1
|
Cooper CE, Simons M, Dyson A, Leiva Eriksson N, Silkstone GGA, Syrett N, Allen-Baume V, Bülow L, Ronda L, Mozzarelli A, Singer M, Reeder BJ. Taming hemoglobin chemistry-a new hemoglobin-based oxygen carrier engineered with both decreased rates of nitric oxide scavenging and lipid oxidation. Exp Mol Med 2024:10.1038/s12276-024-01323-x. [PMID: 39349830 DOI: 10.1038/s12276-024-01323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024] Open
Abstract
The clinical utility of hemoglobin-based oxygen carriers (HBOC) is limited by adverse heme oxidative chemistry. A variety of tyrosine residues were inserted on the surface of the γ subunit of recombinant fetal hemoglobin to create novel electron transport pathways. This enhanced the ability of the physiological antioxidant ascorbate to reduce ferryl heme and decrease lipid peroxidation. The γL96Y mutation presented the best profile of oxidative protection unaccompanied by loss of protein stability and function. N-terminal deletions were constructed to facilitate the production of recombinant hemoglobin by fermentation and phenylalanine insertions in the heme pocket to decrease the rate of NO dioxygenation. The resultant mutant (αV1del. αL29F, γG1del. γV67F, γL96Y) significantly decreased NO scavenging and lipid peroxidation in vitro. Unlike native hemoglobin or a recombinant control (αV1del, γG1del), this mutation showed no increase in blood pressure immediately following infusion in a rat model of reperfusion injury, suggesting that it was also able to prevent NO scavenging in vivo. Infusion of the mutant also resulted in no meaningful adverse physiological effects apart from diuresis, and no increase in oxidative stress, as measured by urinary isoprostane levels. Following PEGylation via the Euro-PEG-Hb method to increase vascular retention, this novel protein construct was compared with saline in a severe rat reperfusion injury model (45% blood volume removal for 90 minutes followed by reinfusion to twice the volume of shed blood). Blood pressure and survival were followed for 4 h post-reperfusion. While there was no difference in blood pressure, the PEGylated Hb mutant significantly increased survival.
Collapse
Affiliation(s)
- Chris E Cooper
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK.
| | - Michelle Simons
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Alex Dyson
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Nélida Leiva Eriksson
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
- Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | - Gary G A Silkstone
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Natalie Syrett
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Victoria Allen-Baume
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Leif Bülow
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Institute of Biophysics, National Research Council (CNR), Pisa, Italy
| | - Andrea Mozzarelli
- Institute of Biophysics, National Research Council (CNR), Pisa, Italy
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Mervyn Singer
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Brandon J Reeder
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| |
Collapse
|
2
|
Hanna AS, Hellenbrand DJ, Schomberg DT, Salamat SM, Loh M, Wheeler L, Hanna B, Ozaydin B, Meudt J, Shanmuganayagam D. Brachial plexus anatomy in the miniature swine as compared to human. J Anat 2022; 240:172-181. [PMID: 34355792 PMCID: PMC8655215 DOI: 10.1111/joa.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
Brachial plexus injury (BPI) occurs when the brachial plexus is compressed, stretched, or avulsed. Although rodents are commonly used to study BPI, these models poorly mimic human BPI due to the discrepancy in size. The objective of this study was to compare the brachial plexus between human and Wisconsin Miniature SwineTM (WMSTM ), which are approximately the weight of an average human (68-91 kg), to determine if swine would be a suitable model for studying BPI mechanisms and treatments. To analyze the gross anatomy, WMS brachial plexuses were dissected both anteriorly and posteriorly. For histological analysis, sections from various nerves of human and WMS brachial plexuses were fixed in 2.5% glutaraldehyde, and postfixed with 2% osmium tetroxide. Subsequently paraffin sections were counter-stained with Masson's Trichrome. Gross anatomy revealed that the separation into three trunks and three cords is significantly less developed in the swine than in human. In swine, it takes the form of upper, middle, and lower systems with ventral and dorsal components. Histological evaluation of selected nerves revealed differences in nerve trunk diameters and the number of myelinated axons in the two species. The WMS had significantly fewer myelinated axons than humans in median (p = 0.0049), ulnar (p = 0.0002), and musculocutaneous nerves (p = 0.0454). The higher number of myelinated axons in these nerves for humans is expected because there is a high demand of fine motor and sensory functions in the human hand. Due to the stronger shoulder girdle muscles in WMS, the WMS suprascapular and axillary nerves were larger than in human. Overall, the WMS brachial plexus is similar in size and origin to human making them a very good model to study BPI. Future studies analyzing the effects of BPI in WMS should be conducted.
Collapse
Affiliation(s)
- Amgad S. Hanna
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Daniel J. Hellenbrand
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Dominic T. Schomberg
- Department of Animal and Dairy SciencesUniversity of Wisconsin – MadisonMadisonWisconsinUSA
| | - Shahriar M. Salamat
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public Health (UWSMPH)MadisonWisconsinUSA
| | - Megan Loh
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Lea Wheeler
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Barbara Hanna
- University of Wisconsin – MadisonMadisonWisconsinUSA
| | - Burak Ozaydin
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Jennifer Meudt
- Biomedical & Genomic Research GroupUniversity of Wisconsin – MadisonMadisonWisconsinUSA
| | - Dhanansayan Shanmuganayagam
- Department of Animal and Dairy SciencesUniversity of Wisconsin – MadisonMadisonWisconsinUSA
- Department of SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| |
Collapse
|
3
|
Cao M, Zhao Y, He H, Yue R, Pan L, Hu H, Ren Y, Qin Q, Yi X, Yin T, Ma L, Zhang D, Huang X. New Applications of HBOC-201: A 25-Year Review of the Literature. Front Med (Lausanne) 2021; 8:794561. [PMID: 34957164 PMCID: PMC8692657 DOI: 10.3389/fmed.2021.794561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023] Open
Abstract
If not cured promptly, tissue ischemia and hypoxia can cause serious consequences or even threaten the life of the patient. Hemoglobin-based oxygen carrier-201 (HBOC-201), bovine hemoglobin polymerized by glutaraldehyde and stored in a modified Ringer's lactic acid solution, has been investigated as a blood substitute for clinical use. HBOC-201 was approved in South Africa in 2001 to treat patients with low hemoglobin (Hb) levels when red blood cells (RBCs) are contraindicated, rejected, or unavailable. By promoting oxygen diffusion and convective oxygen delivery, HBOC-201 may act as a direct oxygen donor and increase oxygen transfer between RBCs and between RBCs and tissues. Therefore, HBOC-201 is gradually finding applications in treating various ischemic and hypoxic diseases including traumatic hemorrhagic shock, hemolysis, myocardial infarction, cardiopulmonary bypass, perioperative period, organ transplantation, etc. However, side effects such as vasoconstriction and elevated methemoglobin caused by HBOC-201 are major concerns in clinical applications because Hbs are not encapsulated by cell membranes. This study summarizes preclinical and clinical studies of HBOC-201 applied in various clinical scenarios, outlines the relevant mechanisms, highlights potential side effects and solutions, and discusses the application prospects. Randomized trials with large samples need to be further studied to better validate the efficacy, safety, and tolerability of HBOC-201 to the extent where patient-specific treatment strategies would be developed for various clinical scenarios to improve clinical outcomes.
Collapse
Affiliation(s)
- Min Cao
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhao
- Anesthesiology, Southwest Medicine University, Luzhou, China
| | - Hongli He
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiming Yue
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lingai Pan
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Hu
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingjie Ren
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Qin
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueliang Yi
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Yin
- Surgical Department, Chengdu Second People's Hospital, Chengdu, China
| | - Lina Ma
- Health Inspection and Quarantine, Chengdu Medical College, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Mayer AR, Dodd AB, Ling JM, Stephenson DD, Rannou-Latella JG, Vermillion MS, Mehos CJ, Johnson VE, Gigliotti AP, Dodd RJ, Chaudry IH, Meier TB, Smith DH, Bragin DE, Lai C, Wagner CL, Guedes VA, Gill JM, Kinsler R. Survival Rates and Biomarkers in a Large Animal Model of Traumatic Brain Injury Combined With Two Different Levels of Blood Loss. Shock 2021; 55:554-562. [PMID: 32881755 PMCID: PMC8112147 DOI: 10.1097/shk.0000000000001653] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The pathology resulting from concurrent traumatic brain injury (TBI) and hemorrhagic shock (HS; TBI+HS) are leading causes of mortality and morbidity worldwide following trauma. However, the majority of large animal models of TBI+HS have utilized focal/contusional injuries rather than incorporating the types of brain trauma (closed-head injury caused by dynamic acceleration) that typify human injury. OBJECTIVE To examine survival rates and effects on biomarkers from rotational TBI with two levels of HS. METHODS Twenty-two sexually mature Yucatan swine (30.39 ± 2.25 kg; 11 females) therefore underwent either Sham trauma procedures (n = 6) or a dynamic acceleration TBI combined with either 55% (n = 8) or 40% (n = 8) blood loss in this serial study. RESULTS Survival rates were significantly higher for the TBI+40% (87.5%) relative to TBI+55% (12.5%) cohort, with the majority of TBI+55% animals expiring within 2 h post-trauma from apnea. Blood-based neural biomarkers and immunohistochemistry indicated evidence of diffuse axonal injury (increased NFL/Aβ42), blood-brain barrier breach (increased immunoglobulin G) and inflammation (increased glial fibrillary acidic protein/ionized calcium-binding adaptor molecule 1) in the injured cohorts relative to Shams. Invasive hemodynamic measurements indicated increased shock index and decreased pulse pressure in both injury cohorts, with evidence of partial recovery for invasive hemodynamic measurements in the TBI+40% cohort. Similarly, although both injury groups demonstrated ionic and blood gas abnormalities immediately postinjury, metabolic acidosis continued to increase in the TBI+55% group ∼85 min postinjury. Somewhat surprisingly, both neural and physiological biomarkers showed significant changes within the Sham cohort across the multi-hour experimental procedure, most likely associated with prolonged anesthesia. CONCLUSION Current results suggest the TBI+55% model may be more appropriate for severe trauma requiring immediate medical attention/standard fluid resuscitation protocols whereas the TBI+40% model may be useful for studies of prolonged field care.
