1
|
Kayı Cangır A, Güneş SG, Orhan K, Özakıncı H, Kahya Y, Karasoy D, Dizbay Sak S. Microcomputed tomography as a diagnostic tool for detection of lymph node metastasis in non-small cell lung cancer: A decision-support approach for pathological examination "A pilot study for method validation". J Pathol Inform 2024; 15:100373. [PMID: 38633838 PMCID: PMC11022089 DOI: 10.1016/j.jpi.2024.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) patients without lymph node (LN) metastases (pN0) may exhibit different survival rates, even when their T stage is similar. This divergence could be attributed to the current pathology practice, wherein LNs are examined solely in two-dimensional (2D). Unfortunately, adhering to the protocols of 2D pathological examination does not ensure the exhaustive sampling of all excised LNs, thereby leaving room for undetected metastatic foci in the unexplored depths of tissues. The employment of micro-computed tomography (micro-CT) facilitates a three-dimensional (3D) evaluation of all LNs without compromising sample integrity. In our study, we utilized quantitative micro-CT parameters to appraise the metastatic status of formalin-fixed paraffin-embedded (FFPE) LNs. Methods Micro-CT scans were conducted on 12 FFPEs obtained from 8 NSCLC patients with histologically confirmed mediastinal LN metastases. Simultaneously, whole-slide images from these FFPEs underwent scanning, and 47 regions of interest (ROIs) (17 metastatic foci, 11 normal lymphoid tissues, 10 adipose tissues, and 9 anthracofibrosis) were marked on scanned images. Quantitative structural variables obtained via micro-CT analysis from tumoral and non-tumoral ROIs, were analyzed. Result Significant distinctions were observed in linear density, connectivity, connectivity density, and closed porosity between tumoral and non-tumoral ROIs, as indicated by kappa coefficients of 1, 0.90, 1, and 1, respectively. Receiver operating characteristic analysis substantiated the differentiation between tumoral and non-tumoral ROIs based on thickness, linear density, connectivity, connectivity density, and the percentage of closed porosity. Conclusions Quantitative micro-CT parameters demonstrate the ability to distinguish between tumoral and non-tumoral regions of LNs in FFPEs. The discriminatory characteristics of these quantitative micro-CT parameters imply their potential usefulness in developing an artificial intelligence algorithm specifically designed for the 3D identification of LN metastases while preserving the FFPE tissue.
Collapse
Affiliation(s)
- Ayten Kayı Cangır
- Department of Thoracic Surgery, Ankara University Faculty of Medicine, Ankara, Turkey
- Medical Design Application and Research Center (MEDITAM), Ankara University, Ankara, Turkey
| | - Süleyman Gökalp Güneş
- Department of Thoracic Surgery, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Kaan Orhan
- Department of Dentoaxillofacial Radiology, Ankara University Faculty of Dentistry, and MEDITAM, Ankara, Turkey
| | - Hilal Özakıncı
- Department of Pathology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Yusuf Kahya
- Department of Thoracic Surgery, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Duru Karasoy
- Department of Statistics, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Serpil Dizbay Sak
- Department of Pathology, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Guo H, Peng X, Dong X, Li J, Cheng C, Wei Q. Promoting Stem Cell Mechanosensing and Osteogenesis by Hybrid Soft Fibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47880-47892. [PMID: 37788009 DOI: 10.1021/acsami.3c07999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Bone regenerative biomaterials are essential in treating bone defects as they serve as extracellular matrix (ECM) mimics, creating a favorable environment for cell attachment, proliferation, and differentiation. However, the currently used bone regenerative biomaterials mostly exhibit high stiffness, which may lead to difficulties in degradation and thus increase the risk of foreign body ingestion. In this study, we prepared soft fibrous scaffolds modified with Zn-MOF-74 nanoparticles via electrostatic spinning. The soft fibers (only 1 kPa) permit remodeling under cellular adhesive force, optimizing the mechanical cues in the microenvironment to support cell adhesion and mechanosensing. In addition, the incorporation of Zn-MOF-74 nanoparticles enables the stable and sustained release of zinc ions, promoting stem cell mechanotransduction and osteogenic differentiation. Therefore, the hybrid soft fibers facilitate the regeneration of new bone in the rat femoral defect model, which provides a promising approach for regenerative medicine.
Collapse
Affiliation(s)
- Hui Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Xu Peng
- West China School of Basic Medical Sciences & Forensic Medicine, Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, China
| | - Xiangyu Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiangge Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Herrera-Rodríguez SE, García-Márquez E, Padilla-Camberos E, Espinosa-Andrews H. Evaluation of an Ionic Calcium Fiber Supplement and Its Impact on Bone Health Preservation in a Dietary Calcium Deficiency Mice Model. Nutrients 2022; 14:422. [PMID: 35276779 PMCID: PMC8838215 DOI: 10.3390/nu14030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ionic calcium can help in the prevention of the process of osseous decalcification. This study aimed to evaluate the physicochemical properties and toxic effects of ionic calcium-fiber supplement (ICa+) and its impact on bone health preservation in mice C57/BL6 fed a calcium-deficient diet. Physicochemical properties include FTIR, apparent calcium solubility estimated by the calcium ratio obtained by ionization chromatography and atomic absorption. In vitro genotoxicity and cytotoxicity of the ICa+ were assessed. Twenty-five 7-week-old C57/BL6 mice were fed calcium-free diet (CFD) or CFD plus CaCO3 (1.33 mg Ca) or CFD plus ICa+ (1.33-6.66 mg Ca) for six weeks. After that, bone mass and microstructure parameters were assessed. Histological staining was performed to determine calcium deposits. ICa+ (100%) exhibited an apparent calcium solubility higher than CaCO3 (12.3%). ICa+ showed no cytotoxic and genotoxic in vitro activities. Histomorphometry analysis showed that the ICa+ treated group displayed a higher trabecular number than the trabecular space. Also, the ratio BV/TV was increased compared with all treatments. Ionic calcium-fiber supplementation prevents bone deterioration compared to mice fed a calcium-deficient diet.
