1
|
Wahyulaksana G, Wei L, Voorneveld J, Te Lintel Hekkert M, Bowen DJ, Strachinaru M, Duncker DJ, van der Steen AFW, Vos HJ. Assessment of Coronary Microcirculation with High Frame-Rate Contrast-Enhanced Echocardiography. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:585-591. [PMID: 39757049 DOI: 10.1016/j.ultrasmedbio.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE Assessing myocardial perfusion in acute myocardial infarction is important for guiding clinicians in choosing appropriate treatment strategies. Echocardiography can be used due to its direct feedback and bedside nature, but it currently faces image quality issues and an inability to differentiate coronary macro- from micro-circulation. We previously developed an imaging scheme using high frame-rate contrast-enhanced ultrasound (HFR CEUS) with higher order singular value decomposition (HOSVD) that provides dynamic perfusion and vascular flow visualization. In this study, we aim to show the ability of this technique to image perfusion deficits and investigate the potential occurrence of false-positive contrast detection. METHODS We used a porcine model comprising occlusion and release of the left anterior descending coronary artery. During slow contrast agent infusion, the afore-mentioned imaging scheme was used to capture and process the data offline using HOSVD. RESULTS Fast and slow coronary flow was successfully differentiated, presumably representing the different compartments of the micro-circulation. Low perfusion was seen in the area that was affected, as expected by vascular occlusion. Furthermore, we also imaged coronary flow dynamics before, during and after release of the occlusion, the latter showing hyperemia as expected. A contrast agent destruction test showed that the processed images contained actual contrast signal in the cardiac phases with minimal motion. With larger tissue motion, tissue signal leaked into the contrast-enhanced images. CONCLUSION Our results demonstrate the feasibility of HFR CEUS with HOSVD as a viable option for assessing myocardial perfusion. Flow dynamics were resolved, which potentially helped to directly evaluate coronary flow deficits.
Collapse
Affiliation(s)
- Geraldi Wahyulaksana
- Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Radiology, Weill Cornell Medicine, NY, USA
| | - Luxi Wei
- Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jason Voorneveld
- Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maaike Te Lintel Hekkert
- Experimental Cardiology, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daniel J Bowen
- Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mihai Strachinaru
- Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Experimental Cardiology, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Hendrik J Vos
- Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
2
|
Yin J, Dong F, An J, Guo T, Cheng H, Zhang J, Zhang J. Pattern recognition of microcirculation with super-resolution ultrasound imaging provides markers for early tumor response to anti-angiogenic therapy. Theranostics 2024; 14:1312-1324. [PMID: 38323316 PMCID: PMC10845201 DOI: 10.7150/thno.89306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024] Open
Abstract
Rationale: Cancer treatment outcome is traditionally evaluated by tumor volume change in clinics, while tumor microvascular heterogeneity reflecting tumor response has not been fully explored due to technical limitations. Methods: We introduce a new paradigm in super-resolution ultrasound imaging, termed pattern recognition of microcirculation (PARM), which identifies both hemodynamic and morphological patterns of tumor microcirculation hidden in spatio-temporal space trajectories of microbubbles. Results: PARM demonstrates the ability to distinguish different local blood flow velocities separated by a distance of 24 μm. Compared with traditional vascular parameters, PARM-derived heterogeneity parameters prove to be more sensitive to microvascular changes following anti-angiogenic therapy. Particularly, PARM-identified "sentinel" microvasculature, exhibiting evident structural changes as early as 24 hours after treatment initiation, correlates significantly with subsequent tumor volume changes (|r| > 0.9, P < 0.05). This provides prognostic insight into tumor response much earlier than clinical criteria. Conclusions: The ability of PARM to noninvasively quantify tumor vascular heterogeneity at the microvascular level may shed new light on early-stage assessment of cancer therapy.
Collapse
Affiliation(s)
- Jingyi Yin
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Feihong Dong
- College of Future Technology, Peking University, Beijing, China
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, and Institute of Molecular Medicine, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Tianyu Guo
- College of Future Technology, Peking University, Beijing, China
| | - Heping Cheng
- College of Future Technology, Peking University, Beijing, China
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, and Institute of Molecular Medicine, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, China
| | - Jiabin Zhang
- College of Future Technology, Peking University, Beijing, China
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, and Institute of Molecular Medicine, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, China
- College of Engineering, Peking University, Beijing, China
| |
Collapse
|
3
|
Moghimirad E, Xu Z, Ding H, Bamber J, Harris E. Evaluation of Performance Tradeoffs When Using Mechanically Swept 1-D Linear Arrays for 3-D DCE-US. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:681-692. [PMID: 37067961 DOI: 10.1109/tuffc.2023.3268009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Dynamic contrast-enhanced ultrasound imaging (DCE-US) may be used to characterize tumor vascular perfusion using metrics derived from time-amplitude curves (TACs). The 3-D DCE-US enables generation of 3-D parametric maps of TAC metrics that may inform on how perfusion varies across the entire tumor. The aim of this work was to understand the effect of low temporal sampling (i.e., < 1 Hz) typical of 3-D imaging using a swept 1-D array transducer on the evaluation of TAC metrics and the effect of transducer motion in combination with flow on 3-D parametric maps generated using both plane wave imaging (PWI) (seven angles) and focused imaging (FI). Correlation maps were introduced to evaluate the spatial blurring of TAC metrics. A research ultrasound scanner and a pulse-inversion algorithm were used to obtain DCE-US. The 2-D (frame rate 10 Hz) and 3-D (volume rate 0.4 Hz) images were acquired of a simple wall-less vessel phantom (flow phantom) and a cartridge phantom. Volumetric imaging provided similar TACs to that of the higher 2-D sampling rate. Varying sweep speed and acceleration/deceleration had little influence on the 3-D TAC compared to 2-D for both FI and PWI. Sweeping motion and limited temporal sampling (0.4 Hz) did not change the spatial correlation of TAC metrics measured using FI, whereas a small increase in correlation across the cartridge phantom was observed for PWI. This was attributed to grating lobe artifacts, broad beam spatial blurring, and incoherent compounding caused by motion. Increased correlation will reduce the spatial resolution with which inhomogeneity of vascular perfusion can be mapped supporting the choice of FI for DCE-US.
Collapse
|
4
|
Moody CT, Durham PG, Dayton PA, Brudno Y. Loading Intracranial Drug-Eluting Reservoirs Across the Blood-Brain Barrier With Focused Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1679-1685. [PMID: 37120330 PMCID: PMC10192093 DOI: 10.1016/j.ultrasmedbio.2023.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVE Efficient, sustained and long-term delivery of therapeutics to the brain remains an important challenge to treatment of diseases such as brain cancer, stroke and neurodegenerative disease. Focused ultrasound can assist movement of drugs into the brain, but frequent and long-term use has remained impractical. Single-use intracranial drug-eluting depots show promise but are limited for the treatment of chronic diseases as they cannot be refilled non-invasively. Refillable drug-eluting depots could serve as a long-term solution, but refilling is hindered by the blood-brain barrier (BBB), which prevents drug refills from accessing the brain. In this article, we describe how focused ultrasound enables non-invasive loading of intracranial drug depots in mice. METHODS Female CD-1 mice (n = 6) were intracranially injected with click-reactive and fluorescent molecules that are capable of anchoring in the brain. After healing, animals were treated with high-intensity focused ultrasound and microbubbles to temporarily increase the permeability of the blood-brain barrier and deliver dibenzocyclooctyne (DBCO)-Cy7. The mice were perfused, and the brains were imaged via ex vivo fluorescence imaging. RESULTS Fluorescence imaging indicated small molecule refills are captured by intracranial depots as long as 4 wk after administration and are retained for up to 4 wk based on fluorescence imaging. Efficient loading was dependent on both focused ultrasound and the presence of refillable depots in the brain as absence of either prevented intracranial loading. CONCLUSION The ability to target and retain small molecules at predetermined intracranial sites with pinpoint accuracy provides opportunities to continuously deliver drugs to the brain over weeks and months without excessive BBB opening and with minimal off-target side effects.
Collapse
Affiliation(s)
- Christopher T. Moody
- Joint Department of Biomedical Engineering. University of North Carolina – Chapel Hill and North Carolina State University – Raleigh. 1840 Entrepreneur Drive. Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
| | - Phillip G Durham
- Joint Department of Biomedical Engineering. University of North Carolina – Chapel Hill and North Carolina State University – Raleigh. 1840 Entrepreneur Drive. Raleigh, NC 27695, USA
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering. University of North Carolina – Chapel Hill and North Carolina State University – Raleigh. 1840 Entrepreneur Drive. Raleigh, NC 27695, USA
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yevgeny Brudno
- Joint Department of Biomedical Engineering. University of North Carolina – Chapel Hill and North Carolina State University – Raleigh. 1840 Entrepreneur Drive. Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
5
|
Anderson CD, Walton CB, Shohet RV. A Comparison of Focused and Unfocused Ultrasound for Microbubble-Mediated Gene Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1785-1800. [PMID: 33812691 PMCID: PMC8169610 DOI: 10.1016/j.ultrasmedbio.2021.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/23/2020] [Accepted: 02/19/2021] [Indexed: 05/05/2023]
Abstract
We compared focused and unfocused ultrasound-targeted microbubble destruction (UTMD) for delivery of reporter plasmids to the liver and heart in mice. Optimal hepatic expression was seen with double-depth targeting at 5 and 13 mm in vivo, incorporating a low pulse repetition frequency and short pulse duration. Reporter expression was similar, but the transfection patterns were distinct, with intense foci of transfection using focused UTMD (F-UTMD). We then compared both approaches for cardiac delivery and found 10-fold stronger levels of reporter expression for F-UTMD and observed small areas of intense luciferase expression in the left ventricle. Non-linear contrast imaging of the liver before and after insonation also showed a substantially greater change in signal intensity for F-UTMD, suggesting distinct cavitation mechanisms for both approaches. Overall, similar levels of hepatic transgene expression were observed, but cardiac-directed F-UTMD was substantially more effective. Focused ultrasound presents a new frontier in UTMD-directed gene therapy.
Collapse
Affiliation(s)
- Cynthia D Anderson
- Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii, USA
| | - Chad B Walton
- University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Ralph V Shohet
- Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii, USA.
| |
Collapse
|
6
|
Park JH, Choi W, Yoon GY, Lee SJ. Deep Learning-Based Super-resolution Ultrasound Speckle Tracking Velocimetry. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:598-609. [PMID: 31917044 DOI: 10.1016/j.ultrasmedbio.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Deep ultrasound localization microscopy (deep-ULM) allows sub-wavelength resolution imaging with deep learning. However, the injection of contrast agents (CAs) in deep-ULM is debatable because of their potential risk. In this study, we propose a deep learning-based super-resolution ultrasound (DL-SRU), which employs the concept of deep-ULM and a convolutional neural network. The network is trained with synthetic tracer images to localize positions of red blood cells (RBCs) and reconstruct vessel geometry at high resolution, even for CA-free ultrasound (US) images. The proposed algorithm is validated by comparing the full width at half-maximum values of the vascular profiles reconstructed by other techniques, such as the standard ULM and the US average intensity under in silico and in vitro conditions. RBC localization by DL-SRU is also compared with that by other localization approaches to validate its performance under in vivo condition, especially for veins in the human lower extremity. Furthermore, a two-frame particle tracking velocimetry (PTV) algorithm is applied to DL-SRU localization for accurate flow velocity measurement. The velocity profile obtained by applying the PTV is compared with a theoretical value under in vitro condition to verify its compatibility with the flow measurement modality. The velocity vectors of individual RBCs are obtained to determine the applicability to in vivo conditions. DL-SRU can achieve high-resolution vessel morphology and flow dynamics in vasculature, mapping 110 super-resolved images per second on a standard PC, regardless of various imaging conditions. As a result, the DL-SRU technique is much more robust in localization compared with previous deep-ULM. In addition, the performance of DL-SRU is nearly the same as that of deep-ULM in rapid computational processing and high measurement accuracy. Thus, DL-SRU might become an effective and useful instrument in clinical practice.
Collapse
Affiliation(s)
- Jun Hong Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Republic of Korea
| | - Woorak Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Republic of Korea
| | - Gun Young Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Republic of Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Republic of Korea.
| |
Collapse
|
7
|
Hwang J, Kang K, Kang J, Nam J, Park S, Yoon J, Choi M. Effect of catheter diameter and injection rate of flush solution on renal contrast-enhanced ultrasonography with perfluorobutane in dogs. Am J Vet Res 2019; 80:825-831. [PMID: 31449446 DOI: 10.2460/ajvr.80.9.825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess effects of catheter diameter and injection rate of flush solution (saline [0.9% NaCl] solution) on renal contrast-enhanced ultrasonography (CEUS) with perfluorobutane in dogs. ANIMALS 5 healthy Beagles. PROCEDURES CEUS of the kidneys was performed by IV injection of contrast medium (0.0125 mL/kg) followed by injection of 5 mL of saline solution at rates of 1, 3, and 5 mL/s through a 20-gauge or 24-gauge catheter; thus, CEUS was repeated 3 times for each catheter diameter. Time-intensity curves were created for regions of interest drawn in the renal cortex and medulla. Repeatability was determined by calculating the coefficient of variation (CV). Statistical analysis was used to assess whether perfusion variables or CV of the perfusion variables was associated with catheter diameter or injection rate. RESULTS Perfusion variables did not differ significantly between catheter diameters. Time to peak enhancement (TTP) in the renal cortex was affected by injection rate, and there were significantly lower values for TTP at higher injection rates. The CEUS variables with the lowest CVs among injection rates were TTP for the renal cortex; the CV for TTP of the renal cortex was the lowest at an injection rate of 5 mL/s. CONCLUSIONS AND CLINICAL RELEVANCE Use of a 24-gauge catheter did not alter CEUS with perfluorobutane; therefore, such catheters could be used for CEUS of the kidneys of small dogs. Moreover, a rate of 5 mL/s is recommended for injection of flush solution to obtain greater accuracy for renal CEUS in Beagles.
