1
|
Zhao T, Wang B, Liang W, Cheng S, Wang B, Cui M, Shou J. Accuracy of 18F-FDG PET Imaging in Differentiating Parkinson's Disease from Atypical Parkinsonian Syndromes: A Systematic Review and Meta-Analysis. Acad Radiol 2024; 31:4575-4594. [PMID: 39183130 DOI: 10.1016/j.acra.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
RATIONALE AND OBJECTIVE To quantitatively assess the accuracy of 18F-FDG PET in differentiating Parkinson's Disease (PD) from Atypical Parkinsonian Syndromes (APSs). METHODS PubMed, Embase, and Web of Science databases were searched to identify studies published from the inception of the databases up to June 2024 that used 18F-FDG PET imaging for the differential diagnosis of PD and APSs. The risk of bias in the included studies was assessed using the QUADAS-2 or QUADAS-AI tool. Bivariate random-effects models were used to calculate the pooled sensitivity, specificity, and the area under the curves (AUC) of summary receiver operating characteristic (SROC). RESULTS 24 studies met the inclusion criteria, involving a total of 1508 PD patients and 1370 APSs patients. 12 studies relied on visual interpretation by radiologists, of which the pooled sensitivity, specificity, and SROC-AUC for direct visual interpretation in diagnosing PD were 96% (95%CI: 91%, 98%), 90% (95%CI: 83%, 95%), and 0.98 (95%CI: 0.96, 0.99), respectively; the pooled sensitivity, specificity, and SROC-AUC for visual interpretation supported by univariate algorithms in diagnosing PD were 93% (95%CI: 90%, 95%), 90% (95%CI: 85%, 94%), and 0.96 (95%CI: 0.94, 0.97), respectively. 12 studies relied on artificial intelligence (AI) to analyze 18F-FDG PET imaging data. The pooled sensitivity, specificity, and SROC-AUC of machine learning (ML) for diagnosing PD were 87% (95%CI: 82%, 91%), 91% (95%CI: 86%, 94%), and 0.95 (95%CI: 0.93, 0.96), respectively. The pooled sensitivity, specificity, and SROC-AUC of deep learning (DL) for diagnosing PD were 97% (95%CI: 95%, 98%), 95% (95%CI: 89%, 98%), and 0.98 (95%CI: 0.96, 0.99), respectively. CONCLUSION 18F-FDG PET has a high accuracy in differentiating PD from APS, among which AI-assisted automatic classification performs well, with a diagnostic accuracy comparable to that of radiologists, and is expected to become an important auxiliary means of clinical diagnosis in the future.
Collapse
Affiliation(s)
- Tailiang Zhao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bingbing Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wei Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Sen Cheng
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bin Wang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100000, China
| | - Ming Cui
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jixin Shou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
2
|
Sun J, Cong C, Li X, Zhou W, Xia R, Liu H, Wang Y, Xu Z, Chen X. Identification of Parkinson's disease and multiple system atrophy using multimodal PET/MRI radiomics. Eur Radiol 2024; 34:662-672. [PMID: 37535155 DOI: 10.1007/s00330-023-10003-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To construct a machine learning model for differentiating Parkinson's disease (PD) and multiple system atrophy (MSA) by using multimodal PET/MRI radiomics and clinical characteristics. METHODS One hundred and nineteen patients (81 with PD and 38 with MSA) underwent brain PET/CT and MRI to obtain metabolic images ([18F]FDG, [11C]CFT PET) and structural MRI (T1WI, T2WI, and T2-FLAIR). Image analysis included automatic segmentation on MRI, co-registration of PET images onto the corresponding MRI. Radiomics features were then extracted from the putamina and caudate nuclei and selected to construct predictive models. Moreover, based on PET/MRI radiomics and clinical characteristics, we developed a nomogram. Receiver operating characteristic (ROC) curves were performed to evaluate the performance of the models. Decision curve analysis (DCA) was employed to access the clinical usefulness of the models. RESULTS The combined PET/MRI radiomics model of five sequences outperformed monomodal radiomics models alone. Further, PET/MRI radiomics-clinical combined model could perfectly distinguish PD from MSA (AUC = 0.993), which outperformed the clinical model (AUC = 0.923, p = 0.028) in training set, with no significant difference in test set (AUC = 0.860 vs 0.917, p = 0.390). However, no significant difference was found between PET/MRI radiomics-clinical model and PET/MRI radiomics model in training (AUC = 0.988, p = 0.276) and test sets (AUC = 0.860 vs 0.845, p = 0.632). DCA demonstrated the highest clinical benefit of PET/MRI radiomics-clinical model. CONCLUSIONS Our study indicates that multimodal PET/MRI radiomics could achieve promising performance to differentiate between PD and MSA in clinics. CLINICAL RELEVANCE STATEMENT This study developed an optimal radiomics signature and construct model to distinguish PD from MSA by multimodal PET/MRI imaging methods in clinics for parkinsonian syndromes, which achieved an excellent performance. KEY POINTS •Multimodal PET/MRI radiomics from putamina and caudate nuclei increase the diagnostic efficiency for distinguishing PD from MSA. •The radiomics-based nomogram was developed to differentiate between PD and MSA. •Combining PET/MRI radiomics-clinical model achieved promising performance to identify PD and MSA.
Collapse
Affiliation(s)
- Jinju Sun
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Chao Cong
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China
| | - Xinpeng Li
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing, China
| | - Weicheng Zhou
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Renxiang Xia
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | | | - Yi Wang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiqiang Xu
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing, China.
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.
- Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China.
| |
Collapse
|
3
|
Hoag T, Koga S, Dickson DW, Kumar R. Globular glial tauopathy presenting clinically as atypical parkinsonism with dementia: A clinicopathological case report. Clin Park Relat Disord 2023; 9:100210. [PMID: 37521817 PMCID: PMC10372361 DOI: 10.1016/j.prdoa.2023.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
•Globular Glial Tauopathy presents as atypical parkinsonism with dementia.•Globular Glial Tauopathy is underrecognized among movement disorders specialists.•Globular Glial Tauopathy type III without preferential language dysfunction or semantic dementia.
