1
|
Bülow Anderberg S, Huckriede J, Hultström M, Larsson A, de Vries F, Lipcsey M, Nicolaes GAF, Frithiof R. Association of corticosteroid therapy with reduced acute kidney injury and lower NET markers in severe COVID-19: an observational study. Intensive Care Med Exp 2024; 12:85. [PMID: 39340756 PMCID: PMC11438749 DOI: 10.1186/s40635-024-00670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is common in critical cases of coronavirus disease 2019 (COVID-19) and associated with worse outcome. Dysregulated neutrophil extracellular trap (NET) formation is one of several suggested pathophysiological mechanisms involved in the development of COVID-19 associated AKI. The corticosteroid dexamethasone was implemented as a standard treatment for severe COVID-19 as of June 2020. A sub-analysis of a prospective observational single center study was performed to evaluate the effect of corticosteroid treatment on AKI development and NET markers in critical cases of COVID-19. RESULTS Two hundred and ten adult patients admitted to intensive care at a tertiary level hospital due to respiratory failure or shock secondary to SARS-CoV-2-infection between March 13th 2020 and January 14th 2021 were included in the study. Ninety-seven of those did not receive corticosteroids. One hundred and thirteen patients were treated with corticosteroids [dexamethasone (n = 98) or equivalent treatment (n = 15)], but the incidence of AKI was assessed only in patients that received corticosteroids before any registered renal dysfunction (n = 63). Corticosteroids were associated with a lower incidence of AKI (19% vs 55.8%, p < 0.001). Fewer patients demonstrated detectable concentrations of extracellular histones in plasma when treated with corticosteroids (8.7% vs 43.1%; p < 0.001). Extracellular histones and in particular non-proteolyzed histones were observed more frequently with increasing AKI severity (p < 0.001). MPO-DNA was found in lower concentrations in patients that received corticosteroids before established renal dysfunction (p = 0.03) and was found in higher concentrations in patients with AKI stage 3 (p = 0.03). Corticosteroids did not ameliorate established AKI during the first week of treatment. CONCLUSION Corticosteroid treatment in severe COVID-19 is associated with a lower incidence of AKI and reduced concentrations of NET markers in plasma.
Collapse
Affiliation(s)
- Sara Bülow Anderberg
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, 751 85, Uppsala, Sweden.
| | - Joram Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Michael Hultström
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, 751 85, Uppsala, Sweden
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Femke de Vries
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Miklos Lipcsey
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, 751 85, Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, 751 85, Uppsala, Sweden
- Uppsala Centre for Paediatric Anesthesia and Intensive Care Research, Uppsala, Sweden
| |
Collapse
|
2
|
Lazar A. Recent Data about the Use of Corticosteroids in Sepsis-Review of Recent Literature. Biomedicines 2024; 12:984. [PMID: 38790946 PMCID: PMC11118609 DOI: 10.3390/biomedicines12050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Sepsis, characterized by life-threatening organ dysfunction due to a maladaptive host response to infection, and its more severe form, septic shock, pose significant global health challenges. The incidence of these conditions is increasing, highlighting the need for effective treatment strategies. This review explores the complex pathophysiology of sepsis, emphasizing the role of the endothelium and the therapeutic potential of corticosteroids. The endothelial glycocalyx, critical in maintaining vascular integrity, is compromised in sepsis, leading to increased vascular permeability and organ dysfunction. Corticosteroids have been used for over fifty years to treat severe infections, despite ongoing debate about their efficacy. Their immunosuppressive effects and the risk of exacerbating infections are significant concerns. The rationale for corticosteroid use in sepsis is based on their ability to modulate the immune response, promote cardiovascular stability, and potentially facilitate organ restoration. However, the evidence is mixed, with some studies suggesting benefits in terms of microcirculation and shock reversal, while others report no significant impact on mortality or organ dysfunction. The Surviving Sepsis Campaign provides cautious recommendations for their use. Emerging research highlights the importance of genomic and transcriptomic analyses in identifying patient subgroups that may benefit from corticosteroid therapy, suggesting a move toward personalized medicine in sepsis management. Despite potential benefits, the use of corticosteroids in sepsis requires careful consideration of individual patient risk profiles, and further research is needed to optimize their use and integrate genomic insights into clinical practice. This review underscores the complexity of sepsis treatment and the ongoing need for evidence-based approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Alexandra Lazar
- Anesthesiology and Intensive Care Department, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology from Tirgu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
3
|
Brouwer F, Ince C, Pols J, Uz Z, Hilty MP, Arbous MS. The microcirculation in the first days of ICU admission in critically ill COVID-19 patients is influenced by severity of disease. Sci Rep 2024; 14:6454. [PMID: 38499589 PMCID: PMC10948764 DOI: 10.1038/s41598-024-56245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
The objective of this study was to investigate the relationship between sublingual microcirculatory parameters and the severity of the disease in critically ill coronavirus disease 2019 (COVID-19) patients in the initial period of Intensive Care Unit (ICU) admission in a phase of the COVID-19 pandemic where patients were being treated with anti-inflammatory medication. In total, 35 critically ill COVID-19 patients were included. Twenty-one critically ill COVID-19 patients with a Sequential Organ Failure Assessment (SOFA) score below or equal to 7 were compared to 14 critically ill COVID-19 patients with a SOFA score exceeding 7. All patients received dexamethasone and tocilizumab at ICU admission. Microcirculatory measurements were performed within the first five days of ICU admission, preferably as soon as possible after admission. An increase in diffusive capacity of the microcirculation (total vessel density, functional capillary density, capillary hematocrit) and increased perfusion of the tissues by red blood cells was found in the critically ill COVID-19 patients with a SOFA score of 7-9 compared to the critically ill COVID-19 patients with a SOFA score ≤ 7. No such effects were found in the convective component of the microcirculation. These effects occurred in the presence of administration of anti-inflammatory medication.
Collapse
Affiliation(s)
- Fleur Brouwer
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Can Ince
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jiska Pols
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Zühre Uz
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Peter Hilty
- Institute of Intensive Care Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Mendi Sesmu Arbous
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
4
|
Guo L, Fu B, Liu Y, Hao N, Ji Y, Yang H. Diuretic resistance in patients with kidney disease: Challenges and opportunities. Biomed Pharmacother 2023; 157:114058. [PMID: 36473405 DOI: 10.1016/j.biopha.2022.114058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/10/2022] Open
Abstract
Edema caused by kidney disease is called renal edema. Edema is a common symptom of many human kidney diseases. Patients with renal edema often need to take diuretics.However, After taking diuretics, patients with kidney diseases are prone to kidney congestion, decreased renal perfusion, decreased diuretics secreted by renal tubules, neuroendocrine system abnormalities, abnormal ion transporter transport, drug interaction, electrolyte disorder, and hypoproteinemia, which lead to ineffective or weakened diuretic use and increase readmission rate and mortality. The main causes and coping strategies of diuretic resistance in patients with kidney diseases were described in detail in this report. The common causes of DR included poor diet (electrolyte disturbance and hypoproteinemia due to patients' failure to limit diet according to correct sodium, chlorine, potassium, and protein level) and poor drug compliance (the patient did not take adequate doses of diuretics. true resistance occurs only if the patient takes adequate doses of diuretics, but they are not effective), changes in pharmacokinetics and pharmacodynamics, electrolyte disorders, changes in renal adaptation, functional nephron reduction, and decreased renal blood flow. Common treatment measures include increasing in the diuretic dose and/or frequency, sequential nephron blockade,using new diuretics, ultrafiltration treatment, etc. In clinical work, measures should be taken to prevent or delay the occurrence and development of DR in patients with kidney diseases according to the actual situation of patients and the mechanism of various causes. Currently, there are many studies on DR in patients with heart diseases. Although the phenomenon of DR in patients with kidney diseases is common, there is a relatively little overview of the mechanism and treatment strategy of DR in patients with kidney diseases. Therefore, this paper hopes to show the information on DR in patients with kidney diseases to clinicians and researchers and broaden the research direction and ideas to a certain extent.
