1
|
Sardar SK, Ghosal A, Haldar T, Prasad A, Mal S, Saito-Nakano Y, Kobayashi S, Dutta S, Nozaki T, Ganguly S. Genetic characterization of the Entamoeba moshkovskii population based on different potential genetic markers. Parasitology 2024; 151:429-439. [PMID: 38571301 PMCID: PMC11044060 DOI: 10.1017/s003118202400026x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Entamoeba moshkovskii, according to recent studies, appears to exert a more significant impact on diarrhoeal infections than previously believed. The efficient identification and genetic characterization of E. moshkovskii isolates from endemic areas worldwide are crucial for understanding the impact of parasite genomes on amoebic infections. In this study, we employed a multilocus sequence typing system to characterize E. moshkovskii isolates, with the aim of assessing the role of genetic variation in the pathogenic potential of E. moshkovskii. We incorporated 3 potential genetic markers: KERP1, a protein rich in lysine and glutamic acid; amoebapore C (apc) and chitinase. Sequencing was attempted for all target loci in 68 positive E. moshkovskii samples, and successfully sequenced a total of 33 samples for all 3 loci. The analysis revealed 17 distinct genotypes, labelled M1–M17, across the tested samples when combining all loci. Notably, genotype M1 demonstrated a statistically significant association with diarrhoeal incidence within E. moshkovskii infection (P = 0.0394). This suggests that M1 may represent a pathogenic strain with the highest potential for causing diarrhoeal symptoms. Additionally, we have identified a few single-nucleotide polymorphisms in the studied loci that can be utilized as genetic markers for recognizing the most potentially pathogenic E. moshkovskii isolates. In our genetic diversity study, the apc locus demonstrated the highest Hd value and π value, indicating its pivotal role in reflecting the evolutionary history and adaptation of the E. moshkovskii population. Furthermore, analyses of linkage disequilibrium and recombination within the E. moshkovskii population suggested that the apc locus could play a crucial role in determining the virulence of E. moshkovskii.
Collapse
Affiliation(s)
- Sanjib K. Sardar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Ajanta Ghosal
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Tapas Haldar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Akash Prasad
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Sweety Mal
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Seiki Kobayashi
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sandipan Ganguly
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| |
Collapse
|
2
|
Wesel J, Ingram-Smith C. Glycogen Metabolism and Its Role in Growth and Encystation in Entamoeba histolytica. Life (Basel) 2023; 13:1529. [PMID: 37511904 PMCID: PMC10381564 DOI: 10.3390/life13071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Entamoeba histolytica is a parasitic protozoan that causes diarrheal disease in approximately 100 million people worldwide every year. E. histolytica has two forms, the growing trophozoite and the infectious cyst. Trophozoites colonizing the large intestine form cysts that are released into the environment. The ingestion of the cysts in contaminated food and water continues the disease cycle. Here, we investigated the role of glycogen in trophozoite growth and encystation. Glycogen is thought to provide precursors for the synthesis of chitin, a major component of the protective cyst wall. We propose that glycogen also serves as an energy source during metabolic adaptation to different nutrient environments. We examined the role of glycogen in E. histolytica by analyzing the growth and encystation of RNAi strains with reduced expression of the single gene-encoding glycogen synthase (GYS) or two of three genes encoding glycogen phosphorylase (PYG). The GYS RNAi strain had a greatly reduced glycogen accumulation, and both the GYS and PYG RNAi strains exhibited reduced growth in the glucose-poor medium. Both RNAi strains also showed reduced cyst production. Our results suggest glycogen synthesis and degradation are vital to the growth and adaptation of E. histolytica to a low-glucose environment such as that encountered in the large intestine.
Collapse
Affiliation(s)
- Jordan Wesel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Cheryl Ingram-Smith
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
3
|
Pacheco-Sánchez M, Martínez-Hernández SL, Muñoz-Ortega MH, Reyes-Martínez JA, Ávila-Blanco ME, Ventura-Juárez J. The Gal/GalNac lectin as a possible acetylcholine receptor in Entamoeba histolytica. Front Cell Infect Microbiol 2023; 13:1110600. [PMID: 37260701 PMCID: PMC10228505 DOI: 10.3389/fcimb.2023.1110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Accepted: 04/18/2023] [Indexed: 06/02/2023] Open
Abstract
Entamoeba histolytica (E. histolytica) is a protozoan responsible for intestinal amebiasis in at least 500 million people per year, although only 10% of those infected show severe symptoms. It is known that E. histolytica captures molecules released during the host immune response through membrane receptors that favor its pathogenetic mechanisms for the establishment of amebic invasion. It has been suggested that E. histolytica interacts with acetylcholine (ACh) through its membrane. This promotes the increase of virulence factors and diverse mechanisms carried out by the amoeba to produce damage. The aim of this study is to identify a membrane receptor in E. histolytica trophozoites for ACh. Methods included identification by colocalization for the ACh and Gal/GalNAc lectin binding site by immunofluorescence, western blot, bioinformatic analysis, and quantification of the relative expression of Ras 5 and Rab 7 GTPases by RT-qPCR. Results show that the Gal/GalNAc lectin acts as a possible binding site for ACh and this binding may occur through the 150 kDa intermediate subunit. At the same time, this interaction activates the GTPases, Ras, and Rab, which are involved in the proliferation, and reorganization of the amoebic cytoskeleton and vesicular trafficking. In conclusion, ACh is captured by the parasite, and the interaction promotes the activation of signaling pathways involved in pathogenicity mechanisms, contributing to disease and the establishment of invasive amebiasis.
Collapse
Affiliation(s)
- Marisol Pacheco-Sánchez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Sandra Luz Martínez-Hernández
- Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Martín Humberto Muñoz-Ortega
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | | | - Manuel Enrique Ávila-Blanco
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Javier Ventura-Juárez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
4
|
Lysine Methyltransferase EhPKMT2 Is Involved in the In Vitro Virulence of Entamoeba histolytica. Pathogens 2023; 12:pathogens12030474. [PMID: 36986396 PMCID: PMC10058465 DOI: 10.3390/pathogens12030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Lysine methylation, a posttranslational modification catalyzed by protein lysine methyltransferases (PKMTs), is involved in epigenetics and several signaling pathways, including cell growth, cell migration and stress response, which in turn may participate in virulence of protozoa parasites. Entamoeba histolytica, the etiologic agent of human amebiasis, has four PKMTs (EhPKMT1 to EhPKMT4), but their role in parasite biology is unknown. Here, to obtain insight into the role of EhPKMT2, we analyzed its expression level and localization in trophozoites subjected to heat shock and during phagocytosis, two events that are related to amoeba virulence. Moreover, the effect of EhPKMT2 knockdown on those activities and on cell growth, migration and cytopathic effect was investigated. The results indicate that this enzyme participates in all these cellular events, suggesting that it could be a potential target for development of novel therapeutic strategies against amebiasis.