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, New Mexico
- Neurology Department, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Psychiatry Department, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Psychology Department, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Andrew B. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, New Mexico
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, New Mexico
| | - David D. Stephenson
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, New Mexico
| | | | - Meghan S. Vermillion
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, New Mexico
| | - Carissa J. Mehos
- Neurosciences Department, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Victoria E. Johnson
- Department of Neurosurgery and Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew P. Gigliotti
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, New Mexico
| | - Rebecca J. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, New Mexico
| | - Irshad H. Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Douglas H. Smith
- Department of Neurosurgery and Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Denis E. Bragin
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, New Mexico
- Neurosurgery Department, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland
| | - Chelsea L. Wagner
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland
| | - Vivian A. Guedes
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland
| | - Jessica M. Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland
| | - Rachel Kinsler
- Enroute Care Group, U.S. Army Aeromedical Research Laboratory, Fort Rucker, Alabama
| |
Collapse
|
5
|
Mayer AR, Dodd AB, Vermillion MS, Stephenson DD, Chaudry IH, Bragin DE, Gigliotti AP, Dodd RJ, Wasserott BC, Shukla P, Kinsler R, Alonzo SM. A systematic review of large animal models of combined traumatic brain injury and hemorrhagic shock. Neurosci Biobehav Rev 2019; 104:160-177. [PMID: 31255665 PMCID: PMC7307133 DOI: 10.1016/j.neubiorev.2019.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
Abstract
Traumatic brain injury (TBI) and severe blood loss (SBL) frequently co-occur in human trauma, resulting in high levels of mortality and morbidity. Importantly, each of the individual post-injury cascades is characterized by complex and potentially opposing pathophysiological responses, complicating optimal resuscitation and therapeutic approaches. Large animal models of poly-neurotrauma closely mimic human physiology, but a systematic literature review of published models has been lacking. The current review suggests a relative paucity of large animal poly-neurotrauma studies (N = 52), with meta-statistics revealing trends for animal species (exclusively swine), characteristics (use of single biological sex, use of juveniles) and TBI models. Although most studies have targeted blood loss volumes of 35-45%, the associated mortality rates are much lower relative to Class III/IV human trauma. This discrepancy may result from potentially mitigating experimental factors (e.g., mechanical ventilation prior to or during injury, pausing/resuming blood loss based on physiological parameters, administration of small volume fluid resuscitation) that are rarely associated with human trauma, highlighting the need for additional work in this area.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States; Neurology Department, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; Psychiatry Department, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; Psychology Department, University of New Mexico, Albuquerque, NM 87131, United States.
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Meghan S Vermillion
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - David D Stephenson
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294-0019, United States
| | - Denis E Bragin
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Andrew P Gigliotti
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Rebecca J Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Benjamin C Wasserott
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Priyank Shukla
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Rachel Kinsler
- Department of the Army Civilian, U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362-0577, United States
| | - Sheila M Alonzo
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| |
Collapse
|
6
|
Eschbach D, Horst K, Sassen M, Andruszkow J, Mohr J, Debus F, Vogt N, Steinfeldt T, Hildebrand F, Schöller K, Uhl E, Wulf H, Ruchholtz S, Pape H, Frink M. Hypothermia does not influence liver damage and function in a porcine polytrauma model. Technol Health Care 2018; 26:209-221. [PMID: 28968251 DOI: 10.3233/thc-171043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies revealed evidence that induced hypothermia attenuates ischemic organ injuries after severe trauma. In the present study, the effect of hypothermia on liver damage was investigated in a porcine long term model of multi-system injury, consisting of blunt chest trauma, penetrating abdominal trauma, musculoskeletal injury, and hemorrhagic shockMETHODS: In 30 pigs, a standardized polytrauma including blunt chest trauma, penetrating abdominal trauma, musculoskeletal injury, and hemorrhagic shock of 45% of total blood volume was induced. Following trauma, hypothermia of 33∘C was induced for 12 h and intensive care treatment was evaluated for 48 h. As outcome parameters, we assessed liver function and serum transaminase levels as well as a histopathological analysis of tissue samples. A further 10 animals served as controls. RESULTS Serum transaminase levels were increased at the end of the observation period following hypothermia without reaching statistical significance compared to normothermic groups. Liver function was preserved (p⩽ 0.05) after the rewarming period in hypothermic animals but showed no difference at the end of the observation period. In H&E staining, cell death was slightly increased hypothermic animals and caspase-3 staining displayed tendency towards more apoptosis in hypothermic group as well. CONCLUSIONS Induction of hypothermia could not significantly improve hepatic damage during the first 48 h following major trauma. Further studies focusing on multi-organ failure including a longer observation period are required to illuminate the impact of hypothermia on hepatic function in multiple trauma patients.
Collapse
Affiliation(s)
- D Eschbach
- Center for Orthopedics and Trauma Surgery, University Hospital Giessen and Marburg, Marburg, Germany
| | - K Horst
- Trauma Department, University of Aachen, Aachen, Germany
| | - M Sassen
- Department of Anesthesiology and Critical Care, University Hospital Giessen and Marburg, Marburg, Germany
| | - J Andruszkow
- Institute of Pathology, University of Aachen, Aachen, Germany
| | - J Mohr
- Department of Trauma Surgery, University of Magdeburg, Magdeburg, Germany
| | - F Debus
- Center for Orthopedics and Trauma Surgery, University Hospital Giessen and Marburg, Marburg, Germany
| | - N Vogt
- Department of Neurosurgery, University Hospital Giessen and Marburg, Giessen, Germany
| | - T Steinfeldt
- Department of Anesthesiology and Critical Care, Diakonie-Klinikum Schwäbisch Hall, Germany
| | - F Hildebrand
- Trauma Department, University of Aachen, Aachen, Germany
| | - K Schöller
- Department of Neurosurgery, University Hospital Giessen and Marburg, Giessen, Germany
| | - E Uhl
- Department of Neurosurgery, University Hospital Giessen and Marburg, Giessen, Germany
| | - H Wulf
- Department of Anesthesiology and Critical Care, University Hospital Giessen and Marburg, Marburg, Germany
| | - S Ruchholtz
- Center for Orthopedics and Trauma Surgery, University Hospital Giessen and Marburg, Marburg, Germany
| | - H Pape
- Department of Trauma, University of Zurich, Zurich, Switzerland
| | - M Frink
- Center for Orthopedics and Trauma Surgery, University Hospital Giessen and Marburg, Marburg, Germany
| |
Collapse
|
7
|
Abstract
The microvasculature plays a central role in the pathophysiology of hemorrhagic shock and is also involved in arguably all therapeutic attempts to reverse or minimize the adverse consequences of shock. Microvascular studies specific to hemorrhagic shock were reviewed and broadly grouped depending on whether data were obtained on animal or human subjects. Dedicated sections were assigned to microcirculatory changes in specific organs, and major categories of pathophysiological alterations and mechanisms such as oxygen distribution, ischemia, inflammation, glycocalyx changes, vasomotion, endothelial dysfunction, and coagulopathy as well as biomarkers and some therapeutic strategies. Innovative experimental methods were also reviewed for quantitative microcirculatory assessment as it pertains to changes during hemorrhagic shock. The text and figures include representative quantitative microvascular data obtained in various organs and tissues such as skin, muscle, lung, liver, brain, heart, kidney, pancreas, intestines, and mesentery from various species including mice, rats, hamsters, sheep, swine, bats, and humans. Based on reviewed findings, a new integrative conceptual model is presented that includes about 100 systemic and local factors linked to microvessels in hemorrhagic shock. The combination of systemic measures with the understanding of these processes at the microvascular level is fundamental to further develop targeted and personalized interventions that will reduce tissue injury, organ dysfunction, and ultimately mortality due to hemorrhagic shock. Published 2018. Compr Physiol 8:61-101, 2018.
