1
|
Zhang H, Su X, Zheng X, Liu M, Zhao C, Liu X, Ma Z, Zhang S, Zhang W. vB_EcoM-P896 coliphage isolated from duck sewage can lyse both intestinal pathogenic Escherichia coli and extraintestinal pathogenic E. coli. Int Microbiol 2024:10.1007/s10123-024-00519-5. [PMID: 38613721 DOI: 10.1007/s10123-024-00519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Pathogenic Escherichia coli strains cause diseases in both humans and animals. The limiting factors to prevent as well as control infections from pathogenic E. coli strains are their pathotypes, serotypes, and drug resistance. Herein, a bacteriophage (vB_EcoM-P896) has been isolated from duck sewage. Furthermore, aside from targeting intestinal pathogenic E. coli strains like enteropathogenic E. coli, Shiga toxin-producing E. coli, entero-invasive E. coli, and enteroaggregative E. coli, vB_EcoM-P896 can cause lysis in extraintestinal pathogenic E. coli strains such as avian pathogenic E. coli. Stability analysis revealed that vB_EcoM-P896 was stable under the following conditions: temperature, 4℃-50℃; pH, 3-11. The sequencing of the vB_EcoM-P896 genome was conducted utilizing an HiSeq system (Illumina, San Diego, CA) and subjected to de novo assembling with the aid of Spades 3.11.1. The characteristics of the DNA genome were as follows: size, 170,656 bp; GC content, 40.4%; the number of putative coding regions, 294. Transmission electron microscopy analysis of morphology and genome analysis revealed that the phage vB_EcoM-P896 belonged to the order Caudovirales and the family Myoviridae. The pan-genome analysis of vB_EcoM-P896 was divided into two levels. The first level involved the analysis of 91 strains of muscle tail phages, which were mainly divided into 5 groups. The second level involved the analysis of 24 strains of myophage with high homology. Of the 1480 gene clusters, 23 were shared core genes. Neighbor-joining phylogenetic trees were constructed using the Poisson model with MEGA6.0 based on the conserved sequences of phage proteins, the amino acid sequence of the terminase large subunit, and tail fibrin. Further analysis revealed that vB_EcoM-P896 was a typical T4-like potent phage with potential clinical applications.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Food and Biology Engineering, Wuhu Institute of Technology, Wuhu, 241003, China
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China
| | - Xiazhu Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Xiangkuan Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Meihan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Chengxin Zhao
- Fushan Economic Development Zone, Yantai Jinhai Pharmaceutical Co. LTD 28 Jilin Road, Yantai City, China
| | - Xiao Liu
- Fushan Economic Development Zone, Yantai Jinhai Pharmaceutical Co. LTD 28 Jilin Road, Yantai City, China
| | - Zhenxing Ma
- Department of Food and Biology Engineering, Wuhu Institute of Technology, Wuhu, 241003, China
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China
| | - Shuang Zhang
- Department of Food and Biology Engineering, Wuhu Institute of Technology, Wuhu, 241003, China.
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
| |
Collapse
|
2
|
Badawi AH, Mohamad NA, Stanslas J, Kirby BP, Neela VK, Ramasamy R, Basri H. In Vitro Blood-Brain Barrier Models for Neuroinfectious Diseases: A Narrative Review. Curr Neuropharmacol 2024; 22:1344-1373. [PMID: 38073104 PMCID: PMC11092920 DOI: 10.2174/1570159x22666231207114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 05/16/2024] Open
Abstract
The blood-brain barrier (BBB) is a complex, dynamic, and adaptable barrier between the peripheral blood system and the central nervous system. While this barrier protects the brain and spinal cord from inflammation and infection, it prevents most drugs from reaching the brain tissue. With the expanding interest in the pathophysiology of BBB, the development of in vitro BBB models has dramatically evolved. However, due to the lack of a standard model, a range of experimental protocols, BBB-phenotype markers, and permeability flux markers was utilized to construct in vitro BBB models. Several neuroinfectious diseases are associated with BBB dysfunction. To conduct neuroinfectious disease research effectively, there stems a need to design representative in vitro human BBB models that mimic the BBB's functional and molecular properties. The highest necessity is for an in vitro standardised BBB model that accurately represents all the complexities of an intact brain barrier. Thus, this in-depth review aims to describe the optimization and validation parameters for building BBB models and to discuss previous research on neuroinfectious diseases that have utilized in vitro BBB models. The findings in this review may serve as a basis for more efficient optimisation, validation, and maintenance of a structurally- and functionally intact BBB model, particularly for future studies on neuroinfectious diseases.
Collapse
Affiliation(s)
- Ahmad Hussein Badawi
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Afiqah Mohamad
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Centre for Foundation Studies, Lincoln University College, 47301, Petaling Jaya, Selangor, Malaysia
| | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Brian Patrick Kirby
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Vasantha Kumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Su Y, Ma G, Zheng Y, Qin J, Li X, Ge Q, Sun H, Liu B. Neonatal Meningitis-Causing Escherichia coli Induces Microglia Activation which Acts as a Double-Edged Sword in Bacterial Meningitis. Int J Mol Sci 2023; 24:9915. [PMID: 37373064 DOI: 10.3390/ijms24129915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial meningitis is a devastating disease occurring worldwide, with up to half of survivors left with permanent neurological sequelae. Neonatal meningitis-causing Escherichia coli (NMEC) is the most common Gram-negative bacillary organism that causes meningitis, particularly during the neonatal period. Here, RNA-seq transcriptional profiles of microglia in response to NMEC infection show that microglia are activated to produce inflammatory factors. In addition, we found that the secretion of inflammatory factors is a double-edged sword that promotes polymorphonuclear neutrophil (PMN) recruitment to the brain to clear the pathogens but, at the same time, induces neuronal damage, which may be related to the neurological sequelae. New neuroprotective therapeutic strategies must be developed for the treatment of acute bacterial meningitis. We found that transforming growth factor-β (TGF-β) may be a strong candidate in the treatment of acute bacterial meningitis, as it shows a therapeutic effect on bacterial-meningitis-induced brain damage. Prevention of disease and early initiation of the appropriate treatment in patients with suspected or proven bacterial meningitis are the key factors in reducing morbidity and mortality. Novel antibiotic and adjuvant treatment strategies must be developed, and the main goal for new therapies will be dampening the inflammatory response. Based on this view, our findings may help develop novel strategies for bacterial meningitis treatment.
Collapse
Affiliation(s)
- Yingying Su
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Guozhen Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yangyang Zheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Jingliang Qin
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xiaoya Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Qianwen Ge
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Hao Sun
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| |
Collapse
|
4
|
Barichello T, Rocha Catalão CH, Rohlwink UK, van der Kuip M, Zaharie D, Solomons RS, van Toorn R, Tutu van Furth M, Hasbun R, Iovino F, Namale VS. Bacterial meningitis in Africa. Front Neurol 2023; 14:822575. [PMID: 36864913 PMCID: PMC9972001 DOI: 10.3389/fneur.2023.822575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Bacterial meningitis differs globally, and the incidence and case fatality rates vary by region, country, pathogen, and age group; being a life-threatening disease with a high case fatality rate and long-term complications in low-income countries. Africa has the most significant prevalence of bacterial meningitis illness, and the outbreaks typically vary with the season and the geographic location, with a high incidence in the meningitis belt of the sub-Saharan area from Senegal to Ethiopia. Streptococcus pneumoniae (pneumococcus) and Neisseria meningitidis (meningococcus) are the main etiological agents of bacterial meningitis in adults and children above the age of one. Streptococcus agalactiae (group B Streptococcus), Escherichia coli, and Staphylococcus aureus are neonatal meningitis's most common causal agents. Despite efforts to vaccinate against the most common causes of bacterial neuro-infections, bacterial meningitis remains a significant cause of mortality and morbidity in Africa, with children below 5 years bearing the heaviest disease burden. The factors attributed to this continued high disease burden include poor infrastructure, continued war, instability, and difficulty in diagnosis of bacterial neuro-infections leading to delay in treatment and hence high morbidity. Despite having the highest disease burden, there is a paucity of African data on bacterial meningitis. In this article, we discuss the common etiologies of bacterial neuroinfectious diseases, diagnosis and the interplay between microorganisms and the immune system, and the value of neuroimmune changes in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Tatiana Barichello
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Carlos Henrique Rocha Catalão
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Neuroscience and Behavioral Science, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Ursula K. Rohlwink
- Pediatric Neurosurgery Unit, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Martijn van der Kuip
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Dan Zaharie
- Department of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Services, Tygerberg Hospital, Cape Town, South Africa
| | - Regan S. Solomons
- Department of Pediatric and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ronald van Toorn
- Department of Pediatric and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marceline Tutu van Furth
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Rodrigo Hasbun
- Division of Infectious Diseases, Department of Internal Medicine, UT Health, McGovern Medical School, Houston, TX, United States
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vivian Ssonko Namale
- Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, NY, United States
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
5
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
6
|
Zhang XW, An MX, Huang ZK, Ma L, Zhao D, Yang Z, Shi JX, Liu DX, Li Q, Wu AH, Chen YH, Zhao WD. Lpp of Escherichia coli K1 inhibits host ROS production to counteract neutrophil-mediated elimination. Redox Biol 2022; 59:102588. [PMID: 36592568 PMCID: PMC9823224 DOI: 10.1016/j.redox.2022.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Escherichia coli (E. coli) is the most common Gram-negative bacterial organism causing neonatal meningitis. The pathogenesis of E. coli meningitis, especially how E. coli escape the host immune defenses, remains to be clarified. Here we show that deletion of bacterial Lpp encoding lipoprotein significantly reduces the pathogenicity of E. coli K1 to induce high-degree of bacteremia necessary for meningitis. The Lpp-deleted E. coli K1 is found to be susceptible to the intracellular bactericidal activity of neutrophils, without affecting the release of neutrophil extracellular traps. The production of reactive oxygen species (ROS), representing the primary antimicrobial mechanism in neutrophils, is significantly increased in response to Lpp-deleted E. coli. We find this enhanced ROS response is associated with the membrane translocation of NADPH oxidase p47phox and p67phox in neutrophils. Then we constructed p47phox knockout mice and we found the incidence of bacteremia and meningitis in neonatal mice induced by Lpp-deleted E. coli is significantly recovered by p47phox knockout. Proteomic profile analysis show that Lpp deficiency induces upregulation of flagellar protein FliC in E. coli. We further demonstrate that FliC is required for the ROS induction in neutrophils by Lpp-deleted E. coli. Taken together, these data uncover the novel role of Lpp in facilitating intracellular survival of E. coli K1 within neutrophils. It can be inferred that Lpp of E. coli K1 is able to suppress FliC expression to restrain the activation of NADPH oxidase in neutrophils resulting in diminished bactericidal activity, thus protecting E. coli K1 from the elimination by neutrophils.
