but their therapeutic efficacy remains unclear. The development of an effective and safe therapeutic drug for PAM is urgently needed. In this study, we investigated the anti-amoebic activity of Pinus densiflora leaf extract (PLE) against N. fowleri. PLE induced significant morphological changes in N. fowleri trophozoites, resulting in the death of the amoeba. The IC50 of PLE on N. fowleri was 62.3±0.95 μg/ml. Alternatively, PLE did not significantly affect the viability of the rat glial cell line C6. Transcriptome analysis revealed differentially expressed genes (DEGs) between PLE-treated and non-treated amoebae. A total of 5,846 DEGs were identified, of which 2,189 were upregulated, and 3,657 were downregulated in the PLE-treated amoebae. The DEGs were categorized into biological process (1,742 genes), cellular component (1,237 genes), and molecular function (846 genes) based on the gene ontology analysis, indicating that PLE may have dramatically altered the biological and cellular functions of the amoeba and contributed to their death. These results suggest that PLE has anti-N. fowleri activity and may be considered as a potential candidate for the development of therapeutic drugs for PAM. It may also be used as a supplement compound to enhance the therapeutic efficacy of drugs currently used to treat PAM.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Woong Kim
- Department of Biomedical Science, Chosun University, Gwangju 61453, Korea
- Institute of Well-Aging Medicare, Chosun University, Gwangju 61452, Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Hyeonsook Cheong
- Department of Biomedical Science, Chosun University, Gwangju 61453, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
7
|
Spottiswoode N, Haston JC, Hanners NW, Gruenberg K, Kim A, DeRisi JL, Wilson MR. Challenges and advances in the medical treatment of granulomatous amebic encephalitis. Ther Adv Infect Dis 2024; 11:20499361241228340. [PMID: 38312848 PMCID: PMC10838035 DOI: 10.1177/20499361241228340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Granulomatous amebic encephalitis, caused by the free-living amebae Balamuthia mandrillaris or Acanthamoeba species, is a rare and deadly infectious syndrome with a current mortality rate of >90%. Much work remains to define the optimal treatment for these infections. Here, we provide a comprehensive overview of the supporting evidence behind antimicrobials currently recommended by the Centers for Disease Control and Prevention (CDC) with updated statistics on survival rates and medication usage from the CDC Free-Living Ameba Database. We also discuss promising treatments, especially the emerging therapeutic agent nitroxoline, and provide recommendations for the next steps in this area.
Collapse
Affiliation(s)
- Natasha Spottiswoode
- Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Julia C. Haston
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Natasha W. Hanners
- Division of Pediatric Infectious Diseases, University of Texas Southwestern, Dallas, TX, USA
| | - Katherine Gruenberg
- Department of Clinical Pharmacy, University of California San Francisco School of Pharmacy, San Francisco, CA, USA
| | - Annie Kim
- Department of Clinical Pharmacy, Zuckerberg San Francisco General, San Francisco, CA, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA
| | - Michael R. Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Chaúque BJM, da Silva TCB, Dos Santos DL, Benitez GB, Chaúque LGH, Benetti AD, Zanette RA, Rott MB. Global prevalence of free-living amoebae in solid matrices - A systematic review with meta-analysis. Acta Trop 2023; 247:107006. [PMID: 37633571 DOI: 10.1016/j.actatropica.2023.107006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The ubiquitous free-living amoebae (FLA) are microorganisms of significant medical, sanitary, and ecological importance. However, their characterization within solid matrices such as soil, dust, sediment, mud, sludge, and compost remain to be systematized. In this study, we conducted a systematic review with meta-analysis to explore the global distribution of FLA in solid matrices. From the analysis of 104 out of 4,414 scientific articles retrieved from different databases, it was found that the general global prevalence of FLA in solid matrices was of 55.13% (95% confidence interval (CI) 49.32-60.94). Specifically, FLA prevalence was high in soil (72.40%, 95% CI 69.08-75.73), sediment (57.91%, 95% CI 50.01-65.81), mud (52.90%, 95% CI 24.01-81.78), dust (48.60%, 95% CI 43.00-54.19), and sewage sludge (40.19%, 95% CI 30.68-49.70). In aerosols it was comparatively lower (17.21%, 95% CI 12.76-21.66). Acanthamoeba spp. (52.23%) and Hartmanella/Vermamoeba spp. (36.06%) were found to be more prevalent, whereas Naegleria spp. (34.98%) and Balamuthia spp. (27.32%) were less prevalent. The distribution of the highest global prevalence values for species of Acanthamoeba spp., considering different publication periods of the studies, is as follows: A. hatchetti (51.46%), A. rhysodes (47.49%), A. polyphaga (36.37%), A. culbertsoni (34.31%), A. castellanii (34.21%), and A. lenticulata (32.82%). For other FLA species, the distribution is: Hartmannella/Vermamoeba vermiformis (91.57%), Naegleria fowleri (42.32%), Naegleria gruberi (32.39%), and Balamuthia mandrillaris (25%). The most prevalent Acanthamoeba genotypes were T4 (33.38%) and T3 (23.94%). Overall, the global prevalence of FLA in solid matrices is as high as or greater than that reported in water by previous systematic reviews. Thus, actions aimed at reducing exposure to FLA or exploring their ecological dynamics should consider not only water but also the various solid matrices. The finding outlined here can provide valuable insights for such actions, e.g., informing on the level of exposure to FLA, or on the microbial biodiversity of specific environmental compartments.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Graduate Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Brazil; Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil; Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique
| | - Thaisla Cristiane Borella da Silva
- Graduate Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Brazil
| | - Denise Leal Dos Santos
- CAPES Clinical Research Pilot Program at Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Brittes Benitez
- Industrial and Systems Engineering Graduate Program, Polytechnic School, Pontifical Catholic University of Parana (PUCPR), Brazil
| | | | | | - Régis Adriel Zanette
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil
| | - Marilise Brittes Rott
- Graduate Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Thy M, de Montmollin E, Bouadma L, Timsit JF, Sonneville R. Severe meningoencephalitis: epidemiology and outcomes. Curr Opin Crit Care 2023; 29:415-422. [PMID: 37641514 DOI: 10.1097/mcc.0000000000001087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW This article aims to provide an updated review on the epidemiology and outcomes of severe meningoencephalitis. RECENT FINDINGS Meningoencephalitis is a critical medical condition characterized by inflammation in both the meninges and brain parenchyma. Bacterial, viral, or fungal infections are common causes, although noninfectious factors, such as autoimmune causes, can also contribute. In patients requiring intensive care, meningoencephalitis is associated with a severe prognosis, including mortality rates ranging from 11 to 25% and functional disability in 15-25% of survivors. Recent multicenter studies have identified several parameters linked to poor outcomes, including older age, immunocompromised status, focal neurologic signs, abnormal brain imaging, and delayed administration of antimicrobials. The use of new multiplex PCR techniques for diagnosis has generated debate based on recent data. Investigation is still needed to determine the effectiveness of adjunctive therapies, including seizure prophylaxis, and adjunctive steroids for nonbacterial causes. SUMMARY Recent multicenter studies have enhanced our understanding of the current epidemiology and outcomes of severe meningoencephalitis in adult patients.
Collapse
Affiliation(s)
- Michael Thy
- Department of Intensive Care Medicine
- Department of Infectious and Tropical Diseases, AP-HP, Bichat Hospital
- EA 7323 - Pharmacology and Therapeutic Evaluation in Children and Pregnant Women
| | - Etienne de Montmollin
- Department of Intensive Care Medicine
- INSERM UMR1137, IAME, Université de Paris Cité, Paris, France
| | - Lila Bouadma
- Department of Intensive Care Medicine
- INSERM UMR1137, IAME, Université de Paris Cité, Paris, France
| | - Jean-François Timsit
- Department of Intensive Care Medicine
- INSERM UMR1137, IAME, Université de Paris Cité, Paris, France
| | - Romain Sonneville
- Department of Intensive Care Medicine
- INSERM UMR1137, IAME, Université de Paris Cité, Paris, France
| |
Collapse
|
10
|
Whangviboonkij N, Pengsart W, Chen Z, Han S, Park S, Kulkeaw K. Phenotypic assay for cytotoxicity assessment of Balamuthia mandrillaris against human neurospheroids. Front Microbiol 2023; 14:1190530. [PMID: 37744897 PMCID: PMC10513763 DOI: 10.3389/fmicb.2023.1190530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction The phenotypic screening of drugs against Balamuthia mandrillaris, a neuropathogenic amoeba, involves two simultaneous phases: an initial step to test amoebicidal activity followed by an assay for cytotoxicity to host cells. The emergence of three-dimensional (3D) cell cultures has provided a more physiologically relevant model than traditional 2D cell culture for studying the pathogenicity of B. mandrillaris. However, the measurement of ATP, a critical indicator of cell viability, is complicated by the overgrowth of B. mandrillaris in coculture with host cells during drug screening, making it challenging to differentiate between amoebicidal activity and drug toxicity to human cells. Methods To address this limitation, we introduce a novel assay that utilizes three-dimensional hanging spheroid plates (3DHSPs) to evaluate both activities simultaneously on a single platform. Results and discussion Our study showed that the incubation of neurospheroids with clinically isolated B. mandrillaris trophozoites resulted in a loss of neurospheroid integrity, while the ATP levels in the neurospheroids decreased over time, indicating decreased host cell viability. Conversely, ATP levels in isolated trophozoites increased, indicating active parasite metabolism. Our findings suggest that the 3DHSP-based assay can serve as an endpoint for the phenotypic screening of drugs against B. mandrillaris, providing a more efficient and accurate approach for evaluating both parasite cytotoxicity and viability.
Collapse
Affiliation(s)
- Narisara Whangviboonkij
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Worakamol Pengsart
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Zhenzhong Chen
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seokgyu Han
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|