Collapse
Affiliation(s)
- Sara Elisa Herrera-Rodríguez
- Unidad Sureste, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Km 5.5 Carretera, Sierra Papacal-Chuburná, Chuburná, Mérida 97302, Yucatán, Mexico;
| | - Eristeo García-Márquez
- Unidad Noreste, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Autopista Mty-Aeropuerto, Vía de la Innovación 404, Parque PIIT, Cd Apodaca 66628, Nuevo León, Mexico
| | - Eduardo Padilla-Camberos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Colinas de La Normal, Guadalajara 44270, Jalisco, Mexico;
| | - Hugo Espinosa-Andrews
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., CIATEJ, Cam. Arenero 1227, El Bajío, Zapopan 45019, Jalisco, Mexico
| |
Collapse
|
4
|
Alshihri S, Kindi M, Alfotawi R, Hindi MA, Alghamdi O, Ramalingam S, Assiri M. Assessment of Bone Regeneration Using Tooth Ash and Injectable Platelet Rich Fibrin: A Microcomputed Tomographic (CT) Analysis. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Introduction: One of the main challenge of bone graft or socket preservation in particular is to get good quality and quantity of bone in short time prior to implant bed preparation. The buccal bone at the crest of the ridge is a very thin bone and usually resorb faster than
the rest of alveolar bone which may hinder an optimum dento-osseous implant insertion. The purpose of this study will be to assess the bone regeneration capabilities of Tooth Ash Particles (TAP) with injectable Plasma Rich Fibrin (i-PRF) and Tooth Ash Particles (TAP) alone at defects created
in the goat mandible bone using micro-computed tomographic (micro-CT). Materials and Methods: A total, 54 bone defect (5 mm × 8 mm) were performed in the 18 goats. The created defect received different treatment (Tx): Tx.A: Unfilled defect (allow natural bone regeneration; Tx.B:
Tooth Ash particle (TAP) alone; Tx.C: Tooth Ash + injectable PRF (TAP/i-PRF). Six goats, were sacrificed at different time points:Group 1: at 2nd week, Group2: at 5th week and Group3 at 8th week. The newly formed bone (NFB) was analyzed using micro-CT at different time points. Quantitative
and qualitative assessment were carried out namely; the volume of new bone formation (NF-BV) within the defect and its mineral density (NF-BMD), Trabecular Thickness (Tb Th), Trabecular Number (Tb N) and Trabecular Separation (Tb Sp). Result: By 8th week, the mean NF-BV was 69.482 ±
6.554 mm3 (cubic millimeter), 65.872±6.804 mm3, 26.820±14.643 mm3, while the mean NF-BMD was 0.417±0.119g/mm3, 0.786±0.036 g/mm3, 0.805±0.033 g/mm3 for the defects which received Tx.C, Tx.B
and Tx.A respectively. At 8th weekTb Th of NFB was 0.612±0.168, 0.913±0.112, and 0.701 ±0.126, Trabecular Number of NFB was 2.062±0.946, 1.002±0.155, and 1.816±2.042 and, Trabecular Separation of NFB was 0.330 ±0.131, 0.559 ±0.110, and
0.495 ±0.258 for the defects which received Tx.A, Tx.B and Tx.C respectively. Conclusion: Micro-CT study demonstrated that tooth ash particles mixed with injectable Platelet Rich Fibrin (i-PRF) on mandibular bone defect in goat’s model, resulting in new bone with significantly
higher volume, mineral density and less remodeling rate when compared with normal bone regeneration of unfilled defects.
Collapse
Affiliation(s)
- Saleh Alshihri
- Oral and Maxillofacial Resident, Faculty of Dentistry, King Saud University, Riyadh, 11545, KSA
| | - Mohammed Kindi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, King Saud University, Riyadh, 11545, KSA
| | - Randa Alfotawi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, King Saud University, Riyadh, 11545, KSA
| | - Marium Al Hindi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, King Saud University, Riyadh, 11545, KSA
| | - Osama Alghamdi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, King Saud University, Riyadh, 11545, KSA
| | - Sundar Ramalingam
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, King Saud University, Riyadh, 11545, KSA
| | - Mohammed Assiri
- Department of Oral and Maxillofacial Surgery, Dental Faculty, Najran University, Najran, 1988, KSA
| |
Collapse
|
5
|
Brunello G, Panda S, Schiavon L, Sivolella S, Biasetto L, Del Fabbro M. The Impact of Bioceramic Scaffolds on Bone Regeneration in Preclinical In Vivo Studies: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1500. [PMID: 32218290 PMCID: PMC7177381 DOI: 10.3390/ma13071500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Bioceramic scaffolds are appealing for alveolar bone regeneration, because they are emerging as promising alternatives to autogenous and heterogenous bone grafts. The aim of this systematic review is to answer to the focal question: in critical-sized bone defects in experimental animal models, does the use of a bioceramic scaffolds improve new bone formation, compared with leaving the empty defect without grafting materials or using autogenous bone or deproteinized bovine-derived bone substitutes? Electronic databases were searched using specific search terms. A hand search was also undertaken. Only randomized and controlled studies in the English language, published in peer-reviewed journals between 2013 and 2018, using critical-sized bone defect models in non-medically compromised animals, were considered. Risk of bias assessment was performed using the SYRCLE tool. A meta-analysis was planned to synthesize the evidence, if possible. Thirteen studies reporting on small animal models (six studies on rats and seven on rabbits) were included. The calvarial bone defect was the most common experimental site. The empty defect was used as the only control in all studies except one. In all studies the bioceramic materials demonstrated a trend for better outcomes compared to an empty control. Due to heterogeneity in protocols and outcomes among the included studies, no meta-analysis could be performed. Bioceramics can be considered promising grafting materials, though further evidence is needed.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza Italy; (G.B.); (L.B.)
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Sourav Panda
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Commenda 10, 20122 Milan, Italy;
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha O Anusandhan University, Bhubaneswar, 751003 Odisha, India
| | - Lucia Schiavon
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Stefano Sivolella
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Lisa Biasetto
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza Italy; (G.B.); (L.B.)