Collapse
Affiliation(s)
- Ivo Torres Filho
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| |
Collapse
|
8
|
Abstract
Purpose/Aim: Animal models of traumatic brain injury (TBI) provide powerful tools to study TBI in a controlled, rigorous and cost-efficient manner. The mostly used animals in TBI studies so far are rodents. However, compared with rodents, large animals (e.g. swine, rabbit, sheep, ferret, etc.) show great advantages in modeling TBI due to the similarity of their brains to human brain. The aim of our review was to summarize the development and progress of common large animal TBI models in past 30 years. MATERIALS AND METHODS Mixed published articles and books associated with large animal models of TBI were researched and summarized. RESULTS We majorly sumed up current common large animal models of TBI, including discussion on the available research methodologies in previous studies, several potential therapies in large animal trials of TBI as well as advantages and disadvantages of these models. CONCLUSIONS Large animal models of TBI play crucial role in determining the underlying mechanisms and screening putative therapeutic targets of TBI.
Collapse
Affiliation(s)
- Jun-Xi Dai
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yan-Bin Ma
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Nan-Yang Le
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jun Cao
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yang Wang
- b Department of Emergency , Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
9
|
Storage of nitroglycerin (NTG) admixed with HBOC-201 for 30 days in polyolefin plastic bags: a pilot study. Drug Deliv Transl Res 2017; 7:674-682. [PMID: 28744782 DOI: 10.1007/s13346-017-0411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hemorrhaged animals have benefited from resuscitation with the hemoglobin-based oxygen carrier (HBOC-201). Co-infusion of nitric oxide (NO) via separate intravascular lines is effective in attenuating HBOC-induced elevation of blood pressure. We tested whether nitroglycerin (NTG) and HBOC-201 can be packaged together as a single drug for resuscitation. Since NTG binds easily to plastics such as polyvinylchloride, we assessed the stability of this combination in oxygen barrier double-layer ethylene-vinyl alcohol/polyolefin bags over a 30-day period. Outcome measures indicative of the stability of HBOC/NTG were reported as changes in levels of hemoglobin (Hb), methemoglobin (MetHb), NTG, and nitrite over time. Individual tightly sealed small aliquots of HBOC/NTG were prepared under nitrogen and analyzed in a timely fashion from 0 to 30 days using hematology instruments, HPLC, FPLC, and chemiluminescence. The level of NTG in the HBOC/NTG mixture was reduced significantly over time whereas it was stable in control mixtures of NTG/saline. The level of total Hb in the HBOC/NTG and HBOC/saline mixtures remained stable over time. MetHb formed and increased to 6% up to day 1 and then slowly decreased in the HBOC/NTG mixture whereas it remained unchanged in the HBOC/saline mixture. Nitrite was produced in the HBOC/NTG group upon mixing, was increased at day 1, and then became undetectable. The reaction between HBOC-201 and NTG occurring upon mixing and developing over time in polyolefin bags makes the long-term storage of this mixed combination inappropriate.
Collapse
|
10
|
Gomez MF, Aljure O, Ciancio G, Lynn M. Hemoglobin-Based Oxygen Carrier Rescues Double-Transplant Patient From Life-Threatening Anemia. Am J Transplant 2017; 17:1941-1944. [PMID: 28188676 DOI: 10.1111/ajt.14226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 01/25/2023]
Abstract
This case describes a 46-year-old male recipient of a kidney-pancreas transplant who is Jehovah's Witness. Early in the postoperative period, he was found to have splenic vein thrombosis requiring heparin infusion. Two days later, he developed severe symptomatic anemia (hemoglobin <6 g/dL). Standard medical therapy for bloodless surgical patients with severe anemia was instituted. Nevertheless, the patient's hemoglobin concentration continued to decline to critical levels (2 g/dL). Because he was Jehovah's Witness, transfusion of allogeneic blood products was not an option, prompting use of a hemoglobin-based oxygen carrier (HBOC). After approval by the U.S. Food and Drug Administration and the local institutional review board, 12 U of HBOC-201 were transfused over a period of 8 days. Two weeks later, the patient's hemoglobin levels had increased to 6.8 g/dL. The patient's overall clinical condition improved, and he was discharged home. This case describes the first use of HBOC transfusion in a double solid organ transplant patient. HBOC may represent a viable option in patients with severe symptomatic anemia when allogeneic blood transfusion is not an option.
Collapse
Affiliation(s)
- M F Gomez
- Ryder Trauma Center, Division of Trauma and Surgical Critical Care, DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Jackson Memorial Hospital, Miami, FL
| | - O Aljure
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Jackson Memorial Hospital, Miami, FL
| | - G Ciancio
- Miami Transplant Institute, Kidney Transplant, Clinical Surgery and Urology, University of Miami Miller School of Medicine, Jackson Health System, Miami, FL
| | - M Lynn
- Division of Trauma and Surgical Critical Care, Bloodless Surgery Center, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
11
|
Eschbach D, Steinfeldt T, Hildebrand F, Frink M, Schöller K, Sassen M, Wiesmann T, Debus F, Vogt N, Uhl E, Wulf H, Ruchholtz S, Pape HC, Horst K. A porcine polytrauma model with two different degrees of hemorrhagic shock: outcome related to trauma within the first 48 h. Eur J Med Res 2015; 20:73. [PMID: 26338818 PMCID: PMC4559152 DOI: 10.1186/s40001-015-0162-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/11/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND An animal polytrauma model was developed, including trunk and extremity injuries combined with hemorrhagic shock and a prolonged post-traumatic phase. This could be useful for the assessment of different therapeutic approaches during intensive care therapy. METHODS A standardized polytrauma including lung contusion, liver laceration and lower leg fracture was applied in 25 pigs. They underwent controlled haemorrhage either with a blood volume loss of 45 % and a median arterial pressure (MAP) <30 mmHg/90 min (group L, n = 15) or a 50 % blood loss of and an MAP <25 mmHg/120 min (group H, n = 10). Five non-traumatized pigs served as a control (group C). Subsequently, intensive care treatment was given for an observational period of 48 h. RESULTS Both trauma groups showed signs of shock and organ injury (heart rate, MAP and lactate). The frequency of cardiopulmonary resuscitation (CPR) and lung injury was directly related to the severity of the haemorrhagic shock (CPR-group L: 4 of 15 pigs, group H: 4 of 10 pigs; Respiratory failure-group L: 3 of 13, group H: 3 of 9. There was no difference in mortality between trauma groups. CONCLUSION The present data suggest that our model reflects the mortality and organ failure of polytrauma in humans during shock and the intensive care period. This suggests that the experimental protocol could be useful for the assessment of therapeutic approaches during the post-traumatic period.
Collapse
Affiliation(s)
- D Eschbach
- Center for Orthopaedics and Trauma Surgery; University Hospital Giessen and Marburg, Marburg, Germany.
| | - T Steinfeldt
- Department of Anaesthesiology and Critical Care, University of Marburg, Marburg, Germany.
| | - F Hildebrand
- Trauma Department, University of Aachen, Aachen, Germany.
| | - M Frink
- Center for Orthopaedics and Trauma Surgery; University Hospital Giessen and Marburg, Marburg, Germany.
| | - K Schöller
- Department of Neurosurgery, University of Giessen, Giessen, Germany.
| | - M Sassen
- Department of Anaesthesiology and Critical Care, University of Marburg, Marburg, Germany.
| | - T Wiesmann
- Department of Anaesthesiology and Critical Care, University of Marburg, Marburg, Germany.
| | - F Debus
- Center for Orthopaedics and Trauma Surgery; University Hospital Giessen and Marburg, Marburg, Germany.
| | - N Vogt
- Department of Neurosurgery, University of Giessen, Giessen, Germany.
| | - E Uhl
- Department of Neurosurgery, University of Giessen, Giessen, Germany.
| | - H Wulf
- Department of Anaesthesiology and Critical Care, University of Marburg, Marburg, Germany.
| | - S Ruchholtz
- Center for Orthopaedics and Trauma Surgery; University Hospital Giessen and Marburg, Marburg, Germany.
| | - H C Pape
- Trauma Department, University of Aachen, Aachen, Germany.
| | - K Horst
- Trauma Department, University of Aachen, Aachen, Germany.