Collapse
|
5
|
Freire Haddad H, Roe EF, Collier JH. Expanding opportunities to engineer mucosal vaccination with biomaterials. Biomater Sci 2023; 11:1625-1647. [PMID: 36723064 DOI: 10.1039/d2bm01694j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
Mucosal vaccines are receiving increasing interest both for protecting against infectious diseases and for inducing therapeutic immune responses to treat non-infectious diseases. However, the mucosal barriers of the lungs, gastrointestinal tract, genitourinary tract, nasal, and oral tissues each present unique challenges for constructing efficacious vaccines. Vaccination through each of these mucosae requires transport through the mucus and across specialized epithelia to reach tissue-specific immune cells and lymphoid structures, necessitating finely tuned and multifunctional strategies. Serving as inspiration for mucosal vaccine design, pathogens have evolved elaborate, diverse, and multipronged approaches to penetrate and infect mucosae. This review is focused on biomaterials-based strategies, many inspired by pathogens, for designing mucosal vaccine platforms. Passive and active technologies are discussed, along with the microbial processes that they seek to mimic.
Collapse
Affiliation(s)
- Helena Freire Haddad
- Theodore Kennedy Professor of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| | - Emily F Roe
- Theodore Kennedy Professor of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| | - Joel H Collier
- Theodore Kennedy Professor of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| |
Collapse
|
6
|
Intestinal Parasitic Infection Among Rural Schoolchildren in Taiz, Yemen: School-based Assessment of The Prevalence and Associated Risk Factors. Helminthologia 2022; 59:233-245. [PMID: 36694831 PMCID: PMC9831518 DOI: 10.2478/helm-2022-0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2021] [Accepted: 09/01/2022] [Indexed: 12/23/2022] Open
Abstract
Yemen is an underdeveloped country plagued by poverty, disease, and social conflicts. Furthermore, most of the population lives in rural areas and is vulnerable to intestinal parasite infections (IPI). School-based cross-sectional studies were conducted between 1 February and 31 March 2019 among schoolchildren in rural communities in the Sabir Almawadim and Almawasit districts of Taiz, southwest Yemen. A structured questionnaire collected information regarding sociodemographic characteristics and risk factors. Wet mount and formol-ether concentration techniques were used to detect and identify intestinal parasites in stool specimens. The stool specimens were collected from each study participant using a clean, leak-proof, and adequately labeled stool cup. Statistical analysis of the data was performed using SPSS version 20. Of the 478 students screened for intestinal parasites, 245 (51.26 %) had at least one parasite. The prevalence of protozoa was higher than helminths (30.3 % versus 20.9 %, respectively). The percentages of single, double, and triple infections were 37.4 %, 4.4 %, and 1.7 %, respectively. Giardia lamblia was the most prevalent pathogen (15.5 %), followed by E. hisrolyrica/dispar (14.9 %), Schistosoma mansoni (13.3 %), Ascaris lumbricoides (3.8 %), Trichuris trichiura (2.9 %), and Enterobius vermicularis (1.3 %). Multivariate analysis confirmed that practicing unwashed hands before eating, open field defecation, unwashed fruits and vegetables, and dirty unclipped fingernails were the most significant predictors of high risk of IPIs (p <0.05). Regarding Schistosoma mansoni, multivariate analysis identified the behaviors of practicing swimming in the river/ponds and practicing open defecation, especially near water sources, as independent risk factors for Schistosoma mansoni infection among schoolchildren. The current study showed that rural areas in Taiz were significantly infected with IPIs, showing that IPIs remains a significant public health problem in low-income communities. Consequently, prevention efforts should focus on treating and deworming schoolchildren regularly, promoting health education in rural schools, conducting personal hygiene inspections for students, and ensuring that schools have sanitary facilities.
Collapse
|
7
|
The Role of Acetate Kinase in the Human Parasite Entamoeba histolytica. PARASITOLOGIA (BASEL, SWITZERLAND) 2022; 2:147-159. [PMID: 36872919 PMCID: PMC9983610 DOI: 10.3390/parasitologia2020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The human parasite Entamoeba histolytica, which causes approximately 100 million cases of amoebic dysentery each year, relies on glycolysis as the major source of ATP production from glucose as it lacks a citric acid cycle and oxidative phosphorylation. Ethanol and acetate, the two major glycolytic end products for E. histolytica, are produced at a ratio of 2:1 under anaerobic conditions, creating an imbalance between NADH production and utilization. In this study we investigated the role of acetate kinase (ACK) in acetate production during glycolysis in E. histolytica metabolism. Analysis of intracellular and extracellular metabolites demonstrated that acetate levels were unaffected in an ACK RNAi cell line, but acetyl-CoA levels and the NAD+/NADH ratio were significantly elevated. Moreover, we demonstrated that glyceraldehyde 3-phosphate dehydrogenase catalyzes the ACK-dependent conversion of acetaldehyde to acetyl phosphate in E. histolytica. We propose that ACK is not a major contributor to acetate production, but instead provides a mechanism for maintaining the NAD+/NADH balance during ethanol production in the extended glycolytic pathway.
Collapse
|
8
|
Dorantes JA, López-Becerril JO, Zavala-Cerna MG. Fatal attraction: intestinal amebiasis and COVID-19 as risk factors for colonic perforation. J Surg Case Rep 2021; 2021:rjab301. [PMID: 34316344 PMCID: PMC8301637 DOI: 10.1093/jscr/rjab301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
The parasite Entamoeba histolytica, the causal agent of amebiasis, is considered a worldwide emergent disease and still represents an important cause of death in Mexico. Here, we describe a clinical case, involving an inflammatory response to both Coronavirus Infectious Disease 2019 (COVID-19) and intestinal amebiasis 54-year-old, COVID-positive Mexican gentleman was admitted to surgery following 6 days of hematochezia. An exploratory laparotomy and colonoscopy revealed multiple fibrous and amebic ulcerations (5–10 cm in diameter), with necrotic tissue predominantly localized in the sigmoid, descending and ascending colon. We discuss the pathophysiological interplay of both COVID-19 and intestinal amebiasis with the aim of highlighting a potentially novel aggravating mechanism in surgical patients suffering from colonic perforation in the setting of abdominal sepsis.