Collapse
Affiliation(s)
- Xue-Wei Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Ming-Xin An
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Zeng-Kang Huang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Lan Ma
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Dan Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China,Department of Neurosurgery, the First Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhao Yang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Jun-Xiu Shi
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Dong-Xin Liu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, 16 Puhe Road, Shenbei New District, Shenyang, 110134, China
| | - An-Hua Wu
- Department of Neurosurgery, the First Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China.
| |
Collapse
|
7
|
Barta DG, Cornea-Cipcigan M, Margaoan R, Vodnar DC. Biotechnological Processes Simulating the Natural Fermentation Process of Bee Bread and Therapeutic Properties-An Overview. Front Nutr 2022; 9:871896. [PMID: 35571893 PMCID: PMC9097220 DOI: 10.3389/fnut.2022.871896] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Recent signs of progress in functional foods and nutraceuticals highlighted the favorable impact of bioactive molecules on human health and longevity. As an outcome of the fermentation process, an increasing interest is developed in bee products. Bee bread (BB) is a different product intended for humans and bees, resulting from bee pollen's lactic fermentation in the honeycombs, abundant in polyphenols, nutrients (vitamins and proteins), fatty acids, and minerals. BB conservation is correlated to bacteria metabolites, mainly created by Pseudomonas spp., Lactobacillus spp., and Saccharomyces spp., which give lactic acid bacteria the ability to outperform other microbial groups. Because of enzymatic transformations, the fermentation process increases the content of new compounds. After the fermentation process is finalized, the meaningful content of lactic acid and several metabolites prevent the damage caused by various pathogens that could influence the quality of BB. Over the last few years, there has been an increase in bee pollen fermentation processes to unconventional dietary and functional supplements. The use of the chosen starters improves the bioavailability and digestibility of bioactive substances naturally found in bee pollen. As a consequence of enzymatic changes, the fermentation process enhances BB components and preserves them against loss of characteristics. In this aspect, the present review describes the current biotechnological advancements in the development of BB rich in beneficial components derived from bee pollen fermentation and its use as a food supplement and probiotic product with increased shelf life and multiple health benefits.
Collapse
Affiliation(s)
- Daniel Gabriel Barta
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihaiela Cornea-Cipcigan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Rodica Margaoan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Rehman N, Azam S, Ali A, Khan I, Asghar M, Ali M, Waqas M, Ullah F, Sehra GE. Molecular epidemiology of antibiotic-resistant genes and potent inhibitors against TEM, CTX-M-14, CTX-M-15, and SHV-1 proteins of Escherichia coli in district Peshawar, Pakistan. Saudi J Biol Sci 2021; 28:6568-6581. [PMID: 34764772 PMCID: PMC8569001 DOI: 10.1016/j.sjbs.2021.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023] Open
Abstract
The Extended Spectrum Beta-Lactamases (ESBLs) producing bacteria is an issue of concern for clinicians resulting in minimize the treatment options. To overcome resistance mechanisms, novel inhibitors with good Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties must inhibit the ESBLs resistant genes. The current study aimed to identify the antibiotic resistance genes of ESBLs producing E. coli and a single inhibitor was designed to inhibit all the resistant proteins. The results showed that 42.9% ESBL producers had CTX-M (69.9%), TEM (63.4%), SHV (34.5%) and CTX-M-14 (17.5%) genes. The ESBLs producing isolates were resistant to cephalosporins, quinolones, and sulfonamide with Minimum Inhibitory Concentration (MICs) ranging from 64 to >256 μg/ml. To design multi inhibitory ligands, RECAP synthesis was used for the de-novo discovery of 1000 inhibitors database. Protein crystal structures were retrieved from Protein Data Base (PDB). Lipinski's rules of five were applied to the novel inhibitors database to improve the ADMET properties. The novel inhibitors database was selected for docking simulations. Placement of the ligand was used by the London dG algorithm implemented in Molecular Operating Environment (MOE), while GBVI/WSA dG algorithm was used for final refinement. Based on docking score, visual inspection of ligands interaction with key residues, binding affinity, and binding energy of ligands with proteins, ten compounds were selected for ESBLs proteins with best ADMET properties, binding energy, and binding affinity the reported ones. These hits compounds have unique scaffolds and are predicted to be a starting point for developing potent inhibitors against antibiotic-resistant proteins.
Collapse
Affiliation(s)
- Noor Rehman
- Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan.,Department of Pathology, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Sadiq Azam
- Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan
| | - Amjad Ali
- Department of Biotechnology & Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Ibrar Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan
| | - Muhammad Asghar
- Department of Pathology, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Momena Ali
- Department of Pathology, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Muhammad Waqas
- Department of Genetics, Hazara University Mansehra, Pakistan
| | - Farman Ullah
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Gul E Sehra
- Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan
| |
Collapse
|
9
|
Generoso JS, Giridharan VV, Lee J, Macedo D, Barichello T. The role of the microbiota-gut-brain axis in neuropsychiatric disorders. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2021; 43:293-305. [PMID: 32667590 PMCID: PMC8136391 DOI: 10.1590/1516-4446-2020-0987] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The microbiota-gut-brain axis is a bidirectional signaling mechanism between the gastrointestinal tract and the central nervous system. The complexity of the intestinal ecosystem is extraordinary; it comprises more than 100 trillion microbial cells that inhabit the small and large intestine, and this interaction between microbiota and intestinal epithelium can cause physiological changes in the brain and influence mood and behavior. Currently, there has been an emphasis on how such interactions affect mental health. Evidence indicates that intestinal microbiota are involved in neurological and psychiatric disorders. This review covers evidence for the influence of gut microbiota on the brain and behavior in Alzheimer disease, dementia, anxiety, autism spectrum disorder, bipolar disorder, major depressive disorder, Parkinson's disease, and schizophrenia. The primary focus is on the pathways involved in intestinal metabolites of microbial origin, including short-chain fatty acids, tryptophan metabolites, and bacterial components that can activate the host's immune system. We also list clinical evidence regarding prebiotics, probiotics, and fecal microbiota transplantation as adjuvant therapies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jaqueline S. Generoso
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Vijayasree V. Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Danielle Macedo
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Ribeirão Preto, SP, Brazil
| | - Tatiana Barichello
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
10
|
Development of a chitosan-modified PLGA nanoparticle vaccine for protection against Escherichia coli K1 caused meningitis in mice. J Nanobiotechnology 2021; 19:69. [PMID: 33673858 PMCID: PMC7934409 DOI: 10.1186/s12951-021-00812-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background Escherichia coli K1 (E. coli K1) caused neonatal meningitis remains a problem, which rises the urgent need for an effective vaccine. Previously, we rationally designed and produced the recombinant protein OmpAVac (Vo), which elicited protective immunity against E. coli K1 infection. However, Vo has limited stability, which hinders its future industrial application. Method Chitosan-modified poly (lactic-co-glycolic acid) (PLGA) nanoparticles were prepared and used as carried for the recombinant Vo. And the safety, stability and immunogenicity of Vo delivered by chitosan-modified PLGA nanoparticles were tested in vitro and in a mouse model of bacteremia. Results We successfully generated chitosan-modified PLGA nanoparticles for the delivery of recombinant Vo (VoNP). In addition, we found that a freeze-drying procedure increases the stability of the VoNPs without changing the shape, size distribution and encapsulation of the Vo protein. Unlike aluminum adjuvant, the nanoparticles that delivered Vo were immunoprotective in mice even after storage for as long as 180 days. Conclusions We identified an effective strategy to improve the stability of Vo to maintain its immunogenicity, which will contribute to the future development of vaccines against E. coli K1.![]()
Collapse
|
11
|
Wèli M, Charfi F, Elleuch A, Charfi R, Gargouri L, Mahfoudh A. Neonatal Escherichia coli Meningitis, Complications, and Neurological Outcome. JOURNAL OF PEDIATRIC NEUROLOGY 2020. [DOI: 10.1055/s-0040-1718379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractNeonatal bacterial meningitis represents a major cause of mortality and morbidity in newborns worldwide. It leads to immediate and long-term neurological complications. In this article, we reported a case of a term newborn with an unremarkable pregnancy and delivery, who was admitted to our neonatal ward on the fifth day of life for fever. Cerebrospinal fluid culture was positive for Escherichia coli. The infant had neurological deterioration and continued fever despite adequate antibiotic therapy. Brain MRI showed multiple subdural abscesses with ventriculitis. Antibiotic therapy was maintained for 90 days with total resolution of the abscesses. The child has a normal physical examination and appropriate psychomotor development at 9 months of age.