| |
Collapse
|
12
|
Rao G, Hedrick AF, Yadav VR, Xie J, Hussain A, Awasthi V. The brain metabolic activity after resuscitation with liposome-encapsulated hemoglobin in a rat model of hypovolemic shock. J Cereb Blood Flow Metab 2015; 35:1528-36. [PMID: 25944591 PMCID: PMC4640343 DOI: 10.1038/jcbfm.2015.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 03/31/2015] [Indexed: 01/15/2023]
Abstract
We examined the effect of resuscitation with liposome-encapsulated hemoglobin (LEH) on cerebral bioenergetics in a rat model of 45% hypovolemia. The rats were resuscitated with isovolemic LEH or saline after 15 minutes of shock and followed up to 6 hours. Untreated hypovolemic rats received no fluid. The cerebral uptake of F-18-fluorodeoxyglucose (FDG) was measured by PET, and at 6 hours, the brain was collected for various assays. Hypovolemia decreased cellular adenosine triphosphate (ATP), phosphocreatine, nicotinamide adenine dinucleotide (NAD)/NADH ratio, citrate synthase activity, glucose-6-phosphate, and nerve growth factor (NGF), even when FDG uptake remained unchanged. The FDG uptake was reduced by saline, but not by LEH infusion. The reduced FDG uptake in saline group was associated with a decrease in hexokinase I expression. The LEH infusion effectively restored ATP content, NAD/NADH ratio, and NGF expression, and reduced the hypovolemia-induced accumulation of pyruvate and ubiquitinated proteins; in comparison, saline was significantly less effective. The LEH infusion was associated with low pH and high anion gap, indicating anionic gap acidosis. The results suggest that hypovolemic shock perturbs glucose metabolism at the level of pyruvate utilization, resulting in deranged cerebral energy stores. The correction of volume and oxygen deficits by LEH recovers the cerebral metabolism and creates a prosurvival phenotype.
Collapse
Affiliation(s)
- Geeta Rao
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Andria F Hedrick
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Vivek R Yadav
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jun Xie
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Alamdar Hussain
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
13
|
Are Hemoglobin-Based Oxygen Carriers Being Withheld Because of Regulatory Requirement for Equivalence to Packed Red Blood Cells? Am J Ther 2014; 22:e115-21. [PMID: 25285795 DOI: 10.1097/mjt.0000000000000009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Kim B, Haque A, Arnaud FG, Teranishi K, Steinbach T, Auker CR, McCarron RM, Freilich D, Scultetus AH. Use of recombinant factor VIIa (rFVIIa) as pre-hospital treatment in a swine model of fluid percussion traumatic brain injury. J Emerg Trauma Shock 2014; 7:102-11. [PMID: 24812455 PMCID: PMC4013725 DOI: 10.4103/0974-2700.130880] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/19/2013] [Indexed: 11/04/2022] Open
Abstract
CONTEXT Recombinant factor VIIa (rFVIIa) has been used as an adjunctive therapy for acute post-traumatic hemorrhage and reversal of iatrogenic coagulopathy in trauma patients in the hospital setting. However, investigations regarding its potential use in pre-hospital management of traumatic brain injury (TBI) have not been conducted extensively. AIMS In the present study, we investigated the physiology, hematology and histology effects of a single pre-hospital bolus injection of rFVIIa compared to current clinical practice of no pre-hospital intervention in a swine model of moderate fluid percussion TBI. MATERIALS AND METHODS Animals were randomized to receive either a bolus of rFVIIa (90 μg/kg) or nothing 15 minutes (T15) post-injury. Hospital arrival was simulated at T60, and animals were euthanized at experimental endpoint (T360). RESULTS Survival was 100% in both groups; baseline physiology parameters were similar, vital signs were comparable. Animals that received rFVIIa demonstrated less hemorrhage in subarachnoid space (P = 0.0037) and less neuronal degeneration in left hippocampus, pons, and cerebellum (P = 0.00009, P = 0.00008, and P = 0.251, respectively). Immunohistochemical staining of brain sections showed less overall loss of microtubule-associated protein 2 (MAP2) and less Flouro-Jade B positive cells in rFVIIa-treated animals. CONCLUSIONS Early pre-hospital administration of rFVIIa in this swine TBI model reduced neuronal necrosis and intracranial hemorrhage (ICH). These results merit further investigation of this approach in pre-hospital trauma care.
Collapse
Affiliation(s)
- Bobby Kim
- Department of Neuro Trauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Ashraful Haque
- Department of Neuro Trauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Françoise G Arnaud
- Department of Neuro Trauma, Naval Medical Research Center, Silver Spring, Maryland, USA ; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Kohsuke Teranishi
- Department of Neuro Trauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Thomas Steinbach
- Department of Veterinary Pathology, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Charles R Auker
- Department of Neuro Trauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Richard M McCarron
- Department of Neuro Trauma, Naval Medical Research Center, Silver Spring, Maryland, USA ; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Daniel Freilich
- Department of Neuro Trauma, Naval Medical Research Center, Silver Spring, Maryland, USA ; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anke H Scultetus
- Department of Neuro Trauma, Naval Medical Research Center, Silver Spring, Maryland, USA ; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Fluid resuscitation of uncontrolled hemorrhage using a hemoglobin-based oxygen carrier: effect of traumatic brain injury. Shock 2013; 39:210-9. [PMID: 23324891 DOI: 10.1097/shk.0b013e31827fd62b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Animal models of combined traumatic brain injury (TBI) and hemorrhagic shock (HS) suggest a benefit of hemoglobin-based oxygen carrier (HBOC)-based resuscitation, but their use remains controversial, and little is known of the specific effects of TBI and high-pressure (large arterial injury) bleeding on resuscitation. We examine the effect of TBI and aortic tear injury on low-volume HBOC resuscitation in a swine polytrauma model and hypothesize that HBOC-based resuscitation will improve survival in the setting of aortic tear regardless of the presence of TBI. Anesthetized swine subjected to HS with aortic tear with or without fluid percussion TBI underwent equivalent limited resuscitation with HBOC, lactated Ringer's solution, or HBOC + nitroglycerine (vasoattenuated HBOC) and were observed for 6 h. There was no independent effect of TBI on survival time after adjustment for fluid type, and there was no interaction between TBI and resuscitation fluid type. However, total catheter hemorrhage volume required to reach target shock blood pressure was less with TBI (14.0 mL · kg(-1) [confidence interval, 12.4-15.6 mL · kg(-1)]) versus HS only (21.0 mL · kg(-1) [confidence interval, 19.5-22.5 mL · kg(-1)]), with equivalent lactate accumulation. Traumatic brain injury did not affect survival in this polytrauma model, but less hemorrhage was required in the presence of TBI to achieve an equivalent degree of shock suggesting globally impaired cardiovascular response to hemorrhage in the presence of TBI. There was also no benefit of HBOC-based fluid resuscitation over lactated Ringer's solution, contrary to models using liver injury as the source of hemorrhage, considering wound location is of paramount importance when choosing resuscitation strategy.
Collapse
|
16
|
Haak CE, Rudloff E, Kirby R. Comparison of Hb-200 and 6% hetastarch 450/0.7 during initial fluid resuscitation of 20 dogs with gastric dilatation-volvulus. J Vet Emerg Crit Care (San Antonio) 2013; 22:201-10. [PMID: 23016811 DOI: 10.1111/j.1476-4431.2012.00726.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To compare the use of polymerized stroma-free bovine hemoglobin (Hb-200) and 6% hetastarch 450/0.7 (HES 450/0.7) in 0.9% saline during fluid resuscitation of dogs with gastric dilatation-volvulus (GDV). DESIGN Prospective, randomized clinical case series. SETTING Private specialty and referral clinic. ANIMALS Twenty client-owned dogs presenting with GDV. INTERVENTIONS Dogs presenting with GDV and abnormal perfusion parameters first received rapid IV infusion of a buffered isotonic replacement crystalloid (15 mL/kg) and IV opioids. Patients were then randomized to receive either Hb-200 (N = 10) or HES 450/0.7 (N = 10). Balanced isotonic replacement crystalloids (10-20 mL/kg IV) were rapidly infused along with either Hb-200 or HES in 5 mL/kg IV aliquots to meet resuscitation end points. MEASUREMENTS AND MAIN RESULTS Resuscitation was defined as meeting at least 2 of 3 criteria: (1) capillary refill time 1-2 seconds, pink mucous membrane color, strong femoral pulse quality; (2) heart rate (HR) ≤ 150/min; or (3) indirect arterial systolic blood pressure (SBP) > 90 mm Hg. HR, SBP, packed cell volume, hemoglobin, glucose, venous pH, bicarbonate, base excess, anion gap, and colloid osmotic pressure were compared at hospital entry and within 30 minutes post-resuscitation. Compared to the HES group, the Hb-200 group required significantly less colloid (4.2 versus 18.4 mL/kg) and crystalloid (31.3 versus 48.1 mL/kg) to reach resuscitation end points (P = 0.001). Time to resuscitation was significantly shorter in the Hb-200 group (12.5 versus 52.5 min). CONCLUSIONS Dogs with GDV receiving Hb-200 during initial resuscitation required smaller volumes of both crystalloid and colloid fluids and reached resuscitation end points faster than dogs receiving HES 450/0.7 (P = 0.02).