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Commenda 10, 20122 Milan, Italy;
- Dental Clinic, I.R.C.C.S. Orthopedic Institute Galeazzi, Via Galeazzi 4, 20161 Milan, Italy
| |
Collapse
|
6
|
Bone Marrow Mesenchymal Stromal Cells (BMMSCs) Augment Osteointegration of Dental Implants in Type 1 Diabetic Rabbits: An X-Ray Micro-Computed Tomographic Evaluation. MEDICINA-LITHUANIA 2020; 56:medicina56040148. [PMID: 32218375 PMCID: PMC7230266 DOI: 10.3390/medicina56040148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/13/2023]
Abstract
Background and objectives: The study aimed to investigate the effect of bone marrow mesenchymal stromal cells (BMMSCs) on implant-bone osseointegration in type I diabetic New Zealand rabbits. Materials and methods: BMMSCs harvested from healthy rabbits were processed and validated for purity and osteocyte differentiability. Mandibular incisors of diabetic and control rabbits were carefully extracted, and the sockets were plugged with collagen sponges. Platelet-rich plasma (PRP) containing osteoinductive BMMSCs, and plain PRP were injected into the collagen sponge of the right and left sockets respectively. Dental implants of 2.6 mm diameter and 10 mm length were inserted into the collagen sponge of both sockets. All the animals were sacrificed six weeks post surgery to evaluate an early stage of osseointegration; the mandibles scanned by X-ray microcomputed tomography (μCT) and subjected to 3D analysis. The μCT parameters of the right implant were paired against that of the left side of each animal and analyzed by paired T-test. Results: The preclinical evaluation of the viability and osteocyte differentiation of the BMMSCs were consistent between both the donor samples. The osseointegration of dental implants with stem cell therapy (BMMSCs + PRP + collagen) in normal and diabetic rabbits was significantly higher than that of implants with adjunctive PRP + collagen only (p < 0.05). Conclusion: Stem Cell therapy with osteoinductive BMMSCs and PRP can offer a novel approach to enhance the osseointegration of dental implants in uncontrolled diabetic patients.
Collapse
|
7
|
Section Plane Effects on Morphometric Values of Microcomputed Tomography. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7905404. [PMID: 30792997 PMCID: PMC6354147 DOI: 10.1155/2019/7905404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/07/2018] [Accepted: 12/31/2018] [Indexed: 11/18/2022]
Abstract
Objectives Histomorphometry is the established gold standard for inspection of trabecular microstructures in biomaterial research. However, microcomputed tomography can provide images from the perspective of various section planes. The aim of the present study was to evaluate the effects of different section planes, which may cause bias in two-dimensional morphometry, on the morphometric values of microcomputed tomography. Methods A socket preservation technique was performed on the extracted premolar area of 4 beagle dogs. After an 8-week healing period, a total of 16 specimens were obtained and analyzed with conventional histomorphometry and microtomographic morphometry. Using the original images of the histologic specimens for comparison, the most similar tomographic image was selected by trial and error. Then, the section plane was then moved with ±79 μm parallel offsets and rotated ±10° around the center from the occlusal view. The images were compared in terms of bone, graft, and noncalcified area, and the concordance correlation coefficient (CCC) was calculated. Results There was a high CCC in the comparison between histomorphometric images and the most similar microtomographic images. However, the CCC value was low in the comparisons with both parallel movement and rotation. Our results demonstrate that the sectioning plane has a significant effect on measurements. Conclusion Two-dimensional morphometric values for biomaterial research should be interpreted with caution, and the simultaneous use of complementary 3-dimensional tools is recommended.
Collapse
|
8
|
Seow D, Yasui Y, Hutchinson ID, Hurley ET, Shimozono Y, Kennedy JG. The Subchondral Bone Is Affected by Bone Marrow Stimulation: A Systematic Review of Preclinical Animal Studies. Cartilage 2019; 10:70-81. [PMID: 28573889 PMCID: PMC6376565 DOI: 10.1177/1947603517711220] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Despite the mechanical and biological roles of subchondral bone (SCB) in articular cartilage health, there remains no consensus on the postoperative morphological status of SCB following bone marrow stimulation (BMS). The purpose of this systematic review was to clarify the morphology of SCB following BMS in preclinical, translational animal models. DESIGN The MEDLINE and EMBASE databases were systematically reviewed using specific search terms on April 19, 2016 based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The morphology of the SCB was assessed using of microcomputed tomography (bone density) and histology (microscopic architecture). RESULTS Seventeen animal studies with 520 chondral lesions were included. The morphology of SCB did not recover following BMS. Compared with untreated chondral defects, BMS resulted in superior morphology of superficial SCB and cartilage but inferior morphology (specifically bone density, P < 0.05) of the deep SCB. Overall, the use of biological adjuvants during BMS resulted in the superior postoperative morphology of SCB. CONCLUSIONS Alterations in the SCB following BMS were confirmed. Biologics adjuvants may improve the postoperative morphology of both SCB and articular cartilage. Refinements of BMS techniques should incorporate consideration of SCB damage and restoration. Investigations to optimize BMS techniques incorporating both minimally invasive approaches and biologically augmented platforms are further warranted.