Collapse
Affiliation(s)
- Jorge Alberto Dorantes
- International Program of Medicine, Universidad Autónoma de Guadalajara, Zapopan, Jalisco, México
| | | | - Maria G Zavala-Cerna
- Immunology Research Laboratory, Universidad Autonoma de Guadalajara, Zapopan, Jalisco, México
| |
Collapse
|
9
|
Wesel J, Shuman J, Bastuzel I, Dickerson J, Ingram-Smith C. Encystation of Entamoeba histolytica in Axenic Culture. Microorganisms 2021; 9:873. [PMID: 33919506 PMCID: PMC8074197 DOI: 10.3390/microorganisms9040873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
Entamoeba histolytica is a parasitic protozoan that causes amoebic dysentery, which affects approximately 90 million people each year worldwide. E. histolytica is transmitted through ingestion of food and water contaminated with the cyst form, which undergoes excystation in the small intestine to the trophozoite form that colonizes the large intestine. The reptile pathogen Entamoeba invadens has served as a model for studying stage conversion between the trophozoite and cyst form due to lack of reproducible encystation of E. histolytica in the laboratory. Although much has been learned about encystation and excystation using E. invadens, the findings do not fully translate to E. histolytica due to the extensive genetic and host differences between these species. Here, we present the first reproducible encystation of E. histolytica in vitro. The cysts produced were viable and displayed the four characteristic hallmarks: round shape, chitinous cell wall, tetranucleation, and detergent resistance. Using flow cytometry analysis, glucose limitation and high cell density were key for encystation, as for E. invadens. Entry into encystation was enhanced by the short-chain fatty acids acetate and propionate, unlike for E. invadens. This new model will now allow the further study of E. histolytica stage conversion, transmission, and treatment.
Collapse
Affiliation(s)
- Jordan Wesel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (J.W.); (J.S.); (I.B.); (J.D.)
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Jennifer Shuman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (J.W.); (J.S.); (I.B.); (J.D.)
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Irem Bastuzel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (J.W.); (J.S.); (I.B.); (J.D.)
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Julie Dickerson
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (J.W.); (J.S.); (I.B.); (J.D.)
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Cheryl Ingram-Smith
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (J.W.); (J.S.); (I.B.); (J.D.)
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
10
|
Hamdi G, Zaghdoudi A, Frikha MT, Makhlouf M, Sassi K, Ben Badr M, Ben Slima M. Acute abdominal syndrome revealing an intestinal amoebiasis: Report of two cases in Tunisia. Int J Surg Case Rep 2021; 79:466-469. [PMID: 33757264 PMCID: PMC7868812 DOI: 10.1016/j.ijscr.2021.01.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2021] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 11/26/2022] Open
Abstract
Amoebiasis is a parasitosis, mainly caused by Entamoeba histolytica (E. histolytica). It is a common disease in tropical and subtropical regions. E. histolytica possesses different mechanisms of pathogenicity, and might lead to the invasion and lysis of the intestinal epithelium. Outside of the high-risk regions, acute intestinal amoebiasis is a very rare condition, often leading to misdiagnosis and death, if not promptly treated. We discuss the cases of 18 and 43 year-old men without medical history, who presented to the emergency department complaining of acute abdominal pain along with fever. Following imaging features and clinical presentation, appendicitis and a complicated form of Crohn's disease were respectively suspected. Given the severity of the symptoms, an explorative laparotomy was performed showing in both cases an inflammatory aspect of the intestine. Histological examination concluded intestinal amoebiasis, a diagnosis that wasn't suspected at first. The learning point of these cases is considering invasive intestinal amoebiasis in patients presenting with an acute abdominal syndrome, even with no history of traveling abroad or immunodeficiency.
Collapse
Affiliation(s)
- Ghaith Hamdi
- General Surgery Department, Hopital La Rabta, Tunis, Tunisia
| | - Aida Zaghdoudi
- Infectious Diseases Department, Hopital La Rabta, Tunis, Tunisia.
| | | | - Mounir Makhlouf
- General Surgery Department, Hopital La Rabta, Tunis, Tunisia
| | - Karim Sassi
- General Surgery Department, Hopital La Rabta, Tunis, Tunisia; Infectious Diseases Department, Hopital La Rabta, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
| | - Mourad Ben Badr
- General Surgery Department, Hopital La Rabta, Tunis, Tunisia
| | - Mohamed Ben Slima
- General Surgery Department, Hopital La Rabta, Tunis, Tunisia; Infectious Diseases Department, Hopital La Rabta, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
| |
Collapse
|
11
|
Possible role played by the SINE2 element in gene regulation, as demonstrated by differential processing and polyadenylation in avirulent strains of E. histolytica. Antonie van Leeuwenhoek 2021; 114:209-221. [PMID: 33394209 DOI: 10.1007/s10482-020-01504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/01/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Entamoeba histolytica represents a useful model in parasitic organisms due to its complex genomic organization and survival mechanisms. To counteract pathogenic organisms, it is necessary to characterize their molecular biology to design new strategies to combat them. In this report, we investigated a less-known genetic element, short interspersed nuclear element 2 (SINE2), that is present in this ameba and is highly transcribed and polyadenylated. In this study, we show that in two different nonvirulent strains of E. histolytica, SINE2 is differentially processed into two transcript fragments, that is, a full-length 560-nt fragment and a shorter 393-nt fragment bearing an approximately 18-nt polyadenylation tail. Sequence analysis of the SINE2 transcript showed that a Musashi-like protein may bind to it. Also, two putative Musashi-like sequences were identified on the transcript. Semiquantitative expression analysis of the two Musashi-like proteins identified in the E. histolytica genome (XP_648918 and XP_649094) showed that XP_64094 is overexpressed in the nonvirulent strains tested. The information available in the literature and the results presented in this report indicate that SINE2 may affect other genes, as observed with the epigenetic silencing of the G3 strain, by an antisense mechanism or via RNA-protein interactions that may ultimately be involved in the phenotype of nonvirulent strains of E. histolytica.
Collapse
|
12
|
Entamoeba histolytica DNA Detection in Serum from Patients with Suspected Amoebic Liver Abscess. J Clin Microbiol 2020; 58:JCM.01153-20. [PMID: 32759355 DOI: 10.1128/jcm.01153-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2020] [Accepted: 08/01/2020] [Indexed: 12/23/2022] Open
Abstract
Amoebic liver abscess (ALA) is regularly seen in travelers or immigrants from tropical countries. The diagnosis relies on liver imaging that is not specific and on the detection of anti-Entamoeba histolytica antibodies, which cannot distinguish an acute from a former infection. We tested whether E. histolytica DNA detection in serum can improve the diagnosis of ALA. We retrospectively tested available serum samples taken from patients with ALA and non-ALA space-occupying lesions of the liver between 1 January 2010 and 30 November 2019. The quantitative PCR (qPCR) assay tested specifically amplifies a 99-bp fragment of the small-subunit rRNA gene of E. histolytica We analyzed 76 samples (19 ALA and 57 non-ALA samples) collected from 76 patients within 6 days before and after the antiamoebic treatment. Serum qPCR results were positive for 17 of 19 ALA patients and for none of the control patients (sensitivity and specificity were 89.5% and 100%, respectively). In parallel, the sensitivity and specificity of anti-E. histolytica antibody detection were 100% and 89.5%, respectively. The two false-negative qPCR results may be explained by ongoing metronidazole treatment or a possible persistent seropositivity that was not caused by the current liver abscess. Additionally, of 12 abscess pus aspirates (5 from ALA and 7 from non-ALA samples) tested, 5 were qPCR positive and 7 were qPCR negative, with concordant results in serum. This study demonstrates that cell-free circulating E. histolytica DNA can be detected in serum in ALA. This may assist in both positive diagnoses and treatment efficacy follow-up. The origin of this circulating DNA remains to be investigated.