Collapse
Affiliation(s)
- Manel Wèli
- Department of Pediatrics, Pediatric Emergency and Intensive Care, Hedi Chaker University Faculty of Medicine, Sfax, Tunisia
| | - Fatma Charfi
- Department of Pediatrics, Pediatric Emergency and Intensive Care, Hedi Chaker University Faculty of Medicine, Sfax, Tunisia
| | - Amal Elleuch
- Department of Pediatrics, Pediatric Emergency and Intensive Care, Hedi Chaker University Faculty of Medicine, Sfax, Tunisia
| | - Rim Charfi
- Department of Pediatrics, Pediatric Emergency and Intensive Care, Hedi Chaker University Faculty of Medicine, Sfax, Tunisia
| | - Lamia Gargouri
- Department of Pediatrics, Pediatric Emergency and Intensive Care, Hedi Chaker University Faculty of Medicine, Sfax, Tunisia
| | - Abdelmajid Mahfoudh
- Department of Pediatrics, Pediatric Emergency and Intensive Care, Hedi Chaker University Faculty of Medicine, Sfax, Tunisia
| |
Collapse
|
12
|
Badr H, Soliman MA, Nasef SA. Bacteriological and molecular study of Salmonella species associated with central nervous system manifestation in chicken flocks. Vet World 2020; 13:2183-2190. [PMID: 33281354 PMCID: PMC7704317 DOI: 10.14202/vetworld.2020.2183-2190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIM Salmonella species often cause systemic health problems in poultry flocks, sometimes including nervous systems manifestations. This impact of Salmonella has rarely been studied. This study aimed to define an alternative pathogenic pathway for Salmonella spp. invasion of brain tissue in chicken flocks. Brain infection produces neurological manifestations; Salmonella strains isolated from brain tissue showed the presences of two virulence genes. Confirmation of the pathway of isolates from intestinal mucosa through the blood-brain barrier was attained using experimental infections in specific pathogen-free (SPF)-day-old chicks through two routes of inoculation. MATERIALS AND METHODS Isolation of Salmonella spp. from five chicken flocks that showed signs of the central nervous system (CNS) effects were isolated. Isolates were characterized by serotyping, and antimicrobial assays. In addition, virulence profiles were described using detection of virulence plasmid spvC, and Salmonella plasmid sopB. A pathogenicity study of isolates in specific pathogen-free (SPF)-day-old chicks through oral and intracerebral administration performed, and experimental infection in SPF embryonated chicken eggs through intra-yolk and intra-allantoic administration was investigated. Supporting histopathology and immunohistopathology against Salmonella antigen in brain tissue were performed for flock and experimental infections. RESULTS Three serotypes of Salmonella were isolated from the brains of five flocks (two Salmonella Virchow, two Salmonella Kentucky, and one Salmonella Enteritidis isolates). Phage related gene sopB and plasmid-mediated operon spvC were identified in all isolated strains. The Salmonella strains were re-isolated and identified from the brain and internal organs of post-experimental infected chicks. Infected chicks showed nervous manifestations associated with Salmonella infection. The presence of positively stained Salmonella antigen in brain tissues indicates penetration of the blood-brain barrier by the Salmonella species. CONCLUSION Our results indicate that some virulent systemic strains of Salmonella spp. can induce CNS manifestations in chicken hosts.
Collapse
Affiliation(s)
- Heba Badr
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki, Giza 12618, Egypt
| | - Mohamed A. Soliman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki, Giza 12618, Egypt
| | - Soad A. Nasef
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki, Giza 12618, Egypt
| |
Collapse
|
13
|
Zhu N, Liu W, Prakash A, Zhang C, Kim KS. Targeting E. coli invasion of the blood-brain barrier for investigating the pathogenesis and therapeutic development of E. coli meningitis. Cell Microbiol 2020; 22:e13231. [PMID: 32447809 DOI: 10.1111/cmi.13231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/15/2022]
Abstract
Escherichia coli is the most common Gram-negative bacillary organism causing neonatal meningitis. Escherichia coli meningitis remains an important cause of mortality and morbidity, but the pathogenesis of E. coli penetration of the blood-brain barrier remains incompletely understood. Escherichia coli entry into the brain occurs in the meningeal and cortex capillaries, not in the choroid plexus, and exploits epidermal growth factor receptor (EGFR) and cysteinyl leukotrienes (CysLTs) for invasion of the blood-brain barrier. The present study examined whether EGFR and CysLTs are inter-related in their contribution to E. coli invasion of the blood-brain barrier and whether counteracting EGFR and CysLTs is a beneficial adjunct to antibiotic therapy of E. coli meningitis. We showed that (a) meningitis isolates of E. coli exploit EGFR and CysLTs for invasion of the blood-brain barrier, (b) the contribution of EGFR is upstream of that of CysLTs, and (c) counteracting EGFR and CysLTs as an adjunctive therapy improved the outcome (survival, neuronal injury and memory impairment) of animals with E. coli meningitis. These findings suggest that investigation of host factors contributing to E. coli invasion of the blood-brain barrier will help in enhancing the pathogenesis and development of new therapeutic targets for E. coli meningitis in the era of increasing resistance to conventional antibiotics.
Collapse
Affiliation(s)
- Ningyu Zhu
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wei Liu
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Atish Prakash
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chengxian Zhang
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Orman G, Kukreja MK, Vallejo JG, Desai N, Huisman TAGM, Kralik SF. Accuracy of MR Imaging for Detection of Sensorineural Hearing Loss in Infants with Bacterial Meningitis. AJNR Am J Neuroradiol 2020; 41:1081-1086. [PMID: 32439638 DOI: 10.3174/ajnr.a6539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/21/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Bacterial meningitis most commonly affects young children and can result in critical adverse outcomes, including sensorineural hearing loss (SNHL). The purpose of this study is to determine the diagnostic accuracy of MR imaging for predicting the development of SNHL among infants with bacterial meningitis. MATERIALS AND METHODS A retrospective review was performed among infants (age <365 days) with bacterial meningitis (n = 115). Independent and consensus blinded review of brain MRIs (n = 239) performed less than 90 days from presentation were conducted. Abnormal appearance of the inner ear was defined as enhancement on postcontrast T1-weighted (T1-weighted+C) sequence and FLAIR hyperintensity. The consensus MR imaging appearance of the inner ear on FLAIR, T1-weighted+C, and combined evaluation was compared with criterion standard audiometric testing to determine the sensitivity and specificity of MR imaging for detecting SNHL. RESULTS The mean age at diagnosis of bacterial meningitis was 50.6 days (range, 0-338 days) and 24.3% had SNHL. Sensitivity and specificity was 0.61/0.96, 0.50/0.94, and 0.61/0.94 for T1-weighted+C, FLAIR hyperintensity, and combined evaluation, respectively, for prediction of SNHL. There was excellent interobserver agreement for both the T1-weighted+C and FLAIR sequences and combined evaluation for presence of abnormal enhancement and hyperintense signal, respectively. Factors associated with abnormal MR imaging findings on T1-weighted+C and/or FLAIR in patients with SNHL included low CSF glucose (P = .04, .02) and high CSF protein (P = .04, .03). CONCLUSIONS Abnormal enhancement and/or FLAIR hyperintensity of the inner ear demonstrate high specificity and average sensitivity for prediction of SNHL among infants with bacterial meningitis.
Collapse
Affiliation(s)
- G Orman
- From the Edward B. Singleton Department of Radiology (G.O., M.K.K., N.D., T.A.G.M.H., S.F.K.)
| | - M K Kukreja
- From the Edward B. Singleton Department of Radiology (G.O., M.K.K., N.D., T.A.G.M.H., S.F.K.)
| | - J G Vallejo
- Department of Pediatrics, Section of Infectious Diseases (J.G.V.), Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - N Desai
- From the Edward B. Singleton Department of Radiology (G.O., M.K.K., N.D., T.A.G.M.H., S.F.K.)
| | - T A G M Huisman
- From the Edward B. Singleton Department of Radiology (G.O., M.K.K., N.D., T.A.G.M.H., S.F.K.)
| | - S F Kralik
- From the Edward B. Singleton Department of Radiology (G.O., M.K.K., N.D., T.A.G.M.H., S.F.K.)
| |
Collapse
|
15
|
Kim KS. Investigating Bacterial Penetration of the Blood-Brain Barrier for the Pathogenesis, Prevention, and Therapy of Bacterial Meningitis. ACS Infect Dis 2020; 6:34-42. [PMID: 31805229 DOI: 10.1021/acsinfecdis.9b00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most distressing aspect of bacterial meningitis is limited improvement in the mortality and morbidity despite attributable advances in antimicrobial chemotherapy and supportive care. A major contributing factor to such mortality and morbidity is our incomplete understanding of the pathogenesis of this disease. Microbial penetration of the blood-brain barrier, a prerequisite for the development of bacterial meningitis, exploits specific host and bacterial factors as well as host cell signaling molecules. Determination and characterization of such host and bacterial factors have been instrumental for developing our current knowledge on the pathogenesis of bacterial meningitis. In addition, counteracting such host and microbial factors has been shown to be efficacious in the prevention of bacterial meningitis. Antimicrobial therapy alone has limited efficacy in improving the outcome of bacterial meningitis. Recent studies suggest that counteracting targets contributing to bacterial penetration of the blood-brain barrier are a beneficial therapeutic adjunct to antimicrobial therapy in improving the outcome of bacterial meningitis. Taken together, these findings indicate that the elucidation of host and bacterial factors contributing to microbial penetration of the blood-brain barrier provides a novel strategy for investigating the pathogenesis, prevention, and therapy of bacterial meningitis.