Collapse
Affiliation(s)
- Dexter Seow
- Hospital for Special Surgery, New York, NY, USA,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Youichi Yasui
- Hospital for Special Surgery, New York, NY, USA,Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Ian D. Hutchinson
- Hospital for Special Surgery, New York, NY, USA,Department of Orthopaedic Surgery, Albany Medical Center, Albany, NY, USA
| | - Eoghan T. Hurley
- Hospital for Special Surgery, New York, NY, USA,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Yoshiharu Shimozono
- Hospital for Special Surgery, New York, NY, USA,Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan,Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - John G. Kennedy
- Hospital for Special Surgery, New York, NY, USA,John G. Kennedy, Hospital for Special Surgery, 523 East 72nd Street, Suite 507, New York, NY 10021, USA.
| |
Collapse
|
9
|
MORILLO CMR, SLONIAK MC, GONÇALVES F, VILLAR CC. Efficacy of stem cells on bone consolidation of distraction osteogenesis in animal models: a systematic review. Braz Oral Res 2018; 32:e83. [DOI: 10.1590/1807-3107bor-2018.vol32.0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022] Open
|
10
|
Westhauser F, Reible B, Höllig M, Heller R, Schmidmaier G, Moghaddam A. Combining advantages: Direct correlation of two-dimensional microcomputed tomography datasets onto histomorphometric slides to quantify three-dimensional bone volume in scaffolds. J Biomed Mater Res A 2018; 106:1812-1821. [DOI: 10.1002/jbm.a.36377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/24/2018] [Accepted: 02/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- F. Westhauser
- HTRG - Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury; Heidelberg University Hospital, Schlierbacher Landstraße 200a; Heidelberg 69118 Germany
| | - B. Reible
- HTRG - Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury; Heidelberg University Hospital, Schlierbacher Landstraße 200a; Heidelberg 69118 Germany
| | - M. Höllig
- Clinic for Trauma Surgery, Orthopedic Surgery, and Hand Surgery; SLK-Kliniken Heilbronn GmbH, Am Gesundbrunnen 20-26; Heilbronn 74078 Germany
| | - R. Heller
- HTRG - Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury; Heidelberg University Hospital, Schlierbacher Landstraße 200a; Heidelberg 69118 Germany
| | - G. Schmidmaier
- HTRG - Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury; Heidelberg University Hospital, Schlierbacher Landstraße 200a; Heidelberg 69118 Germany
| | - A. Moghaddam
- ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Clinic for Orthopedic Surgery, Trauma Surgery, and Hand Surgery, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1; Aschaffenburg 63739 Germany
| |
Collapse
|
11
|
Effendy NM, Khamis MF, Shuid AN. The effects of Labisia pumila extracts on bone microarchitecture of ovariectomized-induced osteoporosis rats: A micro-CT analysis. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2017; 25:101-112. [PMID: 27768005 DOI: 10.3233/xst-16115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGOUND Labisia pumila (LP) is a popular herb used by women over the past few decades. This herb has shown potentials as an alternative agent for treatment and prevention of postmenopausal osteoporosis. It was observed in previous studies that supplementation to ovariectomized rats were associated with increased bone antioxidative enzymes and reduced lipid peroxidation activity. It had also improved bone formation markers in ovariectomized rats. This study aimed to evaluate the effects of giving different forms of LP extracts on the trabecular bone microarchitecture of ovariectomised rats. METHODS Forty-eight female Sprague-Dawley rats were randomly divided into sham-operated (Sham), ovariectomized control (OVX), ovariectomized and given estrogen at 64.5 μg/kg (ERT), ovariectomized and given LP aqueous extract (LPaq), LP methanol extract (LPmet) and LP ethanol extract (LPet) at 100 mg/kg, respectively. Treatments were given daily via oral gavages for nine weeks. Following sacrifice, femora were dissected out for bone microarchitectural analysis using an in vitro micro-CT, which provided three dimensional informations on bone microarchitecture. RESULTS LPaq was the most effective extract found to improve the bone microarchitectural paramaters which comprised ofBone volume fraction (BV/TV), Trabecular separation (Tb.Sp), Trabecular number (Tb.N), Connective density (Conn.dens), Structure model index (SMI) and Degree of anisotropy (DA). CONCLUSION LPaq was effective in protecting the bone of postmenopausal osteoporosis rat model against microarchitectural deterioration.
Collapse
Affiliation(s)
- Nadia Mohd Effendy
- Faculty of Medicine, Universiti Sains Islam Malaysia, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur, Malaysia
- Department of Pharmacology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Fadhli Khamis
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Seidling R, Lehmann LJ, Lingner M, Mauermann E, Obertacke U, Schwarz MLR. Analysis of the osseointegrative force of a hyperhydrophilic and nanostructured surface refinement for TPS surfaces in a gap healing model with the Göttingen minipig. J Orthop Surg Res 2016; 11:119. [PMID: 27751181 PMCID: PMC5067893 DOI: 10.1186/s13018-016-0434-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/31/2016] [Indexed: 12/02/2022] Open
Abstract
Background A lot of advantages can result in a high wettability as well as a nanostructure at a titanium surface on bone implants. Thus, the aim of this study was to evaluate the osseointegrative potential of a titan plasma-sprayed (TPS) surface refinement by acid-etching with chromosulfuric acid. This results in a hyperhydrophilic surface with a nanostructure and an extreme high wetting rate. Methods In total, 72 dumbbell shape titan implants were inserted in the spongy bone of the femora of 18 Göttingen minipigs in a conservative gap model. Thirty-six titan implants were coated with a standard TPS surface and 36 with the hyperhydrophilic chromosulfuric acid (CSA) surface. After a healing period of 4, 8, and 12 weeks, the animals were killed. The chronological healing process was histomorphometrically analyzed. Results The de novo bone formation, represented by the bone area (BA), is increased by approximately 1.5 times after 12 weeks with little additional benefit by use of the CSA surface. The bone-to-implant contact (BIC), which represents osseoconductive forces, shows results with a highly increased osteoid production in the CSA implants beginning at 8 and 12 weeks compared to TPS. This culminates in a 17-fold increase in BIC after a healing period of 12 weeks. After 4 weeks, significantly more osteoid was seen in the gap as de novo formation in the CSA group (p = 0.0062). Osteoid was also found more frequently after 12 weeks at the CSA-treated surface (p = 0.0355). The site of implantation, intertrochanteric or intercondylar, may influence on the de novo bone formation in the gap. Conclusions There is a benefit by the CSA surface treatment of the TPS layer for osseointegration over an observation time up to 12 weeks. Significant differences were able to be shown in two direct comparisons between the CSA and the TPS surface for osteoid formation in the gap model. Further trials may reveal the benefit of the CSA treatment of the TPS layer involving mechanical tests if possible. Electronic supplementary material The online version of this article (doi:10.1186/s13018-016-0434-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roland Seidling