Collapse
|
13
|
Entamoeba ranarum Infection in a Ball Python (Python regius). J Comp Pathol 2020; 179:74-78. [PMID: 32958152 DOI: 10.1016/j.jcpa.2020.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 07/18/2020] [Indexed: 11/21/2022]
Abstract
The pathogenic Entamoeba species in snakes is widely regarded to be Entamoeba invadens, which can cause severe amoebiasis with up to 100% mortality. In this case report, we describe a ball python (Python regius) that died after short-term weight loss. Necropsy revealed severe necrotizing colitis with large numbers of intralesional Entamoeba trophozoites. Molecular genetic analysis identified these trophozoites as Entamoeba ranarum, a parasite more usually found in amphibians. Furthermore, the extended history revealed that toads (Rhinella marina) had been housed together with the python. This report illustrates the danger of protozoal cross-infections in exotic animals as well as the importance of molecular genetic tools in Entamoeba diagnosis.
Collapse
|
14
|
Carrero JC, Reyes-López M, Serrano-Luna J, Shibayama M, Unzueta J, León-Sicairos N, de la Garza M. Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. Int J Med Microbiol 2019; 310:151358. [PMID: 31587966 DOI: 10.1016/j.ijmm.2019.151358] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Amoebiasis is a parasitic disease caused by Entamoeba histolytica (E. histolytica), an extracellular enteric protozoan. This infection mainly affects people from developing countries with limited hygiene conditions, where it is endemic. Infective cysts are transmitted by the fecal-oral route, excysting in the terminal ileum and producing invasive trophozoites (amoebae). E. histolytica mainly lives in the large intestine without causing symptoms; however, possibly as a result of so far unknown signals, the amoebae invade the mucosa and epithelium causing intestinal amoebiasis. E. histolytica possesses different mechanisms of pathogenicity for the adherence to the intestinal epithelium and for degrading extracellular matrix proteins, producing tissue lesions that progress to abscesses and a host acute inflammatory response. Much information has been obtained regarding the virulence factors, metabolism, mechanisms of pathogenicity, and the host immune response against this parasite; in addition, alternative treatments to metronidazole are continually emerging. An accesible and low-cost diagnostic method that can distinguish E. histolytica from the most nonpathogenic amoebae and an effective vaccine are necessary for protecting against amoebiasis. However, research about the disease and its prevention has been a challenge due to the relationship between E. histolytica and the host during the distinct stages of the disease is multifaceted. In this review, we analyze the interaction between the parasite, the human host, and the colon microbiota or pathogenic microorganisms, which together give rise to intestinal amoebiasis.
Collapse
Affiliation(s)
- Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CdMx, Mexico
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Juan Unzueta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Nidia León-Sicairos
- Departamento de Investigación, Hospital Pediátrico de Sinaloa México, Unidad de Investigación, CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico.
| |
Collapse
|
15
|
Wang H, Kanthan R. Multiple colonic and ileal perforations due to unsuspected intestinal amoebiasis-Case report and review. Pathol Res Pract 2019; 216:152608. [PMID: 31564573 DOI: 10.1016/j.prp.2019.152608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/31/2022]
Abstract
Amoebiasis, caused by the intestinal protozoan Entamoeba histolytica, though a relatively common parasitic disease in the tropical and subtropical regions, is uncommon in the developed countries. In these countries, as amoebic colitis shares similar clinical symptoms and endoscopic features with inflammatory bowel disease (IBD), these cases can be easily unrecognized and misdiagnosed. In this case report, we discuss the case of an adult patient with invasive intestinal amoebiasis, who was initially managed as Crohn's disease on corticosteroid treatment and subsequently rapidly deteriorated and developed multiple perforations in the colon and ileum. Despite total colectomy followed by resection of the small bowel, he died of multiple organ failure and sepsis within two months of his initial clinical presentation of diarrhea with abdominal pain. The learning point of this case is that invasive intestinal amoebiasis should be considered as a differential diagnosis at the first clinical adult presentation of IBD-like symptoms despite suggestive endoscopic findings of Crohn's like ulcers. Regardless of negative endoscopic biopsies, due to the low sensitivity of microscopic examination, serology test for antibody and molecular test for Entamoeba DNA are recommended for accurate detection and identification of Entamoeba species, especially in the high risk populations with recent travel to endemic zones and for patients with immunosuppression and comorbidities such as diabetes mellitus, tuberculosis, alcoholism, HIV/AIDS and in pregnant women. Amoebiasis should be completely ruled out prior to corticosteroid administration, to avoid severe complications such as fulminant intestinal amoebiasis which is associated with an inherently high mortality.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 0W8, Canada.
| | - Rani Kanthan
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 0W8, Canada
| |
Collapse
|
16
|
|
17
|
Maurya R, Bhattacharya P, Dey R, Nakhasi HL. Leptin Functions in Infectious Diseases. Front Immunol 2018; 9:2741. [PMID: 30534129 PMCID: PMC6275238 DOI: 10.3389/fimmu.2018.02741] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2018] [Accepted: 11/07/2018] [Indexed: 01/26/2023] Open
Abstract
Leptin, a pleiotropic protein has long been recognized to play an important role in the regulation of energy homeostasis, metabolism, neuroendocrine function, and other physiological functions through its effects on the central nervous system (CNS) and peripheral tissues. Leptin is secreted by adipose tissue and encoded by the obese (ob) gene. Leptin acts as a central mediator which regulates immunity as well as nutrition. Importantly, leptin can modulate both innate and adaptive immune responses. Leptin deficiency/resistance is associated with dysregulation of cytokine production, increased susceptibility toward infectious diseases, autoimmune disorders, malnutrition and inflammatory responses. Malnutrition induces a state of immunodeficiency and an inclination to death from communicable diseases. Infectious diseases are the disease of poor who invariably suffer from malnutrition that could result from reduced serum leptin levels. Thus, leptin has been placed at the center of many interrelated functions in various pathogenic conditions, such as bacterial, viruses and parasitic infections. We review herein, the recent advances on the role of leptin in malnutrition in pathogenesis of infectious diseases with a particular emphasis on parasitic diseases such as Leishmaniasis, Trypanosomiasis, Amoebiasis, and Malaria.