Collapse
Affiliation(s)
- Thomas Hoag
- Rocky Mountain Movement Disorders Center, 701 E Hampden Ave Ste 510, Englewood, CO 80113, United States
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, United States
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, United States
| | - Rajeev Kumar
- Rocky Mountain Movement Disorders Center, 701 E Hampden Ave Ste 510, Englewood, CO 80113, United States
| |
Collapse
|
4
|
Madetko-Alster N, Alster P, Migda B, Nieciecki M, Koziorowski D, Królicki L. The Use of Cerebellar Hypoperfusion Assessment in the Differential Diagnosis of Multiple System Atrophy with Parkinsonism and Progressive Supranuclear Palsy-Parkinsonism Predominant. Diagnostics (Basel) 2022; 12:diagnostics12123022. [PMID: 36553028 PMCID: PMC9776891 DOI: 10.3390/diagnostics12123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The differential diagnosis of MSA-P and PSP-P remains a difficult issue in clinical practice due to their overlapping clinical manifestation and the lack of tools enabling a definite diagnosis ante-mortem. This paper describes the usefulness of SPECT HMPAO in MSA-P and PSP-P differentiation through the analysis of cerebellar perfusion of small ROIs. Thirty-one patients were included in the study—20 with MSA-P and 11 with PSP-P; the analysis performed indicated that the most significant difference in perfusion was observed in the anterior quadrangular lobule (H IV and V) on the left side (p < 0.0026). High differences in the median perfusion between the groups were also observed in a few other regions, with p < 0.05, but higher than premised p = 0.0026 (the Bonferroni correction was used in the statistical analysis). The assessment of the perfusion may be interpreted as a promising method of additional examination of atypical parkinsonisms with overlapping clinical manifestation, as in the case of PSP-P and MSA-P. The results obtained suggest that the interpretation of the differences in perfusion of the cerebellum should be made by evaluating the subregions of the cerebellum rather than the hemispheres. Further research is required.
Collapse
Affiliation(s)
- Natalia Madetko-Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland
- Correspondence:
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland
| | - Bartosz Migda
- Diagnostic Ultrasound Lab, Department of Pediatric Radiology, Medical University of Warsaw, ul. Kondratowicza 8, 03-242 Warsaw, Poland
| | - Michał Nieciecki
- Department of Radiology, National Institute of Geriatrics, Rheumatology and Rehabilitation, st. Spartańska 1, 02-637 Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, ul. Banacha 1a, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Chen Z, Ma J, Liu L, Liu S, Zhang J, Chu M, Wang Z, Chan P, Wu L. Alterations of Striatal Subregions in a Prion Protein Gene V180I Mutation Carrier Presented as Frontotemporal Dementia With Parkinsonism. Front Aging Neurosci 2022; 14:830602. [PMID: 35493933 PMCID: PMC9053668 DOI: 10.3389/fnagi.2022.830602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the roles of striatal subdivisions in the pathogenesis of frontotemporal dementia with parkinsonism (FTDP) in a patient resulting from prion protein gene (PRNP) mutation. Methods This patient received clinical interviews and underwent neuropsychological assessments, genetic testing, [18F]-fluorodeoxyglucose positron emission tomography ([18F]-FDG PET)/MRI, and [18F]-dihydrotetrabenazine positron emission tomography ([18F]-DTBZ PET)/CT. Region-of-interest analysis was conducted concerning metabolism, and dopamine transport function between this patient and 12 controls, focusing on the striatum subregions according to the Oxford-GSK-Imanova Striatal Connectivity Atlas. Results A 64-year-old man initially presented with symptoms of motor dysfunction and subsequently behavioral and personality changes. FTDP was initially suspected. Sequence analysis disclosed a valine to isoleucine at codon 180 in PRNP. Compared to controls, this patient had a severe reduction (> 2SD) of standard uptake value ratio (SUVR) in the limbic and executive subregions but relative retention of metabolism in rostral motor and caudal motor subregions using [18F]-FDG PET/MRI, and the SUVR decreased significantly across the striatal in [18F]-DTBZ PET/CT, especially in the rostral motor and caudal motor subregions. Conclusion The alteration of frontal striatal loops may be involved in cognitive impairment in FTDP, and the development of parkinsonism in FTDP may be primarily due to the involvement of the presynaptic nigrostriatal loops in PRNP V180I mutation.
Collapse
Affiliation(s)
- Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuying Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
6
|
Jia C, Wu M, Yen TC, Li Y, Cui R. Complementary Utility of Dopamine Transporter and Tau PET Imaging in the Diagnosis of Progressive Supranuclear Palsy: A Case Report. Clin Nucl Med 2022; 47:336-338. [PMID: 35020665 DOI: 10.1097/rlu.0000000000003974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT A 50-year-old woman developed gait disturbances, tendency to fall backwards, bradykinesia, and memory loss over the previous 6 months. Brain 18F-FDG PET/CT was unable to distinguish among APSs (atypical parkinsonian syndromes); PET investigations of dopamine transporter (DAT) function (11C-CFT) and tau pathology (18F-APN-1607) were performed. 11C-CFT PET revealed severe loss of striatal DAT function, whereas significant tau accumulation was observed in the brainstem, basal ganglia, and globus pallidus on 18F-APN-1607 PET. Such finding suggested diagnosis of PSP (progressive supranuclear palsy). This case highlights the value of DAT and tau PET imaging in diagnosis of PSP and differential diagnosis ofAPSs.
Collapse
Affiliation(s)
| | | | | | - Yanfeng Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
7
|
Stamelou M, Respondek G, Giagkou N, Whitwell JL, Kovacs GG, Höglinger GU. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol 2021; 17:601-620. [PMID: 34426686 DOI: 10.1038/s41582-021-00541-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Tauopathies are classified according to whether tau deposits predominantly contain tau isoforms with three or four repeats of the microtubule-binding domain. Those in which four-repeat (4R) tau predominates are known as 4R-tauopathies, and include progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, globular glial tauopathies and conditions associated with specific MAPT mutations. In these diseases, 4R-tau deposits are found in various cell types and anatomical regions of the brain and the conditions share pathological, pathophysiological and clinical characteristics. Despite being considered 'prototype' tauopathies and, therefore, ideal for studying neuroprotective agents, 4R-tauopathies are still severe and untreatable diseases for which no validated biomarkers exist. However, advances in research have addressed the issues of phenotypic overlap, early clinical diagnosis, pathophysiology and identification of biomarkers, setting a road map towards development of treatments. New clinical criteria have been developed and large cohorts with early disease are being followed up in prospective studies. New clinical trial readouts are emerging and biomarker research is focused on molecular pathways that have been identified. Lessons learned from failed trials of neuroprotective drugs are being used to design new trials. In this Review, we present an overview of the latest research in 4R-tauopathies, with a focus on progressive supranuclear palsy, and discuss how current evidence dictates ongoing and future research goals.
Collapse
Affiliation(s)
- Maria Stamelou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece. .,European University of Cyprus, Nicosia, Cyprus. .,Philipps University, Marburg, Germany.
| | - Gesine Respondek
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Nikolaos Giagkou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece
| | | | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Günter U Höglinger
- Department of Neurology, Hanover Medical School, Hanover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
8
|
Akdemir ÜÖ, Bora Tokçaer A, Atay LÖ. Dopamine transporter SPECT imaging in Parkinson’s disease and parkinsonian disorders. Turk J Med Sci 2021; 51:400-410. [PMID: 33237660 PMCID: PMC8203173 DOI: 10.3906/sag-2008-253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022] Open
Abstract
The dopamine transporter (DAT) imaging provides an objective tool for the assessment of dopaminergic function of presynaptic terminals which is valuable for the differential diagnosis of parkinsonian disorders related to a striatal dopaminergic deficiency from movement disorders not related a striatal dopaminergic deficiency. DAT imaging with single-photon emission computed tomography (SPECT) can be used to confirm or exclude a diagnosis of dopamine deficient parkinsonism in cases where the diagnosis is unclear. It can also detect the dopaminergic dysfunction in presymptomatic subjects at risk for Parkinson’s disease (PD) since the reduced radiotracer binding to DATs in striatum is already present in the prodromal stage of PD. This review covers the rationale of using DAT SPECT imaging in the diagnosis of PD and other parkinsonian disorders, specifically focusing on the practical aspects of imaging and routine clinical indications.