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Department of Anesthesia and Intensive Care Medicine, Asklepios Südpfalzklinik Kandel, Luitpoldstr. 14, 76870, Kandel, Germany
| | - Lars J Lehmann
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Clinic of Trauma and Hand Surgery, Vincentius-Kliniken gAG Karlsruhe, Südendstr. 32, 76137, Karlsruhe, Germany
| | - Manuel Lingner
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Clinic for Anaesthesia, Intensive Care and Pain Therapy, BG Trauma Centre, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Germany
| | - Eckhard Mauermann
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Department for Anesthesia, Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Udo Obertacke
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Markus L R Schwarz
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
13
|
Wang D, Gilbert JR, Shaw MA, Shakir S, Losee JE, Billiar TR, Cooper GM. Toll-like receptor 4 mediates the regenerative effects of bone grafts for calvarial bone repair. Tissue Eng Part A 2016; 21:1299-308. [PMID: 25603990 DOI: 10.1089/ten.tea.2014.0215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Craniofacial trauma is difficult to repair and presents a significant burden to the healthcare system. The inflammatory response following bone trauma is critical to initiate healing, serving to recruit inflammatory and progenitor cells and to promote angiogenesis. A role for inflammation in graft-induced bone regeneration has been suggested, but is still not well understood. The current study assessed the impact of Toll-like receptor (TLR4) signaling on calvarial repair in the presence of morselized bone components. Calvarial defects in wild-type and global TLR4(-/-) knockout mouse strains were treated with fractionated bone components in the presence or absence of a TLR4 neutralizing peptide. Defect healing was subsequently evaluated over 28 days by microcomputed tomography and histology. The matrix-enriched fraction of morselized bone stimulated calvarial bone repair comparably with intact bone graft, although the capacity for grafts to induce calvarial bone repair was significantly diminished by inhibition or genetic ablation of TLR4. Overall, our findings suggest that the matrix component of bone graft stimulates calvarial bone repair in a TLR4-dependent manner. These results support the need to better understand the role of inflammation in the design and implementation of strategies to improve bone healing.
Collapse
Affiliation(s)
- Dan Wang
- 1 Department of Stomatology, Tenth People's Hospital of Tongji University , Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Repair of segmental ulna defects using a β-TCP implant in combination with a heparan sulfate glycosaminoglycan variant. Acta Biomater 2015; 28:193-204. [PMID: 26384700 DOI: 10.1016/j.actbio.2015.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/06/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
Given the wide spread clinical use of ceramic-based bone void fillers, we sought to determine the efficacy of an FDA-approved β-tricalcium phosphate bone graft substitute (JAX™) in combination with a carboxymethyl cellulose (CMC) handling agent that included a particular heparan glycosaminoglycan (GAG) variant, herein referred to as HS3. Having recently demonstrated efficacy of a combination collagen/HS3 device, we further aimed to determine the support that HS3 could offer a handling agent used to administer a more tissue-relevant bone void filler. This study evaluated the JAX™-HS3 combination device in 1.5 cm critical-sized defects in the ulna bones of 27 male New Zealand White rabbits. Treatment groups consisted of JAX™ applied with CMC alone, or JAX™ with CMC containing either 30 μg or 100 μg of the HS3 GAG. Data based on radiographic, μCT, mechanical, and histological analyses at 4 and 8 weeks post-surgery, clearly demonstrate enhanced new bone formation in the JAX™-HS3 combination treated defects compared to treatment with JAX™ alone. The efficacy of such a combination advocates for inclusion of HS3 in handling agents used in the preparation of various bone void fillers being used in orthopaedic surgery. STATEMENT OF SIGNIFICANCE Synthetic bone grafts and demineralized bone matrices are gaining prominence as alternatives to autologous and allogeneic bone grafts and are frequently administered in granular form, necessitating their combination with a handling agent. Typical handling agents include glycerol, gelatin, cellulose, hyaluronic acid and lecithin, formulated as hydrogels, which can be further enhanced by the addition of heparan sulfate (HS) glycosaminoglycans that augment the osteostimulatory properties of the graft. Here we assessed the efficacy of β-TCP granules combined with a hydrogel consisting of carboxymethyl cellulose and the HS variant (HS3) previously shown to enhance osteogenic healing. The data advocates for HS3 to be included during the formulation of hydrogel-based carriers that support the various bone void fillers being used in orthopaedic surgery.
Collapse
|
15
|
Salamanca E, Lee WF, Lin CY, Huang HM, Lin CT, Feng SW, Chang WJ. A Novel Porcine Graft for Regeneration of Bone Defects. MATERIALS 2015. [PMCID: PMC5455581 DOI: 10.3390/ma8052523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone regeneration procedures require alternative graft biomaterials to those for autogenous bone. Therefore, we developed a novel porcine graft using particle sizes of 250–500 μm and 500–1000 μm in rabbit calvarial bone defects and compared the graft properties with those of commercial hydroxyapatite (HA)/beta-tricalcium phosphate (β-TCP) over eight weeks. Surgery was performed in 20 adult male New Zealand white rabbits. During a standardized surgical procedure, four calvarial critical-size defects of 5 mm diameter and 3 mm depth were prepared. The defects were filled with HA/β-TCP, 250–500 μm or 500–1000 μm porcine graft, and control defects were not filled. The animals were grouped for sacrifice at 1, 2, 4, and 8 weeks post-surgery. Subsequently, sample blocks were prepared for micro-computed tomography (micro-CT) scanning and histological sectioning. Similar bone formations were observed in all three treatment groups, although the 250–500 μm porcine graft performed slightly better. Rabbit calvarial bone tissue positively responded to porcine grafts and commercial HA/β-TCP, structural analyses showed similar crystallinity and porosity of the porcine and HA/β-TCP grafts, which facilitated bone formation through osteoconduction. These porcine grafts can be considered as graft substitutes, although further development is required for clinical applications.
Collapse
Affiliation(s)
- Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mail:
| | - Chin-Yi Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
| | - Haw-Ming Huang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mail:
| | - Che-Tong Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan; E-Mails: (E.S.); (C.-Y.L.); (C.-T.L.); (S.-W.F.)