Collapse
|
8
|
Wang D, Cloutier G, Fan Y, Hou Y, Su Z, Su Q, Wan M. Automatic Respiratory Gating Hepatic DCEUS-based Dual-phase Multi-parametric Functional Perfusion Imaging using a Derivative Principal Component Analysis. Am J Cancer Res 2019; 9:6143-6156. [PMID: 31534542 PMCID: PMC6735512 DOI: 10.7150/thno.37284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose: Angiogenesis in liver cancers can be characterized by hepatic functional perfusion imaging (FPI) on the basis of dynamic contrast-enhanced ultrasound (DCEUS). However, accuracy is limited by breathing motion which results in out-of-plane image artifacts. Current hepatic FPI studies do not correct for these artifacts and lack the evaluation of correction accuracy. Thus, a hepatic DCEUS-based dual-phase multi-parametric FPI (DM-FPI) scheme using a derivative principal component analysis (PCA) respiratory gating is proposed to overcome these limitations. Materials and Methods: By considering severe 3D out-of-plane respiratory motions, the proposed scheme's accuracy was verified with in vitro DCEUS experiments in a flow model mimicking a hepatic vein. The feasibility was further demonstrated by considering in vivo DCEUS measurements in normal rabbit livers, and hepatic cavernous hemangioma and hepatocellular carcinoma in patients. After respiratory kinetics was extracted through PCA of DCEUS sequences under free-breathing condition, dual-phase respiratory gating microbubble kinetics was identified by using a derivative PCA zero-crossing dual-phase detection, respectively. Six dual-phase hemodynamic parameters were estimated from the dual-phase microbubble kinetics and DM-FPI was then reconstructed via color-coding to quantify 2.5D angiogenic hemodynamic distribution for live tumors. Results: Compared with no respiratory gating, the mean square error of respiratory gating DM-FPI decreased by 1893.9 ± 965.4 (p < 0.05), and mean noise coefficients decreased by 17.5 ± 7.1 (p < 0.05), whereas correlation coefficients improved by 0.4 ± 0.2 (p < 0.01). DM-FPI observably removed severe respiratory motion artifacts on PFI and markedly enhanced the accuracy and robustness both in vitro and in vivo. Conclusions: DM-FPI precisely characterized and distinguished the heterogeneous angiogenic hemodynamics about perfusion volume, blood flow and flow rate within two anatomical sections in the normal liver, and in benign and malignant hepatic tumors. DCEUS-based DM-FPI scheme might be a useful tool to help clinicians diagnose and provide suitable therapies for liver tumors.
Collapse
|
9
|
Nyankima AG, Kasoji S, Cianciolo R, Dayton PA, Chang EH. Histological and blood chemistry examination of the rodent kidney after exposure to flash-replenishment ultrasound contrast imaging. ULTRASONICS 2019; 98:1-6. [PMID: 31121515 PMCID: PMC6710155 DOI: 10.1016/j.ultras.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/28/2019] [Accepted: 05/09/2019] [Indexed: 05/12/2023]
Abstract
The purpose of this work is to investigate whether imaging sequences of flash-replenishment contrast enhanced ultrasound (CEUS) of the kidney result in chronic or acute bioeffects. Kidneys of female Fischer 344 rats were imaged using the flash-replenishment technique. Animals were separated into four groups (N = 31). Imaging was conducted with a 4C1 probe, driven by an Acuson Sequoia system with Definity microbubbles as the ultrasound contrast agent. During the flash phase of the imaging sequence, one kidney in each animal was exposed to either a mechanical index (MI) of 1.0 or 1.9. For each MI, half of the animals were sacrificed shortly after imaging (4 h) or after 2 weeks. A blinded veterinary nephropathologist reviewed the histopathology of both the imaged and control (non-imaged) kidney. Blood urea nitrogen (BUN) was measured for each animal prior to imaging and at the time of necropsy. Histopathology assessments in both the 1.0 and 1.9 MI groups revealed no signs of hemorrhage at either the 4-h or 2-week time point. BUN showed minor but statistically significant elevations in both the 1.0 and 1.9 MI groups, but no significant difference was present at the 2-week time point in the 1.0 MI group. All BUN levels (at both time points) remained in the normal range. In conclusion, CEUS with flash-replenishment imaging sequences did not result in kidney bioeffects observable with histology at early or late time points. Increases in BUN levels were observed after imaging, but were minimized when using a moderate MI (1.0).
Collapse
Affiliation(s)
- A Gloria Nyankima
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Sandeep Kasoji
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Rachel Cianciolo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Emily H Chang
- UNC Kidney Center and Division of Nephrology & Hypertension, University of North Carolina Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Newsome IG, Kierski TM, Dayton PA. Assessment of the Superharmonic Response of Microbubble Contrast Agents for Acoustic Angiography as a Function of Microbubble Parameters. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2515-2524. [PMID: 31174922 PMCID: PMC7202402 DOI: 10.1016/j.ultrasmedbio.2019.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 05/07/2023]
Abstract
Acoustic angiography is a superharmonic contrast-enhanced ultrasound imaging technique that enables 3-D high-resolution microvascular visualization. This technique utilizes a dual-frequency imaging strategy, transmitting at a low frequency and receiving at a higher frequency, to detect high-frequency contrast agent signatures and separate them from tissue background. Prior studies have illustrated differences in microbubble scatter dependent on microbubble size and composition; however, most previously reported data have utilized a relatively narrow frequency bandwidth centered around the excitation frequency. To date, a comprehensive study of isolated microbubble superharmonic responses with a broadband dual-frequency system has not been performed. Here, the superharmonic signal production of 14 contrast agents with various gas cores, shell compositions, and bubble diameters at mechanical indices of 0.2 to 1.2 was evaluated using a transmit 4 MHz, receive 25 MHz configuration. Results indicate that perfluorocarbon cores or lipid shells with 18- or 20-carbon acyl chains produce more superharmonic signal than sulfur hexafluoride cores or lipid shells with 16-carbon acyl chains, respectively. As microbubble diameter increases from 1 to 4 µm, superharmonic generation decreases. In a comparison of two clinical agents, Definity and Optison, and one preclinical agent, Micromarker, Optison produced the least superharmonic signal. Overall, this work suggests that microbubbles around 1 μm in diameter with perfluorocarbon cores and longer-chained lipid shells perform best for superharmonic imaging at 4 MHz. Studies have found that microbubble superharmonic response follows trends different from those described in prior studies using a narrower frequency bandwidth centered around the excitation frequency. Future work will apply these results in vivo to optimize the sensitivity of acoustic angiography.
Collapse
Affiliation(s)
- Isabel G Newsome
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Thomas M Kierski
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|
11
|
Lawrence DJ, Huda K, Bayer CL. Longitudinal characterization of local perfusion of the rat placenta using contrast-enhanced ultrasound imaging. Interface Focus 2019; 9:20190024. [PMID: 31485312 DOI: 10.1098/rsfs.2019.0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2019] [Indexed: 01/04/2023] Open
Abstract
The placenta performs many physiological functions critical for development. Insufficient placental perfusion, due to improper vascular remodelling, has been linked to many pregnancy-related diseases. To study longitudinal in vivo placental perfusion, we have implemented a pixel-wise time-intensity curve (TIC) analysis of contrast-enhanced ultrasound (CEUS) images. CEUS images were acquired of pregnant Sprague Dawley rats after bolus injections of gas-filled microbubble contrast agents. Conventionally, perfusion can be quantified using a TIC of contrast enhancement in an averaged region of interest. However, the placenta has a complex structure and flow profile, which is insufficiently described using the conventional technique. In this work, we apply curve fitting in each pixel of the CEUS image series in order to quantify haemodynamic parameters in the placenta and surrounding tissue. The methods quantified an increase in mean placental blood volume and relative blood flow from gestational day (GD) 14 to GD18, while the mean transit time of the microbubbles decreased, demonstrating an overall rise in placental perfusion during gestation. The variance of all three parameters increased during gestation, showing that regional differences in perfusion are observable using the pixel-wise TIC approach. Additionally, the high-resolution parametric images show distinct regions of high blood flow developing during late gestation. The developed methods could be applied to assess placental vascular remodelling during the treatment of the pathologies of pregnancy.
Collapse
Affiliation(s)
- Dylan J Lawrence
- Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA 70118, USA
| | - Kristie Huda
- Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA 70118, USA
| | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA 70118, USA
| |
Collapse
|
12
|
Assessment of angiogenesis in rabbit orthotropic liver tumors using three-dimensional dynamic contrast-enhanced ultrasound compared with two-dimensional DCE-US. Jpn J Radiol 2019; 37:701-709. [PMID: 31401722 DOI: 10.1007/s11604-019-00861-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To evaluate quantitative three-dimensional (3D) dynamic contrast-enhanced ultrasound (DCE-US) in the assessment of tumor angiogenesis using an orthotropic liver tumor model. METHODS Nine New Zealand white rabbits with liver orthotropic VX2 tumors were established and imaged by two-dimensional (2D) and 3D DCE-US after SonoVue® bolus injections. The intraclass correlation coefficients of perfusion parameters, including peak intensity (PI), mean transit time, time to peak, and area under the curve, were calculated based on time-intensity curve. The percentage area of microvascular (PAMV) and the expression of vascular endothelial growth factor (VEGF) were both evaluated by immunohistochemical analysis and weighted by the tumor activity area ratio. Correlations between quantitative and histologic parameters were analyzed. RESULTS The reproducibility of 3D DCE-US quantitative parameters was excellent (ICC 0.91-0.99); but only PI showed high reproducibility (ICC 0.97) in 2D. None of the parameters of quantitative 2D DCE-US were significantly correlated with weighted PAMV or VEGF. For 3D DCE-US, there was a positive correlation between PI and weighted PAMV (r = 0.74, P = 0.04) as well as VEGF (r = 0.79, P = 0.02). CONCLUSION Quantitative parameters of 3D DCE-US show feasibility, higher reproducibility and accuracy for the assessment of tumor angiogenesis using an orthotropic liver tumor model compared with 2D DCE-US.
Collapse
|
13
|
Moghimirad E, Bamber J, Harris E. Plane wave versus focused transmissions for contrast enhanced ultrasound imaging: the role of parameter settings and the effects of flow rate on contrast measurements. Phys Med Biol 2019; 64:095003. [PMID: 30917360 PMCID: PMC7655116 DOI: 10.1088/1361-6560/ab13f2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Contrast enhanced ultrasound (CEUS) and dynamic contrast enhanced ultrasound
(DCE-US) can be used to provide information about the vasculature aiding
diagnosis and monitoring of a number of pathologies including cancer. In the
development of a CEUS imaging system, there are many choices to be made, such as
whether to use plane wave (PW) or focused imaging (FI), and the values for
parameters such as transmit frequency, F-number, mechanical index, and number of
compounding angles (for PW imaging). CEUS image contrast may also be dependent
on subject characteristics, e.g. flow speed and vessel orientation. We evaluated
the effect of such choices on vessel contrast for PW and FI in
vitro, using 2D ultrasound imaging. CEUS images were obtained using
a VantageTM (Verasonics Inc.) and a pulse-inversion (PI) algorithm on
a flow phantom. Contrast (C) and contrast reduction (CR) were calculated, where
C was the initial ratio of signal in vessel to signal in background and CR was
its reduction after 200 frames (acquired in 20 s). Two transducer orientations
were used: parallel and perpendicular to the vessel direction. Similar C and CR
was achievable for PW and FI by choosing optimal parameter values. PW imaging
suffered from high frequency grating lobe artefacts, which may lead to degraded
image quality and misinterpretation of data. Flow rate influenced the contrast
based on: (1) false contrast increase due to the bubble motion between the PI
positive and negative pulses (for both PW and FI), and (2) contrast reduction
due to the incoherency caused by bubble motion between the compounding angles
(for PW only). The effects were less pronounced for perpendicular transducer
orientation compared to a parallel one. Although both effects are undesirable,
it may be more straight forward to account for artefacts in FI as it only
suffers from the former effect. In conclusion, if higher frame rate imaging is
not required (a benefit of PW), FI appears to be a better choice of imaging mode
for CEUS, providing greater image quality over PW for similar rates of contrast
reduction.