Collapse
Affiliation(s)
- Radheshyam Maurya
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
18
|
Structural characterization, biochemical, inhibition and computational studies of Entamoeba histolytica phosphoglycerate mutase: finding hits for a new antiamoebic drug. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2184-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/17/2022]
|
19
|
Saidin S, Othman N, Noordin R. In Vitro Testing of Potential Entamoeba histolytica Pyruvate Phosphate Dikinase Inhibitors. Am J Trop Med Hyg 2017; 97:1204-1213. [PMID: 28820699 DOI: 10.4269/ajtmh.17-0132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022] Open
Abstract
Adverse effects and resistance to metronidazole have motivated the search for new antiamoebic agents against Entamoeba histolytica. Control of amoeba growth may be achieved by inhibiting the function of the glycolytic enzyme and pyruvate phosphate dikinase (PPDK). In this study, we screened 10 compounds using an in vitro PPDK enzyme assay. These compounds were selected from a virtual screening of compounds in the National Cancer Institute database. The antiamoebic activity of the selected compounds was also evaluated by determining minimal inhibitory concentrations (MICs) and IC50 values using the nitro-blue tetrazolium reduction assay. Seven of the 10 compounds showed inhibitory activities against the adenosine triphosphate (ATP)/inorganic phosphate binding site of the ATP-grasp domain. Two compounds, NSC349156 (pancratistatin) and NSC228137 (7-ethoxy-4-[4-methylphenyl] sulfonyl-3-oxido-2, 1, 3-benzoxadiazol-3-ium), exhibited inhibitory effects on the growth of E. histolytica trophozoites with MIC values of 25 and 50 μM, and IC50 values of 14 and 20.7 μM, respectively.
Collapse
Affiliation(s)
- Syazwan Saidin
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, USM, Penang, Malaysia
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, USM, Penang, Malaysia
| | - Rahmah Noordin
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, USM, Penang, Malaysia
| |
Collapse
|
20
|
Al-Areeqi MA, Sady H, Al-Mekhlafi HM, Anuar TS, Al-Adhroey AH, Atroosh WM, Dawaki S, Elyana FN, Nasr NA, Ithoi I, Lau YL, Surin J. First molecular epidemiology of Entamoeba histolytica, E. dispar and E. moshkovskii infections in Yemen: different species-specific associated risk factors. Trop Med Int Health 2017; 22:493-504. [PMID: 28151567 DOI: 10.1111/tmi.12848] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To investigate the molecular epidemiology of Entamoeba histolytica, E. dispar and E. moshkovskii infections among rural communities in Yemen. METHODS In a community-based study, faecal samples were collected from 605 participants and examined by wet mount, formalin-ether sedimentation, trichrome staining and nested multiplex PCR techniques. Demographic, socio-economic and environmental information was collected using a pre-tested questionnaire. RESULTS Overall, 324 (53.6%) of the samples were positive for Entamoeba cysts and/or trophozoites by microscopic examination. Molecular analysis revealed that 20.2%, 15.7% and 18.2% of the samples were positive for E. histolytica, E. dispar and E. moshkovskii, respectively. Multivariate analysis showed different sets of species-specific risk factors among these communities. Educational level was identified as the significant risk factor for E. histolytica; age and gender were the significant risk factors for E. moshkovskii; and sources of drinking water and consumption of unwashed vegetables were the significant risk factors for E. dispar. Moreover, living in coastal/foothill areas and presence of other infected family members were risk factors for both E. histolytica and E. moshkovskii infections. CONCLUSION The study reveals that Entamoeba spp. infection is highly prevalent among rural communities in Yemen, with E. histolytica, E. dispar and E. moshkovskii differentiated for the first time. Identifying and treating infected family members, providing health education pertinent to good personal and food hygiene practices and providing clean drinking water should be considered in developing a strategy to control intestinal parasitic infections in these communities, particularly in the coastal/foothill areas of the country.
Collapse
Affiliation(s)
- Mona A Al-Areeqi
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| | - Hany Sady
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Medical Laboratories, Faculty of Medical Sciences, Hodeidah University, Hodeidah, Yemen
| | - Hesham M Al-Mekhlafi
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.,Endemic and Tropical Diseases Unit, Medical Research Center, Jazan University, Jazan, Saudi Arabia
| | - Tengku Shahrul Anuar
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia
| | - Abdulelah H Al-Adhroey
- Department of Community Medicine, Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Wahib M Atroosh
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Salwa Dawaki
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatin Nur Elyana
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nabil A Nasr
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Init Ithoi
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Johari Surin
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Centre for Research and Innovation, Taylor's University, Selangor, Malaysia
| |
Collapse
|
21
|
Al-Mekhlafi AM, Abdul-Ghani R, Al-Eryani SM, Saif-Ali R, Mahdy MA. School-based prevalence of intestinal parasitic infections and associated risk factors in rural communities of Sana'a, Yemen. Acta Trop 2016; 163:135-41. [PMID: 27515811 DOI: 10.1016/j.actatropica.2016.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2016] [Revised: 08/01/2016] [Accepted: 08/06/2016] [Indexed: 02/06/2023]
Abstract
Yemen is a developing country overwhelmed with a triad of poverty, diseases and social conflicts. Moreover, the majority of its population live in rural communities and suffer from intestinal parasitic infections (IPIs). Therefore, the present school-based, cross-sectional survey aimed to detect the prevalence of such infections and associated risk factors among schoolchildren in the rural communities of Bani Alharith, Hamdan and Bani Hushaysh districts of Sana'a, north of Yemen. Socio-demographic data and certain behavioral risk factors as well as stool samples were collected from 1218 schoolchildren from ten randomly schools in the study area. Fresh stool samples were examined for parasites by direct saline and iodine preparations and after concentration with formol-ether technique. The overall prevalence of IPIs was 54.8%, with a higher frequency of protozoal than helminthic infections (37.6 vs. 17.2%, respectively). Parasite species recovered were Entameba histolytica (21.5%), Giardia lamblia (16.1%), Ascaris lumbricoides (8.3%), Hymenolepis nana (5.3%), Schistosoma mansoni (2.6%), Trichuris trichiura (0.5%) and Enterobius vermicularis (0.4%). Univariate analysis showed that the male gender and illiteracy of fathers and/or mothers were the socio-demographic factors significantly associated with higher infection rates. The illiteracy of mothers was also confirmed as an independent risk factor by multivariable analysis. On the other hand, not washing hands before eating, not washing fruits and vegetables before consumption, eating uncovered food and not clipping fingernails were the risk behaviors significantly associated with higher infection rates, with the last three ones being confirmed as independent risk factors. Therefore, control measures should include regular treatment of protozoal infections and deworming of schoolchildren, promotion of hygiene in rural schools through health education programs, regular inspection of schoolchildren for personal hygiene practices and the provision of a healthy school infrastructure.