- Dental Department of Taipei Medical University, Shuang-Ho Hospital, Taipei 110, Taiwan
- Author to whom correspondence should be addressed; E-Mail: cweijen1@ tmu.edu.tw; Tel.: +886-2-2736-1661 (ext. 5148); Fax: +886-2-2736-2295
| |
Collapse
|
16
|
Effendy NM, Ibrahim NI, Mohamed N, Shuid AN. An Evidence-Based Review of Micro-CT Assessments of the Postmenopausal Osteoporosis Rat Model. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.177.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Veríssimo DM, Leitão RFC, Figueiró SD, Góes JC, Lima V, Silveira CO, Brito GAC. Guided bone regeneration produced by new mineralized and reticulated collagen membranes in critical-sized rat calvarial defects. Exp Biol Med (Maywood) 2014; 240:175-84. [PMID: 25245073 DOI: 10.1177/1535370214549518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the bone regenerative effect of glutaraldehyde (GA) cross-linking on mineralized polyanionic collagen membranes in critical-sized defects on rat calvarias. Bone calvarial defects were induced in Wistar rats, which were then divided into five groups: a sham group; a control group, which received a commercial membrane; and GA, 25GA, and 75GA groups, which received one of three different polyanionic collagen membranes mineralized by 0, 25, or 75 hydroxyapatite cycles and then cross-linked by GA. Bone formation was evaluated based on digital radiography and computerized tomography. Histological analyses were performed 4 and 12 weeks after the surgical procedure to observe bone formation, membrane resorption, and fibrous tissue surrounding the membranes. Measurement of myeloperoxidase activity, tumor necrosis factor alpha, and interleukin 1beta production was performed 24 h after surgery. The percentage of new bone formation in the GA, 25GA, and 75GA groups was higher compared with the control and sham groups. In the GA and 25 GA groups, the membranes were still in place and were contained in a thick fibrous capsule after 12 weeks. No significant difference was found among the groups regarding myeloperoxidase activity and interleukin 1beta levels, although the GA, 25GA, and 75GA groups presented decreased levels of tumor necrosis factor alpha compared with the control group. These new GA cross-linked membranes accelerated bone healing of the calvarium defects and did not induce inflammation. In addition, unlike the control membrane, the experimental membranes were not absorbed during the analyzed period, so they may offer advantages in large bone defects where prolonged membrane barrier functions are desirable.
Collapse
Affiliation(s)
- Denusa M Veríssimo
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60.430-270, Brazil
| | - Renata F C Leitão
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza 60.430-270, Brazil
| | - Sônia D Figueiró
- Physics Department, Federal University of Ceará, Fortaleza 60.430-270, Brazil
| | - Júlio C Góes
- Physics Department, Federal University of Ceará, Fortaleza 60.430-270, Brazil
| | - Vilma Lima
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60.430-270, Brazil
| | - Charles O Silveira
- School of Medicine, Federal University of Ceará, Fortaleza 60.430-270, Brazil
| | - Gerly A C Brito
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza 60.430-270, Brazil
| |
Collapse
|
18
|
Guda T, Labella C, Chan R, Hale R. Quality of bone healing: Perspectives and assessment techniques. Wound Repair Regen 2014; 22 Suppl 1:39-49. [DOI: 10.1111/wrr.12167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 01/28/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Teja Guda
- Dental Trauma Research Detachment; US Army Institute of Surgical Research; Fort Sam Houston
- Wake Forest Institute for Regenerative Medicine; Winston-Salem North Carolina
- Biomedical Engineering; University of Texas at San Antonio; San Antonio Texas
| | - Carl Labella
- Dental Trauma Research Detachment; US Army Institute of Surgical Research; Fort Sam Houston
| | - Rodney Chan
- Dental Trauma Research Detachment; US Army Institute of Surgical Research; Fort Sam Houston
| | - Robert Hale
- Dental Trauma Research Detachment; US Army Institute of Surgical Research; Fort Sam Houston
| |
Collapse
|
19
|
Dias DR, Leles CR, Batista AC, Lindh C, Ribeiro-Rotta RF. Agreement between Histomorphometry and Microcomputed Tomography to Assess Bone Microarchitecture of Dental Implant Sites. Clin Implant Dent Relat Res 2013; 17:732-41. [PMID: 24238279 DOI: 10.1111/cid.12176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Histomorphometry and microcomputed tomography (microCT) have been used in implant studies but need better understanding before being used as equivalent methods. PURPOSE The purpose of this study was to investigate the agreement between 2D (histomorphometry) and 3D (microCT) reference methods for assessing jawbone microarchitecture in vivo. MATERIAL AND METHODS Forty-four bone specimens from 32 patients were obtained during implant placement and examined by microCT, followed by hematoxylin-eosin staining and histomorphometric analysis. The morphometric parameters included bone volume density (BV/TV), bone surface fraction (BS/TV), bone surface density, trabecular thickness, trabecular number, and trabecular separation (Tb.Sp). Bland-Altman plots were used for pairwise agreement analysis between the equivalent 3D and 2D parameters, and complemented with Mountain plots. The association between the two methods was tested using Pearson's correlation followed by Passing-Bablok regression. RESULTS Systematic bias was observed in all Bland-Altman and Mountain plots, including constant bias for BV/TV and Tb.Sp, and proportional bias for all other parameters. Significant correlation was found for BV/TV (r = 0.80; p < .001) and BS/TV (r = 0.44; p = .003), and the Passing-Bablok regression showed constant bias for BV/TV and proportional bias for BS/TV. CONCLUSION Because of the poor agreement between measures obtained by histomorphometry and microCT, these methods should not be used interchangeably for jawbones.