Collapse
Affiliation(s)
- Elahe Moghimirad
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, United Kingdom
| | | | | |
Collapse
|
14
|
Rojas JD, Dayton PA. In Vivo Molecular Imaging Using Low-Boiling-Point Phase-Change Contrast Agents: A Proof of Concept Study. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:177-191. [PMID: 30318123 DOI: 10.1016/j.ultrasmedbio.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Sub-micron phase-change contrast agents (PCCAs) have been proposed as a tool for ultrasound molecular imaging based on their potential to extravasate and target extravascular markers and also because of the potential to image these contrast agents with a high contrast-to-tissue ratio. We compare in vivo ultrasound molecular imaging with targeted low-boiling-point PCCAs and targeted microbubble contrast agents. Both agents were targeted to the intravascular (endothelial) integrin αvß3via a cyclic RGD peptide (cyclo-Arg-Gly-Asp-D-Tyr-Cys) mechanism and imaged in vivo in a rodent fibrosarcoma model, which exhibits angiogenic microvasculature. Signal intensity was measured using two different techniques, conventional contrast-specific imaging (amplitude/phase modulation) and a droplet vaporization imaging sequence, which detects the unique signature of vaporizing PCCAs. Data indicate that PCCA-specific imaging is more sensitive to small numbers of bound agents than conventional contrast imaging. However, data also revealed that contrast from targeted microbubbles was greater than that provided by PCCAs. Both control and targeted PCCAs were observed to be retained in tissue post-vaporization, which was expected for targeted agents but not expected for control agents. The exact mechanism underlying this observation remains unknown.
Collapse
Affiliation(s)
- Juan D Rojas
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|
15
|
Espindola D, Lin F, Soulioti DE, Dayton PA, Pinton GF. Adaptive Multifocus Beamforming for Contrast-Enhanced-Super-Resolution Ultrasound Imaging in Deep Tissue. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2255-2263. [PMID: 30136938 DOI: 10.1109/tuffc.2018.2865903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Contrast-enhanced-super-resolution ultrasound imaging, also referred to as ultrasound localization microscopy, can resolve vessels that are smaller than the diffraction limit and has recently been able to generate super-resolved vascular images of shallow in vivo structures in small animals. To fully translate this technology to the clinic, it is advantageous to be able to detect microbubbles at deeper locations in tissue while maintaining a short acquisition time. Current implementations of this imaging method rely on plane-wave imaging. This method has the advantage of maximizing the frame rate, which is important due to the large amount of frames required for super-resolution processing. However, the wide planar beam used to illuminate the field of view produces poor contrast and low sensitivity bubble detection. Here, we propose an "adaptive multifocus" sequence, a new ultrasound imaging sequence that combines the high frame rate feature of a plane wave with the increased bubble detection sensitivity of a focused beam. This sequence simultaneously sonicates two or more foci with a single emission, hence retaining a high frame rate, yet achieving improved sensitivity to microbubbles. In the limit of one target, the beam reduces to a conventional focused transmission; and for an infinite number of targets, it converges to plane-wave imaging. Numerical simulations, using the full-wave code, are performed to compare the point spread function of the proposed sequence to that generated by the plane-wave emission. Our numerical results predict an improvement of up to 15 dB in the signal-to-noise ratio. Ex vivo experiments of a tissue-embedded microtube phantom are used to generate super-resolved images and to compare the adaptive beamforming approach to plane-wave imaging. These experimental results show that the adaptive multifocus sequence successfully detects 744 microbubble events at 60 mm when they are undetectable by the plane-wave sequence under the same imaging conditions. At a shallower depth of 44 mm, the proposed adaptive multifocus method detects 6.9 times more bubbles than plane-wave imaging (1763 versus 257 bubble events).
Collapse
|
16
|
Li W, Quan YY, Li Y, Lu L, Cui M. Monitoring of tumor vascular normalization: the key points from basic research to clinical application. Cancer Manag Res 2018; 10:4163-4172. [PMID: 30323672 PMCID: PMC6175544 DOI: 10.2147/cmar.s174712] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumor vascular normalization alleviates hypoxia in the tumor microenvironment, reduces the degree of malignancy, and increases the efficacy of traditional therapy. However, the time window for vascular normalization is narrow; therefore, how to determine the initial and final points of the time window accurately is a key factor in combination therapy. At present, the gold standard for detecting the normalization of tumor blood vessels is histological staining, including tumor perfusion, microvessel density (MVD), vascular morphology, and permeability. However, this detection method is almost unrepeatable in the same individual and does not dynamically monitor the trend of the time window; therefore, finding a relatively simple and specific monitoring index has important clinical significance. Imaging has long been used to assess changes in tumor blood vessels and tumor changes caused by the oxygen environment in clinical practice; some preclinical and clinical research studies demonstrate the feasibility to assess vascular changes, and some new methods were in preclinical research. In this review, we update the most recent insights of evaluating tumor vascular normalization.
Collapse
Affiliation(s)
- Wei Li
- Department of General Surgery, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China,
| | - Ying-Yao Quan
- Department of Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China
| | - Yong Li
- Department of Intervention, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China,
| | - Ligong Lu
- Department of Intervention, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China,
| | - Min Cui
- Department of General Surgery, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China,
| |
Collapse
|
17
|
Liu DJX, Hesta M, Stock E, Bogaerts E, Broeckx BJG, Saunders JH, Vanderperren K. Renal perfusion parameters measured by contrast-enhanced ultrasound in healthy dogs demonstrate a wide range of variability in the long-term. Vet Radiol Ultrasound 2018; 60:201-209. [PMID: 30276919 DOI: 10.1111/vru.12690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/02/2018] [Accepted: 08/08/2018] [Indexed: 01/20/2023] Open
Abstract
Contrast-enhanced ultrasound may be helpful for detecting early renal microvascular damage and dysfunction in dogs. However, before this noninvasive imaging method can be tested as an early-stage screening tool in clinical patients, an improved understanding of long-term variation in healthy animals is needed. In this prospective, secondary, longitudinal, serial measurements study, variability of contrast-enhanced ultrasound renal perfusion parameters was described for eight healthy dogs, using seven time points and a period of 83 weeks. Dogs were sedated with butorphanol (0.4 mg/kg), and contrast-enhanced ultrasound of each kidney was performed after an intravenous bolus injection of a microbubble contrast agent (0.04 mL/kg). Time-intensity curves were created from regions-of-interest drawn in the renal cortex and medulla. Intensity-related parameters representing blood volume and time-related parameters representing blood velocity were determined. A random-effects model using restricted maximum likelihood was used to estimate variance components. Within-dog coefficient of variation was defined as the ratio of the standard deviation over the mean. Time-related parameters such as time-to-peak, rise and fall time had lowest within-dog variability. Intensity-related parameters such as peak enhancement, wash-in and wash-out area under the curve, total area under the curve, and wash-in and washout rates had high within-dog variability (coefficient of variation > 45%). Authors therefore recommend the use of time-related parameters for future studies of renal perfusion. Within-dog variability for bilateral kidney measurements was extremely low, therefore contrast-enhanced ultrasound may be particularly useful for detecting unilateral changes in renal perfusion. Future studies are needed to compare contrast-enhanced ultrasound findings in healthy dogs versus dogs with renal disease.
Collapse
Affiliation(s)
- Daisy J X Liu
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Myriam Hesta
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Emmelie Stock
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Evelien Bogaerts
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Bart J G Broeckx
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Jimmy H Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Katrien Vanderperren
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
18
|
Cao J, Dong Y, Mao F, Wang W. Dynamic Three-Dimensional Contrast-Enhanced Ultrasound to Predict Therapeutic Response of Radiofrequency Ablation in Hepatocellular Carcinoma: Preliminary Findings. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6469703. [PMID: 30225261 PMCID: PMC6129360 DOI: 10.1155/2018/6469703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS To investigate the value of dynamic three-dimensional contrast-enhanced ultrasound (3D-CEUS) in the assessment of therapeutic response of hepatocellular carcinoma (HCC) treated with radiofrequency ablation (RFA). METHODS Forty-two patients (31 men and 11 women; mean age (52.1 ± 13.1 years)) with 42 clinical diagnosed HCC lesions (size range 14-48 mm; mean size 28.4 ± 9.9 mm) treated by RFA were included. All patients underwent two-dimensional contrast-enhanced ultrasound (2D-CEUS) and 3D-CEUS 1 month after treatment. Two radiologists assessed the absence (complete response, CR) or presence (residual tumor, RT) of any arterially hyperenhancing nodules within or along the margin of the treated HCC lesions. Complete response on magnetic resonance (MR) imaging acted as standard of reference (SOR). RESULTS After RFA treatment, 3D-CEUS was successfully conducted in 34 HCC lesions. CR was observed on both 2D-CEUS and 3D-CEUS in 25/42 (59.5%) HCC and RT in 6/42 (14.3%) HCC lesions. In 3/42 (7.1%) HCC lesion, RT was documented by SOR and 3D-CEUS, but it was not appreciable at 2D-CEUS. In 3/42 (7.1%) HCC lesion, the presence of peripheral RT was suspected by both 2D-CEUS and 3D-CEUS, but it was not confirmed by SOR. No statistically significant difference between 2D-CEUS and 3D-CEUS in depicting either CR or RT was found (P = 0.25). Combined with dynamic 3D-CEUS, the diagnostic accuracy was improved from 85.7% to 92.9%. CONCLUSIONS 3D-CEUS might be helpful in better diagnostic performance in the assessment of therapeutic response of HCC treated after RFA.
Collapse
Affiliation(s)
- Jiaying Cao
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Feng Mao
- Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Wenping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| |
Collapse
|
19
|
Rojas JD, Papadopoulou V, Czernuszewicz TJ, Rajamahendiran RM, Chytil A, Chiang YC, Chong DC, Bautch VL, Rathmell WK, Aylward S, Gessner RC, Dayton PA. Ultrasound Measurement of Vascular Density to Evaluate Response to Anti-Angiogenic Therapy in Renal Cell Carcinoma. IEEE Trans Biomed Eng 2018; 66:873-880. [PMID: 30059292 DOI: 10.1109/tbme.2018.2860932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Functional and molecular changes often precede gross anatomical changes, so early assessment of a tumor's functional and molecular response to therapy can help reduce a patient's exposure to the side effects of ineffective chemotherapeutics or other treatment strategies. OBJECTIVE Our intent was to test the hypothesis that an ultrasound microvascular imaging approach might provide indications of response to therapy prior to assessment of tumor size. METHODS Mice bearing clear-cell renal cell carcinoma xenograft tumors were treated with antiangiogenic and Notch inhibition therapies. An ultrasound measurement of microvascular density was used to serially track the tumor response to therapy. RESULTS Data indicated that ultrasound-derived microvascular density can indicate response to therapy a week prior to changes in tumor volume and is strongly correlated with physiological characteristics of the tumors as measured by histology ([Formula: see text]). Furthermore, data demonstrated that ultrasound measurements of vascular density can determine response to therapy and classify between-treatment groups with high sensitivity and specificity. CONCLUSION/SIGNIFICANCE Results suggests that future applications utilizing ultrasound imaging to monitor tumor response to therapy may be able to provide earlier insight into tumor behavior from metrics of microvascular density rather than anatomical tumor size measurements.
Collapse
|
20
|
Ennulat D, Ringenberg M, Frazier KS. Toxicologic Pathology Forum Opinion Paper*: Recommendations for a Tiered Approach to Nonclinical Mechanistic Nephrotoxicity Evaluation. Toxicol Pathol 2018; 46:636-646. [DOI: 10.1177/0192623318788302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nephrotoxicity is one of the more common causes of attrition in nonclinical drug development. Like most tissues, the kidney has a limited number of ways of responding to toxicological insults from diverse mechanistic pathways, which can limit the ability to determine mechanisms of renal injury using the assays routinely performed in preclinical toxicologic studies. In situations where the renal injury is unusual in morphology or if a therapeutic margin is low, additional investigative techniques may be needed to identify a potential mechanism of toxicity in order to inform clinical risk assessment or establish human relevance and translatability of the toxicity. While routine microscopic evaluation can suggest a specific pathogenesis, understanding the mechanism of renal injury often requires additional hypothesis-driven investigations and specialized techniques to obtain the data necessary to identify a nephrotoxic mechanism. Nonclinical mechanistic investigations can be resource-intensive and often yield limited new information. Although there are multiple avenues to investigate renal toxicity, no single mechanistic study or prescriptive battery of tests will identify the pathophysiologic basis for every potential mechanism of renal injury. To aid the nonclinical investigator, we outline a tiered approach for prioritizing investigations to provide a rational and linear road map for the exploration of mechanisms of drug-induced kidney injury. [Box: see text]
Collapse
|
21
|
Czernuszewicz TJ, Papadopoulou V, Rojas JD, Rajamahendiran RM, Perdomo J, Butler J, Harlacher M, O’Connell G, Zukić D, Aylward SR, Dayton PA, Gessner RC. A new preclinical ultrasound platform for widefield 3D imaging of rodents. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:075107. [PMID: 30068108 PMCID: PMC6045495 DOI: 10.1063/1.5026430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Noninvasive in vivo imaging technologies enable researchers and clinicians to detect the presence of disease and longitudinally study its progression. By revealing anatomical, functional, or molecular changes, imaging tools can provide a near real-time assessment of important biological events. At the preclinical research level, imaging plays an important role by allowing disease mechanisms and potential therapies to be evaluated noninvasively. Because functional and molecular changes often precede gross anatomical changes, there has been a significant amount of research exploring the ability of different imaging modalities to track these aspects of various diseases. Herein, we present a novel robotic preclinical contrast-enhanced ultrasound system and demonstrate its use in evaluating tumors in a rodent model. By leveraging recent advances in ultrasound, this system favorably compares with other modalities, as it can perform anatomical, functional, and molecular imaging and is cost-effective, portable, and high throughput, without using ionizing radiation. Furthermore, this system circumvents many of the limitations of conventional preclinical ultrasound systems, including a limited field-of-view, low throughput, and large user variability.