Collapse
Affiliation(s)
- Ümit Özgür Akdemir
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayşe Bora Tokçaer
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Lütfiye Özlem Atay
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Xian WB, Shi XC, Luo GH, Yi C, Zhang XS, Pei Z. Co-registration Analysis of Fluorodopa and Fluorodeoxyglucose Positron Emission Tomography for Differentiating Multiple System Atrophy Parkinsonism Type From Parkinson's Disease. Front Aging Neurosci 2021; 13:648531. [PMID: 33958998 PMCID: PMC8093399 DOI: 10.3389/fnagi.2021.648531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
It is difficult to differentiate between Parkinson's disease and multiple system atrophy parkinsonian subtype (MSA-P) because of the overlap of their signs and symptoms. Enormous efforts have been made to develop positron emission tomography (PET) imaging to differentiate these diseases. This study aimed to investigate the co-registration analysis of 18F-fluorodopa and 18F-flurodeoxyglucose PET images to visualize the difference between Parkinson's disease and MSA-P. We enrolled 29 Parkinson's disease patients, 28 MSA-P patients, and 10 healthy controls, who underwent both 18F-fluorodopa and 18F-flurodeoxyglucose PET scans. Patients with Parkinson's disease and MSA-P exhibited reduced bilateral striatal 18F-fluorodopa uptake (p < 0.05, vs. healthy controls). Both regional specific uptake ratio analysis and statistical parametric mapping analysis of 18F-flurodeoxyglucose PET revealed hypometabolism in the bilateral putamen of MSA-P patients and hypermetabolism in the bilateral putamen of Parkinson's disease patients. There was a significant positive correlation between 18F-flurodeoxyglucose uptake and 18F-fluorodopa uptake in the contralateral posterior putamen of MSA-P patients (rs = 0.558, p = 0.002). Both 18F-flurodeoxyglucose and 18F-fluorodopa PET images showed that the striatum was rabbit-shaped in the healthy control group segmentation analysis. A defective rabbit-shaped striatum was observed in the 18F-fluorodopa PET image of patients with Parkinson's disease and MSA-P. In the segmentation analysis of 18F-flurodeoxyglucose PET image, an intact rabbit-shaped striatum was observed in Parkinson's disease patients, whereas a defective rabbit-shaped striatum was observed in MSA-P patients. These findings suggest that there were significant differences in the co-registration analysis of 18F-flurodeoxyglucose and 18F-fluorodopa PET images, which could be used in the individual analysis to differentiate Parkinson's disease from MSA-P.
Collapse
Affiliation(s)
- Wen-Biao Xian
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xin-Chong Shi
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gan-Hua Luo
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Yi
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Song Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
10
|
Prasad S, Rajan A, Pasha SA, Mangalore S, Saini J, Ingalhalikar M, Pal PK. Abnormal structural connectivity in progressive supranuclear palsy-Richardson syndrome. Acta Neurol Scand 2021; 143:430-440. [PMID: 33175396 DOI: 10.1111/ane.13372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Progressive supranuclear palsy-Richardson syndrome (PSP-RS) is characterized by symmetrical parkinsonism with postural instability and frontal dysfunction. This study aims to use the whole brain structural connectome (SC) to gain insights into the underlying disconnectivity which may be implicated in the clinical features of PSP-RS. METHODS Sixteen patients of PSP-RS and 12 healthy controls were recruited. Disease severity was quantified using PSP rating scale (PSPRS), and mini-mental scale was applied to evaluate cognition. Thirty-two direction diffusion MRIs were acquired and used to compute the structural connectome of the whole brain using deterministic fiber tracking. Group analyses were performed at the edge-wise, nodal, and global levels. Age and gender were used as nuisance covariates for all the subsequent analyses, and FDR correction was applied. RESULTS Network-based statistics revealed a 34-edge network with significantly abnormal edge-wise connectivity in the patient group. Of these, 25 edges were cortical connections, of which 68% were frontal connections. Abnormal deep gray matter connections were predominantly comprised of connections between structures of the basal ganglia. The characteristic path length of the SC was lower in PSP-RS, and nodal analysis revealed abnormal degree, strength, local efficiency, betweenness centrality, and participation coefficient in several nodes. CONCLUSIONS Significant alterations in the structural connectivity of the whole brain connectome were observed in PSP-RS. The higher degree of abnormality observed in nodes belonging to the frontal lobe and basal ganglia substantiates the predominant frontal dysfunction and parkinsonism observed in PSP-RS. The findings of this study support the concept that PSP-RS may be a network-based disorder.
Collapse
Affiliation(s)
- Shweta Prasad
- Department of Clinical Neurosciences National Institute of Mental Health & Neurosciences Bangalore India
- Department of Neurology National Institute of Mental Health & Neurosciences Bangalore India
| | - Archith Rajan
- Symbiosis Center for Medical Image Analysis Symbiosis International University Pune India
- Symbiosis Institute of Technology Symbiosis International University Pune India
| | - Shaik Afsar Pasha
- Department of Neurology National Institute of Mental Health & Neurosciences Bangalore India
| | - Sandhya Mangalore
- Department of Neuroimaging & Interventional Radiology National Institute of Mental Health & Neurosciences Bangalore India
| | - Jitender Saini
- Department of Neuroimaging & Interventional Radiology National Institute of Mental Health & Neurosciences Bangalore India
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis Symbiosis International University Pune India
- Symbiosis Institute of Technology Symbiosis International University Pune India
| | - Pramod Kumar Pal
- Department of Neurology National Institute of Mental Health & Neurosciences Bangalore India
| |
Collapse
|
11
|
Polissidis A, Petropoulou-Vathi L, Nakos-Bimpos M, Rideout HJ. The Future of Targeted Gene-Based Treatment Strategies and Biomarkers in Parkinson's Disease. Biomolecules 2020; 10:E912. [PMID: 32560161 PMCID: PMC7355671 DOI: 10.3390/biom10060912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Biomarkers and disease-modifying therapies are both urgent unmet medical needs in the treatment of Parkinson's disease (PD) and must be developed concurrently because of their interdependent relationship: biomarkers for the early detection of disease (i.e., prior to overt neurodegeneration) are necessary in order for patients to receive maximal therapeutic benefit and vice versa; disease-modifying therapies must become available for patients whose potential for disease diagnosis and prognosis can be predicted with biomarkers. This review provides an overview of the milestones achieved to date in the therapeutic strategy development of disease-modifying therapies and biomarkers for PD, with a focus on the most common and advanced genetically linked targets alpha-synuclein (SNCA), leucine-rich repeat kinase-2 (LRRK2) and glucocerebrosidase (GBA1). Furthermore, we discuss the convergence of the different pathways and the importance of patient stratification and how these advances may apply more broadly to idiopathic PD. The heterogeneity of PD poses a challenge for therapeutic and biomarker development, however, the one gene- one target approach has brought us closer than ever before to an unprecedented number of clinical trials and biomarker advancements.