Collapse
Affiliation(s)
- Carol E Haak
- Animal Emergency Center and Specialty Services, Silver Spring Drive, Glendale, WI, 53209, USA.
| | | | | |
Collapse
|
17
|
MRI assessment of cerebral blood flow after experimental traumatic brain injury combined with hemorrhagic shock in mice. J Cereb Blood Flow Metab 2013; 33:129-36. [PMID: 23072750 PMCID: PMC3597358 DOI: 10.1038/jcbfm.2012.145] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Secondary insults such as hypotension or hemorrhagic shock (HS) can greatly worsen outcome after traumatic brain injury (TBI). We recently developed a mouse combined injury model of TBI and HS using a controlled cortical impact (CCI) model and showed that 90 minutes of HS can exacerbate neuronal death in hippocampus beneath the contusion. This combined injury model has three clinically relevant phases, a shock, pre hospital, and definitive care phases. Mice were randomly assigned to four groups, shams as well as a CCI only, an HS only, and a CCI+HS groups. The CCI and HS reduced cerebral blood flow (CBF) in multiple regions of interest (ROIs) in the hemisphere ipsilateral and contralateral to injury. Hemorrhagic shock to a level of ∼30 mm Hg exacerbated the CCI-induced CBF reductions in multiple ROIs ipsilateral to injury (hemisphere and thalamus) and in the hemisphere contralateral to injury (hemisphere, thalamus, hippocampus, and cortex, all P<0.05 versus CCI only, HS only or both). An important effect of HS duration was also seen after CCI with maximal CBF reduction seen at 90 minutes (P<0.0001 group-time effect in ipsilateral hippocampus). Given that neuronal death in hippocampus is exacerbated by 90 minutes of HS in this model, our data suggest an important role for exacerbation of posttraumatic ischemia in mediating the secondary injury in CCI plus HS. In conclusion, the serial, non invasive assessment of CBF using ASL-MRI (magnetic resonance imaging with arterial spin labeling) is feasible in mice even in the complex setting of combined CCI+HS. The impact of resuscitation therapies and various mutant mouse strains on CBF and other outcomes merits investigation in this model.
Collapse
|
18
|
Park KH, Lee KH, Kim H. Effect of hypothermia on coagulatory function and survival in Sprague-Dawley rats exposed to uncontrolled haemorrhagic shock. Injury 2013; 44:91-6. [PMID: 22154303 DOI: 10.1016/j.injury.2011.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/25/2011] [Accepted: 11/17/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Acute coagulopathy, hypothermia, and acidosis are the lethal triad of conditions manifested by major trauma patients. Recent animal studies have reported that hypothermia improves survival in animals subjected to controlled haemorrhagic shock. The objective of this study was to investigate the effect of hypothermia on coagulation in rats subjected to uncontrolled haemorrhagic shock. METHODS Thirty-two male Sprague-Dawley rats were randomly divided into four groups: normothermia (control, group N), hypothermia (group H), hypothermic haemorrhagic shock (group HS), and normothermic haemorrhagic shock (group NS). Haemorrhagic shock was induced by splenic laceration. Capacity for coagulation was measured by rotation thromboelastometry (ROTEM(®)), and was measured at baseline as well as the end of the shock and resuscitation periods. Survival was observed for 48 h post-trauma. RESULTS Baseline parameters were not different amongst the groups. Rats exposed to hypothermia alone did not differ in coagulation capacity compared to the control group. Clot formation time (CFT) and maximal clot firmness (MCF) in group HS decreased as the experiment progressed. Maximal clot firmness time (MCFt) in groups H and HS was significantly prolonged during shock and resuscitation compared with that in group NS. In group NS, MCF did not change significantly, but MCFt was reduced compared with baseline. Group HS had poor survival when compared with normovolaemic groups. CONCLUSION Blood clotted less firmly in traumatic haemorrhagic shock, and hypothermia prolonged clotting. However, clot firmness maximised rapidly under normothermic haemorrhagic shock. Haemorrhage would continue for a longer time in hypothermic haemorrhagic shock. Survival of hypothermic shock was not significantly different compared to that of normothermic haemorrhagic shock.
Collapse
Affiliation(s)
- Kyung Hye Park
- Department of Emergency Medicine, Inje University, Haeundae Paik Hospital, Busan, South Korea.
| | | | | |
Collapse
|
19
|
Hemerka JN, Wu X, Dixon CE, Garman RH, Exo JL, Shellington DK, Blasiole B, Vagni VA, Janesko-Feldman K, Xu M, Wisniewski SR, Bayır H, Jenkins LW, Clark RSB, Tisherman SA, Kochanek PM. Severe brief pressure-controlled hemorrhagic shock after traumatic brain injury exacerbates functional deficits and long-term neuropathological damage in mice. J Neurotrauma 2012; 29:2192-208. [PMID: 22738159 DOI: 10.1089/neu.2011.2303] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypotension after traumatic brain injury (TBI) worsens outcome. We published the first report of TBI plus hemorrhagic shock (HS) in mice using a volume-controlled approach and noted increased neuronal death. To rigorously control blood pressure during HS, a pressure-controlled HS model is required. Our hypothesis was that a brief, severe period of pressure-controlled HS after TBI in mice will exacerbate functional deficits and neuropathology versus TBI or HS alone. C57BL6 male mice were randomized into four groups (n=10/group): sham, HS, controlled cortical impact (CCI), and CCI+HS. We used a pressure-controlled shock phase (mean arterial pressure [MAP]=25-27 mm Hg for 35 min) and its treatment after mild to moderate CCI including, a 90 min pre-hospital phase, during which lactated Ringer's solution was given to maintain MAP >70 mm Hg, and a hospital phase, when the shed blood was re-infused. On days 14-20, the mice were evaluated in the Morris water maze (MWM, hidden platform paradigm). On day 21, the lesion and hemispheric volumes were quantified. Neuropathology and hippocampal neuron counts (hematoxylin and eosin [H&E], Fluoro-Jade B, and NeuN) were evaluated in the mice (n=60) at 24 h, 7 days, or 21 days (n=5/group/time point). HS reduced MAP during the shock phase in the HS and CCI+HS groups (p<0.05). Fluid requirements during the pre-hospital phase were greatest in the CCI+HS group (p<0.05), and were increased in HS versus sham and CCI animals (p<0.05). MWM latency was increased on days 14 and 15 after CCI+HS (p<0.05). Swim speed and visible platform latency were impaired in the CCI+HS group (p<0.05). CCI+HS animals had increased contusion volume versus the CCI group (p<0.05). Hemispheric volume loss was increased 33.3% in the CCI+HS versus CCI group (p<0.05). CA1 cell loss was seen in CCI+HS and CCI animals at 24 h and 7 days (p<0.05). CA3 cell loss was seen after CCI+HS (p<0.05 at 24 h and 7 days). CA1 cell loss at 21 days was seen only in CCI+HS animals (p<0.05). Brief, severe, pressure-controlled HS after CCI produces robust functional deficits and exacerbates neuropathology versus CCI or HS alone.
Collapse
Affiliation(s)
- Joseph N Hemerka
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kramer AH, Le Roux P. Red Blood Cell Transfusion and Transfusion Alternatives in Traumatic Brain Injury. Curr Treat Options Neurol 2012; 14:150-163. [PMID: 22314930 DOI: 10.1007/s11940-012-0167-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OPINION STATEMENT: Anemia develops in about 50% of patients hospitalized with traumatic brain injury (TBI) and is recognized as a cause of secondary brain injury. This review examines the effects of anemia and transfusion on TBI patients through a literature search to identify original research on anemia and transfusion in TBI, the effects of transfusion on brain physiology, and the role of erythropoietin or hemoglobin-based blood substitutes (HBBSs). However, the amount of high-quality, prospective data available to help make decisions about when TBI patients should be transfused is very small. Randomized transfusion trials have involved far too few TBI patients to reach definitive conclusions. Thus, it is hardly surprising that there is widespread practice variation. In our opinion, a hemoglobin transfusion threshold of 7 g/dL cannot yet be considered safe for TBI patients admitted to hospital, and in particular to the ICU, as it is for other critically ill patients. Red blood cell transfusions often have immediate, seemingly beneficial effects on cerebral physiology, but the magnitude of this effect may depend in part upon how long the cells have been stored before administration. In light of existing physiological data, we generally aim to keep hemoglobin concentrations greater than 9 g/dL during the first several days after TBI. In part, the decision is based on the patient's risk of or development of secondary ischemia or brain injury. An increasing number of centers use multimodal neurologic monitoring, which may help to individualize transfusion goals based on the degree of cerebral hypoxia or metabolic distress. When available, brain tissue oxygen tension values less than 15-20 mm Hg or a lactate:pyruvate ratio greater than 30-40 would influence us to use more aggressive hemoglobin correction (e.g., a transfusion threshold of 10 g/dL). Clinicians can attempt to reduce transfusion requirements by limiting phlebotomy, minimizing hemodilution, and providing appropriate prophylaxis against gastrointestinal hemorrhage. Administration of exogenous erythropoietin may have a small impact in further reducing the need for transfusion, but it also may increase complications, most notably deep venous thrombosis. Erythropoietin is currently of great interest as a potential neuroprotective agent, but until it is adequately evaluated in randomized controlled trials, it should not be used routinely for this purpose. HBBSs are also of interest, but existing preparations have not been shown to be beneficial-or even safe-in the context of TBI.