Collapse
Affiliation(s)
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | - Juan D. Rojas
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | | | - Jonathan Perdomo
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
| | - James Butler
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
| | - Max Harlacher
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
| | - Graeme O’Connell
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
| | - Dženan Zukić
- Kitware, Inc., Carrboro, North Carolina 27510, USA
| | | | - Paul A. Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | - Ryan C. Gessner
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
- Author to whom correspondence should be addressed: . Current address: First Flight Venture Center, 2 Davis Dr., Research Triangle Park, NC 27709-3169. Telephone: 844-766-6865 x707
| |
Collapse
|
22
|
Chong WK, Papadopoulou V, Dayton PA. Imaging with ultrasound contrast agents: current status and future. Abdom Radiol (NY) 2018; 43:762-772. [PMID: 29508011 DOI: 10.1007/s00261-018-1516-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microbubble ultrasound contrast agents (UCAs) were recently approved by the Food and Drug administration for non-cardiac imaging. The physical principles of UCAs, methods of administration, dosage, adverse effects, and imaging techniques both current and future are described. UCAs consist of microbubbles in suspension which strongly interact with the ultrasound beam and are readily detectable by ultrasound imaging systems. They are confined to the blood pool when administered intravenously, unlike iodinated and gadolinium contrast agents. UCAs have a proven safety record based on over two decades of use, during which they have been used in echocardiography in the U.S. and for non-cardiac imaging in the rest of the world. Adverse effects are less common with UCAs than CT/MR contrast agents. Compared to CT and MR, contrast-enhanced ultrasound has the advantages of real-time imaging, portability, and reduced susceptibility to metal and motion artifact. UCAs are not nephrotoxic and can be used in renal failure. High acoustic amplitudes can cause microbubbles to fragment in a manner that can result in short-term increases in capillary permeability or capillary rupture. These bioeffects can be beneficial and have been used to enhance drug delivery under appropriate conditions. Imaging with a mechanical index of < 0.4 preserves the microbubbles and is not typically associated with substantial bioeffects. Molecularly targeted ultrasound contrast agents are created by conjugating the microbubble shell with a peptide, antibody, or other ligand designed to target an endothelial biomarker associated with tumor angiogenesis or inflammation. These microbubbles then accumulate in the microvasculature at target sites where they can be imaged. Ultrasound contrast agents are a valuable addition to the diagnostic imaging toolkit. They will facilitate cross-sectional abdominal imaging in situations where contrast-enhanced CT and MR are contraindicated or impractical.
Collapse
Affiliation(s)
- Wui K Chong
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Unit 1473 | FCT15.5092, 1400 Pressler Street, Houston, TX, 77030, USA.
| | - Virginie Papadopoulou
- UNC-NC State Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Paul A Dayton
- UNC Biomedical Research Imaging Center, Chapel Hill, NC, 27599, USA
- UNC-NC State Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| |
Collapse
|
23
|
Dietrich CF, Averkiou M, Nielsen MB, Barr RG, Burns PN, Calliada F, Cantisani V, Choi B, Chammas MC, Clevert DA, Claudon M, Correas JM, Cui XW, Cosgrove D, D'Onofrio M, Dong Y, Eisenbrey J, Fontanilla T, Gilja OH, Ignee A, Jenssen C, Kono Y, Kudo M, Lassau N, Lyshchik A, Franca Meloni M, Moriyasu F, Nolsøe C, Piscaglia F, Radzina M, Saftoiu A, Sidhu PS, Sporea I, Schreiber-Dietrich D, Sirlin CB, Stanczak M, Weskott HP, Wilson SR, Willmann JK, Kim TK, Jang HJ, Vezeridis A, Westerway S. How to perform Contrast-Enhanced Ultrasound (CEUS). Ultrasound Int Open 2018; 4:E2-E15. [PMID: 29423461 PMCID: PMC5802984 DOI: 10.1055/s-0043-123931] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Abstract
"How to perform contrast-enhanced ultrasound (CEUS)" provides general advice on the use of ultrasound contrast agents (UCAs) for clinical decision-making and reviews technical parameters for optimal CEUS performance. CEUS techniques vary between centers, therefore, experts from EFSUMB, WFUMB and from the CEUS LI-RADS working group created a discussion forum to standardize the CEUS examination technique according to published evidence and best personal experience. The goal is to standardise the use and administration of UCAs to facilitate correct diagnoses and ultimately to improve the management and outcomes of patients.
Collapse
Affiliation(s)
- Christoph F. Dietrich
- Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany and Ultrasound Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | - Richard G. Barr
- Radiology, Northeastern Ohio Medical University, Rootstown, United States
| | - Peter N. Burns
- Dept Medical Biophysics, University of Toronto. Sunnybrook Research Institute, Toronto, Canada
| | - Fabrizio Calliada
- Policlinico San Matteo, University of Pavia, Department of Radiology, Pavia, Italy
| | - Vito Cantisani
- Department of Radiology, "Sapienza" University of Rome, ROME, Italy
| | - Byung Choi
- Department of Radiology, Chung-Ang University Hosptial, Seoul, Korea (the Republic of)
| | - Maria C. Chammas
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil
| | - Dirk-André Clevert
- Department of Clinical Radiology, University of Munich-Grosshadern Campus, Munich, Germany
| | - Michel Claudon
- Department of Pediatric Radiology, Centre Hospitalier Universitaire de Nancy and Université de Lorraine, Vandoeuvre, France
| | - Jean-Michel Correas
- Hopital universitaire Necker-Enfants malades, Service de Radiologie Adultes, Paris, France
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical college, Huahzong University of Science and technology, Wuhan, China
| | - David Cosgrove
- Imperial College London, Imaging, London, United Kingdom of Great Britain and Northern Ireland
| | | | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - JohnR. Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, United States
| | - Teresa Fontanilla
- Radiology, Hospital Universitario Puerta del Hierro Majadahonda, Majadahonda, Spain
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen and Department of Clinical Medicine, University of Bergen, Norway
| | - Andre Ignee
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical college, Huahzong University of Science and technology, Wuhan, China
| | - Christian Jenssen
- Krankenhaus Märkisch Oderland Strausberg/ Wriezen, Klinik für Innere Medizin, Wriezen, Germany
| | - Yuko Kono
- Department of Medicine and Radiology, University of California, San Diego, United States
| | - Masatoshi Kudo
- Kinki Daigaku Igakubu, Department Gastroenterology and Hepatology, Osakasayama, Osaka, Japan
| | - Nathalie Lassau
- Gustave Roussy and IR4MUMR8081. Université Paris-Sud, Université Paris-Saclay, Radiology, Paris, France
| | - Andrej Lyshchik
- Department of Radiology, Thomas Jefferson University, Philadelphia, United States
| | - Maria Franca Meloni
- Radiology Department of Interventional Ultrasound - Casa di cura Igea- Milano, Italy
| | - Fuminori Moriyasu
- Sanno Hospital,International University of Helth and Welfare, Center for Cancer Ablation Therapy, Tokyo, Japan
| | - Christian Nolsøe
- Ultrasound Section, Division of Surgery, Dep. of Gastroenterology, Herlev Hospital Copenhagen Academy for Medical Education and Simulation (CAMES), University of Copenhagen, Denmark
| | - Fabio Piscaglia
- Div. Internal Medicine, Dept of Medical and Surgical Sciences, Bologna, Italy
| | - Maija Radzina
- P.Stradina Clinical University Hospital, Diagnosic Radiology Institute, Riga, Latvia
| | - Adrian Saftoiu
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Paul S. Sidhu
- King's College London, Radiology, London, United Kingdom of Great Britain and Northern Ireland
| | - Ioan Sporea
- Gastroenterology, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | | | - Claude B. Sirlin
- Liver Imaging Grup, University of California, Department of Radiology, San Diego, United States
| | - Maria Stanczak
- Department of Radiology, Thomas Jefferson University, Philadelphia, United States
| | | | - Stephanie R. Wilson
- Department of Radiology, Foothills Medical Centre University of Calgary, Division of Ultrasound, Calgary, Canada
| | | | - Tae Kyoung Kim
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Hyun-Jung Jang
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | | | - Sue Westerway
- Ultrasound, Charles Sturt University NSW Australia, NSW, Australia
| |
Collapse
|
24
|
Rojas JD, Lin F, Chiang YC, Chytil A, Chong DC, Bautch VL, Rathmell WK, Dayton PA. Ultrasound Molecular Imaging of VEGFR-2 in Clear-Cell Renal Cell Carcinoma Tracks Disease Response to Antiangiogenic and Notch-Inhibition Therapy. Theranostics 2018; 8:141-155. [PMID: 29290798 PMCID: PMC5743465 DOI: 10.7150/thno.19658] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Metastatic clear-cell renal cell carcinoma (ccRCC) affects thousands of patients worldwide each year. Antiangiogenic therapy has been shown to have beneficial effects initially, but resistance is eventually developed. Therefore, it is important to accurately track the response of cancer to different therapeutics in order to appropriately adjust the therapy to maximize efficacy. Change in tumor volume is the current gold standard for determining efficacy of treatment. However, functional variations can occur much earlier than measurable volume changes. Contrast-enhanced ultrasound (CEUS) is an important tool for assessing tumor progression and response to therapy, since it can monitor functional changes in the physiology. In this study, we demonstrate how ultrasound molecular imaging (USMI) can accurately track the evolution of the disease and molecular response to treatment. Methods A cohort of NSG (NOD/scid/gamma) mice was injected with ccRCC cells and treated with either the VEGF inhibitor SU (Sunitinib malate, Selleckchem, TX, USA) or the Notch pathway inhibitor GSI (Gamma secretase inhibitor, PF-03084014, Pfizer, New York, NY, USA), or started on SU and later switched to GSI (Switch group). The therapies used in the study focus on disrupting angiogenesis and proper vessel development. SU inhibits signaling of vascular endothelial growth factor (VEGF), which is responsible for the sprouting of new vasculature, and GSI inhibits the Notch pathway, which is a key factor in the correct maturation of newly formed vasculature. Microbubble contrast agents targeted to VEGFR-2 (VEGF Receptor) were delivered as a bolus, and the bound agents were imaged in 3D after the free-flowing contrast was cleared from the body. Additionally, the tumors were harvested at the end of the study and stained for CD31. Results The results show that MI can detect changes in VEGFR-2 expression in the group treated with SU within a week of the start of treatment, while differences in volume only become apparent after the mice have been treated for three weeks. Furthermore, USMI can detect response to therapy in 92% of cases after 1 week of treatment, while the detection rate is only 40% for volume measurements. The amount of targeting for the GSI and Control groups was high throughout the duration of the study, while that of the SU and Switch groups remained low. However, the amount of targeting in the Switch group increased to levels similar to those of the Control group after the treatment was switched to GSI. CD31 staining indicates significantly lower levels of patent vasculature for the SU group compared to the Control and GSI groups. Therefore, the results parallel the expected physiological changes in the tumor, since GSI promotes angiogenesis through the VEGF pathway, while SU inhibits it. Conclusion This study demonstrates that MI can track disease progression and assess functional changes in tumors before changes in volume are apparent, and thus, CEUS can be a valuable tool for assessing response to therapy in disease. Future work is required to determine whether levels of VEGFR-2 targeting correlate with eventual survival outcomes.
Collapse
Affiliation(s)
- Juan D Rojas
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Fanglue Lin
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Yun-Chen Chiang
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina
| | - Anna Chytil
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Diana C Chong
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, North Carolina
| | - Victoria L Bautch
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, North Carolina
- Department of Biology, The University of North Carolina, Chapel Hill, North Carolina
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
25
|
Lin F, Tsuruta JK, Rojas JD, Dayton PA. Optimizing Sensitivity of Ultrasound Contrast-Enhanced Super-Resolution Imaging by Tailoring Size Distribution of Microbubble Contrast Agent. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2488-2493. [PMID: 28668636 PMCID: PMC8330409 DOI: 10.1016/j.ultrasmedbio.2017.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 05/03/2023]
Abstract
Ultrasound contrast-enhanced super-resolution imaging has recently attracted attention because of its extraordinary ability to image vascular features much smaller than the ultrasound diffraction limit. This method requires sensitive detection of separable microbubble events despite a noisy tissue background to indicate the microvasculature, and any approach that could improve the sensitivity of the ultrasound system to individual microbubbles would be highly beneficial. In this study, we evaluated the effect of varying microbubble size on super-resolution imaging sensitivity. Microbubble preparations were size sorted into different mean diameters and then were imaged at equal concentrations. Commercially manufactured Definity and Optison were also imaged for comparison. Both in vitro experiments in phantom vessels and in vivo experiments imaging rat tumors revealed that the sensitivity of contrast-enhanced super-resolution imaging can be improved by using microbubbles with a larger diameter.