Collapse
Affiliation(s)
| | | | | | - Hardy J. Rideout
- Laboratory of Neurodegenerative Diseases, Centre for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (A.P.); (L.P.-V.); (M.N.-B.)
| |
Collapse
|
12
|
Ghanta MK, Elango P, L V K S B. Current Therapeutic Strategies and Perspectives for Neuroprotection in Parkinson's Disease. Curr Pharm Des 2020; 26:4738-4746. [PMID: 32065086 DOI: 10.2174/1381612826666200217114658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/10/2020] [Indexed: 02/04/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder of dopaminergic striatal neurons in basal ganglia. Treatment of Parkinson's disease (PD) through dopamine replacement strategies may provide improvement in early stages and this treatment response is related to dopaminergic neuronal mass which decreases in advanced stages. This treatment failure was revealed by many studies and levodopa treatment became ineffective or toxic in chronic stages of PD. Early diagnosis and neuroprotective agents may be a suitable approach for the treatment of PD. The essentials required for early diagnosis are biomarkers. Characterising the striatal neurons, understanding the status of dopaminergic pathways in different PD stages may reveal the effects of the drugs used in the treatment. This review updates on characterisation of striatal neurons, electrophysiology of dopaminergic pathways in PD, biomarkers of PD, approaches for success of neuroprotective agents in clinical trials. The literature was collected from the articles in database of PubMed, MedLine and other available literature resources.
Collapse
Affiliation(s)
- Mohan K Ghanta
- Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai-600116, Tamil Nadu, India
| | - P Elango
- Department of Pharmacology, Panimalar Medical College Hospital & Research Institute, Poonamallee, Chennai-600123, Tamil Nadu, India
| | - Bhaskar L V K S
- Department of Zoology, Guru Ghasidas University, Bilaspur, 495009 (CG), India
| |
Collapse
|
13
|
Hanoglu L, Yildiz S, Cakir T, Hanoglu T, Yulug B. FDG-PET Scanning Shows Distributed Changes in Cortical Activity Associated with Visual Hallucinations in Eye Disease. Endocr Metab Immune Disord Drug Targets 2019; 19:84-89. [PMID: 30160221 DOI: 10.2174/1871530318666180830112709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/17/2018] [Accepted: 06/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Charles Bonnet Syndrome (CBS) has been defined as complex visual hallucinations (CVH) due to visual loss. The underlying mechanism of CBS is not clear and the underlying pathophysiology of the visual hallucinations in CBS patients and pure visually impaired patients is still not clear. METHODS In our study, we have scanned three patients with eye disease and CBS (VH+) and three patients with eye disease without CBS (VH-) using FDG-PET. RESULTS Our results showed underactivity in the pons and overactivity in primary right left visual cortex and inferior parietal cortex in VH- patients and underactivity in left Broca, left inf frontal primary visual cortex and anterior and posterior cingulate cortex in VH+ patients relative to the normative 18FFDG PET data that was taken from the database consisting of 50 age-matched healthy adults without neuropsychiatric disorders. CONCLUSION From this distributed pattern of activity changes, we conclude that the generation of visual hallucination in CBS is associated with bottom-up and top-down mechanism rather than the generally accepted visual deafferentation-related hyperexcitability theory.
Collapse
Affiliation(s)
- Lütfü Hanoglu
- Department of Neurology, Istanbul, Medipol University, Istanbul, Turkey.,Regeneration and Restoration Center, Istanbul Medipol University, Istanbul, Turkey
| | - Sultan Yildiz
- Regeneration and Restoration Center, Istanbul Medipol University, Istanbul, Turkey
| | - Tansel Cakir
- Department of Nuclear Medicine, Istanbul-Medipol University, Istanbul, Turkey
| | - Taha Hanoglu
- Department of Neurosurgery, Ataturk University, Erzurum, Turkey
| | - Burak Yulug
- Department of Neurology, Istanbul, Medipol University, Istanbul, Turkey.,Regeneration and Restoration Center, Istanbul Medipol University, Istanbul, Turkey.,Department of Neurology, Alanya Alaaddin Keykubat University, Alanya, Turkey
| |
Collapse
|
14
|
Sun X, Liu F, Liu Q, Gai Y, Ruan W, Wimalarathne DN, Hu F, Tan X, Lan X. Quantitative Research of 11C-CFT and 18F-FDG PET in Parkinson's Disease: A Pilot Study With NeuroQ Software. Front Neurosci 2019; 13:299. [PMID: 31024233 PMCID: PMC6460224 DOI: 10.3389/fnins.2019.00299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
Dopamine transporter (DAT) and glucose metabolism imaging have been applied in the diagnosis of Parkinson’s disease (PD). We explored the possibility of evaluating for PD with NeuroQ software by analyzing 11C-2β-carbomethoxy-3β-(4-fluorophenyl) tropane (11C-CFT) and 18F-FDG PET/CT. We retrospectively analyzed brain 11C-CFT and 18F-FDG PET/CT of 38 patients with parkinsonism, including 20 with PD, 10 with multiple system atrophy (MSA) and 8 with essential tremor (ET), and compared them with the PET/CT of 11 normal healthy controls (NC). PD patients were divided into mild and moderate-severe grade according to the Hoehn-Yahr (H&Y) scale. The 11C-CFT uptake in the caudate nuclei (CN) and putamen (Pu) normalized with cerebellum (CN/Cb and Pu/Cb) were obtained with a manual method and NeuroQ software, and their diagnostic performance was compared.18F-FDG uptake of specific regions was also obtained with NeuroQ, and the enhancement effect for the differential diagnosis was evaluated. There was significant agreement between the manual method and the NeuroQ method for 11C-CFT uptake by CN (r2= 0.680) and Pu (r2= 0.770). 11C-CFT uptake by CN and Pu in PD and MSA patients was significantly lower compared to NC and ET patients. The cutoffs of CN/Cb and Pu/Cb for the distinction between PD and NC were 1.71 and 2.20, respectively. No difference in uptake ratios occurred between PD and MSA. 18F-FDG uptake by the pons and cerebellum in the MSA group was markedly decreased. It was highly accurate in distinguishing between PD and MSA when combined with analysis of 11C-CFT uptake. Pu/Cb decreased significantly in mild grade PD compared to NC group (1.92 ± 0.33 vs. 2.82 ± 0.43); however no statistically significant decrease in CN/Cb was observed until moderate-severe grade PD (1.43 ± 0.11 vs. 2.23 ± 0.36). In early asymmetric PD, a statistically significant difference could be seen with Pu/Cb between the symptomatic and asymptomatic side (2.17 ± 0.30 vs. 1.95 ± 0.22). 11C-CFT and 18F-FDG PET/CT can be analyzed quantitatively with NeuroQ software, which provides an accurate method for the diagnosis and severity evaluation of PD.