Collapse
Affiliation(s)
- Andreas H Kramer
- Department of Critical Care Medicine & Clinical Neurosciences, University of Calgary, Ground Floor, McCaig Tower, 3134 Hospital Dr NW, Calgary, AB, T2N 2T9, Canada
| | | |
Collapse
|
21
|
A novel technique for monitoring of fast variations in brain oxygen tension using an uncoated fluorescence quenching probe (Foxy AL-300). J Neurosurg Anesthesiol 2012; 23:341-6. [PMID: 21897296 DOI: 10.1097/ana.0b013e31822cf893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A novel uncoated fluorescence quenching probe allows fast measurement of oxygen tension in vessels and tissue. The present study reports the first use of the technology for dual measurements of arterial (paO(2)) and brain tissue oxygen tension (ptiO(2)) during hypoxic challenge in a pig model. METHODS Eight pigs were anesthetized using fentanyl and propofol. Fluorescence quenching pO(2) probes (Foxy AL-300, Ocean Optics, Dunedin, FL) were placed in the ascending aorta (Foxy-paO(2)) and subcortically at 14 mm in brain tissue (Foxy-ptiO(2)). As reference, a clark-type electrode probe (Licox-ptiO(2)) was placed into brain tissue close to the Foxy probe (Licox, Integra Neurosciences, Plainsboro, NJ). Measurements were taken at baseline (FiO(2) 1.0), during episodes of apnea, and during recovery (FiO(2) 1.0). STATISTICS descriptive results. RESULTS Individual Foxy-paO(2), Foxy-ptiO(2), and Licox-ptiO(2) courses were related to episodes of apnea. The response time of the Foxy measurements was 10 Hz. Baseline values at FiO(2) 1.0 were Foxy-paO(2) 520±120 mm Hg, Foxy-ptiO(2) 62±24 mm Hg, and Licox-ptiO(2) 55±29 mm Hg; apnea values were Foxy-paO(2) 64±10 mm Hg, Foxy-ptiO(2) 37±12 mm Hg, and Licox-ptiO(2) 31±16 mm Hg; recovery values at FiO(2) 1.0 were Foxy-paO(2) 478±98 mm Hg, Foxy-ptiO(2) 78±26 mm Hg, and Licox-ptiO(2) 62±32 mm Hg. CONCLUSIONS The present study demonstrates the feasibility of pO(2) measurements in macrocirculation and cerebral microcirculation using a novel uncoated fluorescence quenching probe. The technology allows for real-time investigation of pO(2) changes at a temporal resolution of 0.05 to 10 Hz.
Collapse
|
22
|
Vital organ tissue oxygenation after serial normovolemic exchange transfusion with HBOC-201 in anesthetized swine. Shock 2011; 35:597-603. [PMID: 21330945 DOI: 10.1097/shk.0b013e31821366f6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study determined the effects of serial, normovolemic, stepwise exchange transfusions with either 6% human serum albumin (HSA) or the hemoglobin-based oxygen carrier, HBOC-201, on tissue oxygenation of the heart, brain, and kidney in intact anaesthetized pigs. Exchange transfusions to 10%, 30%, and 50% of the pigs' total blood volume were completed at a withdrawal rate of 1.0 mL·kg(-1)·min(-1) followed by an infusion rate of 0.5 mL·kg(-1)·min(-1) of HBOC-201 or iso-oncotically matched 6% HSA. Measurements included invasive systemic hemodynamic (blood pressures, left ventricular end-diastolic pressure), hematolic (hemoglobin, hematocrit, methemoglobin), acid-base (pH, PCO2), and biochemistry (serum lactate) measurements. Brain and kidney tissue oxygenation (tPO2) was determined by electron paramagnetic resonance and heart tPO2 by O2 sensitive fiberoptic probe. The main results demonstrated that tPO2 after HBOC-201 remained stable despite significant decreases in hematocrit and changing hemodynamics. In vivo tPO2 measurements (heart tPO2 average ≥22 mmHg, brain tPO2 average ≥8 mmHg, and kidney tPO2 average ≥10 mmHg) were maintained in all groups at all times. Blood pressures were 20 to 30 mmHg higher after HBOC-201 compared with HSA controls. Heart rate and left ventricular end-diastolic pressure were not different among treatment groups. In conclusion, the administration of HBOC-201 maintained tPO2 in three vital organs after profound hemodilution.
Collapse
|
23
|
Haque A, Arnaud F, Teranishi K, Okada T, Kim B, Moon-Massat PF, Auker C, McCarron R, Freilich D, Scultetus AH. Pre-hospital resuscitation with HBOC-201 and rFVIIa compared to HBOC-201 alone in uncontrolled hemorrhagic shock in swine. ACTA ACUST UNITED AC 2011; 40:44-55. [PMID: 21806503 DOI: 10.3109/10731199.2011.585615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In a previous dose escalation study our group found that combining 90μg/kg rFVIIa with HBOC-201 reduced blood loss and improved physiologic parameters compared to HBOC alone. In this follow-up study in a swine liver injury model, we found that while there were no adverse hematology effects and trends observed in the previous study were confirmed, statistical significance could not be reached. Additional pre-clinical studies are indicated to identify optimal components of a multifunctional blood substitute for clinical use in trauma.
Collapse
Affiliation(s)
- Ashraful Haque
- Naval Medical Research Center, Operational and Undersea Medicine Directorate, NeuroTrauma Department, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Polynitroxylated pegylated hemoglobin: a novel neuroprotective hemoglobin for acute volume-limited fluid resuscitation after combined traumatic brain injury and hemorrhagic hypotension in mice. Crit Care Med 2011; 39:494-505. [PMID: 21169820 DOI: 10.1097/ccm.0b013e318206b1fa] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Resuscitation of hemorrhagic hypotension after traumatic brain injury is challenging. A hemoglobin-based oxygen carrier may offer advantages. The novel therapeutic hemoglobin-based oxygen carrier, polynitroxylated pegylated hemoglobin (PNPH), may represent a neuroprotective hemoglobin-based oxygen carrier for traumatic brain injury resuscitation. HYPOTHESES 1) PNPH is a unique non-neurotoxic hemoglobin-based oxygen carrier in neuronal culture and is neuroprotective in in vitro neuronal injury models. 2) Resuscitation with PNPH would require less volume to restore mean arterial blood pressure than lactated Ringer's or Hextend and confer neuroprotection in a mouse model of traumatic brain injury plus hemorrhagic hypotension. DESIGN Prospective randomized, controlled experimental study. SETTING University center. MEASUREMENTS AND MAIN RESULTS In rat primary cortical neuron cultures, control bovine hemoglobin was neurotoxic (lactate dehydrogenase release; 3-[4,5-dimethylthiazol-2-yl-]-2,5-diphenyltetrazolium bromide assay) at concentrations from 12.5 to 0.625 μM, whereas polyethylene glycol-conjugated hemoglobin showed intermediate toxicity. PNPH was not neurotoxic (p<.05 vs. bovine hemoglobin and polyethylene glycol hemoglobin; all concentrations). PNPH conferred neuroprotection in in vitro neuronal injury (glutamate/glycine exposure and neuronal stretch), as assessed via lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl-]-2,5-diphenyltetrazolium bromide (all p<.05 vs. control). C57BL6 mice received controlled cortical impact followed by hemorrhagic hypotension (2 mL/100 g, mean arterial blood pressure ∼35-40 mm Hg) for 90 min. Mice were resuscitated (mean arterial blood pressure>50 mm Hg for 30 min) with lactated Ringer's, Hextend, or PNPH, and then shed blood was reinfused. Mean arterial blood pressures, resuscitation volumes, blood gasses, glucose, and lactate were recorded. Brain sections at 7 days were examined via hematoxylin and eosin and Fluoro-Jade C (identifying dying neurons) staining in CA1 and CA3 hippocampus. Resuscitation with PNPH or Hextend required less volume than lactated Ringer's (both p<.05). PNPH but not Hextend improved mean arterial blood pressure vs. lactated Ringer's (p<.05). Mice resuscitated with PNPH had fewer Fluoro-Jade C positive neurons in CA1 vs. Hextend and lactated Ringer's, and CA3 vs. Hextend (p<.05). CONCLUSIONS PNPH is a novel neuroprotective hemoglobin-based oxygen carrier in vitro and in vivo that may offer unique advantages for traumatic brain injury resuscitation.