Collapse
Affiliation(s)
- Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 3157, Baltimore, Maryland 21287, United States
| |
Collapse
|
16
|
Sima Z, Fadwa H, Basem D, Omar G, Ahmed AS. In vitro and in vivo Antibacterial Activity of Cheilocostus speciosus Rhizome Extract on Resistant Bacteria. Pak J Biol Sci 2020; 23:931-939. [PMID: 32700841 DOI: 10.3923/pjbs.2020.931.939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Cheilocostus speciosus has traditionally been used in alternative medicine for different therapeutic purposes in different countries, including as an anti-infective agent. Antimicrobial properties of C. speciosus against standard bacterial strains have been reported before, however, complementary in vivo investigations, as well as, its antimicrobial activity against multi drug-resistant (MDR) bacteria are insufficient, if not lacking. In our study, in vitro and in vivo methods were used to test its antimicrobial activities on prominent clinical MDR isolates. MATERIALS AND METHODS Cheilocostus speciosus rhizome extracts (CSRE) were prepared using different solvents; methanol, hexane, petroleum ether, ethylene glycol and water. The bactericidal activity of CSRE was tested on methicillin resistant S. aureus (MRSA), A. baumannii, K. pneumoniae serotype K2 (Kp K2), MDR P. aeruginosa, S. typhimurium and MDR E. coli. The standard disc diffusion and the broth micro-dilution methods were used to confirm the efficacy of CSRE against the tested microorganisms. In vitro results proved a potent bactericidal effect on MRSA and Kp K2 and a pronounced bacteriostatic effect against E. coli. RESULTS We further confirmed the antibacterial activity of CSRE using BALB/c mice, animals were infected with Kp K2 or MRSA along with their standard strains; the extract was found to significantly reduce the bacterial load in mice lungs, liver and spleen. In addition, extracts were found to be more effective on the MDRs than the standard strains. CONCLUSION It is concluded that CSRE could be a potential source for new antibiotics, further investigations are required to identify the bioactive components.
Collapse
|
17
|
Le Guennec L, Coureuil M, Nassif X, Bourdoulous S. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cell Microbiol 2019; 22:e13132. [PMID: 31658405 DOI: 10.1111/cmi.13132] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
The skull, spine, meninges, and cellular barriers at the blood-brain and the blood-cerebrospinal fluid interfaces well protect the brain and meningeal spaces against microbial invasion. However, once in the bloodstream, a range of pathogenic bacteria is able to reach the brain and cause meningitis. Despite advances in antibacterial therapy, bacterial meningitis remains one of the most important infectious diseases worldwide. The most common causative bacteria in children and adults are Streptococcus pneumoniae and Neisseria meningitidis associated with high morbidity and mortality, while among neonates, most cases of bacterial meningitis are due to group B Streptococcus and Escherichia coli. Here we summarise our current knowledge on the strategies used by these bacterial pathogens to survive in the bloodstream, to colonise the brain vasculature and to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Loic Le Guennec
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | - Xavier Nassif
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
18
|
Kralik SF, Kukreja MK, Paldino MJ, Desai NK, Vallejo JG. Comparison of CSF and MRI Findings among Neonates and Infants with E coli or Group B Streptococcal Meningitis. AJNR Am J Neuroradiol 2019; 40:1413-1417. [PMID: 31320464 DOI: 10.3174/ajnr.a6134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Group B Streptococcus and Escherichia coli (E coli) are the 2 most common causes of bacterial meningitis in neonates. The purpose of this study was to determine whether CSF and/or MR imaging findings differ between infants with group B streptococcal or E coli meningitis. MATERIALS AND METHODS A retrospective review was performed among neonates (younger than 28 days) and infants (younger than 120 days) with proved group B streptococcal (n = 57) or E coli meningitis (n = 50). A CSF or blood culture positive for Streptococcus or E coli and an elevated CSF white blood cell count were used as the criterion standard. Independent, blinded review of brain MRIs obtained within 21 days of presentation were performed by 2 board-certified neuroradiologists. CSF laboratory values and MR imaging findings were compared between the groups. RESULTS There was no statistically significant difference between the mean age at presentation for patients with group B streptococcal (40 days; range, 2-111 days) versus patients with E coli meningitis (31 days; range, 12-115 days) (P = .18). There was no statistically significant difference in the CSF white blood cell count, glucose, or protein. There was a significant difference between group B streptococcal and E coli meningitis in the frequency of hydrocephalus (0% versus 22%, P = .001) and infarct (40% versus 14%; P = .038), respectively. There was no statistically significant difference in leptomeningeal enhancement, cerebritis, ventriculitis, abscess/granuloma, subdural effusion, extra-axial purulent material, intraventricular purulent material, hemorrhage, and sinus thrombosis. CONCLUSIONS Although neonates and infants with group B streptococcal or E coli meningitis had similar age and CSF laboratory values, patients with group B streptococcal meningitis more frequently demonstrated infarcts, while those with E coli meningitis more frequently had early onset of hydrocephalus.
Collapse
Affiliation(s)
- S F Kralik
- From the Department of Radiology (S.F.K., M.K.K., M.J.P., N.K.D.), Texas Children's Hospital, Houston, Texas
- Indiana University Riley Children's Hospital (S.F.K.), Indianapolis, Indiana
| | - M K Kukreja
- From the Department of Radiology (S.F.K., M.K.K., M.J.P., N.K.D.), Texas Children's Hospital, Houston, Texas
| | - M J Paldino
- From the Department of Radiology (S.F.K., M.K.K., M.J.P., N.K.D.), Texas Children's Hospital, Houston, Texas
| | - N K Desai
- From the Department of Radiology (S.F.K., M.K.K., M.J.P., N.K.D.), Texas Children's Hospital, Houston, Texas
| | - J G Vallejo
- Department of Pediatrics (J.G.V.), Baylor College of Medicine, Houston, Texas
| |
Collapse
|
19
|
Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, Cantón R, Giske CG, Naas T, Carattoli A, Martínez-Medina M, Bosch J, Retamar P, Rodríguez-Baño J, Baquero F, Soto SM. Escherichia coli: an old friend with new tidings. FEMS Microbiol Rev 2018; 40:437-463. [PMID: 28201713 DOI: 10.1093/femsre/fuw005] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli is one of the most-studied microorganisms worldwide but its characteristics are continually changing. Extraintestinal E. coli infections, such as urinary tract infections and neonatal sepsis, represent a huge public health problem. They are caused mainly by specialized extraintestinal pathogenic E. coli (ExPEC) strains that can innocuously colonize human hosts but can also cause disease upon entering a normally sterile body site. The virulence capability of such strains is determined by a combination of distinctive accessory traits, called virulence factors, in conjunction with their distinctive phylogenetic background. It is conceivable that by developing interventions against the most successful ExPEC lineages or their key virulence/colonization factors the associated burden of disease and health care costs could foreseeably be reduced in the future. On the other hand, one important problem worldwide is the increase of antimicrobial resistance shown by bacteria. As underscored in the last WHO global report, within a wide range of infectious agents including E. coli, antimicrobial resistance has reached an extremely worrisome situation that ‘threatens the achievements of modern medicine’. In the present review, an update of the knowledge about the pathogenicity, antimicrobial resistance and clinical aspects of this ‘old friend’ was presented.
Collapse
Affiliation(s)
- J Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Department of Clinical Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - E Sáez-López
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - J R Johnson
- VA Medical Center, Minneapolis, MN, USA, and University of Minnesota, Minneapolis, MN, USA
| | - U Römling
- Karolinska Institute, Stockholm, Sweden
| | - U Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - R Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - C G Giske
- Karolinska Institute, Stockholm, Sweden
| | - T Naas
- Hôpital de Bicêtre, Université Paris Sud, Le Kremlin-Bicêtre, France
| | - A Carattoli
- Department of infectious, parasitic and immune-mediated diseases, Istituto Superiore di Sanità, Rome, Italy
| | - M Martínez-Medina
- Laboratory of Molecular Microbiology, Department of Biology, University of Girona, Girona, Spain
| | - J Bosch
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Department of Clinical Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - P Retamar
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospitales Universitarios Virgen Macarena y Virgen del Rocío, Departamento de Medicina, Universidad de Sevilla, Seville, Spain
| | - J Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospitales Universitarios Virgen Macarena y Virgen del Rocío, Departamento de Medicina, Universidad de Sevilla, Seville, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - F Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - S M Soto
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Cole BK, Scott E, Ilikj M, Bard D, Akins DR, Dyer DW, Chavez-Bueno S. Route of infection alters virulence of neonatal septicemia Escherichia coli clinical isolates. PLoS One 2017; 12:e0189032. [PMID: 29236742 PMCID: PMC5728477 DOI: 10.1371/journal.pone.0189032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/05/2017] [Indexed: 12/03/2022] Open
Abstract
Escherichia coli is the leading cause of Gram-negative neonatal septicemia in the United States. Invasion and passage across the neonatal gut after ingestion of maternal E. coli strains produce bacteremia. In this study, we compared the virulence properties of the neonatal E. coli bacteremia clinical isolate SCB34 with the archetypal neonatal E. coli meningitis strain RS218. Whole-genome sequencing data was used to compare the protein coding sequences among these clinical isolates and 33 other representative E. coli strains. Oral inoculation of newborn animals with either strain produced septicemia, whereas intraperitoneal injection caused septicemia only in pups infected with RS218 but not in those injected with SCB34. In addition to being virulent only through the oral route, SCB34 demonstrated significantly greater invasion and transcytosis of polarized intestinal epithelial cells in vitro as compared to RS218. Protein coding sequences comparisons highlighted the presence of known virulence factors that are shared among several of these isolates, and revealed the existence of proteins exclusively encoded in SCB34, many of which remain uncharacterized. Our study demonstrates that oral acquisition is crucial for the virulence properties of the neonatal bacteremia clinical isolate SCB34. This characteristic, along with its enhanced ability to invade and transcytose intestinal epithelium are likely determined by the specific virulence factors that predominate in this strain.