Collapse
Affiliation(s)
- Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Fang Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Dilani Neranjana Wimalarathne
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xubo Tan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
15
|
Alster P, Madetko NK, Koziorowski DM, Królicki L, Budrewicz S, Friedman A. Accumulation of Tau Protein, Metabolism and Perfusion-Application and Efficacy of Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) Imaging in the Examination of Progressive Supranuclear Palsy (PSP) and Corticobasal Syndrome (CBS). Front Neurol 2019; 10:101. [PMID: 30837933 PMCID: PMC6383629 DOI: 10.3389/fneur.2019.00101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging in the context of examining atypical parkinsonian tauopathies is an evolving matter. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) bring tools, which may be reasonable in supplementary examination, however cannot be interpreted as a gold standard for correct diagnosis. The review presents advantages and limitations of tau radiotracers in PET, metabolic PET and perfusion SPECT. The aim of this paper is to highlight the possibilities and boundaries in the supplementary examination of tauopathic parkinsonian syndromes.
Collapse
Affiliation(s)
- Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Andrzej Friedman
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Devrome M, Van Weehaeghe D, De Vocht J, Van Damme P, Van Laere K, Koole M. Glucose metabolic brain patterns to discriminate amyotrophic lateral sclerosis from Parkinson plus syndromes. EJNMMI Res 2018; 8:110. [PMID: 30547248 PMCID: PMC6292827 DOI: 10.1186/s13550-018-0458-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background 18F-FDG brain PET measures metabolic changes in neurodegenerative disorders and may discriminate between different diseases even at an early stage. The objective of this study was to classify patients with amyotrophic lateral sclerosis (ALS) and Parkinson plus syndromes (PP). To this end, different approaches were evaluated using generalized linear models and corresponding glucose metabolic brain patterns. Besides direct classification, healthy controls were also included to generate disease-specific metabolic brain patterns and to perform a classification using disease expression scores. Methods ALS patients (n = 70) and PP patients (n = 33: 20 PSP, 3 CBD, and 10 MSA) were available from an existing database of patients with neuromuscular and movement disorders while age-matched healthy controls (n = 29) were selected from a prospective study. To generate both disease-discriminative (direct classification) and disease-specific (classification versus controls) metabolic brain patterns, data were spatially normalized and a principal component analysis (PCA) was performed prior to classification using either logistic regression (PCA-LR) or a support vector machine (PCA-SVM). Furthermore, a direct SVM approach was considered. To compare the three different approaches, Pearson correlations (r) between pattern expression scores and metabolic brain patterns were evaluated, while pairs of ALS- and PP-specific pattern expression scores were compared using the RV coefficient. Results Classification between ALS and PP resulted in a sensitivity and specificity ≥ 0.82 for both direct classification and classification according to disease-specific pattern expression scores. PCA-LR, PCA-SVM, and SVM generated very similar metabolic brain patterns with voxelwise correlations ≥ 0.66, while all patterns allowed straightforward identification of ALS- and PP-specific brain regions of hyper- and hypometabolism. Moreover, pattern expression scores were highly correlated among different classifiers with a mean r of 0.94 while a RV coefficient ≥ 0.91 was found between pairs of ALS- and PP-specific pattern expression scores. Conclusion We demonstrated that a classification between ALS and PP using expression scores of an ALS and PP metabolic brain pattern leads to a similar and high prediction accuracy as direct classification between ALS and PP. Classification performance and disease-specific metabolic patterns, which could support visual reading and improve insight in brain pathology, were very related for different classifiers.
Collapse
Affiliation(s)
- Martijn Devrome
- Department of Nuclear Medicine and Molecular Imaging, Division of Nuclear Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Donatienne Van Weehaeghe
- Department of Nuclear Medicine and Molecular Imaging, Division of Nuclear Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | | | | | - Koen Van Laere
- Department of Nuclear Medicine and Molecular Imaging, Division of Nuclear Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Michel Koole
- Department of Nuclear Medicine and Molecular Imaging, Division of Nuclear Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
17
|
He R, Yan X, Guo J, Xu Q, Tang B, Sun Q. Recent Advances in Biomarkers for Parkinson's Disease. Front Aging Neurosci 2018; 10:305. [PMID: 30364199 PMCID: PMC6193101 DOI: 10.3389/fnagi.2018.00305] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/14/2018] [Indexed: 02/04/2023] Open
Abstract
Parkinson's disease (PD) is one of the common progressive neurodegenerative disorders with several motor and non-motor symptoms. Most of the motor symptoms may appear at a late stage where most of the dopaminergic neurons have been already damaged. In order to provide better clinical intervention and treatment at the onset of disease, it is imperative to find accurate biomarkers for early diagnosis, including prodromal diagnosis and preclinical diagnosis. At the same time, these reliable biomarkers can also be utilized to monitor the progress of the disease. In this review article, we will discuss recent advances in the development of PD biomarkers from different aspects, including clinical, biochemical, neuroimaging and genetic aspects. Although various biomarkers for PD have been developed so far, their specificity and sensitivity are not ideal when applied individually. So, the combination of multimodal biomarkers will greatly improve the diagnostic accuracy and facilitate the implementation of personalized medicine.
Collapse
Affiliation(s)
- Runcheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Parkinson’s Disease Center of Beijing Institute for Brain Disorders, Beijing, China
- Collaborative Innovation Center for Brain Science, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Parkinson’s Disease Center of Beijing Institute for Brain Disorders, Beijing, China
- Collaborative Innovation Center for Brain Science, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Shanghai, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Levigoureux E, Bouillot C, Baron T, Zimmer L, Lancelot S. PET imaging of the influence of physiological and pathological α-synuclein on dopaminergic and serotonergic neurotransmission in mouse models. CNS Neurosci Ther 2018; 25:57-68. [PMID: 29781098 DOI: 10.1111/cns.12978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
AIMS Alpha-synuclein (α-syn) aggregation is a neuropathological hallmark of neurodegenerative synucleinopathies. This in vivo study explored glucose metabolism and dopaminergic and serotoninergic neurotransmission in KO α-syn, wild-type mice and an accelerated murine model of synucleinopathy (M83). METHODS MicroPET acquisitions were performed in all animals aged 5-6 months using five radiotracers exploring brain glucose metabolism ([18 F]FDG), dopamine neurotransmission ([11 C]raclopride, [11 C]PE2I) and serotonin neurotransmission ([18 F]MPPF, [11 C]DASB). For all radiotracers, except [18 F]FDG, PET data were analyzed with a MRI-based VOI method and a voxel-based analysis. RESULTS MicroPET data showed a decrease in [11 C]raclopride uptake in the caudate putamen of KO α-syn mice, in comparison with M83 and WT mice, reflecting a lower concentration of D2 receptors. The increase in [18 F]MPPF uptake in M83 vs WT and KO mice indicates overexpression of 5-HT1A receptors. The lack of change in dopamine and serotonin transporters in all groups suggests unchanged neuronal density. CONCLUSIONS This PET study highlights an effect of α-syn modulation on the expression of the D2 receptor, whereas aggregated α-syn leads to overexpression of 5-HT1A receptor, as a pathophysiological signature.