Collapse
Affiliation(s)
- Danilo Rocha Dias
- Department of Oral Medicine, School of Dentistry, Federal University of Goias, Goiania, Goias, Brazil
| | - Cláudio Rodrigues Leles
- Department of Prevention and Oral Rehabilitation, School of Dentistry, Federal University of Goias, Goiania, Goias, Brazil
| | - Aline Carvalho Batista
- Department of Oral Medicine, School of Dentistry, Federal University of Goias, Goiania, Goias, Brazil
| | - Christina Lindh
- Department of Oral and Maxillofacial Radiology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | | |
Collapse
|
20
|
Sprecher CM, Gahlert M, Röhling S, Kniha H, Gueorguiev B, Milz S. Comparison of imaging methods used for dental implant osseous integration assessment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2195-2200. [PMID: 23838879 DOI: 10.1007/s10856-013-4978-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
Two different imaging techniques used to determine bone tissue response to dental implants were compared. Dental implants were implanted into the maxillae of 18 pigs, which were sacrificed after 4, 8 and 12 weeks. Implants with surrounding bone tissue were retrieved for methyl methacrylate histology and contact radiography. On identical sections peri-implant bone density and bone implant contact (BIC) ratio were assessed with two different imaging methods. Evaluation of Giemsa eosin stained and contact radiographed sections showed direct osseous integration for all implants and both methods showed a strong correlation with correlation coefficient r = 0.930 (P < 0.0001) for peri-implant bone density and r = 0.817 (P < 0.0001) for bone implant contact ratio. While the two imaging methods showed moderate differences for peri-implant bone density there were significant differences between the BIC values determined. In general, contact radiography tends to underestimate BIC for approximately 4.5 % (P = 0.00003).
Collapse
Affiliation(s)
- C M Sprecher
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland.
| | | | | | | | | | | |
Collapse
|
21
|
Fassbender M, Minkwitz S, Kronbach Z, Strobel C, Kadow-Romacker A, Schmidmaier G, Wildemann B. Local gentamicin application does not interfere with bone healing in a rat model. Bone 2013; 55:298-304. [PMID: 23631877 DOI: 10.1016/j.bone.2013.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 01/16/2023]
Abstract
For the prophylaxis and treatment of bony infections antibiotics are locally used. Since several decades antibiotics mixed with bone cement (methylmethacrylate) are successfully used in prosthetic surgery and a gentamicin coated tibial nail is approved in Europe for fracture stabilization. The goal of the present study was to investigate if gentamicin, locally applied from a polymeric coating of intramedullary nails, might interfere with the bone healing process. Female Sprague Dawley rats (n = 72) were used and the tibiae were intramedullary stabilized with Kirschner-wires (k-wires) after osteotomy. This model was established earlier and shows a delayed healing with a prolonged inflammatory reaction. The open approach is clinically more relevant compared to a closed one because it mimics the clinically critical case of an open fracture, which has a higher risk of infection. The k-wire was either coated with the polymer poly(d,l-lactide) (control group) or with 10% gentamicin incorporated into the polymer (gentamicin group). In vivo μCT analyses were performed at days 10, 28, 42, and 84 after osteotomy. Mechanical torsional testing and histological evaluation were done at the days of sacrifice: 28, 42, and 84. The μCT analyses revealed an increase in tissue mineral density (TMD) over the healing period in both groups. In the control group, the torsional stiffness and maximum load did not reach the values of the intact contralateral side at any time point. At day 84 the gentamicin treated tibiae, however, showed significantly better maximum load compared to the control group. The histology showed no bony bridging in the control, whereas in 2 of 5 calluses of the gentamicin group mineralized bridging occurred. Significantly more mineralized tissue was measured in the gentamicin group. This study shows that the local gentamicin application does not negatively interfere with the long term healing process. Local infection prophylaxis is effective without negative effects on bone healing.
Collapse
Affiliation(s)
- M Fassbender
- Julius Wolff Institute, Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Soardi CM, Clozza E, Turco G, Biasotto M, Engebretson SP, Wang HL, Zaffe D. Microradiography and microcomputed tomography comparative analysis in human bone cores harvested after maxillary sinus augmentation: a pilot study. Clin Oral Implants Res 2013; 25:1161-8. [PMID: 23796003 DOI: 10.1111/clr.12225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study was to compare microradiography (MR) and microcomputed tomography (μCT) analysis of bone samples following maxillary sinus augmentation at different time periods and determine the relationships between measured area and volume fractions. MATERIALS AND METHODS Lateral window sinus grafts were performed on 10 patients using a mineralized human bone allograft (MHBA). At implant placement, 5-13 months after surgery, 10 bone core biopsies were harvested. Prior to histologic sectioning, bone samples were evaluated with μCT. The morphometric parameters computed by MR and μCT were compared using Pearson's correlation and Bland and Altman analysis and included hard tissue fraction (HV/TV:%), soft tissue fraction (SV/TV:%), vital bone fraction (BV/TV:%) and residual graft fraction (GV/TV:%). RESULTS Strong positive correlation between MR and μCT was found for HV/TV and SV/TV and BV/TV [r = 0.84, 0.84 and 0.69, respectively] but weak for GV/TV [r = 0.10]. CONCLUSION μCT technology shows promising potential as an indicator of bone morphology changes; however, caution should be used in interpreting morphometric parameters, as the different methods reveal important biases.
Collapse
|
23
|
An SH, Matsumoto T, Miyajima H, Nakahira A, Kim KH, Imazato S. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction. Dent Mater 2012; 28:1221-31. [PMID: 23018082 DOI: 10.1016/j.dental.2012.09.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 09/04/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Highly porous apatite-based bioceramic scaffolds have been widely investigated as three-dimensional (3D) templates for cell adhesion, proliferation, and differentiation promoting the bone regeneration. Their fragility, however, limits their clinical application especially for a large bone defect. METHODS To address the hypothesis that using a ZrO(2)/hydroxyapatite (HAp) composite might improve both the mechanical properties and cellular compatibility of the porous material, we fabricated ZrO(2)/HAp composite scaffolds with different ZrO(2)/HAp ratios, and evaluated their characteristics. In addition, porous ZrO(2)/HAp scaffolds containing bone marrow derived stromal cells (BMSCs) were implanted into critical-size bone defects for 6 weeks in order to evaluate the bone tissue reconstruction with this material. RESULTS The porosity of a ZrO(2)/HAp scaffold can be adjusted from 72% to 91%, and the compressive strength of the scaffold increased from 2.5 to 13.8MPa when the ZrO(2) content increased from 50 to 100wt%. The cell adhesion and proliferation in the ZrO(2)/HAp scaffold was greatly improved when compared to the scaffold made with ZrO(2) alone. Moreover, in vivo study showed that a BMSCs-loaded ZrO(2)/HAp scaffold provided a suitable 3D environment for BMSC survival and enhanced bone regeneration around the implanted material. SIGNIFICANCE We thus showed that a porous ZrO(2)/HAp composite scaffold has excellent mechanical properties, and cellular/tissue compatibility, and would be a promising substrate to achieve both bone reconstruction and regeneration needed in the treatment of large bone defects.