Collapse
Affiliation(s)
- Bryan K. Cole
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Edgar Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Marko Ilikj
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David Bard
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Darrin R. Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Susana Chavez-Bueno
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
21
|
Alterations in gp37 Expand the Host Range of a T4-Like Phage. Appl Environ Microbiol 2017; 83:AEM.01576-17. [PMID: 28939606 DOI: 10.1128/aem.01576-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/19/2017] [Indexed: 01/21/2023] Open
Abstract
The use of phages as antibacterial agents is limited by their generally narrow host ranges. The aim of this study was to make a T4-like phage, WG01, obtain the host range of another T4-like phage, QL01, by replacing its host-determinant gene region with that of QL01. This process triggered a direct expansion of the WG01 host range. The offspring of WG01 obtained the host ranges of both QL01 and WG01, as well as the ability to infect eight additional host bacteria in comparison to the wild-type strains. WQD had the widest host range; therefore, the corresponding fragments, named QD, could be used for constructing a homologous sequence library. Moreover, after a sequencing analysis of gene 37, we identified two different mechanisms responsible for the expanded host range: (i) the first generation of WG01 formed chimeras without mutations, and (ii) the second generation of WG01 mutants formed from the chimeras. The expansion of the host range indicated that regions other than the C-terminal region may indirectly change the receptor specificity by altering the supportive capacity of the binding site. Additionally, we also found the novel means by which subsequent generations expanded their host ranges, namely, by exchanging gene 37 to acquire a wider temperature range for lysis. The method developed in this work offers a quick way to change or expand the host range of a phage. Future clinical applications for screening phages against a given clinical isolate could be achieved after acquiring more suitable homologous sequences.IMPORTANCE T4-like phages have been established as safe in numerous phage therapy applications. The primary drawbacks to the use of phages as therapeutic agents include their highly specific host ranges. Thus, changing or expanding the host range of T4-like phages is beneficial for selecting phages for phage therapy. In this study, the host range of the T4-like phage WG01 was expanded using genetic manipulation. The WG01 derivatives acquired a novel means of expanding their host ranges by acquiring a wider temperature range for lysis. A region was located that had the potential to be used as a sequence region for homologous sequence recombination.
Collapse
|
22
|
Krishnaiah M, de Almeida NR, Udumula V, Song Z, Chhonker YS, Abdelmoaty MM, do Nascimento VA, Murry DJ, Conda-Sheridan M. Synthesis, biological evaluation, and metabolic stability of phenazine derivatives as antibacterial agents. Eur J Med Chem 2017; 143:936-947. [PMID: 29227933 DOI: 10.1016/j.ejmech.2017.11.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 11/27/2022]
Abstract
Drug-resistant pathogens are a major cause of hospital- and community-associated bacterial infections in the United States and around the world. These infections are increasingly difficult to treat due to the development of antibiotic resistance and the formation of bacterial biofilms. In the paper, a series of phenazines were synthesized and evaluated for their in vitro antimicrobial activity against Gram positive (methicillin resistant staphylococcus aureus, MRSA) and Gram negative (Escherichia coli, E. coli) bacteria. The compound 6,9-dichloro-N-(methylsulfonyl)phenazine-1-carboxamide (18c) proved to be the most active molecule (MIC = 16 μg/mL) against MRSA whereas 9-methyl-N-(methylsulfonyl)phenazine-1-carboxamide (30e) showed good activity against both MRSA (MIC = 32 μg/mL) and E. coli (MIC = 32 μg/mL). Molecule 18c also demonstrated significant biofilm dispersion and inhibition against S. aureus. Preliminary studies indicate the molecules do not disturb bacterial membranes and there activity is not directly linked to the generation of reactive oxygen species. Compound 18c displayed minor toxicity against mammalian cells. Metabolic stability studies of the most promising compounds indicate stability towards phase I and phase II metabolizing enzymes.
Collapse
Affiliation(s)
- Maddeboina Krishnaiah
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nathalia Rodrigues de Almeida
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Venkatareddy Udumula
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhongcheng Song
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Yashpal Singh Chhonker
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mai M Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; Therapeutic Chemistry Department, Pharmaceutical and Drug Industries, Research Division, National Research Centre, Giza, Egypt
| | - Valter Aragao do Nascimento
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Federal University of Mato Grosso Do Sul, Campo Grande, MS 79070900, Brazil
| | - Daryl J Murry
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
23
|
Abstract
Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, and E. coli meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis contributes to such mortality and morbidity. Recent reports of E. coli strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. Studies using in vitro and in vivo models of the blood-brain barrier have shown that E. coli meningitis follows a high degree of bacteremia and invasion of the blood-brain barrier. E. coli invasion of the blood-brain barrier, the essential step in the development of E. coli meningitis, requires specific microbial and host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors contributing to E. coli invasion of the blood-brain barrier is shown to be efficient in preventing E. coli penetration into the brain. The basis for requiring a high degree of bacteremia for E. coli penetration of the blood-brain barrier, however, remains unclear. Continued investigation on the microbial and host factors contributing to a high degree of bacteremia and E. coli invasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of E. coli meningitis.
Collapse
|
24
|
Matus V, Valenzuela JG, Hidalgo P, Pozo LM, Panes O, Wozniak A, Mezzano D, Pereira J, Sáez CG. Human platelet interaction with E. coli O111 promotes tissue-factor-dependent procoagulant activity, involving Toll like receptor 4. PLoS One 2017; 12:e0185431. [PMID: 28957360 PMCID: PMC5619753 DOI: 10.1371/journal.pone.0185431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022] Open
Abstract
Platelets have a major role in clotting activation and contribute to the innate immune response during systemic infections. Human platelets contain tissue factor (TF) and express functional Toll-like receptor 4 (TLR4). However, the role of TLR4 in triggering the procoagulant properties of platelets, upon challenge with bacteria, is yet unknown. Our hypothesis is that E. coli O111-TLR4 interaction activates platelets and elicits their procoagulant activity. We demonstrated that the strain, but not ultrapure LPS, increased surface P-selectin expression, platelet dependent TF procoagulant activity (TF-PCA) and prompted a faster thrombin generation (TG). Blockade of TLR4 resulted in decreased platelet activation, TF-PCA and TG, revealing the participation of this immune receptor on the procoagulant response of platelets. Our results provide a novel mechanism by which individuals with bacterial infections would have an increased incidence of blood clots. Furthermore, the identification of platelet TF and TLR4 as regulators of the effect of E. coli O111 might represent a novel therapeutic target to reduce the devastating consequences of the hemostatic disorder during sepsis.
Collapse
Affiliation(s)
- Valeria Matus
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J. Guillermo Valenzuela
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Hidalgo
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L. María Pozo
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Olga Panes
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aniela Wozniak
- Department of Clinical Laboratory, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Mezzano
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Pereira
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia G. Sáez
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
25
|
Loh LN, McCarthy EMC, Narang P, Khan NA, Ward TH. Escherichia coli K1 utilizes host macropinocytic pathways for invasion of brain microvascular endothelial cells. Traffic 2017; 18:733-746. [PMID: 28799243 DOI: 10.1111/tra.12508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023]
Abstract
Eukaryotic cells utilize multiple endocytic pathways for specific uptake of ligands or molecules, and these pathways are commonly hijacked by pathogens to enable host cell invasion. Escherichia coli K1, a pathogenic bacterium that causes neonatal meningitis, invades the endothelium of the blood-brain barrier, but the entry route remains unclear. Here, we demonstrate that the bacteria trigger an actin-mediated uptake route, stimulating fluid phase uptake, membrane ruffling and macropinocytosis. The route of uptake requires intact lipid rafts as shown by cholesterol depletion. Using a variety of perturbants we demonstrate that small Rho GTPases and their downstream effectors have a significant effect on bacterial invasion. Furthermore, clathrin-mediated endocytosis appears to play an indirect role in E. coli K1 uptake. The data suggest that the bacteria effect a complex interplay between the Rho GTPases to increase their chances of uptake by macropinocytosis into human brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Lip Nam Loh
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Elizabeth M C McCarthy
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Priyanka Narang
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Naveed A Khan
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, Selangor, Malaysia
| | - Theresa H Ward
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
26
|
Lactobacillus rhamnosus GG supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense. Sci Rep 2017; 7:43305. [PMID: 28262688 PMCID: PMC5338013 DOI: 10.1038/srep43305] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/12/2017] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to determine whether Lactobacillus rhamnosus GG culture supernatant (LCS) has a preventive effect against gut-derived systemic neonatal Escherichia coli (E. coli) K1 infection. The preventive effects were evaluated in human colonic carcinoma cell line Caco-2 and neonatal rat models. Our in vitro results showed that LCS could block adhesion, invasion and translocation of E. coli K1 to Caco-2 monolayer via up-regulating mucin production and maintaining intestinal integrity. In vivo experiments revealed that pre-treatment with LCS significantly decrease susceptibility of neonatal rats to oral E. coli K1 infection as reflected by reduced bacterial intestinal colonization, translocation, dissemination and systemic infections. Further, we found that LCS treated neonatal rats have higher intestinal expressions of Ki67, MUC2, ZO-1, IgA, mucin and lower barrier permeability than those in untreated rats. These results indicated that LCS could enhance neonatal resistance to systemic E. coli K1 infection via promoting maturation of neonatal intestinal defense. In conclusions, our findings suggested that LCS has a prophylactic effect against systemic E. coli K1 infection in neonates. Future studies aimed at identifying the specific active ingredients in LCS will be helpful in developing effective pharmacological strategies for preventing neonatal E. coli K1 infection.