Collapse
Affiliation(s)
- Fanglue Lin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - James K Tsuruta
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Juan D Rojas
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|
26
|
Kaffas AE, Sigrist RMS, Fisher G, Bachawal S, Liau J, Wang H, Karanany A, Durot I, Rosenberg J, Hristov D, Willmann JK. Quantitative Three-Dimensional Dynamic Contrast-Enhanced Ultrasound Imaging: First-In-Human Pilot Study in Patients with Liver Metastases. Theranostics 2017; 7:3745-3758. [PMID: 29109773 PMCID: PMC5667345 DOI: 10.7150/thno.20329] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/01/2017] [Indexed: 02/06/2023] Open
Abstract
Purpose: To perform a clinical assessment of quantitative three-dimensional (3D) dynamic contrast-enhanced ultrasound (DCE-US) feasibility and repeatability in patients with liver metastasis, and to evaluate the extent of quantitative perfusion parameter sampling errors in 2D compared to 3D DCE-US imaging. Materials and Methods: Twenty consecutive 3D DCE-US scans of liver metastases were performed in 11 patients (45% women; mean age, 54.5 years; range, 48-60 years; 55% men; mean age, 57.6 years; range, 47-68 years). Pairs of repeated disruption-replenishment and bolus DCE-US images were acquired to determine repeatability of parameters. Disruption-replenishment was carried out by infusing 0.9 mL of microbubbles (Definity; Latheus Medical Imaging) diluted in 35.1 mL of saline over 8 min. Bolus consisted of intravenous injection of 0.2 mL microbubbles. Volumes-of-interest (VOI) and regions-or-interest (ROI) were segmented by two different readers in images to extract 3D and 2D perfusion parameters, respectively. Disruption-replenishment parameters were: relative blood volume (rBV), relative blood flow (rBF). Bolus parameters included: time-to-peak (TP), peak enhancement (PE), area-under-the-curve (AUC), and mean-transit-time (MTT). Results: Clinical feasibility and repeatability of 3D DCE-US using both the destruction-replenishment and bolus technique was demonstrated. The repeatability of 3D measurements between pairs of repeated acquisitions was assessed with the concordance correlation coefficient (CCC), and found to be excellent for all parameters (CCC > 0.80), except for the TP (0.74) and MTT (0.30) parameters. The CCC between readers was found to be excellent (CCC > 0.80) for all parameters except for TP (0.71) and MTT (0.52). There was a large Coefficient of Variation (COV) in intra-tumor measurements for 2D parameters (0.18-0.52). Same-tumor measurements made in 3D were significantly different (P = 0.001) than measurements made in 2D; a percent difference of up to 86% was observed between measurements made in 2D compared to 3D in the same tumor. Conclusions: 3D DCE-US imaging of liver metastases with a matrix array transducer is feasible and repeatable in the clinic. Results support 3D instead of 2D DCE US imaging to minimize sampling errors due to tumor heterogeneity.
Collapse
|
27
|
Shirinifard A, Thiagarajan S, Johnson MD, Calabrese C, Sablauer A. Measuring Absolute Blood Perfusion in Mice Using Dynamic Contrast-Enhanced Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1628-1638. [PMID: 28522149 DOI: 10.1016/j.ultrasmedbio.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 06/07/2023]
Abstract
We investigated the feasibility of estimating absolute tissue blood perfusion using dynamic contrast-enhanced ultrasound (CEUS) imaging in mice. We developed a novel method of microbubble administration and a model-free approach to estimate absolute kidney perfusion, and explored the kidney as a reference organ to estimate absolute perfusion of a neuroblastoma tumor. We performed CEUS on the kidneys of CD1 nude mice using the VisualSonics VEVO 2100 imaging system. We estimated individual kidney blood perfusion using the burst-replenishment (BR) technique. We repeated the kidney imaging on the mice after a week. We performed CEUS imaging of a neuroblastoma mouse xenograft tumor along with its right kidney using two sets of microbubble administration parameters to estimate absolute tumor blood perfusion. We performed statistical tests at a significance level of 0.05. Our estimated absolute kidney perfusion (425 ± 123 mL/min/100 g) was within the range of previously reported values. There was no statistical difference between the estimated absolute kidney blood perfusions from the 2 wk of imaging (paired t-test, p = 0.09). We estimated the absolute blood perfusion in the neuroblastoma tumor to be 16.49 and 16.9 mL/min/100 g for the two sets of microbubble administration parameters (Wilcoxon rank-sum test, p = 0.6). We have established the kidney as a reliable reference organ in which to estimate absolute perfusion of other tissues. Using a neuroblastoma tumor, we have determined the feasibility of estimating absolute blood perfusion in tissues using contrast-enhanced ultrasound imaging.
Collapse
Affiliation(s)
- Abbas Shirinifard
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Suresh Thiagarajan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Melissa D Johnson
- Department of Small Animal Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher Calabrese
- Department of Small Animal Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - András Sablauer
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
28
|
Kasoji SK, Chang EH, Mullin LB, Chong WK, Rathmell WK, Dayton PA. A Pilot Clinical Study in Characterization of Malignant Renal-cell Carcinoma Subtype with Contrast-enhanced Ultrasound. ULTRASONIC IMAGING 2017; 39:126-136. [PMID: 27659687 PMCID: PMC5599099 DOI: 10.1177/0161734616666383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Malignant renal cell carcinoma (RCC) is a diverse set of diseases, which are independently difficult to characterize using conventional MRI and CT protocols due to low temporal resolution to study perfusion characteristics. Because different disease subtypes have different prognoses and involve varying treatment regimens, the ability to determine RCC subtype non-invasively is a clinical need. Contrast-enhanced ultrasound (CEUS) has been assessed as a tool to characterize kidney lesions based on qualitative and quantitative assessment of perfusion patterns, and we hypothesize that this technique might help differentiate disease subtypes. Twelve patients with RCC confirmed pathologically were imaged using contrast-enhanced ultrasound. Time intensity curves were generated and analyzed quantitatively using 10 characteristic metrics. Results showed that peak intensity ( p = 0.001) and time-to-80% on wash-out ( p = 0.004) provided significant differences between clear cell, papillary, and chromophobe RCC subtypes. These results suggest that CEUS may be a feasible test for characterizing RCC subtypes.
Collapse
Affiliation(s)
- Sandeep K. Kasoji
- Joint Dept. of Biomedical Engineering, UNC Chapel Hill/North Carolina State University, 333 S. Columbia St, Chapel Hill, NC 27517 USA/911 Oval Dr, Raleigh, NC 27606 USA
| | - Emily H. Chang
- UNC Kidney Center, 7024 Burnett-Womack CB # 7155, Chapel Hill, NC 27599 USA
| | - Lee B. Mullin
- Joint Dept. of Biomedical Engineering, UNC Chapel Hill/North Carolina State University, 333 S. Columbia St, Chapel Hill, NC 27517 USA/911 Oval Dr, Raleigh, NC 27606 USA
| | - Wui K. Chong
- UNC Hospitals Dept. of Radiology, 101 Manning Dr #2, Chapel Hill, NC 27514 USA
| | - W. Kimryn Rathmell
- UNC Hospitals Dept. of Radiology, 101 Manning Dr #2, Chapel Hill, NC 27514 USA
- Vanderbilt University Hospitals Dept. of Medicine/Hematology & Oncology, 2200 Pierce Ave, Nashville, TN 37232 USA
| | - Paul A. Dayton
- Joint Dept. of Biomedical Engineering, UNC Chapel Hill/North Carolina State University, 333 S. Columbia St, Chapel Hill, NC 27517 USA/911 Oval Dr, Raleigh, NC 27606 USA
- UNC Hospitals Dept. of Radiology, 101 Manning Dr #2, Chapel Hill, NC 27514 USA
- Biomedical Research Imaging Center, 125 Mason Farm Road, Chapel Hill, NC 27599 USA
| |
Collapse
|
29
|
Satterlee AB, Rojas JD, Dayton PA, Huang L. Enhancing Nanoparticle Accumulation and Retention in Desmoplastic Tumors via Vascular Disruption for Internal Radiation Therapy. Am J Cancer Res 2017; 7:253-269. [PMID: 28042332 PMCID: PMC5197062 DOI: 10.7150/thno.16681] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
Aggressive, desmoplastic tumors are notoriously difficult to treat because of their extensive stroma, high interstitial pressure, and resistant tumor microenvironment. We have developed a combination therapy that can significantly slow the growth of large, stroma-rich tumors by causing massive apoptosis in the tumor center while simultaneously increasing nanoparticle uptake through a treatment-induced increase in the accumulation and retention of nanoparticles in the tumor. The vascular disrupting agent Combretastatin A-4 Phosphate (CA4P) is able to increase the accumulation of radiation-containing nanoparticles for internal radiation therapy, and the retention of these delivered radioisotopes is maintained over several days. We use ultrasound to measure the effect of CA4P in live tumor-bearing mice, and we encapsulate the radio-theranostic isotope 177Lutetium as a therapeutic agent as well as a means to measure nanoparticle accumulation and retention in the tumor. This combination therapy induces prolonged apoptosis in the tumor, decreasing both the fibroblast and total cell density and allowing further tumor growth inhibition using a cisplatin-containing nanoparticle.
Collapse
|
30
|
Rojas JD, Dayton PA. Optimizing Acoustic Activation of Phase Change Contrast Agents With the Activation Pressure Matching Method: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:264-272. [PMID: 27740481 PMCID: PMC5270505 DOI: 10.1109/tuffc.2016.2616304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Submicrometer phase-change contrast agents (PCCAs) consist of a liquid perfluorocarbon (PFC) core that can be vaporized by ultrasound (acoustic droplet vaporization) to generate contrast with excellent spatial and temporal control. When these agents, commonly referred to as nanodroplets, are formulated with cores of low boiling-point PFCs such as decafluorobutane and octafluoropropane, they can be activated with low-mechanical-index (MI) imaging pulses for diagnostic applications. Since the utilization of minimum MI is often desirable to avoid unnecessary biological effects, enabling consistent activation of these agents in an acoustic field is a challenge because the energy that must be delivered to achieve the vaporization threshold increases with depth due to attenuation. A novel vaporization approach called activation pressure matching (APM) has been developed to deliver the same pressure throughout a field of view in order to produce uniform nanodroplet vaporization and to limit the amount of energy that is delivered. In this paper, we discuss the application of this method with a Verasonics V1 Research Ultrasound System to modulate the output pressure from an ATL L11-5 transducer. Vaporization-pulse spacing optimization can be used in addition to matching the activation pressure through depth, and we demonstrate the feasibility of this approach both in vivo and in vitro. The use of optimized vaporization parameters increases the amount of time a single bolus of nanodroplets can generate useful contrast and provides consistent image enhancement in vivo. Therefore, APM is a useful technique for maximizing the efficacy of PCCA while minimizing delivered acoustic energy.
Collapse
|
31
|
Lin F, Shelton SE, Espíndola D, Rojas JD, Pinton G, Dayton PA. 3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound. Am J Cancer Res 2017; 7:196-204. [PMID: 28042327 PMCID: PMC5196896 DOI: 10.7150/thno.16899] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/02/2016] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis has been known as a hallmark of solid tumor cancers for decades, yet ultrasound has been limited in its ability to detect the microvascular changes associated with malignancy. Here, we demonstrate the potential of 'ultrasound localization microscopy' applied volumetrically in combination with quantitative analysis of microvascular morphology, as an approach to overcome this limitation. This pilot study demonstrates our ability to image complex microvascular patterns associated with tumor angiogenesis in-vivo at a resolution of tens of microns - substantially better than the diffraction limit of traditional clinical ultrasound, yet using an 8 MHz clinical ultrasound probe. Furthermore, it is observed that data from healthy and tumor-bearing tissue exhibit significant differences in microvascular pattern and density. Results suggests that with continued development of these novel technologies, ultrasound has the potential to detect biomarkers of cancer based on the microvascular 'fingerprint' of malignant angiogenesis rather than through imaging of blood flow dynamics or the tumor mass itself.
Collapse
|
32
|
Lindsey BD, Shelton SE, Martin KH, Ozgun KA, Rojas JD, Foster FS, Dayton PA. High Resolution Ultrasound Superharmonic Perfusion Imaging: In Vivo Feasibility and Quantification of Dynamic Contrast-Enhanced Acoustic Angiography. Ann Biomed Eng 2016; 45:939-948. [PMID: 27832421 DOI: 10.1007/s10439-016-1753-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Sarah E Shelton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Kathryn A Ozgun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Juan D Rojas
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | | | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA. .,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
33
|
Molecular Ultrasound Imaging of Tissue Inflammation Using an Animal Model of Acute Kidney Injury. Mol Imaging Biol 2016; 17:786-92. [PMID: 25905474 DOI: 10.1007/s11307-015-0860-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The objective of this study was to evaluate the use of molecular ultrasound (US) imaging for monitoring the early inflammatory effects following acute kidney injury. PROCEDURES A population of rats underwent 30 min of renal ischemia (acute kidney injury, N = 6) or sham injury (N = 4) using established surgical methods. Animals were divided and molecular US imaging was performed during the bolus injection of a targeted microbubble (MB) contrast agent to either P-selectin or vascular cell adhesion molecule 1 (VCAM-1). Imaging was performed before surgery and 4 and 24 h thereafter. After manual segmentation of renal tissue space, the molecular US signal was calculated as the difference between time-intensity curve data before MB injection and after reaching steady-state US image enhancement. All animals were terminated after the 24 h imaging time point and kidneys excised for immunohistochemical (IHC) analysis. RESULTS Renal inflammation was analyzed using molecular US imaging. While results using the P-selectin and VCAM-1 targeted MBs were comparable, it appears that the former was more sensitive to biomarker expression. All molecular US imaging measures had a positive correlation with IHC findings. CONCLUSIONS Acute kidney injury is a serious disease in need of improved noninvasive methods to help diagnose the extent of injury and monitor the tissue throughout disease progression. Molecular US imaging appears well suited to address this challenge and more research is warranted.