Collapse
Affiliation(s)
- Sang-Hyun An
- Department of Biomaterials Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Chang PC, Liang K, Lim JC, Chung MC, Chien LY. A comparison of the thresholding strategies of micro-CT for periodontal bone loss: a pilot study. Dentomaxillofac Radiol 2012; 42:66925194. [PMID: 22842634 DOI: 10.1259/dmfr/66925194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Micro-CT provides three-dimensional details and has been widely used for biomedical assessments. This study aimed to determine the most appropriate threshold method for quantitatively assessing the dynamics of periodontal destruction. METHODS Inflammation was induced by submerging a silk ligature in the sulcus of the maxillary second molars of rats, and the animals were killed prior to ligature placement and after 7 and 21 days. The maxillae were examined for the bone resorptive activities by micro-CT, histology and tartrate-resistant acid phosphatase staining. The imaging threshold was determined by CT phantom, global and local algorithms. A bone fraction measurement from each threshold-determining technique was compared with histomorphometry. The reliability and reproducibility were examined by the intraclass correlation coefficient (ICC) and the coefficient of variation. RESULTS Significant reduction of inflammatory infiltration (p < 0.01) and active osteoclastic resorption (p < 0.05) from Day 7 to Day 21 were noted. High inter- and intraexaminer agreement were demonstrated in both histomorphometric and micro-CT assessments (ICC > 0.98). The algorithm-based technique demonstrated stronger correlation to histomorphometry than phantom-based thresholds, and the highest agreement was presented by the local algorithm (ICC > 0.96). This, however, was considerably computationally expensive. CONCLUSIONS The local threshold-determining algorithm is suggested for examining inflammation-induced bone loss. Further investigation will be aimed at enhancing computational efficiency.
Collapse
Affiliation(s)
- P-C Chang
- National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
25
|
Muschler GF, Raut VP, Patterson TE, Wenke JC, Hollinger JO. The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:123-45. [PMID: 19891542 DOI: 10.1089/ten.teb.2009.0658] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review provides an overview of animal models for the evaluation, comparison, and systematic optimization of tissue engineering and regenerative medicine strategies related to bone tissue. This review includes an overview of major factors that influence the rational design and selection of an animal model. A comparison is provided of the 10 mammalian species that are most commonly used in bone research, and existing guidelines and standards are discussed. This review also identifies gaps in the availability of animal models: (1) the need for assessment of the predictive value of preclinical models for relative clinical efficacy, (2) the need for models that more effectively mimic the wound healing environment and mass transport conditions in the most challenging clinical settings (e.g., bone repair involving large bone and soft tissue defects and sites of prior surgery), and (3) the need for models that allow more effective measurement and detection of cell trafficking events and ultimate cell fate during the processes of bone modeling, remodeling, and regeneration. The ongoing need for both continued innovation and refinement in animal model systems, and the need and value of more effective standardization are reinforced.
Collapse
Affiliation(s)
- George F Muschler
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | | | | | |
Collapse
|
26
|
Morgan EF, Mason ZD, Chien KB, Pfeiffer AJ, Barnes GL, Einhorn TA, Gerstenfeld LC. Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone 2009; 44:335-44. [PMID: 19013264 PMCID: PMC2669651 DOI: 10.1016/j.bone.2008.10.039] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 09/27/2008] [Accepted: 10/07/2008] [Indexed: 11/26/2022]
Abstract
Non-invasive characterization of fracture callus structure and composition may facilitate development of surrogate measures of the regain of mechanical function. As such, quantitative computed tomography- (CT-) based analyses of fracture calluses could enable more reliable clinical assessments of bone healing. Although previous studies have used CT to quantify and predict fracture healing, it is unclear which of the many CT-derived metrics of callus structure and composition are the most predictive of callus mechanical properties. The goal of this study was to identify the changes in fracture callus structure and composition that occur over time and that are most closely related to the regain of mechanical function. Micro-computed tomography (microCT) imaging and torsion testing were performed on murine fracture calluses (n=188) at multiple post-fracture timepoints and under different experimental conditions that alter fracture healing. Total callus volume (TV), mineralized callus volume (BV), callus mineralized volume fraction (BV/TV), bone mineral content (BMC), tissue mineral density (TMD), standard deviation of mineral density (sigma(TMD)), effective polar moment of inertia (J(eff)), torsional strength, and torsional rigidity were quantified. Multivariate statistical analyses, including multivariate analysis of variance, principal components analysis, and stepwise regression were used to identify differences in callus structure and composition among experimental groups and to determine which of the microCT outcome measures were the strongest predictors of mechanical properties. Although calluses varied greatly in the absolute and relative amounts of mineralized tissue (BV, BMC, and BV/TV), differences among timepoints were most strongly associated with changes in tissue mineral density. Torsional strength and rigidity were dependent on mineral density as well as the amount of mineralized tissue: TMD, BV, and sigma(TMD) explained 62% of the variation in torsional strength (p<0.001); and TMD, BMC, BV/TV, and sigma(TMD) explained 70% of the variation in torsional rigidity (p<0.001). These results indicate that fracture callus mechanical properties can be predicted by several microCT-derived measures of callus structure and composition. These findings form the basis for developing non-invasive assessments of fracture healing and for identifying biological and biomechanical mechanisms that lead to impaired or enhanced healing.
Collapse
Affiliation(s)
- Elise F Morgan
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|