Collapse
|
27
|
Chen M, Zhang L, Xin S, Yao H, Lu C, Zhang W. Inducible Prophage Mutant of Escherichia coli Can Lyse New Host and the Key Sites of Receptor Recognition Identification. Front Microbiol 2017; 8:147. [PMID: 28203234 PMCID: PMC5285337 DOI: 10.3389/fmicb.2017.00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/20/2017] [Indexed: 12/17/2022] Open
Abstract
The use of bacteriophages as therapeutic agents is hindered by their narrow and specific host range, and by a lack of the knowledge concerning the molecular mechanism of receptor recognition. Two P2-like coliphages, named P88 and pro147, were induced from Escherichia coli strains K88 and DE147, respectively. A comparison of the genomes of these two and other P2-like coliphages obtained from GenBank showed that the tail fiber protein genes, which are the key genes for receptor recognition in other myoviridae phages, showed more diversity than the conserved lysin, replicase, and terminase genes. Firstly, replacing hypervariable region 2 (HR2: amino acids 716-746) of the tail fiber protein of P88 with that of pro147 changed the host range of P88. Then, replacing six amino acids in HR2 with the corresponding residues from pro147 altered the host range only in these mutants with changes at position 730 (leucine) and 744 (glutamic acid). Thus, we predicted that these amino acids are vital to establish the host range of P88. This study provided a vector of lysogenic bacteria that could be used to change or expand the phage host range of P88. These results illustrated that, in P2-like phage P88, the tail fiber protein determined the receptor recognition. Amino acids 716-746 and the amino acids at positions 730 and 744 were important for receptor recognition.
Collapse
Affiliation(s)
- Mianmian Chen
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Lei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Sipei Xin
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
28
|
Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier. PLoS Pathog 2016; 12:e1005926. [PMID: 27711202 PMCID: PMC5053521 DOI: 10.1371/journal.ppat.1005926] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022] Open
Abstract
Central nervous system (CNS) infection continues to be an important cause of mortality and morbidity, necessitating new approaches for investigating its pathogenesis, prevention and therapy. Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, which develops following penetration of the blood-brain barrier (BBB). By chemical library screening, we identified epidermal growth factor receptor (EGFR) as a contributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in penetration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and participated in EGFR activation through S1P receptor as well as through S1P-mediated up-regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion of the BBB. We further found that both S1P and EGFR activations occurred in response to the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB, and counteracting such targets provide a novel approach for controlling E. coli meningitis in the era of increasing resistance to conventional antibiotics.
Collapse
|
29
|
Ghodousi A, Bonura C, Di Carlo P, van Leeuwen WB, Mammina C. Extraintestinal pathogenic Escherichia coli sequence type 131 H30-R and H30-Rx subclones in retail chicken meat, Italy. Int J Food Microbiol 2016; 228:10-3. [DOI: 10.1016/j.ijfoodmicro.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 10/22/2022]
|
30
|
Chang AC, Krishnan S, Prasadarao NV. The effects of cytotoxic necrotizing factor 1 expression in the uptake of Escherichia coli K1 by macrophages and the onset of meningitis in newborn mice. Virulence 2016; 7:806-18. [PMID: 27221788 DOI: 10.1080/21505594.2016.1192730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Macrophages are a permissive niche for E. coli K1 multiplication for which the interaction of the bacterial outer membrane protein A and its cognate receptor CD64 are critical. Using in vitro immunofluorescence and live microscopy with ex vivo macrophage cultures from RFP-Lifeact mice, we show that cytotoxic necrotizing factor 1 (CNF1) secreted by E. coli K1 sequesters cellular actin toward microspike formation, thereby limiting actin availability for OmpA-mediated bacterial invasion. Surprisingly, the observed effects of CNF1 occur despite the absence of 67-kDa laminin receptor in macrophages. Concomitantly, the CNF1 deletion mutant of E. coli K1 (Δcnf1) invades macrophages and the brains of newborn mice in greater numbers compared to wild-type. However, the Δcnf1 strain induces less severe pathology in the brain. These results suggest a novel role for CNF1 in limiting E. coli K1 entry into macrophages while exacerbating disease severity in the brains of newborn mice.
Collapse
Affiliation(s)
- Alexander C Chang
- a Division of Infectious Diseases and Department of Pediatrics , Children's Hospital Los Angeles , Los Angeles , CA , USA
| | - Subramanian Krishnan
- a Division of Infectious Diseases and Department of Pediatrics , Children's Hospital Los Angeles , Los Angeles , CA , USA
| | - Nemani V Prasadarao
- a Division of Infectious Diseases and Department of Pediatrics , Children's Hospital Los Angeles , Los Angeles , CA , USA.,b Department of Surgery , Children's Hospital Los Angeles , Los Angeles , CA , USA.,c Keck School of Medicine , University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
31
|
Dale AP, Woodford N. Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. J Infect 2015; 71:615-26. [PMID: 26409905 DOI: 10.1016/j.jinf.2015.09.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) have a complex phylogeny, broad virulence factor (VF) armament and significant genomic plasticity, and are associated with a spectrum of host infective syndromes ranging from simple urinary tract infection to life-threatening bacteraemia. Their importance as pathogens has come to the fore in recent years, particularly in the context of the global emergence of hyper-virulent and antibiotic resistant strains. Despite this, the mechanisms underlying ExPEC transmission dynamics and clonal selection remain poorly understood. Large-scale epidemiological and clinical studies are urgently required to ascertain the mechanisms underlying these processes to enable the development of novel evidence-based preventative and therapeutic strategies. In the current review, we provide a concise summary of the methods utilised for ExPEC phylogenetic delineation before exploring in detail the associations between ExPEC VFs and site-specific disease. We then consider the role of ExPEC as an intestinal colonist and outline known associations between ExPEC clonal variation, specific disease syndromes and antibiotic resistance.
Collapse
Affiliation(s)
- Adam P Dale
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, South Academic Block, Tremona Road, Southampton SO16 6YD, UK.
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Reference Microbiology Services, Public Health England, London NW9 5EQ, UK; The NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0HS, UK
| |
Collapse
|
32
|
Nau R, Djukic M, Spreer A, Ribes S, Eiffert H. Bacterial meningitis: an update of new treatment options. Expert Rev Anti Infect Ther 2015; 13:1401-23. [DOI: 10.1586/14787210.2015.1077700] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Complete Genome Sequence of Escherichia coli Strain RS218 (O18:H7:K1), Associated with Neonatal Meningitis. GENOME ANNOUNCEMENTS 2015. [PMID: 26205862 PMCID: PMC4513156 DOI: 10.1128/genomea.00804-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli RS218 is the prototypic strain of neonatal meningitis-causing E. coli (NMEC) and has been used in many studies related to NMEC pathogenesis. In the present study, the genome of E. coli RS218 was sequenced together with its plasmid, pRS218. Here, we report the fully closed genome sequence of E. coli RS218.
Collapse
|
34
|
Basmaci R, Bonacorsi S, Bidet P, Biran V, Aujard Y, Bingen E, Béchet S, Cohen R, Levy C. Escherichia Coli Meningitis Features in 325 Children From 2001 to 2013 in France. Clin Infect Dis 2015; 61:779-86. [PMID: 25944342 DOI: 10.1093/cid/civ367] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/24/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We aimed to describe features of Escherichia coli meningitis in a large population of children and the molecular characteristics of the involved strains to determine factors associated with severe disease or death. METHODS Between 2001 and 2013, a prospective national survey collected data for 325 children hospitalized with E. coli meningitis. The national reference center genetically characterized 141 isolates. RESULTS Among the 325 cases, 65.2% were term, 22.4% late preterm, and 12.5% very/extremely preterm infants. Escherichia coli meningitis was 7-fold more frequent in preterm than term infants. Median age at diagnosis was 14 days; 71.1% of infants were neonates, with 2 peaks of infection at age 0-3 days (mostly preterm neonates) and 11-15 days (mostly term neonates); 8.9% were >89 days old. In total, 51.1% patients were considered to have severe disease, and 9.2% died. B2.1 phylogenetic subgroup (56%) and O1 serogroup (27.7%) were the most frequently identified. On multivariate analysis, death was associated with preterm birth (odds ratio [OR], 3.3 [95% confidence interval {CI}, 1.3-8.4], P = .015 for late preterm infants; OR, 7.3 [95% CI, 2.7-20.9], P < .001 for very/extremely preterm infants) and cerebrospinal fluid (CSF) to blood glucose ratio <0.10 (OR, 15.3 [95% CI, 1.8-128.3], P = .012). Death was associated with uncommon O serogroup strains (P = .014) and severe disease with O7 serogroup (P = .034) and PapGII adhesin (OR, 2.3 [95% CI, 1.2-4.5], P = .015). CONCLUSIONS In this large study of 325 cases of E. coli meningitis, risk factors of severe disease or death were preterm birth, severe hypoglycorrhachia, CSF/blood glucose ratio <0.10, and molecular characteristics of strains, which should help optimize therapeutic management.