Collapse
|
34
|
Wang H, Lutz AM, Hristov D, Tian L, Willmann JK. Intra-Animal Comparison between Three-dimensional Molecularly Targeted US and Three-dimensional Dynamic Contrast-enhanced US for Early Antiangiogenic Treatment Assessment in Colon Cancer. Radiology 2016; 282:443-452. [PMID: 27490690 DOI: 10.1148/radiol.2016160032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purpose To perform an intra-animal comparison between (a) three-dimensional (3D) molecularly targeted ultrasonography (US) by using clinical-grade vascular endothelial growth factor receptor 2 (VEGFR2)-targeted microbubbles and (b) 3D dynamic contrast material-enhanced (DCE) US by using nontargeted microbubbles for assessment of antiangiogenic treatment effects in a murine model of human colon cancer. Materials and Methods Twenty-three mice with human colon cancer xenografts were randomized to receive either single-dose antiangiogenic treatment (bevacizumab, n = 14) or control treatment (saline, n = 9). At baseline and 24 hours after treatment, animals were imaged with a clinical US system equipped with a clinical matrix array transducer by using the following techniques: (a) molecularly targeted US with VEGFR2-targeted microbubbles, (b) bolus DCE US with nontargeted microbubbles, and (c) destruction-replenishment DCE US with nontargeted microbubbles. VEGFR2-targeted US signal, peak enhancement, area under the time-intensity curve, time to peak, relative blood volume (rBV), relative blood flow, and blood flow velocity were quantified. VEGFR2 expression and percentage area of blood vessels were assessed ex vivo with quantitative immunofluorescence and correlated with corresponding in vivo US parameters. Statistical analysis was performed with Wilcoxon signed rank tests and rank sum tests, as well as Pearson correlation analysis. Results Molecularly targeted US signal with VEGFR2-targeted microbubbles, peak enhancement, and rBV significantly decreased (P ≤ .03) after a single antiangiogenic treatment compared with those in the control group; similarly, ex vivo VEGFR2 expression (P = .03) and percentage area of blood vessels (P = .03) significantly decreased after antiangiogenic treatment. Three-dimensional molecularly targeted US signal correlated well with VEGFR2 expression (r = 0.86, P = .001), and rBV (r = 0.71, P = .01) and relative blood flow (r = 0.78, P = .005) correlated well with percentage area of blood vessels, while other US perfusion parameters did not. Conclusion Three-dimensional molecularly targeted US and destruction-replenishment 3D DCE US provide complementary molecular and functional in vivo imaging information on antiangiogenic treatment effects in human colon cancer xenografts compared with ex vivo reference standards. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Huaijun Wang
- From the Department of Radiology and Molecular Imaging Program at Stanford (H.W., A.M.L., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), School of Medicine, Stanford University, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Amelie M Lutz
- From the Department of Radiology and Molecular Imaging Program at Stanford (H.W., A.M.L., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), School of Medicine, Stanford University, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Dimitre Hristov
- From the Department of Radiology and Molecular Imaging Program at Stanford (H.W., A.M.L., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), School of Medicine, Stanford University, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Lu Tian
- From the Department of Radiology and Molecular Imaging Program at Stanford (H.W., A.M.L., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), School of Medicine, Stanford University, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Jürgen K Willmann
- From the Department of Radiology and Molecular Imaging Program at Stanford (H.W., A.M.L., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), School of Medicine, Stanford University, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| |
Collapse
|
35
|
Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment. Med Biol Eng Comput 2016; 54:967-81. [DOI: 10.1007/s11517-016-1480-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 02/28/2016] [Indexed: 01/19/2023]
|
36
|
Three-dimensional ultrasound molecular imaging of angiogenesis in colon cancer using a clinical matrix array ultrasound transducer. Invest Radiol 2015; 50:322-9. [PMID: 25575176 DOI: 10.1097/rli.0000000000000128] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES We sought to assess the feasibility and reproducibility of 3-dimensional ultrasound molecular imaging (USMI) of vascular endothelial growth factor receptor 2 (VEGFR2) expression in tumor angiogenesis using a clinical matrix array transducer and a clinical grade VEGFR2-targeted contrast agent in a murine model of human colon cancer. MATERIALS AND METHODS Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice with human colon cancer xenografts (n = 33) were imaged with a clinical ultrasound system and transducer (Philips iU22; X6-1) after intravenous injection of either clinical grade VEGFR2-targeted microbubbles or nontargeted control microbubbles. Nineteen mice were scanned twice to assess imaging reproducibility. Fourteen mice were scanned both before and 24 hours after treatment with either bevacizumab (n = 7) or saline only (n = 7). Three-dimensional USMI data sets were retrospectively reconstructed into multiple consecutive 1-mm-thick USMI data sets to simulate 2-dimensional imaging. Vascular VEGFR2 expression was assessed ex vivo using immunofluorescence. RESULTS Three-dimensional USMI was highly reproducible using both VEGFR2-targeted microbubbles and nontargeted control microbubbles (intraclass correlation coefficient, 0.83). The VEGFR2-targeted USMI signal significantly (P = 0.02) decreased by 57% after antiangiogenic treatment compared with the control group, which correlated well with ex vivo VEGFR2 expression on immunofluorescence (ρ = 0.93, P = 0.003). If only central 1-mm tumor planes were analyzed to assess antiangiogenic treatment response, the USMI signal change was significantly (P = 0.006) overestimated by an average of 27% (range, 2%-73%) compared with 3-dimensional USMI. CONCLUSIONS Three-dimensional USMI is feasible and highly reproducible and allows accurate assessment and monitoring of VEGFR2 expression in tumor angiogenesis in a murine model of human colon cancer.
Collapse
|
37
|
Hoyt K, Umphrey H, Lockhart M, Robbin M, Forero-Torres A. Ultrasound imaging of breast tumor perfusion and neovascular morphology. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2292-302. [PMID: 26116159 PMCID: PMC4526459 DOI: 10.1016/j.ultrasmedbio.2015.04.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/17/2015] [Accepted: 04/23/2015] [Indexed: 05/09/2023]
Abstract
A novel image processing strategy is detailed for simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. After normalization and tumor segmentation, a global time-intensity curve describing contrast agent flow was analyzed to derive surrogate measures of tumor perfusion (i.e., peak intensity, time-to-peak intensity, area under the curve, wash-in rate, wash-out rate). A maximum intensity image was generated from these same segmented image sequences, and each vascular component was skeletonized via a thinning algorithm. This skeletonized data set and collection of vessel segments were then investigated to extract parameters related to the neovascular network and physical architecture (i.e., vessel-to-tissue ratio, number of bifurcations, vessel count, average vessel length and tortuosity). An efficient computation of local perfusion parameters was also introduced and operated by averaging time-intensity curve data over each individual neovascular segment. Each skeletonized neovascular segment was then color-coded by these local measures to produce a parametric map detailing spatial properties of tumor perfusion. Longitudinal DCE-US image data sets were collected in six patients diagnosed with invasive breast cancer using a Philips iU22 ultrasound system equipped with a L9-3 transducer and Definity contrast agent. Patients were imaged using US before and after contrast agent dosing at baseline and again at weeks 6, 12, 18 and 24 after treatment started. Preliminary clinical results suggested that breast tumor response to neoadjuvant chemotherapy may be associated with temporal and spatial changes in DCE-US-derived parametric measures of tumor perfusion. Moreover, changes in neovascular morphology parametric measures may also help identify any breast tumor response (or lack thereof) to systemic treatment. Breast cancer management from early detection to therapeutic monitoring is currently undergoing profound changes. Novel imaging techniques that are sensitive to the unique biological conditions of each individual tumor represent valuable tools in the pursuit of personalized medicine.
Collapse
Affiliation(s)
- Kenneth Hoyt
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Heidi Umphrey
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark Lockhart
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michelle Robbin
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andres Forero-Torres
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
38
|
Shelton SE, Lee YZ, Lee M, Cherin E, Foster FS, Aylward SR, Dayton PA. Quantification of Microvascular Tortuosity during Tumor Evolution Using Acoustic Angiography. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1896-904. [PMID: 25858001 PMCID: PMC4778417 DOI: 10.1016/j.ultrasmedbio.2015.02.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 05/03/2023]
Abstract
The recent design of ultra-broadband, multifrequency ultrasound transducers has enabled high-sensitivity, high-resolution contrast imaging, with very efficient suppression of tissue background using a technique called acoustic angiography. Here we perform the first application of acoustic angiography to evolving tumors in mice predisposed to develop mammary carcinoma, with the intent of visualizing and quantifying angiogenesis progression associated with tumor growth. Metrics compared include vascular density and two measures of vessel tortuosity quantified from segmentations of vessels traversing and surrounding 24 tumors and abdominal vessels from control mice. Quantitative morphologic analysis of tumor vessels revealed significantly increased vascular tortuosity abnormalities associated with tumor growth, with the distance metric elevated approximately 14% and the sum of angles metric increased 60% in tumor vessels versus controls. Future applications of this imaging approach may provide clinicians with a new tool in tumor detection, differentiation or evaluation, though with limited depth of penetration using the current configuration.
Collapse
Affiliation(s)
- Sarah E Shelton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Yueh Z Lee
- Department of Neuroradiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mike Lee
- Department of Medical Biophysics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Emmanuel Cherin
- Department of Medical Biophysics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - F Stuart Foster
- Department of Medical Biophysics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
39
|
2-tier in-plane motion correction and out-of-plane motion filtering for contrast-enhanced ultrasound. Invest Radiol 2015; 49:707-19. [PMID: 24901545 DOI: 10.1097/rli.0000000000000074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Contrast-enhanced ultrasound (CEUS) cines of focal liver lesions (FLLs) can be quantitatively analyzed to measure tumor perfusion on a pixel-by-pixel basis for diagnostic indication. However, CEUS cines acquired freehand and during free breathing cause nonuniform in-plane and out-of-plane motion from frame to frame. These motions create fluctuations in the time-intensity curves (TICs), reducing the accuracy of quantitative measurements. Out-of-plane motion cannot be corrected by image registration in 2-dimensional CEUS and degrades the quality of in-plane motion correction (IPMC). A 2-tier IPMC strategy and adaptive out-of-plane motion filter (OPMF) are proposed to provide a stable correction of nonuniform motion to reduce the impact of motion on quantitative analyses. MATERIALS AND METHODS A total of 22 cines of FLLs were imaged with dual B-mode and contrast specific imaging to acquire a 3-minute TIC. B-mode images were analyzed for motion, and the motion correction was applied to both B-mode and contrast images. For IPMC, the main reference frame was automatically selected for each cine, and subreference frames were selected in each respiratory cycle and sequentially registered toward the main reference frame. All other frames were sequentially registered toward the local subreference frame. Four OPMFs were developed and tested: subsample normalized correlation (NC), subsample sum of absolute differences, mean frame NC, and histogram. The frames that were most dissimilar to the OPMF reference frame using 1 of the 4 above criteria in each respiratory cycle were adaptively removed by thresholding against the low-pass filter of the similarity curve. Out-of-plane motion filter was quantitatively evaluated by an out-of-plane motion metric (OPMM) that measured normalized variance in the high-pass filtered TIC within the tumor region-of-interest with low OPMM being the goal. Results for IPMC and OPMF were qualitatively evaluated by 2 blinded observers who ranked the motion in the cines before and after various combinations of motion correction steps. RESULTS Quantitative measurements showed that 2-tier IPMC and OPMF improved imaging stability. With IPMC, the NC B-mode metric increased from 0.504 ± 0.149 to 0.585 ± 0.145 over all cines (P < 0.001). Two-tier IPMC also produced better fits on the contrast-specific TIC than industry standard IPMC techniques did (P < 0.02). In-plane motion correction and OPMF were shown to improve goodness of fit for pixel-by-pixel analysis (P < 0.001). Out-of-plane motion filter reduced variance in the contrast-specific signal as shown by a median decrease of 49.8% in the OPMM. Two-tier IPMC and OPMF were also shown to qualitatively reduce motion. Observers consistently ranked cines with IPMC higher than the same cine before IPMC (P < 0.001) as well as ranked cines with OPMF higher than when they were uncorrected. CONCLUSION The 2-tier sequential IPMC and adaptive OPMF significantly reduced motion in 3-minute CEUS cines of FLLs, thereby overcoming the challenges of drift and irregular breathing motion in long cines. The 2-tier IPMC strategy provided stable motion correction tolerant of out-of-plane motion throughout the cine by sequentially registering subreference frames that bypassed the motion cycles, thereby overcoming the lack of a nearly stationary reference point in long cines. Out-of-plane motion filter reduced apparent motion by adaptively removing frames imaged off-plane from the automatically selected OPMF reference frame, thereby tolerating nonuniform breathing motion. Selection of the best OPMF by minimizing OPMM effectively reduced motion under a wide variety of motion patterns applicable to clinical CEUS. These semiautomated processes only required user input for region-of-interest selection and can improve the accuracy of quantitative perfusion measurements.