Collapse
|
25
|
Naim MY, Friess S, Smith C, Ralston J, Ryall K, Helfaer MA, Margulies SS. Folic acid enhances early functional recovery in a piglet model of pediatric head injury. Dev Neurosci 2011; 32:466-79. [PMID: 21212637 DOI: 10.1159/000322448] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 10/28/2010] [Indexed: 11/19/2022] Open
Abstract
For stroke and spinal cord injury, folic acid supplementation has been shown to enhance neurodevelopment and to provide neuroprotection. We hypothesized that folic acid would reduce brain injury and improve neurological outcome in a neonatal piglet model of traumatic brain injury (TBI), using 4 experimental groups of 3- to 5-day-old female piglets. Two groups were intubated, anesthetized and had moderate brain injury induced by rapid axial head rotation without impact. One group of injured (Inj) animals received folic acid (Fol; 80 μg/kg) by intraperitoneal (IP) injection 15 min following injury, and then daily for 6 days (Inj + Fol; n = 7). The second group of injured animals received an IP injection of saline (Sal) at the same time points (Inj + Sal; n = 8). Two uninjured (Uninj) control groups (Uninj + Fol, n = 8; Uninj + Sal, n = 7) were intubated, anesthetized and received folic acid (80 μg/kg) or saline by IP injection at the same time points as the injured animals following a sham procedure. Animals underwent neurobehavioral and cognitive testing on days 1 and 4 following injury to assess behavior, memory, learning and problem solving. Serum folic acid and homocysteine levels were collected prior to injury and again before euthanasia. The piglets were euthanized 6 days following injury, and their brains were perfusion fixed for histological analysis. Folic acid levels were significantly higher in both Fol groups on day 6. Homocysteine levels were not affected by treatment. On day 1 following injury, the Inj + Fol group showed significantly more exploratory interest, and better motor function, learning and problem solving compared to the Inj + Sal group. Inj + Fol animals had a significantly lower cognitive composite dysfunction score compared to all other groups on day 1. These functional improvements were not seen on day 4 following injury. Axonal injury measured by β-amyloid precursor protein staining 6 days after injury was not affected by treatment. These results suggest that folic acid may enhance early functional recovery in this piglet model of pediatric head injury. This is the first study to describe the application of complex functional testing to assess an intervention outcome in a swine model of TBI.
Collapse
Affiliation(s)
- Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pa., USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Intraosseous Transfusion With Liposome-Encapsulated Hemoglobin Improves Mouse Survival After Hypohemoglobinemic Shock Without Scavenging Nitric Oxide. Shock 2011; 35:45-52. [DOI: 10.1097/shk.0b013e3181e46e93] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Arnaud F, McCarron R, Freilich D. Amylase and Lipase Detection in Hemorrhaged Animals Treated with HBOC-201. ACTA ACUST UNITED AC 2010; 39:155-61. [DOI: 10.3109/10731199.2010.516260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Arnaud F, Scultetus AH, Kim B, Haque A, Saha B, Nigam S, Moon-Massat P, Auker C, McCarron R, Freilich D. Dose response of sodium nitrite on vasoactivity associated with HBOC-201 in a swine model of controlled hemorrhage. ACTA ACUST UNITED AC 2010; 39:195-205. [PMID: 21133651 DOI: 10.3109/10731199.2010.533126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sodium nitrite (NaNO(2)) was evaluated in a 55% EBV hemorrhage swine model to mitigate the increased blood pressure due to HBOC-201. Animals were resuscitated by three 10 ml/kg infusions of either HBOC-201 or Hextend with and without NaNO(2). All vital signs, coagulation and blood chemistry were measured for 2 hr. HBOC-201-vasoconstriction was attenuated only after the first 10.8 μmol/kg NaNO(2) infusion. Complete abolition was obtained with the highest 3 NaNO(2) dose, but side effects were observed. There was no reduction in platelet function due to NaNO(2). NaNO(2) ability to reduce HBOC-201 vasoactivity was transient and 10.8 μmol/kg NaNO(2) seems an acceptable dose for further investigation.
Collapse
Affiliation(s)
- Françoise Arnaud
- Naval Medical Research Center, Operational and Undersea Medicine, NeuroTrauma Department, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kurtz P, Schmidt JM, Claassen J, Carrera E, Fernandez L, Helbok R, Presciutti M, Stuart RM, Connolly ES, Badjatia N, Mayer SA, Lee K. Anemia is associated with metabolic distress and brain tissue hypoxia after subarachnoid hemorrhage. Neurocrit Care 2010; 13:10-6. [PMID: 20383611 DOI: 10.1007/s12028-010-9357-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Anemia is frequently encountered in critically ill patients and adversely affects cerebral oxygen delivery and brain tissue oxygen (PbtO2). The objective of this study is to assess whether there is an association between anemia and metabolic distress or brain tissue hypoxia in patients with subarachnoid hemorrhage. METHODS Retrospective study was conducted in a neurological intensive care unit in a university hospital. Patients with subarachnoid hemorrhage that underwent multimodality monitoring with intracranial pressure, PbtO2 and microdialysis were analyzed. The relationships between hemoglobin (Hb) concentrations and brain tissue hypoxia (PbtO2 < or = 15 mmHg) and metabolic distress (lactate/pyruvate ratio > or =40) were analyzed with general linear models of logistic function for dichotomized outcomes utilizing generalized estimating equations. RESULTS A total of 359 matched neuromonitoring hours and Hb measurements were analyzed from 34 consecutive patients. The median hemoglobin was 9.7 g/dl (interquartile range 8.8-10.5). After adjusting for significant covariates, reduced hemoglobin concentration was associated with a progressively increased risk of brain tissue hypoxia (adjusted OR 1.7 [1.1-2.4]; P = 0.01 for every unit decrease). Also after adjusting for significant covariates, hemoglobin concentrations below 9 g/dl and between 9.1 and 10 g/dl were associated with an increased risk of metabolic distress as compared to concentrations between 10.1 and 11 g/dl (adjusted OR 3.7 [1.5-9.4]; P = 0.004 for Hb < or = 9 g/dl and adjusted OR 1.9 [1.1-3.3]; P = 0.03 for Hb 9.1-10 g/dl). CONCLUSIONS Anemia is associated with a progressively increased risk of cerebral metabolic distress and brain tissue hypoxia after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Pedro Kurtz
- Division of Critical Care Neurology, Department of Neurology, Columbia University, Milstein Hospital 8 Center, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Scultetus A, Arnaud F, Kaplan L, Shander A, Philbin N, Rice J, McCarron R, Freilich D. Hemoglobin-based oxygen carrier (HBOC-201) and escalating doses of recombinant factor VIIa (rFVIIa) as a novel pre-hospital resuscitation fluid in a swine model of severe uncontrolled hemorrhage. ACTA ACUST UNITED AC 2010; 39:59-68. [PMID: 20645681 DOI: 10.3109/10731199.2010.501755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exsanguinating hemorrhage and unavailability of blood are major problems in pre-hospital trauma care. We investigated if combining rFVIIa with HBOC-201 reduces blood loss and improves physiologic parameters compared to HBOC alone. Swine underwent liver injury and were resuscitated with HBOC-201 alone or HBOC+90, 180 or 360 μg/kg rFVIIa before hospital arrival at 240 min; animals survived to 72 hours. Blood loss was reduced; MAP, CI, transcutaneous oxygen saturation, and 72-hour survival improved in the 90 and 180 μg/kg rFVIIa groups. Lactate was cleared faster in the HBOC+rFVIIa 90 μg/kg group. Verification in a large, well-powered study is indicated.