Collapse
Affiliation(s)
- Luxuan Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Baohui Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yang Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Hao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongtao Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
5
|
Biochemical and morphological attributes of broiler kidney in response to dietary glucocorticoid, dexamethasone. Saudi J Biol Sci 2021; 28:6721-6729. [PMID: 34866971 PMCID: PMC8626208 DOI: 10.1016/j.sjbs.2021.07.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Glucocorticoids (GCs) initiate oxidative stress and cause renal damage which lead to hypertension, heart failure and ultimately death. The current study aimed to investigate the alterations in serum biochemical parameters i.e. HDL and LDL; gross anatomy, histomorphology and histomorphometry of broiler kidney in response to dietary GC, dexamethasone (DEX). Day old chicks (DOCs) were randomly assigned into four groups: control and three treatment groups (T1, T2 and T3). The control group was fed commercial broiler type ration and the treated groups were fed commercial broiler type ration containing GC (Dexamethasone @ 3, 5 and 7 mg/kg in T1, T2 and T3 group respectively). To measure the biochemical parameters, blood samples were collected on days 7, 14, 21, and 28 of the experiment. For histological investigation, kidney (left) samples were collected from the individual birds after sacrificing on days 7, 14, 21, and 28 of the experiment. Histomorphological alterations of the kidney were assessed by routine hematoxylin and eosin (H&E) staining. Biochemical analysis showed significantly increased serum HDL and LDL level compared to the control. In gross study, dark congested kidney was found with significantly decreased weight, length and width. Treatment with DEX augmented congestion, inflammation and fibrosis in kidney, as evidence by histomorphometric study. Extensively degenerated and atrophied glomeruli, degenerated tubular epithelium with distorted tubules and inter tubular empty spaces were seen. Percentage of atrophied glomeruli increased significantly and maximum percentage of glomerular atrophy was seen at day 28. These changes were found more explicitly in the higher dose group. Histomorphometric study also revealed significant decrease in the diameter of glomerulus. The findings of this study suggest that DEX may alter the serum biochemical parameters as well as kidney gross and histomorphology.
Collapse
|
6
|
Kidney Microcirculation as a Target for Innovative Therapies in AKI. J Clin Med 2021; 10:jcm10184041. [PMID: 34575154 PMCID: PMC8471583 DOI: 10.3390/jcm10184041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is a serious multifactorial conditions accompanied by the loss of function and damage. The renal microcirculation plays a crucial role in maintaining the kidney’s functional and structural integrity for oxygen and nutrient supply and waste product removal. However, alterations in microcirculation and oxygenation due to renal perfusion defects, hypoxia, renal tubular, and endothelial damage can result in AKI and the loss of renal function regardless of systemic hemodynamic changes. The unique structural organization of the renal microvasculature and the presence of autoregulation make it difficult to understand the mechanisms and the occurrence of AKI following disorders such as septic, hemorrhagic, or cardiogenic shock; ischemia/reperfusion; chronic heart failure; cardiorenal syndrome; and hemodilution. In this review, we describe the organization of microcirculation, autoregulation, and pathophysiological alterations leading to AKI. We then suggest innovative therapies focused on the protection of the renal microcirculation and oxygenation to prevent AKI.
Collapse
|
7
|
Sun G, Wang J, Wang P, Ren H, Yue Y, Song Z, Fu X. Donepezil protects glycerol-induced acute renal failure through the cholinergic anti-inflammatory and nitric oxide pathway in rats. Immunopharmacol Immunotoxicol 2020; 42:625-631. [PMID: 33183119 DOI: 10.1080/08923973.2020.1835950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Inflammation as well as oxygen metabolite play important roles in renal injury during pathogenesis of rhabdomyolysis induced myoglobinuric acute renal failure (ARF). The aim of this study was to investigate the protective effects of donepezil on immune responses in rats with glycerol-induced ARF. METHODS Sixty male rats were randomly divided into six groups, the rats were given normal saline (10 ml/kg, i.m.), glycerol (50%, 10 ml/kg, i.m.), glycerol plus dexamethasone (0.1 mg/kg, i.g.), and glycerol plus donepezil (1, 5 and 10 mg/kg, i.g.) respectively. After two weeks of glycerol injections, the kidney tissues and blood samples were harvested for future biochemical and pathology analysis. The levels of creatinine (Cr) and urea nitrogen (BUN) in plasma, the content of malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) activity, total nitric oxide synthase (TNOS), inducible nitric oxide synthase (iNOS), endothelial NO synthase (eNOS) were evaluated in renal tissues. In addition, interleukin-6 (IL-6), tumor necrosis factors-α (TNF-α) in renal tissues were also determined. RESULTS Donepezil treatment protected rats from renal dysfunction in a dose-dependent manner and through the cholinergic anti-inflammatory pathway. Additionally, donepezil significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the IL-6, TNF-α, nitric oxide content and oxidative damage. CONCLUSIONS These data indicate that donepezil exerts a protective anti-inflammatory effect during ARF through the cholinergic pathway and Nitric oxide pathway. In addition, this study could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation and other injury.
Collapse
Affiliation(s)
- Guodong Sun
- Department of Pharmacy, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Jialei Wang
- Department of Urology, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Pan Wang
- Department of Nephrology, Liaocheng Dongchangfu People's Hospital, Liaocheng, Shandong, P. R. China
| | - Huimin Ren
- Department of Eastern Operating Room, Liao Cheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Yuedong Yue
- Department of Pharmacy, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Zhengmin Song
- Department of Pharmacy, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Xiaobin Fu
- Department of Pharmacy, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| |
Collapse
|
8
|
Lankadeva YR, Okazaki N, Evans RG, Bellomo R, May CN. Renal Medullary Hypoxia: A New Therapeutic Target for Septic Acute Kidney Injury? Semin Nephrol 2019; 39:543-553. [DOI: 10.1016/j.semnephrol.2019.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Ni YN, Liu YM, Wang YW, Liang BM, Liang ZA. Can corticosteroids reduce the mortality of patients with severe sepsis? A systematic review and meta-analysis. Am J Emerg Med 2018; 37:1657-1664. [PMID: 30522935 DOI: 10.1016/j.ajem.2018.11.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/07/2018] [Accepted: 11/26/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The effects of corticosteroids on clinical outcomes of patients with sepsis remains controversial. We aimed to further determine the effectiveness of corticosteroids in reducing mortality in adult patients with severe sepsis by comparison with placebo. METHODS Pubmed, Embase, Medline, Cochrane Central Register of Controlled Trials (CENTRAL) as well as the Information Sciences Institute (ISI) Web of Science were searched for all controlled studies that compared corticosteroids and placebo in adult patients with severe sepsis. The primary outcome was the mortality 28-day mortality and the secondary outcomes were mortality at longest follow up, occurrence, and reoccurrence of septic shock. RESULTS A total of 19 trials involving 7035 patients were pooled in our final analyses. No significant heterogeneity was found in any of the outcome measures. Compared with placebo, corticosteroids were associated with a lower 28-day mortality (RR 0.91, 95% CI 0.85-0.98, Z = 2.57, P = 0.01) both in patients having sepsis and in those who developed septic shock (RR 0.92, 95% CI 0.85-0.99, Z = 2.19, P = 0.03), while no significant difference was found in mortality with the longest follow up in patients either having sepsis (RR 0.94, 95% CI 0.89-1.00, Z = 1.93, P = 0.05), or occurrence (RR 0.83, 95% CI 0.56-1.24, Z = 0.90, P = 0.37) or reoccurrence of septic shock (RR 1.08, 95% CI 1.00-1.16, Z = 1.89, P = 0.06). CONCLUSIONS Corticosteroids were effective in reducing the 28-day mortality in patients with severe sepsis and in those with septic shock.