Collapse
|
40
|
Wang H, Hristov D, Qin J, Tian L, Willmann JK. Three-dimensional Dynamic Contrast-enhanced US Imaging for Early Antiangiogenic Treatment Assessment in a Mouse Colon Cancer Model. Radiology 2015. [PMID: 26020439 DOI: 10.1148/radiol.2015142824]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To evaluate feasibility and reproducibility of three-dimensional (3D) dynamic contrast material-enhanced (DCE) ultrasonographic (US) imaging by using a clinical matrix array transducer to assess early antiangiogenic treatment effects in human colon cancer xenografts in mice. MATERIALS AND METHODS Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care at Stanford University. Three-dimensional DCE US imaging with two techniques (bolus and destruction-replenishment) was performed in human colon cancer xenografts (n = 38) by using a clinical US system and transducer. Twenty-one mice were imaged twice to assess reproducibility. Seventeen mice were scanned before and 24 hours after either antiangiogenic (n = 9) or saline-only (n = 8) treatment. Data sets of 3D DCE US examinations were retrospectively segmented into consecutive 1-mm imaging planes to simulate two-dimensional (2D) DCE US imaging. Six perfusion parameters (peak enhancement [PE], area under the time-intensity curve [AUC], time to peak [TTP], relative blood volume [rBV], relative blood flow [rBF], and blood flow velocity) were measured on both 3D and 2D data sets. Percent area of blood vessels was quantified ex vivo with immunofluorescence. Statistical analyses were performed with the Wilcoxon rank test by calculating intraclass correlation coefficients and by using Pearson correlation analysis. RESULTS Reproducibility of both 3D DCE US imaging techniques was good to excellent (intraclass correlation coefficient, 0.73-0.86). PE, AUC, rBV, and rBF significantly decreased (P ≤ .04) in antiangiogenic versus saline-treated tumors. rBV (r = 0.74; P = .06) and rBF (r = 0.85; P = .02) correlated with ex vivo percent area of blood vessels, although the statistical significance of rBV was not reached, likely because of small sample size. Overall, 2D DCE-US overestimated and underestimated treatment effects from up to 125-fold to170-fold compared with 3D DCE US imaging. If the central tumor plane was assessed, treatment response was underestimated up to threefold or overestimated up to 57-fold on 2D versus 3D DCE US images. CONCLUSION Three-dimensional DCE US imaging with a clinical matrix array transducer is feasible and reproducible to assess tumor perfusion in human colon cancer xenografts in mice and allows for assessment of early treatment response after antiangiogenic therapy.
Collapse
Affiliation(s)
- Huaijun Wang
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Dimitre Hristov
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Jiale Qin
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Lu Tian
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Jürgen K Willmann
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| |
Collapse
|
41
|
Wang H, Hristov D, Qin J, Tian L, Willmann JK. Three-dimensional Dynamic Contrast-enhanced US Imaging for Early Antiangiogenic Treatment Assessment in a Mouse Colon Cancer Model. Radiology 2015; 277:424-34. [PMID: 26020439 DOI: 10.1148/radiol.2015142824] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To evaluate feasibility and reproducibility of three-dimensional (3D) dynamic contrast material-enhanced (DCE) ultrasonographic (US) imaging by using a clinical matrix array transducer to assess early antiangiogenic treatment effects in human colon cancer xenografts in mice. MATERIALS AND METHODS Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care at Stanford University. Three-dimensional DCE US imaging with two techniques (bolus and destruction-replenishment) was performed in human colon cancer xenografts (n = 38) by using a clinical US system and transducer. Twenty-one mice were imaged twice to assess reproducibility. Seventeen mice were scanned before and 24 hours after either antiangiogenic (n = 9) or saline-only (n = 8) treatment. Data sets of 3D DCE US examinations were retrospectively segmented into consecutive 1-mm imaging planes to simulate two-dimensional (2D) DCE US imaging. Six perfusion parameters (peak enhancement [PE], area under the time-intensity curve [AUC], time to peak [TTP], relative blood volume [rBV], relative blood flow [rBF], and blood flow velocity) were measured on both 3D and 2D data sets. Percent area of blood vessels was quantified ex vivo with immunofluorescence. Statistical analyses were performed with the Wilcoxon rank test by calculating intraclass correlation coefficients and by using Pearson correlation analysis. RESULTS Reproducibility of both 3D DCE US imaging techniques was good to excellent (intraclass correlation coefficient, 0.73-0.86). PE, AUC, rBV, and rBF significantly decreased (P ≤ .04) in antiangiogenic versus saline-treated tumors. rBV (r = 0.74; P = .06) and rBF (r = 0.85; P = .02) correlated with ex vivo percent area of blood vessels, although the statistical significance of rBV was not reached, likely because of small sample size. Overall, 2D DCE-US overestimated and underestimated treatment effects from up to 125-fold to170-fold compared with 3D DCE US imaging. If the central tumor plane was assessed, treatment response was underestimated up to threefold or overestimated up to 57-fold on 2D versus 3D DCE US images. CONCLUSION Three-dimensional DCE US imaging with a clinical matrix array transducer is feasible and reproducible to assess tumor perfusion in human colon cancer xenografts in mice and allows for assessment of early treatment response after antiangiogenic therapy.
Collapse
Affiliation(s)
- Huaijun Wang
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Dimitre Hristov
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Jiale Qin
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Lu Tian
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Jürgen K Willmann
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| |
Collapse
|
42
|
Contrast-enhanced ultrasound identifies reduced overall and regional renal perfusion during global hypoxia in piglets. Invest Radiol 2015; 49:540-6. [PMID: 24637585 DOI: 10.1097/rli.0000000000000053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE It is well known from both clinical experience and animal research that renal hypoxia may lead to temporary or permanent renal failure, the severity being dependent largely on the duration and grade of the hypoxia. The medulla is more susceptible to hypoxic injury than the cortex because approximately 90% of the renal blood flow supplies the cortex. Various methods have been applied to evaluate renal perfusion in both experimental and clinical settings, including magnetic resonance imaging, computed tomography, laser Doppler, and contrast-enhanced ultrasound (CEUS). PURPOSE The aim of this study was to evaluate changes in overall and regional renal perfusion with CEUS in response to global hypoxia. MATERIAL AND METHODS Twelve newborn anesthetized piglets were exposed to general hypoxia with a fraction of inspired oxygen of 8% of 30 minutes duration. Resuscitation was performed with either 100% oxygen (n = 6) or air (21% oxygen) (n = 6) for 30 minutes followed by 7 hours of reoxygenation with air. Before, during, and after hypoxia, the left kidney was examined with CEUS using 0.2 mL IV of SonoVue followed by 2 mL saline flush. Five additional piglets served as controls. The kidney was examined using a 9-MHz linear transducer with low mechanical index (0.21) and pulse inversion contrast program. One region of interest was drawn in the renal cortex and 1 in the medulla to obtain the corresponding time intensity curves (TICs). From these curves, the peak intensity (PI), time to peak (TTP), upslope of the curve, area under the curve, and mean transit time (MTT) were recorded. Also, the renal arteriovenous transit time (AVTT) was registered. The resistance index (RI) was repeatedly measured in the renal artery. Contrast-enhanced ultrasound was repeated at regular intervals until the animals were sacrificed 8 hours after the hypoxic period. RESULTS In the group of 12 piglets subjected to hypoxia, RI increased from 0.69 ± 0.08 at baseline to 0.99 ± 0.09 during hypoxia (P < 0.01), indicating severe general renal vasoconstriction. The AVTT increased from 2.6 ± 0.5 seconds at baseline to 6.7 ± 2.8 seconds during hypoxia (P < 0.001). The PI in the cortex decreased from a mean value of 38.6 ± 6.1 dB at baseline to 30.3 ± 9.7 dB during hypoxia (P < 0.05). In the medulla, only a minor, nonsignificant reduction in PI was observed during hypoxia. In the medulla, TTP and MTT increased from 6.4 ± 1.5 and 9.2 ± 1.7 seconds at baseline to 14.6 ± 8.4 seconds (P < 0.01) and 15.2 ± 5.6 seconds (P < 0.01), respectively, during hypoxia. In the cortex, no statistically significant changes in TTP or MTT were observed during hypoxia. A return to near-baseline values was observed for TTP, PI in both the medulla and cortex, as well as for RI and AVTT within 1 to 3 hours after hypoxia, and they remained relatively constant for the duration of the experiment.Less than 1 hour after the hypoxia, PI both in the cortex and the medulla was significantly higher in the group resuscitated with air than in the group resuscitated with 100% oxygen, 36.0 ± 4.3 versus 27.2 ± 2.2 dB (P < 0.05) and 33.3 ± 8.2 versus 21.1 ± 2.0 dB (P < 0.01), respectively. CONCLUSION Global hypoxia induced changes in overall and regional renal perfusion detectable with CEUS. Cortical and medullary flows were affected differently by hypoxia; a strong increase in medullary TTP and MTT was observed, indicating a reduction in medullary blood flow velocity. In the cortex, a significant reduction in PI was found, probably because of a reduction in cortical blood volume. A faster recovery of both medullary and cortical PI in the group resuscitated with air could indicate that air might be more beneficial for renal perfusion than hyperoxia during resuscitation after renal hypoxia.
Collapse
|
43
|
Tang SC, Clement GT. A computerized tomography system for transcranial ultrasound imaging. PROCEEDINGS OF MEETINGS ON ACOUSTICS. ACOUSTICAL SOCIETY OF AMERICA 2015; 22:020001. [PMID: 25598864 PMCID: PMC4296315 DOI: 10.1121/2.0000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hardware for tomographic imaging presents both challenge and opportunity for simplification when compared with traditional pulse-echo imaging systems. Specifically, point diffraction tomography does not require simultaneous powering of elements, in theory allowing just a single transmit channel and a single receive channel to be coupled with a switching or multiplexing network. In our ongoing work on transcranial imaging, we have developed a 512-channel system designed to transmit and/or receive a high voltage signal from/to arbitrary elements of an imaging array. The overall design follows a hierarchy of modules including a software interface, microcontroller, pulse generator, pulse amplifier, high-voltage power converter, switching mother board, switching daughter board, receiver amplifier, analog-to-digital converter, peak detector, memory, and USB communication. Two pulse amplifiers are included, each capable of producing up to 400Vpp via power MOSFETS. Switching is based around mechanical relays that allow passage of 200V, while still achieving switching times of under 2ms, with an operating frequency ranging from below 100kHz to 10MHz. The system is demonstrated through ex vivo human skulls using 1MHz transducers. The overall system design is applicable to planned human studies in transcranial image acquisition, and may have additional tomographic applications for other materials necessitating a high signal output.
Collapse
Affiliation(s)
- Sai Chun Tang
- Department of Radiology, Harvard Medical School, Boston, MA
| | | |
Collapse
|
44
|
Lin Q, Lv F, Luo Y, Song Q, Xu Q, Su Y, Tang Y, Tang J. Contrast-enhanced ultrasound for evaluation of renal trauma during acute hemorrhagic shock: a canine model. J Med Ultrason (2001) 2014; 42:199-205. [PMID: 26576573 DOI: 10.1007/s10396-014-0601-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/09/2014] [Indexed: 02/03/2023]
Abstract
PURPOSE Contrast-enhanced ultrasound (CEUS) is a highly specific and sensitive method for assessing hemodynamically stable patients with blunt abdominal trauma. We evaluated the efficacy of CEUS in assessing renal trauma in different states of hemodynamic instability or shock. METHODS Hemorrhagic renal lesions reflecting grade III-IV trauma were established in the kidneys of 25 mongrel dogs. Mild, moderate, and severe systemic hypotension was induced by controlled exsanguination. The features of renal trauma in CEUS and contrast-enhanced computed tomography (CECT) were assessed and compared before shock and during shock progression. RESULTS Gross pathology showed that with trauma, the kidneys gradually shrank and became soft, and the active bleeding in the area of the renal trauma gradually reduced and stopped. No significant differences were observed in the trauma detection rates between CEUS and CECT at any stage of shock. During the baseline and mild shock stage, sonograms obtained after intravenous injection of contrast agent showed marked contrast medium extravasation and pooling at the site of active bleeding. With shock progression, the difference in enhancement between trauma areas and the surrounding renal tissue decreased: the trauma areas became indistinct and the abnormal enhancement associated with active bleeding diminished. Further, CEUS enabled visualization of changes in renal perfusion associated with shock progression. Changes in contrast agent arrival time and the time to peaking were observed earliest in the mild shock model. The contrast agent peak intensity reduced, while the washout time increased as shock progressed from moderate to severe. CONCLUSION In our canine model, CEUS was found to be as accurate as CECT in assessing hemorrhagic renal lesions. Thus, CEUS seems a promising tool for monitoring hemodynamic changes and predicting early shock to enable the conservative treatment of severe renal trauma.