Collapse
Affiliation(s)
- Elise Levigoureux
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | | | - Thierry Baron
- ANSES - French Agency for Food, Environmental and Occupational Health & Safety, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,CERMEP-Imaging Platform, Lyon, France
| | - Sophie Lancelot
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,CERMEP-Imaging Platform, Lyon, France
| |
Collapse
|
19
|
Walker Z, Gandolfo F, Orini S, Garibotto V, Agosta F, Arbizu J, Bouwman F, Drzezga A, Nestor P, Boccardi M, Altomare D, Festari C, Nobili F. Clinical utility of FDG PET in Parkinson's disease and atypical parkinsonism associated with dementia. Eur J Nucl Med Mol Imaging 2018; 45:1534-1545. [PMID: 29779045 PMCID: PMC6061481 DOI: 10.1007/s00259-018-4031-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
Purpose There are no comprehensive guidelines for the use of FDG PET in the following three clinical scenarios: (1) diagnostic work-up of patients with idiopathic Parkinson’s disease (PD) at risk of future cognitive decline, (2) discriminating idiopathic PD from progressive supranuclear palsy, and (3) identifying the underlying neuropathology in corticobasal syndrome. Methods We therefore performed three literature searches and evaluated the selected studies for quality of design, risk of bias, inconsistency, imprecision, indirectness and effect size. Critical outcomes were the sensitivity, specificity, accuracy, positive/negative predictive value, area under the receiving operating characteristic curve, and positive/negative likelihood ratio of FDG PET in detecting the target condition. Using the Delphi method, a panel of seven experts voted for or against the use of FDG PET based on published evidence and expert opinion. Results Of 91 studies selected from the three literature searches, only four included an adequate quantitative assessment of the performance of FDG PET. The majority of studies lacked robust methodology due to lack of critical outcomes, inadequate gold standard and no head-to-head comparison with an appropriate reference standard. The panel recommended the use of FDG PET for all three clinical scenarios based on nonquantitative evidence of clinical utility. Conclusion Despite widespread use of FDG PET in clinical practice and extensive research, there is still very limited good quality evidence for the use of FDG PET. However, in the opinion of the majority of the panellists, FDG PET is a clinically useful imaging biomarker for idiopathic PD and atypical parkinsonism associated with dementia.
Collapse
Affiliation(s)
- Zuzana Walker
- Division of Psychiatry, University College London, London, UK. .,St Margaret's Hospital, Essex Partnership University NHS Foundation Trust, Epping, CM16 6TN, UK.
| | - Federica Gandolfo
- Alzheimer Operative Unit, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Stefania Orini
- Alzheimer Operative Unit, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, University Hospitals of Geneva, Geneva University, Geneva, Switzerland
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Femke Bouwman
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne and German Center for Neurodegenerative Diseases (DZNE), Cologne, Germany
| | - Peter Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Queensland Brain Institute, University of Queensland and the Mater Hospital, Brisbane, Australia
| | - Marina Boccardi
- LANVIE (Laboratoire de Neuroimagerie du Vieillissement), Department of Psychiatry, University of Geneva, Geneva, Switzerland.,LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Daniele Altomare
- LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Festari
- LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa & Clinical Neurology Polyclinic IRCCS San Martino-IST, Genoa, Italy.
| | | |
Collapse
|
20
|
Belenky V, Stanzhevsky A, Klicenko O, Skoromets A. Brain positron emission tomography with 2- 18F-2-deoxi-D-glucose of patients with dystonia and essential tremor detects differences between these disorders. Neuroradiol J 2018; 31:60-68. [PMID: 28805131 PMCID: PMC5789996 DOI: 10.1177/1971400917719912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
We studied patients with dystonia (D) and essential tremor (ET) using positron emission tomography (PET) equipped with Cortex ID software. This allowed PET brain visualisation to be compared to scans of a control group by means of the z-score. The study revealed hypo-metabolism in both D and ET groups, and additionally revealed a difference between these two groups of patients in certain areas of the brain. These two nosological forms overlap in clinical features and are difficult to differentiate. The PET picture may help to provide a differential diagnosis in addition to the biochemical difference in dopamine exchange previously revealed by us in this group of patients.
Collapse
|
21
|
Chiang S, Guindani M, Yeh HJ, Dewar S, Haneef Z, Stern JM, Vannucci M. A Hierarchical Bayesian Model for the Identification of PET Markers Associated to the Prediction of Surgical Outcome after Anterior Temporal Lobe Resection. Front Neurosci 2017; 11:669. [PMID: 29259537 PMCID: PMC5723403 DOI: 10.3389/fnins.2017.00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/17/2017] [Indexed: 01/19/2023] Open
Abstract
We develop an integrative Bayesian predictive modeling framework that identifies individual pathological brain states based on the selection of fluoro-deoxyglucose positron emission tomography (PET) imaging biomarkers and evaluates the association of those states with a clinical outcome. We consider data from a study on temporal lobe epilepsy (TLE) patients who subsequently underwent anterior temporal lobe resection. Our modeling framework looks at the observed profiles of regional glucose metabolism in PET as the phenotypic manifestation of a latent individual pathologic state, which is assumed to vary across the population. The modeling strategy we adopt allows the identification of patient subgroups characterized by latent pathologies differentially associated to the clinical outcome of interest. It also identifies imaging biomarkers characterizing the pathological states of the subjects. In the data application, we identify a subgroup of TLE patients at high risk for post-surgical seizure recurrence after anterior temporal lobe resection, together with a set of discriminatory brain regions that can be used to distinguish the latent subgroups. We show that the proposed method achieves high cross-validated accuracy in predicting post-surgical seizure recurrence.