Collapse
|
22
|
Archaeological occurrences and historical review of the human amoeba, Entamoeba histolytica, over the past 6000years. INFECTION GENETICS AND EVOLUTION 2016; 42:34-40. [DOI: 10.1016/j.meegid.2016.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/25/2016] [Revised: 04/20/2016] [Accepted: 04/24/2016] [Indexed: 11/15/2022]
|
23
|
Ning TZ, Kin WW, Mustafa S, Ahmed A, Noordin R, Cheong TG, Alfonso OG, Huat LB. Detection of Entamoeba histolytica in experimentally induced amoebic liver abscess: comparison of three staining methods. Asian Pac J Trop Biomed 2015; 2:61-5. [PMID: 23569836 DOI: 10.1016/s2221-1691(11)60191-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2011] [Revised: 06/27/2011] [Accepted: 07/13/2011] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To compare the efficacy of three different tissue stains, namely haematoxylin and eosin (H&E), periodic-acid Schiff (PAS) and immunohistochemical (IHC) stains for detection of Entamoeba histolytica (E. histolytica) trophozoites in abscessed liver tissues of hamster. METHODS Amoebic liver abscess was experimentally induced in a hamster by injecting 1 × 10(6) of axenically cultured virulent E. histolytica trophozoites (HM1-IMSS strain) into the portal vein. After a week post-inoculation, the hamster was sacrificed and the liver tissue sections were stained with H&E, PAS and IHC stains to detect the amoebic trophozoite. RESULTS The three stains revealed tissue necrosis and amoebic trophozoites, but with varying clarity. H&E and PAS stained the trophozoites pink and magenta, respectively, however it was difficult to differentiate the stained trophozoites from the macrophages because of their similarity in size and morphology. On the other hand, IHC stain revealed distinct brown appearance of the trophozoites in the infected liver tissues. CONCLUSIONS It can be concluded that out of the three stains, IHC is the best for identification of E. histolytica trophozoites in tissue sections.
Collapse
Affiliation(s)
- Tan Zi Ning
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Peroxynitrite and peroxiredoxin in the pathogenesis of experimental amebic liver abscess. BIOMED RESEARCH INTERNATIONAL 2014; 2014:324230. [PMID: 24822193 PMCID: PMC4009108 DOI: 10.1155/2014/324230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/05/2013] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
The molecular mechanisms by which Entamoeba histolytica causes amebic liver abscess (ALA) are still not fully understood. Amebic mechanisms of adherence and cytotoxic activity are pivotal for amebic survival but apparently do not directly cause liver abscess. Abundant evidence indicates that chronic inflammation (resulting from an inadequate immune response) is probably the main cause of ALA. Reports referring to inflammatory mechanisms of liver damage mention a repertoire of toxic molecules by the immune response (especially nitric oxide and reactive oxygen intermediates) and cytotoxic substances released by neutrophils and macrophages after being lysed by amoebas (e.g., defensins, complement, and proteases). Nevertheless, recent evidence downplays these mechanisms in abscess formation and emphasizes the importance of peroxynitrite (ONOO−). It seems that the defense mechanism of amoebas against ONOO−, namely, the amebic thioredoxin system (including peroxiredoxin), is superior to that of mammals. The aim of the present text is to define the importance of ONOO− as the main agent of liver abscess formation during amebic invasion, and to explain the superior capacity of amoebas to defend themselves against this toxic agent through the peroxiredoxin and thioredoxin system.
Collapse
|
25
|
Fernandes HC, Costa AF, Freitas MAR, Martins AS, Pesquero JL, Rabelo ÉM, Gomes MA. Entamoeba histolytica: gene expression analysis of cells invading tissues. ScientificWorldJournal 2014; 2014:364264. [PMID: 24605052 PMCID: PMC3925561 DOI: 10.1155/2014/364264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2013] [Accepted: 12/05/2013] [Indexed: 11/17/2022] Open
Abstract
Entamoeba histolytica is a protozoan parasite that presents a risk to the health of millions of people worldwide. Due to the existence of different clinical forms caused by the parasite and also different virulence levels presented by one strain, one would expect differences in the profile of gene transcripts between virulent and nonvirulent cultures. In this study we used the differential display to select gene segments related to invasiveness of amoeba. One Brazilian strain of E. histolytica in two conditions, able or not to cause lesions in experimental animals, was used. RNA from this strain, was used to study the differential expression of genes. 29 specific gene fragments differentially expressed in the virulent strain were selected. By real-time PCR, six of these genes had confirmed their differential expression in the virulent culture. These genes may have important roles in triggering invasive amoebiasis and may be related to adaptation of trophozoites to difficulties encountered during colonization of the intestinal epithelium and liver tissue. Future studies with these genes may elucidate its actual role in tissue invasion by E. histolytica generating new pathways for diagnosis and treatment of amoebiasis.
Collapse
Affiliation(s)
- Helen C. Fernandes
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Ana F. Costa
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Michelle A. R. Freitas
- Laboratory of Parasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Almir S. Martins
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Jorge L. Pesquero
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Élida M. Rabelo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Maria A. Gomes
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
26
|
Effect of the leptin receptor Q223R polymorphism on the host transcriptome following infection with Entamoeba histolytica. Infect Immun 2013; 81:1460-70. [PMID: 23429533 DOI: 10.1128/iai.01383-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
Resistance to amebiasis is associated with a polymorphism in the leptin receptor. Previous studies demonstrated that humans with the ancestral Q223 leptin receptor allele were nearly four times less likely to be infected with Entamoeba histolytica than those carrying the mutant R223 allele. We hypothesized that the Q223 allele protected against E. histolytica via STAT3-mediated transcription of genes required for mucosal immunity. To test this, mice containing the humanized LEPR Q or R allele at codon 223 were intracecally infected with E. histolytica. Susceptibility to amebiasis was assessed, and cecal tissues were analyzed for changes in gene expression. By 72 h postchallenge, all Q223 mice had cleared E. histolytica, whereas 39% of 223R mice were infected. Thirty-seven genes were differentially expressed in response to infection at 72 h, including proinflammatory genes (CXCL2, S100A8/9, PLA2G7, ITBG2, and MMP9) and functions pertaining to the movement and activity of immune cells. A comparison at 12 h postchallenge of infected Q223 versus R223 mice identified a subset of differentially expressed genes, many of which were closely linked to leptin signaling. Further analyses indicated that the Q223 gene expression pattern was consistent with a suppressed apoptotic response to infection, while 223R showed increased cellular proliferation and recruitment. These studies are the first to illuminate the downstream effects of leptin receptor polymorphisms on intestinal infection by E. histolytica. As such, they are important for the insight that they provide into this previously uncharacterized mechanism of mucosal immunity.
Collapse
|
27
|
Host defenses to protozoa. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
|
28
|
Abstract
Enhanced susceptibility to infection has long been recognized in children with congenital deficiency of leptin or its receptor. Studies in mice have demonstrated that leptin deficiency affects both the innate and acquired immune systems. Here, we review recent studies that demonstrate the impact on immunity of a common non-synonomous polymorphism of the leptin receptor. In a Bangladesh cohort of children, the presence of two copies of the ancestral Q223 allele was significantly associated with resistance to amebiasis. Children and mice with at least one copy of the leptin receptor 223R mutation were more susceptible to amebic colitis. Leptin signaling in the intestinal epithelium and downstream STAT3 (signal transducer and activator of transcription 3) and SHP2 (Src homology phosphatase 2) signaling were required for protection in the murine model of amebic colitis. Murine models have also implicated leptin in protection from other infections, including Mycobacterium tuberculosis, Klebsiella pneumoniae, and Streptococcus pneumoniae. Thus, the role of leptin signaling in infectious disease and specifically leptin-mediated protection of the intestinal epithelium will be the focus of this review.