Collapse
Affiliation(s)
- Yue-Nan Ni
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, 610041, China
| | - Yuan-Ming Liu
- Department of Respiratory and Critical Care Medicine, People's Hospital of Pengzhou City, 611930, China
| | - Yi-Wei Wang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, 610041, China
| | - Bin-Miao Liang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, 610041, China
| | - Zong-An Liang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, 610041, China.
| |
Collapse
|
10
|
Schirris TJJ, Jansen J, Mihajlovic M, van den Heuvel LP, Masereeuw R, Russel FGM. Mild intracellular acidification by dexamethasone attenuates mitochondrial dysfunction in a human inflammatory proximal tubule epithelial cell model. Sci Rep 2017; 7:10623. [PMID: 28878224 PMCID: PMC5587643 DOI: 10.1038/s41598-017-10483-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/10/2017] [Indexed: 01/12/2023] Open
Abstract
Septic acute kidney injury (AKI) associates with poor survival rates and often requires renal replacement therapy. Glucocorticoids may pose renal protective effects in sepsis via stimulation of mitochondrial function. Therefore, we studied the mitochondrial effects of dexamethasone in an experimental inflammatory proximal tubule epithelial cell model. Treatment of human proximal tubule epithelial cells with lipopolysaccharide (LPS) closely resembles pathophysiological processes during endotoxaemia, and led to increased cytokine excretion rates and cellular reactive oxygen species levels, combined with a reduced mitochondrial membrane potential and respiratory capacity. These effects were attenuated by dexamethasone. Dexamethasone specifically increased the expression and activity of mitochondrial complex V (CV), which could not be explained by an increase in mitochondrial mass. Finally, we demonstrated that dexamethasone acidified the intracellular milieu and consequently reversed LPS-induced alkalisation, leading to restoration of the mitochondrial function. This acidification also provides an explanation for the increase in CV expression, which is expected to compensate for the inhibitory effect of the acidified environment on this complex. Besides the mechanistic insights into the beneficial effects of dexamethasone during renal cellular inflammation, our work also supports a key role for mitochondria in this process and, hence, provides novel therapeutic avenues for the treatment of AKI.
Collapse
Affiliation(s)
- T J J Schirris
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands.,Center for Systems Biology and Bioenergetics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - J Jansen
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands.,Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6500HB, Nijmegen, The Netherlands.,Department of Pediatrics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, 3584 CG, Utrecht, The Netherlands
| | - M Mihajlovic
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, 3584 CG, Utrecht, The Netherlands
| | - L P van den Heuvel
- Department of Pediatrics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Department of Pediatric Nephrology & Growth and Regeneration, Catholic University Leuven, 3000, Leuven, Belgium
| | - R Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, 3584 CG, Utrecht, The Netherlands.
| | - F G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands. .,Center for Systems Biology and Bioenergetics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Anderberg SB, Luther T, Frithiof R. Physiological aspects of Toll-like receptor 4 activation in sepsis-induced acute kidney injury. Acta Physiol (Oxf) 2017; 219:573-588. [PMID: 27602552 PMCID: PMC5324638 DOI: 10.1111/apha.12798] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/08/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
Abstract
Sepsis‐induced acute kidney injury (SI‐AKI) is common and associated with high mortality. Survivors are at increased risk of chronic kidney disease. The precise mechanism underlying SI‐AKI is unknown, and no curative treatment exists. Toll‐like receptor 4 (TLR4) activates the innate immune system in response to exogenous microbial products. The result is an inflammatory reaction aimed at clearing a potential infection. However, the consequence may also be organ dysfunction as the immune response can cause collateral damage to host tissue. The purpose of this review is to describe the basis for how ligand binding to TLR4 has the potential to cause renal dysfunction and the mechanisms by which this may take place in gram‐negative sepsis. In addition, we highlight areas for future research that can further our knowledge of the pathogenesis of SI‐AKI in relation to TLR4 activation. TLR4 is expressed in the kidney. Activation of TLR4 causes cytokine and chemokine release as well as renal leucocyte infiltration. It also results in endothelial and tubular dysfunction in addition to altered renal metabolism and circulation. From a physiological standpoint, inhibiting TLR4 in large animal experimental SI‐AKI significantly improves renal function. Thus, current evidence indicates that TLR4 has the ability to mediate SI‐AKI by a number of mechanisms. The strong experimental evidence supporting a role of TLR4 in the pathogenesis of SI‐AKI in combination with the availability of pharmacological tools to target TLR4 warrants future human studies.
Collapse
Affiliation(s)
- S. B. Anderberg
- Department of Surgical Sciences; Section of Anesthesia & Intensive Care; Uppsala University; Uppsala Sweden
| | - T. Luther
- Department of Surgical Sciences; Section of Anesthesia & Intensive Care; Uppsala University; Uppsala Sweden
| | - R. Frithiof
- Department of Surgical Sciences; Section of Anesthesia & Intensive Care; Uppsala University; Uppsala Sweden
| |
Collapse
|
12
|
Abstract
Sepsis affects practically all aspects of endothelial cell (EC) function and is thought to be the key factor in the progression from sepsis to organ failure. Endothelial functions affected by sepsis include vasoregulation, barrier function, inflammation, and hemostasis. These are among other mechanisms often mediated by glycocalyx shedding, such as abnormal nitric oxide metabolism, up-regulation of reactive oxygen species generation due to down-regulation of endothelial-associated antioxidant defenses, transcellular communication, proteases, exposure of adhesion molecules, and activation of tissue factor. This review covers current insight in EC-associated hemostatic responses to sepsis and the EC response to inflammation. The endothelial cell lining is highly heterogeneous between different organ systems and consequently also in its response to sepsis. In this context, we discuss the response of the endothelial cell lining to sepsis in the kidney, liver, and lung. Finally, we discuss evidence as to whether the EC response to sepsis is adaptive or maladaptive. This study is a result of an Acute Dialysis Quality Initiative XIV Sepsis Workgroup meeting held in Bogota, Columbia, between October 12 and 15, 2014.
Collapse
|
13
|
Post EH, Kellum JA, Bellomo R, Vincent JL. Renal perfusion in sepsis: from macro- to microcirculation. Kidney Int 2016; 91:45-60. [PMID: 27692561 DOI: 10.1016/j.kint.2016.07.032] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 12/16/2022]
Abstract
The pathogenesis of sepsis-associated acute kidney injury is complex and likely involves perfusion alterations, a dysregulated inflammatory response, and bioenergetic derangements. Although global renal hypoperfusion has been the main target of therapeutic interventions, its role in the development of renal dysfunction in sepsis is controversial. The implications of renal hypoperfusion during sepsis probably extend beyond a simple decrease in glomerular filtration pressure, and targeting microvascular perfusion deficits to maintain tubular epithelial integrity and function may be equally important. In this review, we provide an overview of macro- and microcirculatory dysfunction in experimental and clinical sepsis and discuss relationships with kidney oxygenation, metabolism, inflammation, and function.
Collapse
Affiliation(s)
- Emiel Hendrik Post
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, School of Medicine, The University of Melbourne, Parkville, Melbourne, Australia
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
14
|
Post EH, Su F, Hosokawa K, Taccone FS, Herpain A, Creteur J, Vincent JL, De Backer D. Changes in kidney perfusion and renal cortex metabolism in septic shock: an experimental study. J Surg Res 2016; 207:145-154. [PMID: 27979471 DOI: 10.1016/j.jss.2016.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The etiology of renal dysfunction in sepsis is currently attributed to altered perfusion, microcirculatory abnormalities and cellular alterations. To clarify these mechanisms, we characterized the changes in renal perfusion and cortex metabolism in a large animal model of sepsis. METHODS We studied 12 adult female sheep randomized to peritonitis-induced sepsis (n = 8) or to sham procedure (n = 4). A flow probe was positioned around the renal artery to measure renal blood flow (RBF). Laser Doppler was used to measure regional flow in the kidney cortex and medulla. A microdialysis probe was inserted into the renal cortex to measure cortical glucose, lactate, and pyruvate. Fluid resuscitation was provided to keep pulmonary artery occlusion pressure at baseline levels. All animals were observed for 18 h. RESULTS Hypotension occurred after 9 h in the septic animals (P = 0.02 versus baseline). RBF and cortical flow were significantly lower than at baseline from 12 h in the septic animals (P = 0.01 and P = 0.03, respectively). Cortical lactate and pyruvate levels increased in the septic animals from 3 and from 6 h, respectively (both P = 0.02 versus baseline), and the L/P ratio from 15 h (P = 0.01). There was a correlation between cortical flow and cortical L/P ratio after shock onset (r = -0.60, P = 0.002) but not before. CONCLUSIONS In this peritonitis model, sepsis was associated with metabolic alterations that may reflect early induction of cortical glycolysis. Septic shock was associated with reduced renal perfusion and decreased cortical and medullary blood flow, followed by signs of anaerobic metabolism in the cortex when flow reductions became critical.