Collapse
Affiliation(s)
- Sharon Chiang
- Department of Statistics, Rice University, Houston, TX, United States
- School of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Michele Guindani
- Department of Statistics, University of California, Irvine, Irvine, CA, United States
| | - Hsiang J. Yeh
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sandra Dewar
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - John M. Stern
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, TX, United States
| |
Collapse
|
22
|
Whitwell JL, Höglinger GU, Antonini A, Bordelon Y, Boxer AL, Colosimo C, van Eimeren T, Golbe LI, Kassubek J, Kurz C, Litvan I, Pantelyat A, Rabinovici G, Respondek G, Rominger A, Rowe JB, Stamelou M, Josephs KA. Radiological biomarkers for diagnosis in PSP: Where are we and where do we need to be? Mov Disord 2017; 32:955-971. [PMID: 28500751 PMCID: PMC5511762 DOI: 10.1002/mds.27038] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
Abstract
PSP is a pathologically defined neurodegenerative tauopathy with a variety of clinical presentations including typical Richardson's syndrome and other variant PSP syndromes. A large body of neuroimaging research has been conducted over the past two decades, with many studies proposing different structural MRI and molecular PET/SPECT biomarkers for PSP. These include measures of brainstem, cortical and striatal atrophy, diffusion weighted and diffusion tensor imaging abnormalities, [18F] fluorodeoxyglucose PET hypometabolism, reductions in striatal dopamine imaging and, most recently, PET imaging with ligands that bind to tau. Our aim was to critically evaluate the degree to which structural and molecular neuroimaging metrics fulfill criteria for diagnostic biomarkers of PSP. We queried the PubMed, Cochrane, Medline, and PSYCInfo databases for original research articles published in English over the past 20 years using postmortem diagnosis or the NINDS-SPSP criteria as the diagnostic standard from 1996 to 2016. We define a five-level theoretical construct for the utility of neuroimaging biomarkers in PSP, with level 1 representing group-level findings, level 2 representing biomarkers with demonstrable individual-level diagnostic utility, level 3 representing biomarkers for early disease, level 4 representing surrogate biomarkers of PSP pathology, and level 5 representing definitive PSP biomarkers of PSP pathology. We discuss the degree to which each of the currently available biomarkers fit into this theoretical construct, consider the role of biomarkers in the diagnosis of Richardson's syndrome, variant PSP syndromes and autopsy confirmed PSP, and emphasize current shortfalls in the field. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Günter U. Höglinger
- Department of Neurology, Technische Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
| | - Angelo Antonini
- Parkinson and Movement Disorder Unit, IRCCS Hospital San Camillo, Venice and Department of Neurosciences (DNS), Padova University, Padova, Italy
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Adam L. Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | - Thilo van Eimeren
- German Center for Neurodegenerative Diseases (DZNE), Germany
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Lawrence I. Golbe
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Carolin Kurz
- Psychiatrische Klinik, Ludwigs-Maximilians-Universität, München, Germany
| | - Irene Litvan
- Department of Neurology, University of California, San Diego, CA, USA
| | | | - Gil Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Gesine Respondek
- Department of Neurology, Technische Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
| | - Axel Rominger
- Deptartment of Nuclear Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - James B. Rowe
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
| | - Maria Stamelou
- Second Department of Neurology, Attikon University Hospital, University of Athens, Greece; Philipps University, Marburg, Germany; Movement Disorders Dept., HYGEIA Hospital, Athens, Greece
| | | |
Collapse
|
23
|
Saeed U, Compagnone J, Aviv RI, Strafella AP, Black SE, Lang AE, Masellis M. Imaging biomarkers in Parkinson's disease and Parkinsonian syndromes: current and emerging concepts. Transl Neurodegener 2017; 6:8. [PMID: 28360997 PMCID: PMC5370489 DOI: 10.1186/s40035-017-0076-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/28/2017] [Indexed: 12/24/2022] Open
Abstract
Two centuries ago in 1817, James Parkinson provided the first medical description of Parkinson’s disease, later refined by Jean-Martin Charcot in the mid-to-late 19th century to include the atypical parkinsonian variants (also termed, Parkinson-plus syndromes). Today, Parkinson’s disease represents the second most common neurodegenerative disorder with an estimated global prevalence of over 10 million. Conversely, atypical parkinsonian syndromes encompass a group of relatively heterogeneous disorders that may share some clinical features with Parkinson’s disease, but are uncommon distinct clinicopathological diseases. Decades of scientific advancements have vastly improved our understanding of these disorders, including improvements in in vivo imaging for biomarker identification. Multimodal imaging for the visualization of structural and functional brain changes is especially important, as it allows a ‘window’ into the underlying pathophysiological abnormalities. In this article, we first present an overview of the cardinal clinical and neuropathological features of, 1) synucleinopathies: Parkinson’s disease and other Lewy body spectrum disorders, as well as multiple system atrophy, and 2) tauopathies: progressive supranuclear palsy, and corticobasal degeneration. A comprehensive presentation of well-established and emerging imaging biomarkers for each disorder are then discussed. Biomarkers for the following imaging modalities are reviewed: 1) structural magnetic resonance imaging (MRI) using T1, T2, and susceptibility-weighted sequences for volumetric and voxel-based morphometric analyses, as well as MRI derived visual signatures, 2) diffusion tensor MRI for the assessment of white matter tract injury and microstructural integrity, 3) proton magnetic resonance spectroscopy for quantifying proton-containing brain metabolites, 4) single photon emission computed tomography for the evaluation of nigrostriatal integrity (as assessed by presynaptic dopamine transporters and postsynaptic dopamine D2 receptors), and cerebral perfusion, 5) positron emission tomography for gauging nigrostriatal functions, glucose metabolism, amyloid and tau molecular imaging, as well as neuroinflammation, 6) myocardial scintigraphy for dysautonomia, and 7) transcranial sonography for measuring substantia nigra and lentiform nucleus echogenicity. Imaging biomarkers, using the ‘multimodal approach’, may aid in making early, accurate and objective diagnostic decisions, highlight neuroanatomical and pathophysiological mechanisms, as well as assist in evaluating disease progression and therapeutic responses to drugs in clinical trials.
Collapse
Affiliation(s)
- Usman Saeed
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, Canada
| | - Jordana Compagnone
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, Canada
| | - Richard I Aviv
- Department of Medical Imaging, University of Toronto and Division of Neuroradiology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Antonio P Strafella
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada.,Division of Brain, Imaging & Behaviour - Systems Neuroscience, Toronto Western Hospital, Toronto, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Sandra E Black
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada.,Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada.,Movement Disorders Centre, Toronto Western Hospital, Toronto, Canada.,Edmond J. Safra Program in Parkinson's Disease, University Health Network, Toronto, Canada
| | - Mario Masellis
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada.,Cognitive & Movement Disorders Clinic, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Room A4-55, Toronto, Ontario M4N 3 M5 Canada
| |
Collapse
|
24
|
Casquero-Veiga M, Hadar R, Pascau J, Winter C, Desco M, Soto-Montenegro ML. Response to Deep Brain Stimulation in Three Brain Targets with Implications in Mental Disorders: A PET Study in Rats. PLoS One 2016; 11:e0168689. [PMID: 28033356 PMCID: PMC5199108 DOI: 10.1371/journal.pone.0168689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Objective To investigate metabolic changes in brain networks by deep brain stimulation (DBS) of the medial prefrontal cortex (mPFC), nucleus accumbens (NAcc) and dorsomedial thalamus (DM) using positron emission tomography (PET) in naïve rats. Methods 43 male Wistar rats underwent stereotactic surgery and concentric bipolar platinum-iridium electrodes were bilaterally implanted into one of the three brain sites. [18F]-fluoro-2-deoxy-glucose-PET (18FDG-PET) and computed tomography (CT) scans were performed at the 7th (without DBS) and 9th day (with DBS) after surgery. Stimulation period matched tracer uptake period. Images were acquired with a small-animal PET-CT scanner. Differences in glucose uptake between groups were assessed with Statistical Parametric Mapping. Results DBS induced site-specific metabolic changes, although a common increased metabolic activity in the piriform cortex was found for the three brain targets. mPFC-DBS increased metabolic activity in the striatum, temporal and amygdala, and reduced it in the cerebellum, brainstem (BS) and periaqueductal gray matter (PAG). NAcc-DBS increased metabolic activity in the subiculum and olfactory bulb, and decreased it in the BS, PAG, septum and hypothalamus. DM-DBS increased metabolic activity in the striatum, NAcc and thalamus and decreased it in the temporal and cingulate cortex. Conclusions DBS induced significant changes in 18FDG uptake in brain regions associated with the basal ganglia-thalamo-cortical circuitry. Stimulation of mPFC, NAcc and DM induced different patterns of 18FDG uptake despite interacting with the same circuitries. This may have important implications to DBS research suggesting individualized target selection according to specific neural modulatory requirements.