Collapse
|
29
|
Blastocystis spp., Cryptosporidium spp., and Entamoeba histolytica exhibit similar symptomatic and epidemiological patterns in healthcare-seeking patients in Karachi. Parasitol Res 2012; 111:1357-68. [PMID: 22763702 DOI: 10.1007/s00436-012-2972-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2011] [Accepted: 05/15/2012] [Indexed: 12/14/2022]
Abstract
In this study, we collected data on the incidence of enteric parasites in healthcare-seeking individuals along with their symptoms to quantify the potential roles of factors such as age, sex, and seasonality in infection. We performed analysis to identify factors which could help differentiate parasitic infection from other causes of gastrointestinal illness in a community. The size of the patient population (n = 339), patient selection methodology, collection methods, and statistical analysis followed approaches from similar studies in core clinical journals. Ethical approval was obtained from the University of Karachi's Ethical Review Board. Fecal specimens (n = 339) submitted by symptomatic patients were collected from two clinical laboratories, along with information about the patients' age, sex, and symptoms. We found that symptoms of fever, vomiting, and constipation were 100 % predictive of finding a parasitic infection, while diarrhea was 88 % predictive of a parasitic infection. Gastrointestinal parasite-positive patients reported diarrhea (~60 %), vomiting (~30 %), fever (~25 %) and constipation (~25 %), while parasite-negative patients exhibited a symptomatic profile without fever, vomiting, and constipation. The distribution of symptoms in parasite-positive patients remained relatively invariant regardless of the parasite identified. Blastocystis spp.-mono-infected patients reported a similar profile to patients positive for Entamoeba histolytica/Entamoeba dispar and Cryptosporidium spp. Most parasitic infections exhibited a strong seasonal pattern, with a peak incidence in summer months. Infection by Blastocystis spp. was the most prevalent, and it was the only infection mathematically correlated to rainfall by Pearson's method. We observed no increase in healthcare-seeking behavior following a stressful community event, namely, the attempted assassination of Benazir Bhutto in Karachi. The data suggest that parasitological testing would produce a high yield of positive results when performed on healthcare-seeking patients in Karachi in 2007 with symptoms of fever, vomiting, or constipation and a low yield when performed on patients noting only abdominal pain. Parasitological testing also produces a higher yield on patients seen in summer months.
Collapse
|
30
|
Schulz EC, Roth HM, Ankri S, Ficner R. Structure analysis of Entamoeba histolytica DNMT2 (EhMeth). PLoS One 2012; 7:e38728. [PMID: 22737219 PMCID: PMC3380923 DOI: 10.1371/journal.pone.0038728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2012] [Accepted: 05/14/2012] [Indexed: 11/25/2022] Open
Abstract
In eukaryotes, DNA methylation is an important epigenetic modification that is generally involved in gene regulation. Methyltransferases (MTases) of the DNMT2 family have been shown to have a dual substrate specificity acting on DNA as well as on three specific tRNAs (tRNAAsp, tRNAVal, tRNAGly). Entamoeba histolytica is a major human pathogen, and expresses a single DNA MTase (EhMeth) that belongs to the DNMT2 family and shows high homology to the human enzyme as well as to the bacterial DNA MTase M.HhaI. The molecular basis for the recognition of the substrate tRNAs and discrimination of non-cognate tRNAs is unknown. Here we present the crystal structure of the cytosine-5-methyltransferase EhMeth at a resolution of 2.15 Å, in complex with its reaction product S-adenosyl-L-homocysteine, revealing all parts of a DNMT2 MTase, including the active site loop. Mobility shift assays show that in vitro the full length tRNA is required for stable complex formation with EhMeth.
Collapse
Affiliation(s)
- Eike C. Schulz
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Heide M. Roth
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Serge Ankri
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
31
|
Preet S, Bharati S, Shukla G, Koul A, Rishi P. Evaluation of amoebicidal potential of Paneth cell cryptdin-2 against Entamoeba histolytica. PLoS Negl Trop Dis 2011; 5:e1386. [PMID: 22206022 PMCID: PMC3243701 DOI: 10.1371/journal.pntd.0001386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2011] [Accepted: 09/20/2011] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Amoebiasis is a major public health problem in tropical and subtropical countries. Currently, metronidazole is the gold choice medication for the treatment of this disease. However, reports have indicated towards the possibility of development of metronidazole-resistance in Entamoeba strains in near future. In view of the emergence of this possibility, in addition to the associated side effects and mutagenic ability of the currently available anti-amoebic drugs, there is a need to explore newer therapeutics against this disease. In this context, the present study evaluated the amoebicidal potential of cryptdin-2 against E. histolytica. METHODS/PRINCIPAL FINDINGS In the present study, cryptdin-2 exhibited potent in-vitro amoebicidal activity against E. histolytica in a concentration dependent manner at a minimum amoebicidal concentration (MAC) of 4 mg/L. Scanning electron microscopy as well as phase contrast microscopic investigations of cryptdin-2 treated trophozoites revealed that the peptide was able to induce significant morphological alterations in terms of membrane wrinkling, leakage of the cytoplasmic contents and damaged plasma membrane suggesting a possible membrane dependent amoebicidal activity. N-phenyl napthylamine (NPN) uptake assay in presence of sulethal, lethal as well as twice the lethal concentrations further confirmed the membrane-dependent mode of action of cryptdin-2 and suggested that the peptide could permeabilize the plasma membrane of E. histolytica. It was also found that cryptdin-2 interfered with DNA, RNA as well as protein synthesis of E. histolytica exerting the highest effect against DNA synthesis. Thus, the macromolecular synthesis studies correlated well with the observations of membrane permeabilization studies. SIGNIFICANCE/CONCLUSIONS The amoebicidal efficacy of cryptdin-2 suggests that it may be exploited as a promising option to combat amoebiasis or, at least, may act as an adjunct to metronidazole and/or other available anti-amoebic drugs.