Collapse
Affiliation(s)
- Emiel Hendrik Post
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fuhong Su
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Koji Hosokawa
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Herpain
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | - Daniel De Backer
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Su CM, Cheng HH, Hung CW, Hsiao SY, Tsai NW, Chang WN, Wang HC, Lin WC, Cheng BC, Su YJ, Chang YT, Kung CT, Lu CH. The value of serial serum cell adhesion molecules in predicting acute kidney injury after severe sepsis in adults. Clin Chim Acta 2016; 457:86-91. [DOI: 10.1016/j.cca.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/22/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
|
16
|
The Complex Relationship of Extracorporeal Membrane Oxygenation and Acute Kidney Injury: Causation or Association? BIOMED RESEARCH INTERNATIONAL 2016; 2016:1094296. [PMID: 27006941 PMCID: PMC4783537 DOI: 10.1155/2016/1094296] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 12/23/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a modified cardiopulmonary bypass (CPB) circuit capable of providing prolonged cardiorespiratory support. Recent advancement in ECMO technology has resulted in increased utilisation and clinical application. It can be used as a bridge-to-recovery, bridge-to-bridge, bridge-to-transplant, or bridge-to-decision. ECMO can restitute physiology in critically ill patients, which may minimise the risk of progressive multiorgan dysfunction. Alternatively, iatrogenic complications of ECMO clearly contribute to worse outcomes. These factors affect the risk : benefit ratio of ECMO which ultimately influence commencement/timing of ECMO. The complex interplay of pre-ECMO, ECMO, and post-ECMO pathophysiological processes are responsible for the substantial increased incidence of ECMO-associated acute kidney injury (EAKI). The development of EAKI significantly contributes to morbidity and mortality; however, there is a lack of evidence defining a potential benefit or causative link between ECMO and AKI. This area warrants investigation as further research will delineate the mechanisms involved and subsequent strategies to minimise the risk of EAKI. This review summarizes the current literature of ECMO and AKI, considers the possible benefits and risks of ECMO on renal function, outlines the related pathophysiology, highlights relevant investigative tools, and ultimately suggests an approach for future research into this under investigated area of critical care.
Collapse
|
17
|
Annane D. The Role of ACTH and Corticosteroids for Sepsis and Septic Shock: An Update. Front Endocrinol (Lausanne) 2016; 7:70. [PMID: 27379022 PMCID: PMC4913096 DOI: 10.3389/fendo.2016.00070] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/08/2016] [Indexed: 02/05/2023] Open
Abstract
Sepsis is a common disorder associated with high morbidity and mortality. It is now defined as an abnormal host response to infection, resulting in life-threatening dysfunction of organs. There is evidence from in vitro and in vivo experiments in various animal models and in patients that endotoxin or sepsis may directly and indirectly alter the hypothalamic-pituitary-adrenal response to severe infection. These alterations may include necrosis or hemorrhage or inflammatory mediator-mediated decreased ACTH synthesis, steroidogenesis, cortisol delivery to tissues, clearance from plasma, and decreased sensitivity of tissues to cortisol. Disruption of the hypothalamic-pituitary-adrenal axis may translate in patients with sepsis into cardiovascular and other organ dysfunction, and eventually an increase in the risk of death. Exogenous administration of corticosteroids at moderate dose, i.e., <400 mg of hydrocortisone or equivalent for >96 h, may help reversing sepsis-associated shock and organ dysfunction. Corticosteroids may also shorten the duration of stay in the ICU. Except for increased blood glucose and sodium levels, treatment with corticosteroids was rather well tolerated in the context of clinical trials. The benefit of treatment on survival remains controversial. Based on available randomized controlled trials, the likelihood of survival benefit is greater in septic shock versus sepsis patients, in sepsis with acute respiratory distress syndrome or with community-acquired pneumonia versus patients without these conditions, and in patients with a blunted cortisol response to 250 μg of ACTH test versus those with normal response.
Collapse
Affiliation(s)
- Djillali Annane
- General Intensive Care Unit, Raymond Poincaré Hospital (AP-HP), Garches, France
- Laboratory of Infection and Inflammation, U1173, University of Versailles Saint-Quentin-en-Yvelines University, INSERM, Garches, France
- *Correspondence: Djillali Annane,
| |
Collapse
|
18
|
Balestra GM, Aalders MCG, Specht PAC, Ince C, Mik EG. Oxygenation measurement by multi-wavelength oxygen-dependent phosphorescence and delayed fluorescence: catchment depth and application in intact heart. JOURNAL OF BIOPHOTONICS 2015; 8:615-628. [PMID: 25250821 DOI: 10.1002/jbio.201400054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/11/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
Oxygen delivery and metabolism represent key factors for organ function in health and disease. We describe the optical key characteristics of a technique to comprehensively measure oxygen tension (PO(2)) in myocardium, using oxygen-dependent quenching of phosphorescence and delayed fluorescence of porphyrins, by means of Monte Carlo simulations and ex vivo experiments. Oxyphor G2 (microvascular PO(2)) was excited at 442 nm and 632 nm and protoporphyrin IX (mitochondrial PO(2)) at 510 nm. This resulted in catchment depths of 161 (86) µm, 350 (307) µm and 262 (255) µm respectively, as estimated by Monte Carlo simulations and ex vivo experiments (brackets). The feasibility to detect changes in oxygenation within separate anatomical compartments is demonstrated in rat heart in vivo. Schematic of ex vivo measurements.
Collapse
Affiliation(s)
- Gianmarco M Balestra
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Medical Intensive Care, University Hospital Basel, Switzerland
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Maurice C G Aalders
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Patricia A C Specht
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Can Ince
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Egbert G Mik
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Kadova Z, Dolezelova E, Cermanova J, Hroch M, Laho T, Muchova L, Staud F, Vitek L, Mokry J, Chladek J, Havlinova Z, Holecek M, Micuda S. IL-1 receptor blockade alleviates endotoxin-mediated impairment of renal drug excretory functions in rats. Am J Physiol Renal Physiol 2015; 308:F388-99. [DOI: 10.1152/ajprenal.00266.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of our study was to investigate whether two potent anti-inflammatory agents, dexamethasone and anakinra, an IL-1 receptor antagonist, may influence acute kidney injury (AKI) and associated drug excretory functions during endotoxemia (LPS) in rats. Ten hours after LPS administration, untreated endotoxemic rats developed typical symptoms of AKI, with reduced GFR, impaired tubular excretion of urea and sodium, and decreased urinary excretion of azithromycin, an anionic substrate for multidrug resistance-transporting proteins. Administration of both immunosuppressants attenuated the inflammatory response, liver damage, AKI, and increased renal clearance of azithromycin mainly by restoration of GFR, without significant influence on its tubular secretion. The lack of such an effect was related to the differential effect of both agents on the renal expression of individual drug transporters. Only dexamethasone increased the urinary clearance of bile acids, in accordance with the reduction of the apical transporter (Asbt) for their tubular reabsorption. In summary, our data demonstrated the potency of both agents used for the prevention of AKI, imposed by endotoxins, and for the restoration of renal drug elimination, mainly by the improvement of GFR. The influence of both drugs on altered tubular functions and the expression of drug transporters was differential, emphasizing the necessity of knowledge of transporting pathways for individual drugs applied during sepsis. The effect of anakinra suggests a significant contribution of IL-1 signaling to the pathogenesis of LPS-induced AKI.