Collapse
Affiliation(s)
- Marta Casquero-Veiga
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ravit Hadar
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Javier Pascau
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain
| | - Christine Winter
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manuel Desco
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain
- * E-mail:
| | - María Luisa Soto-Montenegro
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
25
|
Armstrong RA. Visual signs and symptoms of corticobasal degeneration. Clin Exp Optom 2016; 99:498-506. [PMID: 27553583 DOI: 10.1111/cxo.12429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/23/2016] [Accepted: 04/28/2016] [Indexed: 11/28/2022] Open
Abstract
Corticobasal degeneration is a rare, progressive neurodegenerative disease and a member of the 'parkinsonian' group of disorders, which also includes Parkinson's disease, progressive supranuclear palsy, dementia with Lewy bodies and multiple system atrophy. The most common initial symptom is limb clumsiness, usually affecting one side of the body, with or without accompanying rigidity or tremor. Subsequently, the disease affects gait and there is a slow progression to influence ipsilateral arms and legs. Apraxia and dementia are the most common cortical signs. Corticobasal degeneration can be difficult to distinguish from other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid clinical diagnosis. Typical ocular features include increased latency of saccadic eye movements ipsilateral to the side exhibiting apraxia, impaired smooth pursuit movements and visuo-spatial dysfunction, especially involving spatial rather than object-based tasks. Less typical features include reduction in saccadic velocity, vertical gaze palsy, visual hallucinations, sleep disturbance and an impaired electroretinogram. Aspects of primary vision such as visual acuity and colour vision are usually unaffected. Management of the condition to deal with problems of walking, movement, daily tasks and speech problems is an important aspect of the disease.
Collapse
|
26
|
A systematic review of lessons learned from PET molecular imaging research in atypical parkinsonism. Eur J Nucl Med Mol Imaging 2016; 43:2244-2254. [PMID: 27470326 PMCID: PMC5047923 DOI: 10.1007/s00259-016-3464-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To systematically review the previous studies and current status of positron emission tomography (PET) molecular imaging research in atypical parkinsonism. METHODS MEDLINE, ISI Web of Science, Cochrane Library, and Scopus electronic databases were searched for articles published until 29th March 2016 and included brain PET studies in progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and corticobasal syndrome (CBS). Only articles published in English and in peer-reviewed journals were included in this review. Case-reports, reviews, and non-human studies were excluded. RESULTS Seventy-seven PET studies investigating the dopaminergic system, glucose metabolism, microglial activation, hyperphosphorilated tau, opioid receptors, the cholinergic system, and GABAA receptors in PSP, MSA, and CBS patients were included in this review. Disease-specific patterns of reduced glucose metabolism have shown higher accuracy than dopaminergic imaging techniques to distinguish between parkinsonian syndromes. Microglial activation has been found in all forms of atypical parkinsonism and reflects the known distribution of neuropathologic changes in these disorders. Opioid receptors are decreased in the striatum of PSP and MSA patients. Subcortical cholinergic dysfunction was more severe in MSA and PSP than Parkinson's disease patients although no significant changes in cortical cholinergic receptors were seen in PSP with cognitive impairment. GABAA receptors were decreased in metabolically affected cortical and subcortical regions in PSP patients. CONCLUSIONS PET molecular imaging has provided valuable insight for understanding the mechanisms underlying atypical parkinsonism. Changes at a molecular level occur early in the course of these neurodegenerative diseases and PET imaging provides the means to aid differential diagnosis, monitor disease progression, identify of novel targets for pharmacotherapy, and monitor response to new treatments.
Collapse
|
27
|
Wu X, Cai H, Ge R, Li L, Jia Z. Recent progress of imaging agents for Parkinson's disease. Curr Neuropharmacol 2014; 12:551-63. [PMID: 25977680 PMCID: PMC4428027 DOI: 10.2174/1570159x13666141204221238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/22/2014] [Accepted: 12/02/2014] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) is a common progressive, neurodegenerative brain disease that is promoted by mitochondrial dysfunction, oxidative stress, protein aggregation and proteasome dysfunction in the brain. Compared with computer tomography (CT) or magnetic resonance imaging (MRI), non-invasive nuclear radiopharmaceuticals have great significance for the early diagnosis of PD due to their high sensitivity and specificity in atypical and preclinical cases. Based on the development of coordination chemistry and chelator design, radionuclides may be delivered to lesions by attaching to PD-related transporters and receptors, such as dopamine, serotonin, and others. In this review, we comprehensively detailed the current achievements in radionuclide imaging in Parkinson's disease.
Collapse
Affiliation(s)
- Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Ran Ge
- Department of Nuclear Medicine, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, P.R. China
| |
Collapse
|
28
|
Undetectable specific striatal [¹²³I]-ioflupane binding in patients with parkinsonism. J Neurol Sci 2014; 341:167-71. [PMID: 24814162 DOI: 10.1016/j.jns.2014.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/23/2022]
Abstract
[(123)I]-Ioflupane single photon emission computed tomography (SPECT) is widely used to evaluate the impairment of the nigrostriatal pathway in patients with parkinsonism. We describe a patient with visually undetectable specific striatal [123I]-ioflupane binding in the striatum. Of the 950 [123I]-ioflupane SPECT scans of patients acquired in our department, only one did not show any visually detectable striatal binding. To investigate this issue, we described multimodality imaging in this patient, including a second [123I]-ioflupane SPECT with a higher dose of [123I]-ioflupane, a [18F]-fluoro-l-dopa positron emission tomography (PET), a new MRI and an FDG-PET. Clinical and imaging data (FDG-PET and MRI) led to a diagnosis of progressive supranuclear palsy (PSP). Visual analysis of the second [(123)I]-ioflupane SPECT performed with a higher dose of [(123)I]-ioflupane confirmed nearly undetectable specific striatal binding of the tracer. The [(18)F]-fluoro-l-dopa-PET striatal binding was decreased. After ruling out all technical issues, an undetectable specific [(123)I]-ioflupane striatal binding in a patient with parkinsonism can be a sign of severe DaT loss as we have observed in a case of probable PSP even with moderate motor signs.
Collapse
|