Collapse
Affiliation(s)
- Romain Basmaci
- Infection, Antimicrobials, Modelling, Evolution (IAME), Unité Mixte de Recherche (UMR) 1137, Institut National de la Santé Et de la Recherche Médicale IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire de Microbiologie, Centre National de Référence associé Escherichia coli AP-HP, Service de Pédiatrie Générale
| | - Stéphane Bonacorsi
- Infection, Antimicrobials, Modelling, Evolution (IAME), Unité Mixte de Recherche (UMR) 1137, Institut National de la Santé Et de la Recherche Médicale IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire de Microbiologie, Centre National de Référence associé Escherichia coli
| | - Philippe Bidet
- Infection, Antimicrobials, Modelling, Evolution (IAME), Unité Mixte de Recherche (UMR) 1137, Institut National de la Santé Et de la Recherche Médicale IAME, UMR 1137, Université Paris Diderot, Sorbonne Paris Cité Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire de Microbiologie, Centre National de Référence associé Escherichia coli
| | - Valérie Biran
- AP-HP, Service de Réanimation et Pédiatrie Néonatales, Hôpital Robert-Debré, Paris
| | - Yannick Aujard
- AP-HP, Service de Réanimation et Pédiatrie Néonatales, Hôpital Robert-Debré, Paris
| | - Edouard Bingen
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire de Microbiologie, Centre National de Référence associé Escherichia coli
| | - Stéphane Béchet
- Association Clinique Thérapeutique Infantile du Val de Marne, Saint Maur des Fossés
| | - Robert Cohen
- Association Clinique Thérapeutique Infantile du Val de Marne, Saint Maur des Fossés Groupe de Pathologie Infectieuse Pédiatrique, Paris Unité Court Séjour, Petits Nourrisson, Service de Néonatologie Centre de Recherche Clinique, Centre Hospitalier Intercommunal de Créteil, France
| | - Corinne Levy
- Association Clinique Thérapeutique Infantile du Val de Marne, Saint Maur des Fossés Groupe de Pathologie Infectieuse Pédiatrique, Paris Centre de Recherche Clinique, Centre Hospitalier Intercommunal de Créteil, France
| |
Collapse
|
35
|
Whole-Genome Sequences of the Archetypal K1 Escherichia coli Neonatal Isolate RS218 and Contemporary Neonatal Bacteremia Clinical Isolates SCB11, SCB12, and SCB15. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01598-14. [PMID: 25720688 PMCID: PMC4342429 DOI: 10.1128/genomea.01598-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neonatal bacteremia Escherichia coli strains commonly belong to the K1 capsular type. Their ability to cause invasive neonatal disease appears to be determined by other virulence factors that have yet to be identified. We report here the genome sequences of four E. coli neonatal bacteremia isolates, including that of the archetypal strain RS218.
Collapse
|
36
|
Barichello T, Dagostim VS, Generoso JS, Simões LR, Dominguini D, Silvestre C, Michels M, Vilela MC, Jornada LK, Comim CM, Dal-Pizzol F, Teixeira AL, Quevedo J. Neonatal Escherichia coli K1 meningitis causes learning and memory impairments in adulthood. J Neuroimmunol 2014; 272:35-41. [DOI: 10.1016/j.jneuroim.2014.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 03/12/2014] [Accepted: 05/04/2014] [Indexed: 01/23/2023]
|
37
|
Akuzawa N, Osawa T, Totsuka M, Hatori T, Imai K, Kitahara Y, Kurabayashi M. Secondary brain abscess following simple renal cyst infection: a case report. BMC Neurol 2014; 14:130. [PMID: 24934996 PMCID: PMC4070354 DOI: 10.1186/1471-2377-14-130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is the most common causative bacteria of neonatal meningitis, but hematogenous intracranial E. coli infection is rare in adults. Moreover, intracranial abscess formation owing to E. coli, including brain abscesses and subdural empyema formation, is extremely rare. We herein present a case involving a patient with a brain abscess owing to E. coli following a simple renal cyst infection. A review of the literature is also presented. CASE PRESENTATION A 77-year-old Japanese woman with a history of polymyalgia rheumatica was admitted to our hospital because of persistent fever, right flank pain, and pyuria. Intravenous antibiotics were administered; however, her level of consciousness deteriorated 6 days after admission. Contrast-enhanced magnetic resonance imaging showed a brain abscess in the left occipital lobe and pyogenic ventriculitis. Enhanced abdominal computed tomography revealed a right renal cyst with heterogeneous content. Culture of urine, blood, and aspirated pus from the infected cyst revealed E. coli with identical antibiotic sensitivity in all sites, suggesting that the cyst infection and subsequent bacteremia might have caused the brain abscess. The patient recovered after a 6-week course of meropenem. CONCLUSION The prognosis of patients with E. coli-associated intracranial abscess is usually poor. Advanced age and immunosuppression may be potent risk factors for intracranial abscess formation owing to the hematogenous spread of E. coli.
Collapse
Affiliation(s)
- Nobuhiro Akuzawa
- Departments of Internal Medicine, 1-7-13 Koun-cho, Maebashi, Gunma 371-0025, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Distribution of strain type and antimicrobial susceptibility of Escherichia coli isolates causing meningitis in a large urban setting in Brazil. J Clin Microbiol 2014; 52:1418-22. [PMID: 24523478 DOI: 10.1128/jcm.03104-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The clinical management of meningitis caused by Escherichia coli is greatly complicated when the organism becomes resistant to broad-spectrum antibiotics. We sought to characterize the antimicrobial susceptibilities, sequence types (ST), and presence of known drug resistance genes of E. coli isolates that caused meningitis between 1996 and 2011 in Salvador, Brazil. We then compared these findings to those for E. coli isolates from community-acquired urinary tract infections (UTI) that occurred during the same time period and in the same city. We found that 19% of E. coli isolates from cases of meningitis and less than 1% of isolates from UTI were resistant to third-generation cephalosporins. The sequence types of E. coli isolates from cases of meningitis included ST131, ST69, ST405, and ST62, which were also found among isolates from UTI. Additionally, among the E. coli isolates that were resistant to third-generation cephalosporins, we found genes that encode the extended-spectrum beta-lactamases CTX-M-2, CTX-M-14, and CTX-M-15. These observations demonstrate that compared to E. coli strains isolated from cases of community-acquired UTI, those isolated from cases of meningitis are more resistant to third-generation cephalosporins, even though the same sequence types are shared between the two forms of extraintestinal infections.
Collapse
|
39
|
Cytotoxic necrotizing factor 1 contributes to Escherichia coli meningitis. Toxins (Basel) 2013; 5:2270-80. [PMID: 24284829 PMCID: PMC3847726 DOI: 10.3390/toxins5112270] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022] Open
Abstract
E. coli is the most common Gram-negative bacteria causing neonatal meningitis, and E. coli meningitis continues to be an important cause of mortality and morbidity throughout the world. Recent reports of E. coli meningitis caused by antimicrobial resistant strains are a particular concern. These findings indicate that a novel strategy is needed to identify new targets for prevention and therapy of E. coli meningitis. Cytotoxic necrotizing factor 1 (CNF1) is a bacterial virulence factor associated principally with E. coli strains causing urinary tract infection and meningitis. We have shown that CNF1 contributes to E. coli invasion of the blood-brain barrier and penetration into the brain, the essential step in the development of E. coli meningitis, and identified the host receptor for CNF1, 37-kDa laminin receptor precursor (37LRP). CNF1, however, is a cytoplasmic protein and its contribution to E. coli invasion of the blood-brain barrier requires its secretion from the bacterial cytoplasm. No signal peptide is found in the CNF1 sequence. CNF1 secretion is, therefore, a strategy utilized by meningitis-causing E. coli to invade the blood-brain barrier. Elucidation of the mechanisms involved in CNF1 secretion, as shown in this report with the involvement of Fdx and YgfZ provides the novel information on potential targets for prevention and therapy of E. coli meningitis by virtue of targeting the secretion of CNF1.
Collapse
|
40
|
|
41
|
Fessele C, Lindhorst TK. Effect of Aminophenyl and Aminothiahexyl α-D-Glycosides of the Manno-, Gluco-, and Galacto-Series on Type 1 Fimbriae-Mediated Adhesion of Escherichia coli. BIOLOGY 2013; 2:1135-49. [PMID: 24833058 PMCID: PMC3960877 DOI: 10.3390/biology2031135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/17/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022]
Abstract
Adhesion of bacteria to the glycosylated surface of their target cells is typically mediated by fimbrial lectins, exposed on the bacterial surface. Among the best-investigated and most important fimbriae are type 1 fimbriae, for which α-d-mannopyranoside-specificity has been described. This carbohydrate specificity is mediated by the type 1 fimbrial lectin FimH. In this account, we have employed four different set-ups to assay type 1 fimbriae-mediated bacterial adhesion, including tailor-made glycoarrays. The focus of our study was on testing FimH specificity with regard to the glycone part of a glycosidic ligand by testing a series of synthetic α-mannosides, as well as α-glucosides and α-galactosides. Unexpectedly, it was found that in solution all tested aminothiahexyl glycosides inhibit bacterial adhesion but that this effect is unspecific. Instead it is due to cytotoxicity of the respective glycosides at high mm concentrations.