Collapse
Affiliation(s)
- Zuzana Kadova
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Dolezelova
- Department of Biological and Medical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jolana Cermanova
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Milos Hroch
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Tomas Laho
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lucie Muchova
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; and
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; and
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jaroslav Chladek
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zuzana Havlinova
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Milan Holecek
- Department of Physiology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
20
|
|
21
|
Kasahara E, Inoue M. Cross-talk between HPA-axis-increased glucocorticoids and mitochondrial stress determines immune responses and clinical manifestations of patients with sepsis. Redox Rep 2015; 20:1-10. [PMID: 25310535 PMCID: PMC6837532 DOI: 10.1179/1351000214y.0000000107] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Various stressors activate the hypothalamo-pituitary-adrenal axis (HPA-axis) that stimulates adrenal secretion of glucocorticoids, thereby playing critical roles in the modulation of immune responses. Transcriptional regulation of nuclear genes has been well documented to underlie the mechanism of glucocorticoid-dependent modulation of cytokine production and immune reactions. Glucocorticoids also regulate inflammatory responses via non-genomic pathways in cytoplasm and mitochondria. Recent studies have revealed that glucocorticoids modulate mitochondrial calcium homeostasis and generation of reactive oxygen species (ROS). Although redox status and ROS generation in inflammatory cells have been well documented to play important roles in defense against pathogens, the roles of glucocorticoids and mitochondria in the modulation of immunological responses remain obscure. This review describes the role of stress-induced activation of the HPA-axis and glucocorticoid secretion by the adrenal gland in mitochondria-dependent signaling pathways that modulate endotoxin-induced inflammatory reactions and innate immunity.
Collapse
Affiliation(s)
- Emiko Kasahara
- Department of PhysiologyOsaka City University, Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
22
|
Ince C. The central role of renal microcirculatory dysfunction in the pathogenesis of acute kidney injury. Nephron Clin Pract 2014; 127:124-8. [PMID: 25343835 DOI: 10.1159/000363203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Acute kidney injury (AKI) is a rapidly developing condition often associated with critical illness, with a high degree of morbidity and mortality, whose pathophysiology is ill understood. Recent investigations have identified the dysfunction of the renal microcirculation and its cellular and subcellular constituents as being central to the etiology of AKI. Injury is caused by inflammatory activation involving endothelial leucocyte interactions in combination with dysregulation of the homeostatis between oxygen, nitric oxide, and reactive oxygen species. Effective therapies expected to resolve AKI will have to control inflammation and restore this homeostasis. In order to apply and guide these therapies effectively, diagnostic tools aimed at physiological biomarkers of AKI for monitoring renal microcirculatory function in advance of changes in pharmacological biomarkers associated with structural damage of the kidney will need to be developed.
Collapse
Affiliation(s)
- Can Ince
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Yang RL, Wang XT, Liu DW, Liu SB. Energy and oxygen metabolism disorder during septic acute kidney injury. Kidney Blood Press Res 2014; 39:240-51. [PMID: 25171106 DOI: 10.1159/000355801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Acute kidney injury (AKI) during septic shock, which is one of the most common clinical syndromes in the intensive care unit (ICU), has a high mortality rate and poor prognosis, partly because of a poor understanding of the pathogenesis of renal dysfunction during septic shock. Although ischemic injury of the kidney has been reported to result from adenosine triphosphate (ATP) depletion, increasing evidence has demonstrated that AKI occurs in the absence of renal hypoperfusion and even occurs during normal or increased renal blood flow (RBF); nevertheless, whether energy metabolism disorder is involved in septic AKI and whether it changes according to renal hemodynamics have not been established. Moreover, tubular cell apoptosis, which is closely related to ATP depletion, rather than necrosis, has been shown to be the major form of cell injury during AKI. METHODS We used canine endotoxin shock models to investigate the hemodynamics, renal energy metabolism, renal oxygen metabolism, and pathological changes during septic AKI and to explore the underlying mechanisms of septic AKI. RESULTS The present results revealed that the nicotinamide adenine dinucleotide (NAD+) pool and the ATP/adenosine diphosphate (ADP) ratio were significantly decreased during the early phase of septic AKI, which is accompanied by a decreased renal oxygen extraction ratio (O2ER%) and decreased renal oxygen consumption (VO2). Furthermore, significant apoptosis was observed following renal dysfunction. RBF and renal oxygen delivery were not significantly altered. CONCLUSION These results suggest that imbalanced energy metabolism, rather than tubular cell apoptosis, may be the initiator of renal dysfunction during septic shock.
Collapse
Affiliation(s)
- Rong-li Yang
- Critical Care Medicine Department, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | | | | |
Collapse
|
24
|
Ergin B, Kapucu A, Demirci-Tansel C, Ince C. The renal microcirculation in sepsis. Nephrol Dial Transplant 2014; 30:169-77. [PMID: 24848133 DOI: 10.1093/ndt/gfu105] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite identification of several cellular mechanisms being thought to underlie the development of septic acute kidney injury (AKI), the pathophysiology of the occurrence of AKI is still poorly understood. It is clear, however, that instead of a single mechanism being responsible for its aetiology, an orchestra of cellular mechanisms failing is associated with AKI. The integrative physiological compartment where these mechanisms come together and exert their integrative deleterious action is the renal microcirculation (MC). This is why it is opportune to review the response of the renal MC to sepsis and discuss the determinants of its (dys)function and how it contributes to the pathogenesis of renal failure. A main determinant of adequate organ function is the adequate supply and utilization of oxygen at the microcirculatory and cellular level to perform organ function. The highly complex architecture of the renal microvasculature, the need to meet a high energy demand and the fact that the kidney is borderline ischaemic makes the kidney a highly vulnerable organ to hypoxaemic injury. Under normal, steady-state conditions, oxygen (O2) supply to the renal tissues is well regulated; however, under septic conditions the delicate balance of oxygen supply versus demand is disturbed due to renal microvasculature dysfunction. This dysfunction is largely due to the interaction of renal oxygen handling, nitric oxide metabolism and radical formation. Renal tissue oxygenation is highly heterogeneous not only between the cortex and medulla but also within these renal compartments. Integrative evaluation of the different determinants of tissue oxygen in sepsis models has identified the deterioration of microcirculatory oxygenation as a key component in the development AKI. It is becoming clear that resuscitation of the failing kidney needs to integratively correct the homeostasis between oxygen, and reactive oxygen and nitrogen species. Several experimental therapeutic modalities have been found to be effective in restoring microcirculatory oxygenation in parallel to improving renal function following septic AKI. However, these have to be verified in clinical studies. The development of clinical physiological biomarkers of AKI specifically aimed at the MC should form a valuable contribution to monitoring such new therapeutic modalities.