Collapse
Affiliation(s)
- Qian Lin
- Department of Ultrasound, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Rd, Beijing, 100853, China
| | - Faqin Lv
- Department of Ultrasound, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Rd, Beijing, 100853, China
| | - Yukun Luo
- Department of Ultrasound, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Rd, Beijing, 100853, China
| | - Qing Song
- Department of Ultrasound, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Rd, Beijing, 100853, China
| | - Qinghua Xu
- Department of Ultrasound, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Rd, Beijing, 100853, China
| | - Yihua Su
- Department of Function, Tumor Hospital of Datong Coal Mine Group Limited Liability Company, 1 Xinsheng Rd, Datong, 037003, Shanxi, China
| | - Yu Tang
- Department of Ultrasound, 62th Hospital of Chinese People's Liberation Army, 3 Yushui Rd, Puer, 665000, Yunnan, China
| | - Jie Tang
- Department of Ultrasound, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Rd, Beijing, 100853, China.
| |
Collapse
|
45
|
Schneider AG, Calzavacca P, Schelleman A, Huynh T, Bailey M, May C, Bellomo R. Contrast-enhanced ultrasound evaluation of renal microcirculation in sheep. Intensive Care Med Exp 2014; 2:33. [PMID: 26266930 PMCID: PMC4513025 DOI: 10.1186/s40635-014-0033-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/16/2014] [Indexed: 12/29/2022] Open
Abstract
Background Contrast-enhanced ultrasonography (CEUS) is a novel imaging modality to estimate microvascular perfusion. We aimed to assess renal cortical microcirculatory changes by CEUS during pharmacologically or mechanically induced modifications of renal blood flow (RBF) in experimental animals. Methods We implanted invasive transit-time Doppler flow probes and a vascular occluder around the renal artery in six Merino sheep. After induction of general anaesthesia, renal CEUS studies with destruction-replenishment sequences were performed at baseline and after different interventions aimed at modifying RBF. First, we administered angiotensin II (AngII) to achieve a 25% (AngII 25%) and 50% (AngII 50%) decrease in RBF. Then, we applied mechanical occlusion of the renal artery until RBF decreased by 25% (Occl 25%) and 50% (Occl 50%) of the baseline. Finally, a single dose of 25 mg of captopril was administered. CEUS sequences were analysed offline with dedicated software and perfusion indices (PI) calculated. Results Pharmacological reduction of RBF with AngII was associated with a 62% (range: 68 decrease to 167 increase) increase (AngII 25%) and a 5% increase in PI (range: 92% decrease to 53% increase) (AngII 50%) in PI. Mechanical occlusion of the renal artery was associated with a 2% (range: 43% decrease to 2% increase) decrease (Occl 25%) and a 67% (range: 63% decrease to a 120% increase) increase (Occl 50%) in PI. The administration of captopril was associated with a 8% (range: 25% decrease to a 101% increase) decrease in PI. Pooled changes in PI failed to reach statistical significance. The study was limited by the difficulty to obtain high quality images. Conclusions CEUS-derived parameters were highly heterogeneous in this sheep model. The current protocol and model did not allow the evaluation of the correlation between macro and microcirculation assessment by CEUS.
Collapse
Affiliation(s)
- Antoine G Schneider
- Intensive Care Unit, Austin Health, Austin Health, 145 Studley Road, Heidelberg, Victoria, 3084, Australia,
| | | | | | | | | | | | | |
Collapse
|
46
|
Mahoney M, Sorace A, Warram J, Samuel S, Hoyt K. Volumetric contrast-enhanced ultrasound imaging of renal perfusion. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2014; 33:1427-37. [PMID: 25063408 PMCID: PMC4135386 DOI: 10.7863/ultra.33.8.1427] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
OBJECTIVES To determine whether volumetric contrast-enhanced ultrasound (US) imaging has the potential to monitor changes in renal perfusion after vascular injury. METHODS Volumetric contrast-enhanced US uses a series of planar image acquisitions, capturing the nonlinear second harmonic signal from microbubble contrast agents flowing in the vasculature. Tissue perfusion parameters (peak intensity [IPK], time to peak intensity [TPK], wash-in rate [WIR], and area under the curve [AUC]) were derived from time-intensity curve data collected during in vitro flow phantom studies and in vivo animal studies of healthy and injured kidneys. For the flow phantom studies, either the contrast agent concentration was held constant (10 μL/L) with varying volumetric flow rates (10, 20, and 30 mL/min), or the flow rate was held constant (30 mL/min) with varying contrast agent concentrations (5, 10, and 20 μL/L). Animal studies used healthy rats or those that underwent renal ischemia-reperfusion injury. Renal studies were performed with healthy rats while the transducer angle was varied for each volumetric contrast-enhanced US image acquisition (reference or 0°, 45°, and 90°) to determine whether repeated renal perfusion measures were isotropic and independent of transducer position. Blood serum biomarkers and immunohistology were used to confirm acute kidney injury. RESULTS Flow phantom results revealed a linear relationship between microbubble concentrations injected into the flow system and the IPK, WIR, and AUC (R(2) > 0.56; P < .005). Furthermore, there was a linear relationship between volume flow rate changes and the TPK, WIR, and AUC (R(2) > 0.77; P < .005). No significant difference was found between the transducer angle during data acquisition and any of the perfusion measures (P > .60). After induction of renal ischemia-reperfusion injury in the rat animal model (n = 4), volumetric contrast-enhanced US imaging of the injured kidney revealed an initial reduction in renal perfusion compared to control animals, followed by progressive recovery of vascular function. CONCLUSIONS Volumetric contrast-enhanced US-based renal perfusion imaging may prove clinically feasible for detecting and monitoring acute kidney injury.
Collapse
Affiliation(s)
- Marshall Mahoney
- Departments of Biomedical Engineering (M.M., A.S.), Radiology (J.W., S.S., K.H.), and Electrical Engineering (K.H.), and Comprehensive Cancer Center (K.H.), University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Anna Sorace
- Departments of Biomedical Engineering (M.M., A.S.), Radiology (J.W., S.S., K.H.), and Electrical Engineering (K.H.), and Comprehensive Cancer Center (K.H.), University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Jason Warram
- Departments of Biomedical Engineering (M.M., A.S.), Radiology (J.W., S.S., K.H.), and Electrical Engineering (K.H.), and Comprehensive Cancer Center (K.H.), University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Sharon Samuel
- Departments of Biomedical Engineering (M.M., A.S.), Radiology (J.W., S.S., K.H.), and Electrical Engineering (K.H.), and Comprehensive Cancer Center (K.H.), University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Kenneth Hoyt
- Departments of Biomedical Engineering (M.M., A.S.), Radiology (J.W., S.S., K.H.), and Electrical Engineering (K.H.), and Comprehensive Cancer Center (K.H.), University of Alabama at Birmingham, Birmingham, Alabama USA.
| |
Collapse
|
47
|
Perfusion estimation using contrast-enhanced 3-dimensional subharmonic ultrasound imaging: an in vivo study. Invest Radiol 2014; 48:654-60. [PMID: 23695085 DOI: 10.1097/rli.0b013e3182925160] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The ability to estimate tissue perfusion (in milliliter per minute per gram) in vivo using contrast-enhanced 3-dimensional (3D) harmonic and subharmonic ultrasound imaging was investigated. MATERIALS AND METHODS A LOGIQ™ 9 scanner (GE Healthcare, Milwaukee, WI) equipped with a 4D10L probe was modified to perform 3D harmonic imaging (HI; f(transmit), 5 MHz and f(receive), 10 MHz) and subharmonic imaging (SHI; f(transmit), 5.8 MHz and f(receive), 2.9 MHz). In vivo imaging was performed in the lower pole of both kidneys in 5 open-abdomen canines after injection of the ultrasound contrast agent (UCA) Definity (Lantheus Medical Imaging, N Billerica, MA). The canines received a 5-μL/kg bolus injection of Definity for HI and a 20-μL/kg bolus for SHI in triplicate for each kidney. Ultrasound data acquisition was started just before the injection of UCA (to capture the wash-in) and continued until washout. A microvascular staining technique based on stable (nonradioactive) isotope-labeled microspheres (Biophysics Assay Laboratory, Inc, Worcester, MA) was used to quantify the degree of perfusion in each kidney (the reference standard). Ligating a surgically exposed branch of the renal arteries induced lower perfusion rates. This was followed by additional contrast-enhanced imaging and microsphere injections to measure post-ligation perfusion. Slice data were extracted from the 3D ultrasound volumes and used to generate time-intensity curves offline in the regions corresponding to the tissue samples used for microvascular staining. The midline plane was also selected from the 3D volume (as a quasi-2-dimensional [2D] image) and compared with the 3D imaging modes. Perfusion was estimated from the initial slope of the fractional blood volume uptake (for both HI and SHI) and compared with the reference standard using linear regression analysis. RESULTS Both 3D HI and SHI were able to provide visualization of flow and, thus, perfusion in the kidneys. However, SHI provided near-complete tissue suppression and improved visualization of the UCA flow. Microsphere perfusion data were available for 4 canines (1 was excluded because of an error with the reference blood sample) and showed a mean (SD) perfusion of 9.30 (6.60) and 5.15 (3.42) mL/min per gram before and after the ligation, respectively. The reference standard showed significant correlation with the overall 3D HI perfusion estimates (r = 0.38; P = 0.007), but it correlated more strongly with 3D SHI (r = 0.62; P < 0.001). In addition, these results showed an improvement over the quasi-2D HI and SHI perfusion estimates (r = -0.05 and r = 0.14) and 2D SHI perfusion estimates previously reported by our group (r = 0.57). CONCLUSIONS In this preliminary study, 3D contrast-enhanced nonlinear ultrasound was able to quantify perfusion in vivo. Three-dimensional SHI resulted in better overall agreement with the reference standard than 3D HI did and was superior to previously reported 2D SHI results. Three-dimensional SHI outperforms the other methods for estimating blood perfusion because of the improved visualization of the complete perfused vascular networks.
Collapse
|
48
|
Ge W, Zheng Y, Tao Z. Contrast-enhanced ultrasound analysis of tissue perfusion in tumor-bearing mice following treatment with endostatin combined with radiotherapy. Exp Ther Med 2014; 7:1359-1363. [PMID: 24940439 PMCID: PMC3991532 DOI: 10.3892/etm.2014.1594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/03/2014] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to observe the effects of Endostar (recombinant human endostatin) and radiotherapy, singly or in combination, on blood flow in mouse tumour tissue using ultrasound imaging. The ultrasound contrast agent, SonoVue, was used for the contrast-enhanced ultrasound examinations. SonoLiver software was used to analyse dynamic vascular patterns (DVPs) in the contrast process. Blood perfusion data were collected and statistical analysis was performed for data processing. Results were presented as DVP curves and quantitative parameters. Quantitative parameters showed statistically significant (P<0.05) differences in peak strength, rise time, time to peak and mean transit time among the various treatment groups. Changes in tumour blood perfusion were quantified by the assessment of contrast-enhanced ultrasound parameters. The results indirectly reflected the degree of change in angiogenesis in the tumour following experimental intervention. Ultrasound contrast imaging effectively showed the extent of the changes in vascularity and flow state. Therefore, contrast-enhanced ultrasound is suitable for use as an indicator of blood flow changes in an experimental model.
Collapse
Affiliation(s)
- Wei Ge
- Department of Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yongfa Zheng
- Department of Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zezhang Tao
- Department of Otolaryngology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
49
|
Saini R, Hoyt K. Recent developments in dynamic contrast-enhanced ultrasound imaging of tumor angiogenesis. ACTA ACUST UNITED AC 2014; 6:41-52. [PMID: 25221623 DOI: 10.2217/iim.13.74] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Angiogenesis is a critical process for tumor growth and metastatic dissemination. There is tremendous interest in the development of noninvasive methods for imaging tumor angiogenesis, and ultrasound (US) is an emerging platform technology to address this challenge. The introduction of intravascular microbubble contrast agents not only allows real-time visualization of tumor perfusion during an US examination, but they can be functionalized with specific ligands to permit molecular US imaging of angiogenic biomarkers that are overexpressed on the tumor endothelium. In this article, we will review current concepts and developing trends for US imaging of tumor angiogenesis, including relevant preclinical and clinicsal findings.
Collapse
Affiliation(s)
- Reshu Saini
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA ; Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Hoyt
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA ; Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA ; Electrical & Computer Engineering, University of Alabama at Birmingham, Birmingham, AL, USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
50
|
Declèves AE, Rychak JJ, Smith DJ, Sharma K. Effects of high-fat diet and losartan on renal cortical blood flow using contrast ultrasound imaging. Am J Physiol Renal Physiol 2013; 305:F1343-51. [PMID: 24049144 DOI: 10.1152/ajprenal.00326.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity-related kidney disease occurs as a result of complex interactions between metabolic and hemodynamic effects. Changes in microvascular perfusion may play a major role in kidney disease; however, these changes are difficult to assess in vivo. Here, we used perfusion ultrasound imaging to evaluate cortical blood flow in a mouse model of high-fat diet-induced kidney disease. C57BL/6J mice were randomized to a standard diet (STD) or a high-fat diet (HFD) for 30 wk and then treated either with losartan or a placebo for an additional 6 wk. Noninvasive ultrasound perfusion imaging of the kidney was performed during infusion of a microbubble contrast agent. Blood flow within the microvasculature of the renal cortex and medulla was derived from imaging data. An increase in the time required to achieve full cortical perfusion was observed for HFD mice relative to STD. This was reversed following treatment with losartan. These data were concurrent with an increased glomerular filtration rate in HFD mice compared with STD- or HFD-losartan-treated mice. Losartan treatment also abrogated fibro-inflammatory disease, assessed by markers at the protein and messenger level. Finally, a reduction in capillary density was found in HFD mice, and this was reversed upon losartan treatment. This suggests that alterations in vascular density may be responsible for the elevated perfusion time observed by imaging. These data demonstrate that ultrasound contrast imaging is a robust and sensitive method for evaluating changes in renal microvascular perfusion and that cortical perfusion time may be a useful parameter for evaluating obesity-related renal disease.
Collapse
Affiliation(s)
- Anne-Emilie Declèves
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, 405 Stein Clinical Research Bldg., MC 0711, Univ. of California San Diego, La Jolla, CA, 92093.
| | | | | | | |
Collapse
|