Collapse
Affiliation(s)
- Claudia Fessele
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24098 Kiel, Germany.
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24098 Kiel, Germany.
| |
Collapse
|
42
|
Mellata M. Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog Dis 2013; 10:916-32. [PMID: 23962019 DOI: 10.1089/fpd.2013.1533] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) constitutes ongoing health concerns for women, newborns, elderly, and immunocompromised individuals due to increased numbers of urinary tract infections (UTIs), newborn meningitis, abdominal sepsis, and septicemia. E. coli remains the leading cause of UTIs, with recent investigations reporting the emergence of E. coli as the predominant cause of nosocomial and neonatal sepsis infections. This shift from the traditional Gram-positive bacterial causes of nosocomial and neonatal sepsis infections could be attributed to the use of intrapartum chemoprophylaxis against Gram-positive bacteria and the appearance of antibiotic (ATB) resistance in E. coli. While ExPEC strains cause significant healthcare concerns, these bacteria also infect chickens and cause the poultry industry economic losses due to costs of containment, mortality, and disposal of carcasses. To circumvent ExPEC-related costs, ATBs are commonly used in the poultry industry to prevent/treat microbial infections and promote growth and performance. In an unfortunate linkage, chicken products are suspected to be a source of foodborne ExPEC infections and ATB resistance in humans. Therefore, the emergence of multidrug resistance (MDR) (resistance to three or more classes of antimicrobial agents) among avian E. coli has created major economic and health concerns, affecting both human healthcare and poultry industries. Increased numbers of immunocompromised individuals, including the elderly, coupled with MDR among ExPEC strains, will continue to challenge the treatment of ExPEC infections and likely lead to increased treatment costs. With ongoing complications due to emerging ATB resistance, novel treatment strategies are necessary to control ExPEC infections. Recognizing and treating the zoonotic risk posed by ExPEC would greatly enhance food safety and positively impact human health.
Collapse
Affiliation(s)
- Melha Mellata
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University , Tempe, Arizona
| |
Collapse
|
43
|
Iqbal J, Rajani M, Siddiqui R, Khan NA. Neuropathogenic Escherichia coli K1 does not exhibit proteolytic activities to exert its pathogenicity. J Negat Results Biomed 2013; 12:8. [PMID: 23634997 PMCID: PMC3654900 DOI: 10.1186/1477-5751-12-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/11/2013] [Indexed: 12/03/2022] Open
Abstract
Background Proteases are well-known virulence factors that promote survival, pathogenesis and immune evasion of many pathogens. Several lines of evidence suggest that the blood–brain barrier permeability is a prerequisite in microbial invasion of the central nervous system. Because proteases are frequently associated with vascular permeability by targeting junctional proteins, here it is hypothesized that neuropathogenic Escherichia coli K1 exhibit proteolytic activities to exert its pathogenicity. Methods Zymographic assays were performed using collagen and gelatin as substrates. The lysates of whole E. coli K1 strain E44, or E. coli K-12 strain HB101 were tested for proteolytic activities. The conditioned media were prepared by incubating bacteria in RPMI-1640 in the presence or absence of serum. The cell-free supernatants were collected and tested for proteases in zymography as mentioned above. Additionally, proteolytic degradation of host immune factors was determined by co-incubating conditioned media with albumin/immunoglobulins using protease assays. Results When collagen or gelatin were used as substrates in zymographic assays, neither whole bacteria nor conditioned media exhibited proteolytic activities. The conditioned media of neuropathogenic E. coli K1 strain E44, or E. coli K-12 strain HB101 did not affect degradation of albumin and immunoglobulins using protease assays. Conclusions Neither zymographic assays nor protease assays detected proteolytic activities in either the whole bacteria or conditioned media of E. coli K1 strain E44 and E. coli K-12 strain HB101. These findings suggest that host cell monolayer disruptions and immune evasion strategies are likely independent of proteolytic activities of neuropathogenic E. coli K1.
Collapse
Affiliation(s)
- Junaid Iqbal
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | | | | |
Collapse
|
44
|
Resistance of the brain to Escherichia coli K1 infection depends on MyD88 signaling and the contribution of neutrophils and monocytes. Infect Immun 2013; 81:1810-9. [PMID: 23478323 DOI: 10.1128/iai.01349-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Escherichia coli is the leading cause of Gram-negative neonatal bacterial meningitis and also causes meningitis and meningoencephalitis in older and immunocompromised patients. Here, we determined the contribution of granulocytes, monocytes, and TLR signaling cascades in the resistance of adult mice to Escherichia coli K1 brain infection. Deficiency in MyD88 (myd88(-/-)) but not in TRIF (trif(lps2)) adaptor proteins dramatically reduced the survival of animals. Depletion of CD11b(+) Ly-6G(+) Ly-6C(int) neutrophils by application of the anti-Ly-6G (1A8) monoclonal antibody (MAb) led to higher bacterial loads in cerebellum and spleen tissue and resulted in increased mortality compared to those of isotype-treated controls. Depletion of CD11b(+) Ly-6G(+) Ly-6C(int) neutrophils and CD11b(+) Ly-6G(-) Ly-6C(high) monocytes by administration of the anti-Gr-1 (RB6-8C5) MAb rendered mice even more susceptible to the infection, with higher central nervous system (CNS) and spleen bacterial burdens than anti-Ly-6G-treated animals. Depletion of ∼50% of CD11b(+) Ly-6G(-) Ly-6C(high) monocytes by injection of the anti-CCR2 (MC-21) MAb resulted in a trend toward higher mortality compared to that with isotype treatment. Production of interleukin 1β (IL-1β), IL-6, KC, and MIP-2 in the CNS strongly depended on the bacterial load: increased levels of these cytokines/chemokines were found after depletion of CD11b(+) Ly-6G(+) Ly-6C(int) neutrophils alone or together with CD11b(+) Ly-6G(-) Ly-6C(high) monocytes. These findings identify Toll-like receptor (TLR)-MyD88 signaling and neutrophil and monocyte activity as critical elements in the early host defense against E. coli meningitis.
Collapse
|
45
|
Nordstrom L, Liu CM, Price LB. Foodborne urinary tract infections: a new paradigm for antimicrobial-resistant foodborne illness. Front Microbiol 2013; 4:29. [PMID: 23508293 PMCID: PMC3589730 DOI: 10.3389/fmicb.2013.00029] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 02/03/2013] [Indexed: 01/12/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections worldwide. Disproportionately affecting women, UTIs exact a substantial public burden each year in terms of direct medical expenses, decreased quality of life, and lost productivity. Increasing antimicrobial resistance among strains of extraintestinal pathogenic Escherichia coli challenges successful treatment of UTIs. Community-acquired UTIs were long considered sporadic infections, typically caused by the patients' native gastrointestinal microbiota; however, the recent recognition of UTI outbreaks with probable foodborne origins has shifted our understanding of UTI epidemiology. Along with this paradigm shift come new opportunities to disrupt the infection process and possibly quell increasing resistance, including the elimination of non-therapeutic antimicrobial use in food-animal production.
Collapse
Affiliation(s)
- Lora Nordstrom
- Division of Pathogen Genomics, Center for Food Microbiology and Environmental Health, The Translational Genomics Research Institute Flagstaff, AZ, USA
| | | | | |
Collapse
|
46
|
Bacterial meningitis: tailoring management to patient characteristics. JAAPA 2013; 26:18, 25. [PMID: 23355997 DOI: 10.1097/01720610-201301000-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Abstract
INTRODUCTION The introduction of protein conjugate vaccines for Haemophilus influenzae type b (Hib), Streptococcus pneumoniae (S. pneumoniae) and Neisseria meningitidis (N. menigitidis) has changed the epidemiology of bacterial meningitis. Bacterial meningitis continues to be an important cause of mortality and morbidity, and our incomplete knowledge of its pathogenesis and emergence of antimicrobial resistant bacteria contribute to such mortality and morbidity. An early empiric antibiotic treatment is critical for the management of patients with bacterial meningitis. AREAS COVERED This article gives an overview on optimal treatment strategies of bacterial meningitis, along with considerations of new insights on epidemiology, clinical and laboratory findings supportive of bacterial meningitis, chemoprophylaxis, selection of initial antimicrobial agents for suspected bacterial meningitis, antimicrobial resistance and utility of new antibiotics, status on anti-inflammatory agents and adjunctive therapy, and pathogenesis of bacterial meningitis. EXPERT OPINION Prompt treatment of bacterial meningitis with an appropriate antibiotic is essential. Optimal antimicrobial treatment of bacterial meningitis requires bactericidal agents able to penetrate the blood-brain barrier (BBB), with efficacy in cerebrospinal fluid (CSF). Several new antibiotics have been introduced for the treatment of meningitis caused by resistant bacteria, but their use in human studies has been limited. More complete understanding of the microbial and host interactions that are involved in the pathogenesis of bacterial meningitis and associated neurologic sequelae is likely to help in developing new strategies for the prevention and therapy of bacterial meningitis.
Collapse
Affiliation(s)
- Seon Hee Shin
- Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 3157, Baltimore, MD 21287, USA
| | | |
Collapse
|