Collapse
Affiliation(s)
- Bulent Ergin
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aysegul Kapucu
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands Department of Biology and Zoology Division, University of Istanbul, Istanbul, Turkey
| | - Cihan Demirci-Tansel
- Department of Biology and Zoology Division, University of Istanbul, Istanbul, Turkey
| | - Can Ince
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Liu P, Feng Y, Dong C, Yang D, Li B, Chen X, Zhang Z, Wang Y, Zhou Y, Zhao L. Administration of BMSCs with muscone in rats with gentamicin-induced AKI improves their therapeutic efficacy. PLoS One 2014; 9:e97123. [PMID: 24824427 PMCID: PMC4019657 DOI: 10.1371/journal.pone.0097123] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/14/2014] [Indexed: 12/15/2022] Open
Abstract
The therapeutic action of bone marrow-derived mesenchymal stem cells (BMSCs) in acute kidney injury (AKI) has been reported by several groups. However, recent studies indicated that BMSCs homed to kidney tissues at very low levels after transplantation. The lack of specific homing of exogenously infused cells limited the effective implementation of BMSC-based therapies. In this study, we provided evidence that the administration of BMSCs combined with muscone in rats with gentamicin-induced AKI intravenously, was a feasible strategy to drive BMSCs to damaged tissues and improve the BMSC-based therapeutic effect. The effect of muscone on BMSC bioactivity was analyzed in vitro and in vivo. The results indicated that muscone could promote BMSC migration and proliferation. Some secretory capacity of BMSC still could be improved in some degree. The BMSC-based therapeutic action was ameliorated by promoting the recovery of biochemical variables in urine or blood, as well as the inhibition of cell apoptosis and inflammation. In addition, the up-regulation of CXCR4 and CXCR7 expression in BMSCs could be the possible mechanism of muscone amelioration. Thus, our study indicated that enhancement of BMSCs bioactivities with muscone could increase the BMSC therapeutic potential and further developed a new therapeutic strategy for the treatment of AKI.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Yetong Feng
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Chao Dong
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
| | - Dandan Yang
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Bo Li
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Xin Chen
- Department of Laboratory Medicine, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, P.R. China
| | - Zhongjun Zhang
- Department of Anesthesiology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, P.R. China
| | - Yi Wang
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- * E-mail: (LZ); (YZ); (YW)
| | - Yulai Zhou
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China
- * E-mail: (LZ); (YZ); (YW)
| | - Lei Zhao
- Department of Anesthesiology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, P.R. China
- * E-mail: (LZ); (YZ); (YW)
| |
Collapse
|
26
|
|
27
|
Li Q, Lv LL, Wu M, Zhang XL, Liu H, Liu BC. Dexamethasone prevents monocyte-induced tubular epithelial-mesenchymal transition in HK-2 cells. J Cell Biochem 2013; 114:632-8. [PMID: 23060286 DOI: 10.1002/jcb.24405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 09/21/2012] [Indexed: 01/30/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a key cellular event in the early stage of tubulointerstitial fibrosis (TIF). Monocyte infiltration plays an important role in the progression of TIF. We have previously demonstrated that monocytes can directly induce HK-2 cell transition by direct contact. Dexamethasone, an important anti-inflammatory and immunosuppressant agent, has been widely used in renal disease for decades. Whether it could influence the monocyte and HK-2 cell interaction and prevent EMT is still uncertain. In this study, we found that the typical epithelial cell morphology of HK-2 cells disappeared 24 h after co-culture with monocytes, and dexamethasone significantly prevented this change in a dose-dependent manner. In addition, we found that dexamethasone prevented monocytes from binding to HK-2 cells by inhibiting ICAM-1 expression on HK-2 cells. Further analysis demonstrated that there was increased E-cadherin expression and decreased α-SMA and fibronectin expression after co-culture with dexamethasone, suggesting that dexamethasone prevents monocyte-induced HK-2 cell transition. The nuclear transcription factor κB (NF-κB) pathway played an important role in this process. These findings suggest a novel mechanism by which corticosteroids may delay the progression of TIF via preventing EMT.
Collapse
Affiliation(s)
- Qing Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
28
|
Choi HM, Jo SK, Kim SH, Lee JW, Cho E, Hyun YY, Cha JJ, Kang YS, Cha DR, Cho WY, Kim HK. Glucocorticoids attenuate septic acute kidney injury. Biochem Biophys Res Commun 2013; 435:678-84. [PMID: 23702481 DOI: 10.1016/j.bbrc.2013.05.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND The incidence and mortality of septic acute kidney injury (AKI) remains high, whereas our understanding of pathogenesis for septic AKI is still limited. Glucocorticoids (GCs) have been clinically recommended for treatment of septic shock and also have showed favorable effect on septic AKI in several animal experiments. The aim of this study is to investigate the pathophysiology of septic AKI and the effect of GCs on septic AKI. METHODS We induced septic AKI using cecal ligation and puncture (CLP) model in 8-10 wk-old male C57BL/6 mice. Saline or dexamethasone (2.5 mg/kg) dissolved in saline was administered after surgery. Hemodynamic, biochemical and histological changes were examined in a time-course manner. RESULTS CLP resulted in hyperdynamic warm shock with multiple organ dysfunction including AKI. Despite renal dysfunction, light microscopy showed scanty acute tubular necrosis and inflammation. Instead, CLP induced significant increase in apoptosis of the kidney and spleen cells. In addition, septic kidneys showed mitochondrial injury and alterations in Bcl2 family proteins in the renal tubular cells. Dexamethasone treatment attenuated renal dysfunction, but it was not associated with improvement of hemodynamic parameters. Dexamethasone-induced organ protective effect was associated with reduced mitochondrial injury with preserved cytochrome c oxidase and suppression of proapoptotic proteins as well as reduced cytokine release. CONCLUSIONS Mitochondrial damage and subsequent apoptosis are thought to play important role in the development of septic AKI. GCs might be a useful therapeutic strategy for septic AKI by reducing mitochondrial damage and apoptosis.
Collapse
Affiliation(s)
- Hye Min Choi
- Division of Nephrology, Department of Internal Medicine, Korea University Medical College, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Study on therapeutic action of bone marrow derived mesenchymal stem cell combined with vitamin E against acute kidney injury in rats. Life Sci 2013; 92:829-37. [PMID: 23499556 DOI: 10.1016/j.lfs.2013.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/02/2013] [Accepted: 02/23/2013] [Indexed: 02/07/2023]
Abstract
AIMS The study aims to investigate the effect to treat acute kidney injury (AKI) with bone marrow derived mesenchymal stem cells (BMSCs) combined with vitamin E and to develop a new treatment mode for AKI preclinical study. MAIN METHODS BMSCs were separated from rat bone marrow. Gentamicin was used as a damage factor in the culture of renal tubular epithelial cells (RTECs) in vitro. After co-cultured with BMSCs and vitamin E, cell proliferation of each group was detected with CCK-8. In vivo, BMSCs (3.3×10(6)cells/kg) combined with vitamin E (80mg/kg) were administered in AKI rats induced by gentamicin intravenously. The pathological changes, biochemical parameters and apoptosis genes after treatment were investigated furthermore. KEY FINDINGS In co-cultured system, proliferating ability of RTECs was improved by BMSCs or vitamin E, especially for the combined group (P<0.05). The treated rats in combined group presented the lowest serum creatinine and the highest urea nitrogen compared to non-treated rats. The improvement in renal pathological changes was followed by less necrosis, degeneration and expansion of renal tubule. Under transmission electron microscope, unclear cell structure and reduction of endoplasmic reticulum in the cytoplasm of RTECs were ameliorated with the treatment. Most apoptosis genes were up-regulated in model group while down-regulated with the therapy. Further analysis showed that the two treatments may act independently with each other. SIGNIFICANCE Our data demonstrated that both BMSC and vitamin E hold therapeutic action to AKI induced by gentamicin. Especially, the combined treatment is better than BMSC or vitamin E alone.