Collapse
Affiliation(s)
- Simran Preet
- Department of Microbiology, Basic Medical Sciences Block, Panjab University, Chandigarh, India
| | - Sanjay Bharati
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Basic Medical Sciences Block, Panjab University, Chandigarh, India
| | - Ashwani Koul
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Basic Medical Sciences Block, Panjab University, Chandigarh, India
| |
Collapse
|
32
|
Löser B, Nalaskowski MM, Fanick W, Lin H, Tannich E, Mayr GW. A novel Entamoeba histolytica inositol phosphate kinase catalyzes the formation of 5PP-Ins(1,2,3,4,6)P(5). Mol Biochem Parasitol 2011; 181:49-52. [PMID: 22001062 DOI: 10.1016/j.molbiopara.2011.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2011] [Revised: 09/15/2011] [Accepted: 09/20/2011] [Indexed: 11/28/2022]
Abstract
The parasitic protozoan Entamoeba histolytica is able to invade human tissues by secreting proteolytic enzymes. This secretion is regulated by inositol phosphate-mediated Ca(2+) release from internal stores. To further investigate the inositol phosphate metabolism of Entamoeba histolytica four putative inositol phosphate kinase genes (ehipk1-4) were identified and their expression analyzed by real-time quantitative PCR using RNA of trophozoites. Furthermore inositol phosphate kinase EhIPK1 was recombinantly expressed, purified and enzymatically characterized. Its main activity is the conversion of InsP(6) to 5PP-Ins(1,2,3,4,6)P(5), one of the main inositol phosphates found in Entamoeba histolytica. Remarkably, EhIPK1 possesses several additional enzymatic activities, e.g. the phosphorylation of the Ca(2+)-releasing second messenger Ins(1,4,5)P(3).We were able to identify several compounds with inhibitory potential against EhIPK1. Because of the important role of inositol phosphates in the invasion of human tissues by Entamoeba histolytica, inositol phosphate metabolizing enzymes are interesting targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Benjamin Löser
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
ChÁvez-munguÍa B, CastaÑÓN G, HernÁNdez-RamÍRez V, GonzÁLez-LÁZARO MÓN, TalamÁS-Rohana P, MartÍNez-Palomo A. Entamoeba histolyticaelectrondense granules secretion in vitro and in vivo: Ultrastructural study. Microsc Res Tech 2011; 75:189-96. [DOI: 10.1002/jemt.21042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2011] [Accepted: 05/07/2011] [Indexed: 11/07/2022]
|
34
|
Schulz EC, Tietzel M, Tovy A, Ankri S, Ficner R. Structure analysis of Entamoeba histolytica enolase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:619-27. [PMID: 21697600 DOI: 10.1107/s0907444911016544] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/05/2011] [Accepted: 05/02/2011] [Indexed: 11/10/2022]
Abstract
Entamoeba histolytica enolase (EhENO) reversibly interconverts 2-phosphoglyceric acid (2-PGA) and phosphoenolpyruvic acid (PEP). The crystal structure of the homodimeric EhENO is presented at a resolution of 1.9 Å. In the crystal structure EhENO presents as an asymmetric dimer with one active site in the open conformation and the other active site in the closed conformation. Interestingly, both active sites contain a copurified 2-PGA molecule. While the 2-PGA molecule in the closed active site closely resembles the conformation known from other enolase-2-PGA complexes, the conformation in the open active site is different. Here, 2-PGA is shifted approximately 1.6 Å away from metal ion I, most likely representing a precatalytic situation.
Collapse
Affiliation(s)
- Eike C Schulz
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Justus-von-Liebig Weg, Germany.
| | | | | | | | | |
Collapse
|
35
|
New antipoverty drugs, vaccines, and diagnostics: a research agenda for the US President's Global Health Initiative (GHI). PLoS Negl Trop Dis 2011; 5:e1133. [PMID: 21655348 PMCID: PMC3104954 DOI: 10.1371/journal.pntd.0001133] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022] Open
|
36
|
A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica. J Parasitol Res 2011; 2011:926706. [PMID: 21331284 PMCID: PMC3038552 DOI: 10.1155/2011/926706] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2010] [Accepted: 12/19/2010] [Indexed: 11/17/2022] Open
Abstract
The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of Entamoeba histolytica is strongly correlated with the parasite's capacity to effectively kill and phagocytose host cells. The process by which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of the sequential model.
Collapse
|
37
|
Crystal structure of the cysteine protease inhibitor 2 from Entamoeba histolytica: functional convergence of a common protein fold. Gene 2010; 471:45-52. [PMID: 20951777 DOI: 10.1016/j.gene.2010.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 11/22/2022]
Abstract
Cysteine proteases (CP) are key pathogenesis and virulence determinants of protozoan parasites. Entamoeba histolytica contains at least 50 cysteine proteases; however, only three (EhCP1, EhCP2 and EhCP5) are responsible for approximately 90% of the cysteine protease activity in this parasite. CPs are expressed as inactive zymogens. Because the processed proteases are potentially cytotoxic, protozoan parasites have developed mechanisms to regulate their activity. Inhibitors of cysteine proteases (ICP) of the chagasin-like inhibitor family (MEROPS family I42) were recently identified in bacteria and protozoan parasites. E. histolytica contains two ICP-encoding genes of the chagasin-like inhibitor family. EhICP1 localizes to the cytosol, whereas EhICP2 is targeted to phagosomes. Herein, we report two crystal structures of EhICP2. The overall structure of EhICP2 consists of eight β-strands and closely resembles the immunoglobulin fold. A comparison between the two crystal forms of EhICP2 indicates that the conserved BC, DE and FG loops form a flexible wedge that may block the active site of CPs. The positively charged surface of the wedge-forming loops in EhICP2 contrasts with the neutral surface of the wedge-forming loops in chagasin. We postulate that the flexibility and positive charge observed in the DE and FG loops of EhICP2 may be important to facilitate the initial binding of this inhibitor to the battery of CPs present in E. histolytica.
Collapse
|
38
|
Abdolrasouli A, McMillan A, Ackers JP. Sexual transmission of intestinal parasites in men who have sex with men. Sex Health 2009; 6:185-94. [PMID: 19653954 DOI: 10.1071/sh08084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2008] [Accepted: 04/24/2009] [Indexed: 11/23/2022]
Abstract
Direct oral-anal sexual contact is a common practice among men who have sex with men (MSM) and is implicated in the transmission of various enteric pathogens including intestinal parasites. The present study reviewed data on the sexual transmission of intestinal parasites among MSM, and highlighted advances in the diagnosis of such infections. The emergence and spread of intestinal parasites is of public health concern particularly in the homosexual community. Intestinal parasitic infection should be considered in the differential diagnosis of gastrointestinal disease in this population. Combination of traditional diagnostic procedures with implementation of testing based on novel molecular methods in the accurate identification of intestinal parasites is important so that early intervention and control of infection is facilitated.
Collapse
Affiliation(s)
- Alireza Abdolrasouli
- Department of Clinical Microbiology, Pathology Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK.
| | | | | |
Collapse
|
39
|
Current and future perspectives on the chemotherapy of the parasitic protozoa Trichomonas vaginalis and Entamoeba histolytica. Future Med Chem 2009; 1:619-43. [DOI: 10.4155/fmc.09.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
Trichomonas vaginalis and Entamoeba histolytica are clinically important protozoa that affect humans. T. vaginalis produces sexually transmitted infections and E. histolytica is the causative agent of amebic dysentery. Metronidazole, a compound first used to treat T. vaginalis in 1959, is still the main drug used worldwide to treat these pathogens. It is essential to find new biochemical differences in these organisms that could be exploited to develop new antiprotozoal chemotherapeutics. Recent findings associated with T. vaginalis and E. histolytica biochemistry and host–pathogen interactions are surveyed. Knowledge concerning the biochemistry of these parasites is serving to form the foundation for the development of new approaches to control these important human pathogens.
Collapse
|