Collapse
Affiliation(s)
- Anke Scultetus
- Operational and Undersea Medicine Directorate, NeuroTrauma Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Current world literature. Curr Opin Anaesthesiol 2010; 23:283-93. [PMID: 20404787 DOI: 10.1097/aco.0b013e328337578e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Diaspirin cross-linked hemoglobin infusion did not influence base deficit and lactic acid levels in two clinical trials of traumatic hemorrhagic shock patient resuscitation. ACTA ACUST UNITED AC 2010; 68:1158-71. [PMID: 20145575 DOI: 10.1097/ta.0b013e3181bbfaac] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diaspirin cross-linked hemoglobin (DCLHb) has demonstrated a pressor effect that could adversely affect traumatic hemorrhagic shock patients through diminished perfusion to vital organs, causing base deficit (BD) and lactate abnormalities. METHODS Data from two parallel, multicenter traumatic hemorrhagic shock clinical trials from 17 US Emergency Departments and 27 European Union prehospital services using DCLHb, a hemoglobin-based resuscitation fluid. RESULTS In the 219 patients, the mean age was 37.3 years, 64% of the patients sustained a blunt injury, 48% received DCLHb resuscitation, and the overall 28-day mortality rate was 36.5%. BD data did not differ by treatment group (DCLHb vs. normal saline [NS]) at any time point. Study entry BD was higher in patients who died when compared with survivors in both studies (US: -14.7 vs. -9.3 and European Union: -11.1 vs. -4.1 mEq/L, p < 0.003) and at the first three time points after resuscitation. No differences in BD based on treatment group were observed in either those who survived or those who died from the hemorrhagic shock. US lactate data did not differ by treatment group (DCLHb vs. NS) at any time point. Study entry lactates were higher in US patients who ultimately died when compared with survivors (82.4 vs. 56.1 mmol/L, p < 0.003) and at all five postresuscitation time points. No lactate differences were observed between DCLHb and NS survivors or in those who died based on treatment group. CONCLUSIONS Although patients who died had more greatly altered perfusion than those who survived, DCLHb treatment of traumatic hemorrhagic shock patients was not associated with BD or lactate abnormalities that would indicate poor perfusion.
Collapse
|
33
|
The lack of consistent diaspirin cross-linked hemoglobin infusion blood pressure effects in the US and EU traumatic hemorrhagic shock clinical trials. Shock 2010; 33:123-33. [PMID: 20092028 DOI: 10.1097/shk.0b013e3181ac482b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemoglobin solutions have demonstrated a pressor effect that could adversely affect hemorrhagic shock patient resuscitation through accelerated hemorrhage, diminished perfusion, or inadequate resuscitation. Data from two parallel, multicenter traumatic hemorrhagic shock clinical trials in 17 US emergency departments and in 27 EU prehospital systems using diaspirin cross-linked hemoglobin (DCLHb), a hemoglobin-based resuscitation fluid. In the 219 patients, patients were 37 years old, 64% sustained blunt injury, 48% received DCLHb, and 36% expired. Although mean systolic blood pressure (SBP) and diastolic blood pressure values differed at 2 of the 10 measured time points, blood pressure (BP) curve analysis showed no SBP, diastolic blood pressure, or MAP differences based on treatment. Although SBP values 160 and 120 mmHg or greater were 2.2x and 2.6x more frequently noted in survivors, they were not more common with DCLHb use or in DCLHb patients who expired in US study nonsurvivors or in any EU study patients. Systolic blood pressure values 160 and 120 mmHg or greater were 2.8x and 1.3x more frequently noted in DCLHb survivors as compared with normal saline survivors. Only 3% of the BP variation noted could be attributed to DCLHb use, and as expected, injury severity and baseline physiologic status were stronger predictors. In the United States alone, treatment group was not correlated by regression with BP at any time point. Neither mean BP readings nor elevated BP readings were correlated with DCLHb treatment of traumatic hemorrhagic shock patients. As such, no clinically demonstrable DCLHb pressor effect could be directly related to the adverse mortality outcome observed in the US study.
Collapse
|
34
|
Evaluation of coagulation stages of hemorrhaged swine: comparison of thromboelastography and rotational elastometry. Blood Coagul Fibrinolysis 2010; 21:20-7. [PMID: 20010092 DOI: 10.1097/mbc.0b013e32833113e9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thromboelastography (TEG) or rotational thromboelastometry (ROTEM) assesses blood viscoelastic properties and clotting kinetics that can be measured by Haemoscope TEG and Pentapharm ROTEM devices using slightly different methodologies. These devices were compared by measuring blood samples associated with various degrees of coagulopathy. Blood samples, collected from swine undergoing three types of severe injury and resuscitation protocol resulting in normal, hypercoagulopathy, and hypocoagulopathy, were assessed with TEG or ROTEM before the surgical procedures, and after injury, fluid resuscitation, and simulated hospital phase. Standard clotting parameters were compared by Student's t-test at a significance of a P value less than 0.05. Regression analysis indicated a positive correlation between TEG and ROTEM for reaction time (R), clotting rate (K), and maximum amplitude (Ma) parameters. With samples of normal coagulation, R (440 +/- 136 vs. 391 +/- 73 s), K (99 +/- 39 vs. 81 +/- 20 s), and Ma (74 +/- 4 vs. 69 +/- 5 mm) were higher, whereas (alpha) (68 +/- 8 vs. 75 +/- 3 mm) was lower with TEG than ROTEM, respectively; a P value is less than 0.05. The magnitude of changes from baseline in hypercoagulable or hypocoagulable samples due to level of injury was equivalent with TEG and ROTEM indicating comparable use of the instruments. However, when samples were extremely hypocoagulopathic due to resuscitation fluid, the TEG values could not be readily determined. Overall, TEG readings were higher than ROTEM readings; this disparity between the two instruments was attenuated with hypercoaguable samples. Both devices yielded similar information regarding the status of coagulation related to trauma. Because of operating characteristics, the same instrument should be used for monitoring the same patient or study.
Collapse
|
35
|
Abstract
Hemorrhage remains a major cause of preventable death following both civilian and military trauma. The goals of resuscitation in the face of hemorrhagic shock are restoring end-organ perfusion and maintaining tissue oxygenation while attempting definitive control of bleeding. However, if not performed properly, resuscitation can actually exacerbate cellular injury caused by hemorrhagic shock, and the type of fluid used for resuscitation plays an important role in this injury pattern. This article reviews the historical development and scientific underpinnings of modern resuscitation techniques. We summarized data from a number of studies to illustrate the differential effects of commonly used resuscitation fluids, including isotonic crystalloids, natural and artificial colloids, hypertonic and hyperoncotic solutions, and artificial oxygen carriers, on cellular injury and how these relate to clinical practice. The data reveal that a uniformly safe, effective, and practical resuscitation fluid when blood products are unavailable and direct hemorrhage control is delayed has been elusive. Yet, it is logical to prevent this cellular injury through wiser resuscitation strategies than attempting immunomodulation after the damage has already occurred. Thus, we describe how some novel resuscitation strategies aimed at preventing or ameliorating cellular injury may become clinically available in the future.
Collapse
Affiliation(s)
- Heena P Santry
- Department of Surgery, Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
36
|
Kramer AH, Zygun DA. Anemia and red blood cell transfusion in neurocritical care. Crit Care 2009; 13:R89. [PMID: 19519893 PMCID: PMC2717460 DOI: 10.1186/cc7916] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/09/2009] [Accepted: 06/11/2009] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Anemia is one of the most common medical complications to be encountered in critically ill patients. Based on the results of clinical trials, transfusion practices across the world have generally become more restrictive. However, because reduced oxygen delivery contributes to 'secondary' cerebral injury, anemia may not be as well tolerated among neurocritical care patients. METHODS The first portion of this paper is a narrative review of the physiologic implications of anemia, hemodilution, and transfusion in the setting of brain-injury and stroke. The second portion is a systematic review to identify studies assessing the association between anemia or the use of red blood cell transfusions and relevant clinical outcomes in various neurocritical care populations. RESULTS There have been no randomized controlled trials that have adequately assessed optimal transfusion thresholds specifically among brain-injured patients. The importance of ischemia and the implications of anemia are not necessarily the same for all neurocritical care conditions. Nevertheless, there exists an extensive body of experimental work, as well as human observational and physiologic studies, which have advanced knowledge in this area and provide some guidance to clinicians. Lower hemoglobin concentrations are consistently associated with worse physiologic parameters and clinical outcomes; however, this relationship may not be altered by more aggressive use of red blood cell transfusions. CONCLUSIONS Although hemoglobin concentrations as low as 7 g/dl are well tolerated in most critical care patients, such a severe degree of anemia could be harmful in brain-injured patients. Randomized controlled trials of different transfusion thresholds, specifically in neurocritical care settings, are required. The impact of the duration of blood storage on the neurologic implications of transfusion also requires further investigation.
Collapse
Affiliation(s)
- Andreas H Kramer
- Departments of Critical Care Medicine & Clinical Neurosciences, University of Calgary, Foothills Medical Center, 1403 29thSt. N.W., Calgary, AB, Canada, T2N 2T9
| | - David A Zygun
- Departments of Critical Care Medicine, Clinical Neurosciences, & Community Health Sciences, University of Calgary, Foothills Medical Center, 1403 29thSt. N.W., Calgary, AB, Canada, T2N 2T9
| |
Collapse
|
37
|
HBOC-201 Vasoactivity in a Phase III Clinical Trial in Orthopedic Surgery Subjects—Extrapolation of Potential Risk for Acute Trauma Trials. ACTA ACUST UNITED AC 2009; 66:365-76. [DOI: 10.1097/ta.0b013e3181820d5c] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
What's new in shock, January 2009? Shock 2008; 31:1-2. [PMID: 19077876 DOI: 10.1097/shk.0b013e318190b19f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|