Collapse
|
30
|
Liu Y, Fu X, Gou L, Li S, Lan N, Zheng Y, Yin X. L-citrulline protects against glycerol-induced acute renal failure in rats. Ren Fail 2013; 35:367-73. [PMID: 23362955 DOI: 10.3109/0886022x.2012.760408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is an increasing evidence that oxidative stress plays an important role in the pathogenesis of rhabdomyolysis-induced acute renal failure (ARF). In this study, protective effects of L-citrulline on glycerol-induced ARF in rats were investigated. Six groups of rats were employed in this study: group 1 served as a control; group 2 was only given glycerol (50%, 10 mL/kg, i.m.); group 3 was given glycerol plus dexamethasone (0.1 mg/kg, i.g.) as positive reference drug, starting at the same time as the glycerol injections; the last three groups were given glycerol plus L-citrulline (300, 600, and 900 mg/kg, i.g.) respectively, starting at the same time as the glycerol injections. The injections of glycerol were only once, and after glycerol injections the i.g. administrations of dexamethasone and L-citrulline were repeated every 24 h for 7 days. After 7 days of glycerol injections, the blood samples and kidney tissues were harvested for future biochemical and pathology analyses. The levels of creatinine (Cr) and urea nitrogen (BUN) in plasma, the content of malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO), the activity of total nitric oxide synthase (TNOS), inducible nitric oxide synthase (iNOS), endothelial NO synthase (eNOS), and superoxide dismutase (SOD) were evaluated in kidney tissues. Consequently, administrations of L-citrulline improved an impaired intrarenal oxygenation and kidney function compared with the glycerol group, and prevented the renal oxidative stress damage as well as severe functional and morphological renal deterioration. Therefore, L-citrulline might have potential application in the amelioration of glycerol-induced ARF.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmacy, Xuzhou Medical College, Xuzhou, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Evans RG, Ince C, Joles JA, Smith DW, May CN, O'Connor PM, Gardiner BS. Haemodynamic influences on kidney oxygenation: Clinical implications of integrative physiology. Clin Exp Pharmacol Physiol 2013; 40:106-22. [DOI: 10.1111/1440-1681.12031] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/21/2012] [Accepted: 11/15/2012] [Indexed: 01/08/2023]
Affiliation(s)
- Roger G Evans
- Department of Physiology; Monash University; Melbourne; Victoria; Australia
| | - Can Ince
- Department of Translational Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension; University Medical Center; Utrecht; The Netherlands
| | - David W Smith
- School of Computer Science and Software Engineering; The University of Western Australia; Perth; Western Australia; Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne; Victoria; Australia
| | - Paul M O'Connor
- Department of Physiology; Georgia Health Sciences University; Augusta; GA; USA
| | - Bruce S Gardiner
- School of Computer Science and Software Engineering; The University of Western Australia; Perth; Western Australia; Australia
| |
Collapse
|
32
|
Abstract
Acute kidney injury (AKI) is a common sequel of sepsis in the intensive care unit. It is being suggested that sepsis-induced AKI may have a distinct pathophysiology and identity. Availability of biomarkers now enable us to detect AKI as early as four hours after it's inception and may even help us to delineate sepsis-induced AKI. Protective strategies such as preferential use of vasopressin or prevention of intra-abdominal hypertension may help, in addition to the other global management strategies of sepsis. Pharmacologic interventions have had limited success, may be due to their delayed usage. Newer developments in extracorporeal blood purification techniques may proffer effects beyond simple replacement of renal function, such as metabolic functions of the kidney or modulation of the sepsis cascade.
Collapse
|
33
|
Endre ZH, Pickering JW, Walker RJ. Clearance and beyond: the complementary roles of GFR measurement and injury biomarkers in acute kidney injury (AKI). Am J Physiol Renal Physiol 2011; 301:F697-707. [PMID: 21753074 DOI: 10.1152/ajprenal.00448.2010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Acute kidney injury (AKI) is a common and frequently fatal illness in critically ill patients. The reliance on daily measurements of serum creatinine as a surrogate of glomerular filtration rate (GFR) not only delays diagnosis and development of successful therapies but also hinders insight into the pathophysiology of human AKI. Measurement of GFR under non-steady-state conditions remains an elusive gold standard against which biomarkers of renal injury need to be judged. Approaches to the rapid (near real-time) measurement of GFR are explored. Even if real-time GFR was available, absent baseline information will always limit diagnosis of AKI based on GFR or serum creatinine to a detection of change. Biomarkers of renal cellular injury have provided new strategies to facilitate detection and early intervention in AKI. However, the diagnostic and predictive performance of urinary biomarkers of injury vary, depending on both the time after renal injury and on the preinjury GFR. Progress in understanding the role of each novel biomarker in the causal pathways of AKI promises to enhance their diagnostic potential. We predict that combining rapid measures of GFR with biomarkers of renal injury will yield substantive progress in the treatment of AKI.
Collapse
Affiliation(s)
- Zoltán H Endre
- Christchurch Kidney Research Group, Department of Medicine, University of Otago, Christchurch, New Zealand.
| | | | | |
Collapse
|
34
|
Legrand M, Bezemer R, Kandil A, Demirci C, Payen D, Ince C. The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Intensive Care Med 2011; 37:1534-42. [PMID: 21695476 PMCID: PMC3155675 DOI: 10.1007/s00134-011-2267-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/07/2011] [Indexed: 01/20/2023]
Abstract
Purpose To study the role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Methods Rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 6), a group in which LPS administration was followed by immediate fluid resuscitation which prevented the drop of renal blood flow (EARLY group) (n = 6), and a group in which LPS administration was followed by delayed (i.e., a 2-h delay) fluid resuscitation (LATE group) (n = 6). Renal blood flow was measured using a transit-time ultrasound flow probe. Microvascular perfusion and oxygenation distributions in the renal cortex were assessed using laser speckle imaging and phosphorimetry, respectively. Interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α were measured as markers of systemic inflammation. Furthermore, renal tissue samples were stained for leukocyte infiltration and inducible nitric oxide synthase (iNOS) expression in the kidney. Results LPS infusion worsened both microvascular perfusion and oxygenation distributions. Fluid resuscitation improved perfusion histograms but not oxygenation histograms. Improvement of microvascular perfusion was more pronounced in the EARLY group compared with the LATE group. Serum cytokine levels decreased in the resuscitated groups, with no difference between the EARLY and LATE groups. However, iNOS expression and leukocyte infiltration in glomeruli were lower in the EARLY group compared with the LATE group. Conclusions In our model, prevention of endotoxemia-induced systemic hypotension by immediate fluid resuscitation (EARLY group) did not prevent systemic inflammatory activation (IL-6, IL-10, TNF-α) but did reduce renal inflammation (iNOS expression and glomerular leukocyte infiltration). However, it could not prevent reduced renal microvascular oxygenation. Electronic supplementary material The online version of this article (doi:10.1007/s00134-011-2267-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthieu Legrand
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Annane D. Corticosteroids for severe sepsis: an evidence-based guide for physicians. Ann Intensive Care 2011; 1:7. [PMID: 21906332 PMCID: PMC3224490 DOI: 10.1186/2110-5820-1-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 04/13/2011] [Indexed: 12/14/2022] Open
Abstract
Septic shock is characterized by uncontrolled systemic inflammation that contributes to the progression of organ failures and eventually death. There is now ample evidence that the inability of the host to mount an appropriate hypothalamic-pituitary and adrenal axis response plays a major in overwhelming systemic inflammation during infections. Proinflammatory mediators released in the inflamed sites oppose to the anti-inflammatory response, an effect that may be reversed by exogenous corticosteroids. With sepsis, via nongenomic and genomic effects, corticosteroids restore cardiovascular homeostasis, terminate systemic and tissue inflammation, restore organ function, and prevent death. These effects of corticosteroids have been consistently found in animal studies and in most recent frequentist and Bayesian meta-analyses. Corticosteroids should be initiated only in patients with sepsis who require 0.5 μg/kg per minute or more of norepinephrine and should be continued for 5 to 7 days except in patients with poor hemodynamic response after 2 days of corticosteroids and with a cortisol increment of more than 250 nmol/L after a standard adrenocorticotropin hormone (ACTH) test. Hydrocortisone should be given at a daily dose of 200 mg and preferably combined to enteral fludrocortisone at a dose of 50 μg. Blood glucose levels should be kept below 150 mg/dL.
Collapse
Affiliation(s)
- Djillali Annane
- General Intensive Care Unit, Raymond Poincaré Hospital (AP-HP), University of Versailles SQY, 104 boulevard Raymond Poincaré, 92380 Garches, France.
| |
Collapse
|
36
|
Bezemer R, Faber DJ, Almac E, Kalkman J, Legrand M, Heger M, Ince C. Evaluation of multi-exponential curve fitting analysis of oxygen-quenched phosphorescence decay traces for recovering microvascular oxygen tension histograms. Med Biol Eng Comput 2010; 48:1233-42. [PMID: 21046272 PMCID: PMC2993890 DOI: 10.1007/s11517-010-0698-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/08/2010] [Indexed: 11/29/2022]
Abstract
Although it is generally accepted that oxygen-quenched phosphorescence decay traces can be analyzed using the exponential series method (ESM), its application until now has been limited to a few (patho)physiological studies, probably because the reliability of the recovered oxygen tension (pO(2)) histograms has never been extensively evaluated and lacks documentation. The aim of this study was, therefore, to evaluate the use of the ESM to adequately determine pO(2) histograms from phosphorescence decay traces. For this purpose we simulated decay traces corresponding to uni- and bimodal pO(2) distributions and recovered the pO(2) histograms at different signal-to-noise ratios (SNRs). Ultimately, we recovered microvascular pO(2) histograms measured in the rat kidney in a model of endotoxemic shock and fluid resuscitation and showed that the mean microvascular oxygen tension, [Symbol: see text]pO(2)[Symbol: see text], decreased after induction of endotoxemia and that after 2 h of fluid resuscitation, [Symbol: see text]pO(2)[Symbol: see text] remained low, but the hypoxic peak that had arisen during endotoxemia was reduced. This finding illustrates the importance of recovering pO(2) histograms under (patho)physiological conditions. In conclusion, this study has characterized how noise affects the recovery of pO(2) histograms using the ESM and documented the reliability of the ESM for recovering both low- and high-pO(2) distributions for SNRs typically found in experiments. This study might therefore serve as a frame of reference for investigations focused on oxygen (re)distribution during health and disease and encourage researchers to (re-)analyze data obtained in (earlier) studies possibly revealing new insights into complex disease states and treatment strategies.
Collapse
Affiliation(s)
- Rick Bezemer
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
37
|
Bezemer R, Legrand M, Klijn E, Heger M, Post ICJH, van Gulik TM, Payen D, Ince C. Real-time assessment of renal cortical microvascular perfusion heterogeneities using near-infrared laser speckle imaging. OPTICS EXPRESS 2010; 18:15054-61. [PMID: 20639991 DOI: 10.1364/oe.18.015054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Laser speckle imaging (LSI) is able to provide full-field perfusion maps of the renal cortex and allows quantification of the average LSI perfusion within an arbitrarily set region of interest and the recovery of LSI perfusion histograms within this region. The aim of the present study was to evaluate the use of LSI for mapping renal cortical microvascular perfusion and to demonstrate the capability of LSI to assess renal perfusion heterogeneities. The main findings were that: 1) full-field LSI measurements of renal microvascular perfusion were highly correlated to single-point LDV measurements; 2) LSI is able to detect differences in reperfusion dynamics following different durations of ischemia; and 3) renal microvascular perfusion heterogeneities can be quantitatively assessed by recovering LSI perfusion histograms.
Collapse
Affiliation(s)
- Rick Bezemer
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Alterations of the renal microcirculation can promote the development of acute kidney injury through the interlinked occurrence of renal hypoxia and activation of inflammatory pathways. This review focuses on the recent advances in this area, and discusses the possible therapeutic interventions that might be derived from these insights. RECENT FINDINGS Endothelial injury acts as a primary event leading to renal hypoxia with disturbances in nitric oxide pathways playing a major role. The unbalanced homeostasis between nitric oxide, reactive oxygen species and renal oxygenation forms a major component of the microcirculatory dysfunction. Furthermore, injury leads to leukocyte-endothelial interaction that exacerbates renal hypoxia at a microcirculatory level. SUMMARY Knowledge of the pathophysiological mechanisms of acute kidney injury emphasizes the importance of the role of the microcirculation in its development. Preventive and therapeutic approach should be based on restoring the homeostasis between nitric oxide, reactive oxygen species and renal oxygenation.
Collapse
|
39
|
Heemskerk S, Masereeuw R, Russel FGM, Pickkers P. Selective iNOS inhibition for the treatment of sepsis-induced acute kidney injury. Nat Rev Nephrol 2009; 5:629-40. [PMID: 19786992 DOI: 10.1038/nrneph.2009.155] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence and mortality of sepsis and the associated development of acute kidney injury (AKI) remain high, despite intense research into potential treatments. Targeting the inflammatory response and/or sepsis-induced alterations in the (micro)circulation are two therapeutic strategies. Another approach could involve modulating the downstream mechanisms that are responsible for organ system dysfunction. Activation of inducible nitric oxide (NO) synthase (iNOS) during sepsis leads to elevated NO levels that influence renal hemodynamics and cause peroxynitrite-related tubular injury through the local generation of reactive nitrogen species. In many organs iNOS is not constitutively expressed; however, it is constitutively expressed in the kidney and, in humans, a relationship between the upregulation of renal iNOS and proximal tubular injury during systemic inflammation has been demonstrated. For these reasons, the selective inhibition of renal iNOS might have important implications for the treatment of sepsis-induced AKI. Various animal studies have demonstrated that selective iNOS inhibition-in contrast to nonselective NOS inhibition-attenuates sepsis-induced renal dysfunction and improves survival, a finding that warrants investigation in clinical trials. In this Review, the selective inhibition of iNOS as a potential novel treatment for sepsis-induced AKI is discussed.
Collapse
Affiliation(s)
- Suzanne Heemskerk
- Department of Intensive Care Medicine and the Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Johannes T, Mik EG, Klingel K, Goedhart PT, Zanke C, Nohé B, Dieterich HJ, Unertl KE, Ince C. EFFECTS OF 1400W AND/OR NITROGLYCERIN ON RENAL OXYGENATION AND KIDNEY FUNCTION DURING ENDOTOXAEMIA IN ANAESTHETIZED RATS. Clin Exp Pharmacol Physiol 2009; 36:870-9. [DOI: 10.1111/j.1440-1681.2009.05204.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
What's new in Shock, May 2009? Shock 2009; 31:435-7. [PMID: 19365233 DOI: 10.1097/shk.0b013e3181a0229b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Legrand M, Almac E, Mik EG, Johannes T, Kandil A, Bezemer R, Payen D, Ince C. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am J Physiol Renal Physiol 2009; 296:F1109-17. [PMID: 19225052 DOI: 10.1152/ajprenal.90371.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Even though renal hypoxia is believed to play a pivotal role in the development of acute kidney injury, no study has specifically addressed the alterations in renal oxygenation in the early onset of renal ischemia-reperfusion (I/R). Renal oxygenation depends on a balance between oxygen supply and consumption, with the nitric oxide (NO) as a major regulator of microvascular oxygen supply and oxygen consumption. The aim of this study was to investigate whether I/R induces inducible NO synthase (iNOS)-dependent early changes in renal oxygenation and the potential benefit of iNOS inhibitors on such alterations. Anesthetized Sprague-Dawley rats underwent a 30-min suprarenal aortic clamping with or without either the nonselective NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) or the selective iNOS inhibitor L-N(6)-(1-iminoethyl)lysine hydrochloride (L-NIL). Cortical (CmicroPo(2)) and outer medullary (MmicroPo(2)) microvascular oxygen pressure (microPo(2)), renal oxygen delivery (Do(2ren)), renal oxygen consumption (Vo(2)(ren)), and renal oxygen extraction (O(2)ER) were measured by oxygen-dependent quenching phosphorescence techniques throughout 2 h of reperfusion. During reperfusion renal arterial resistance and oxygen shunting increased, whereas renal blood flow, CmicroPo(2), and MmicroPo(2) (-70, -42, and -42%, respectively, P < 0.05), Vo(2)(ren), and Do(2ren) (-70%, P < 0.0001, and -28%, P < 0.05) dropped. Whereas L-NAME further decreased Do(2ren), Vo(2)(ren), CmicroPo(2), and MmicroPo(2) and deteriorated renal function, L-NIL partially prevented the drop of Do(2ren) and microPo(2), increased O(2)ER, restored Vo(2)(ren) and metabolic efficiency, and prevented deterioration of renal function. Our results demonstrate that renal I/R induces early iNOS-dependent microvascular hypoxia in disrupting the balance between microvascular oxygen supply and Vo(2)(ren), whereas endothelial NO synthase activity is compulsory for the maintenance of this balance. L-NIL can prevent ischemic-induced renal microvascular hypoxia.
Collapse
Affiliation(s)
- Matthieu Legrand
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|