1
|
Sawada A, Yoneta K, Togashi E, Asaka S, Tada R, Asada T, Son S, Tayama M, Kimura M, Fujita S. The effects of resistance exercise and leucine-enriched essential amino acid supplementation on muscle mass and physical function in post-gastrectomy patients: a pilot randomized controlled trial. J Phys Ther Sci 2024; 36:218-225. [PMID: 38694013 PMCID: PMC11060767 DOI: 10.1589/jpts.36.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 05/03/2024] Open
Abstract
[Purpose] In gastric cancer patients, low muscle mass decreases overall survival and quality of life (QOL). Resistance exercise with leucine-enriched essential amino acid (LEAA) supplementation may prevent muscle mass loss. This study was aimed at determining whether resistance exercise with LEAA supplementation prevents muscle mass loss in post-gastrectomy patients. [Participant and Methods] We conducted a single-center, open-label, randomized controlled pilot trial. Ten participants who underwent gastrectomy were divided into two groups. The intervention group underwent resistance exercise at 70% of one repetition maximum and received a supplement of 3 g of LEAA twice daily for 15 days, while the control group received standard care. We compared changes in muscle mass, physical function (muscle strength and continuous walking distance), and QOL between the groups. [Results] We found good adherence and participation rates in both groups. We failed to detect a significant difference in muscle mass between the groups. The intervention group showed significant improvements in muscle strength and QOL, while the control group showed no significant changes. [Conclusion] We failed to detect a significant difference in muscle mass due to resistance exercise with LEAA supplementation in post-gastrectomy patients. However, resistance exercise with LEAA supplementation might be beneficial for muscle strength recovery and QOL improvements.
Collapse
Affiliation(s)
- Atsushi Sawada
- Department of Physical Therapy, School of Rehabilitation
Sciences, Health Sciences University of Hokkaido: 1757 Kanazawa, Tobetsu, Hokkaido
061-0293, Japan
- Graduate School of Sport and Health Science, Ritsumeikan
University, Japan
| | | | | | | | | | | | | | | | | | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan
University, Japan
| |
Collapse
|
2
|
Olney KC, de Ávila C, Todd KT, Tallant LE, Barnett JH, Gibson KA, Hota P, Pandiane AS, Durgun PC, Serhan M, Wang R, Lind ML, Forzani E, Gades NM, Thomas LF, Fryer JD. Commonly disrupted pathways in brain and kidney in a pig model of systemic endotoxemia. J Neuroinflammation 2024; 21:9. [PMID: 38178237 PMCID: PMC10765757 DOI: 10.1186/s12974-023-03002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Sepsis is a life-threatening state that arises due to a hyperactive inflammatory response stimulated by infection and rarely other insults (e.g., non-infections tissue injury). Although changes in several proinflammatory cytokines and signals are documented in humans and small animal models, far less is known about responses within affected tissues of large animal models. We sought to understand the changes that occur during the initial stages of inflammation by administering intravenous lipopolysaccharide (LPS) to Yorkshire pigs and assessing transcriptomic alterations in the brain, kidney, and whole blood. Robust transcriptional alterations were found in the brain, with upregulated responses enriched in inflammatory pathways and downregulated responses enriched in tight junction and blood vessel functions. Comparison of the inflammatory response in the pig brain to a similar mouse model demonstrated some overlapping changes but also numerous differences, including oppositely dysregulated genes between species. Substantial changes also occurred in the kidneys following LPS with several enriched upregulated pathways (cytokines, lipids, unfolded protein response, etc.) and downregulated gene sets (tube morphogenesis, glomerulus development, GTPase signal transduction, etc.). We also found significant dysregulation of genes in whole blood that fell into several gene ontology categories (cytokines, cell cycle, neutrophil degranulation, etc.). We observed a strong correlation between the brain and kidney responses, with significantly shared upregulated pathways (cytokine signaling, cell death, VEGFA pathways) and downregulated pathways (vasculature and RAC1 GTPases). In summary, we have identified a core set of shared genes and pathways in a pig model of systemic inflammation.
Collapse
Affiliation(s)
- Kimberly C Olney
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Camila de Ávila
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Kennedi T Todd
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Lauren E Tallant
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA
| | - J Hudson Barnett
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA
| | - Katelin A Gibson
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Piyush Hota
- Division of Nephrology & Hypertension, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | | | - Pinar Cay Durgun
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Michael Serhan
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Ran Wang
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Mary Laura Lind
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Erica Forzani
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Naomi M Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Leslie F Thomas
- Division of Nephrology & Hypertension, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA.
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA.
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
3
|
Sepsis-Associated Muscle Wasting: A Comprehensive Review from Bench to Bedside. Int J Mol Sci 2023; 24:ijms24055040. [PMID: 36902469 PMCID: PMC10003568 DOI: 10.3390/ijms24055040] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Sepsis-associated muscle wasting (SAMW) is characterized by decreased muscle mass, reduced muscle fiber size, and decreased muscle strength, resulting in persistent physical disability accompanied by sepsis. Systemic inflammatory cytokines are the main cause of SAMW, which occurs in 40-70% of patients with sepsis. The pathways associated with the ubiquitin-proteasome and autophagy systems are particularly activated in the muscle tissues during sepsis and may lead to muscle wasting. Additionally, expression of muscle atrophy-related genes Atrogin-1 and MuRF-1 are seemingly increased via the ubiquitin-proteasome pathway. In clinical settings, electrical muscular stimulation, physiotherapy, early mobilization, and nutritional support are used for patients with sepsis to prevent or treat SAMW. However, there are no pharmacological treatments for SAMW, and the underlying mechanisms are still unknown. Therefore, research is urgently required in this field.
Collapse
|
4
|
Lang CH. IMPORTANCE OF THE INNATE IMMUNE RESPONSE IN SKELETAL MUSCLE TO SEPSIS-INDUCED ALTERATIONS IN PROTEIN BALANCE. Shock 2023; 59:214-223. [PMID: 36730901 PMCID: PMC9957944 DOI: 10.1097/shk.0000000000002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT There is growing appreciation that skeletal muscle is a fully functional component of the body's innate immune system with the potential to actively participate in the host response to invading bacteria as opposed to being a passive target. In this regard, skeletal muscle in general and myocytes specifically possess an afferent limb that recognizes a wide variety of host pathogens via their interaction with multiple classes of cell membrane-bound and intracellular receptors, including toll-like receptors, cytokine receptors, NOD-like receptors, and the NLRP inflammasome. The efferent limb of the innate immune system in muscle is equally robust and with an increased synthesis and secretion of a variety of myocyte-derived cytokines (i.e., myokines), including TNF-α, IL-1, IL-6, and NO as well as multiple chemokines in response to appropriate stimulation. Herein, the current narrative review focuses primarily on the immune response of myocytes per se as opposed to other cell types within whole muscle. Moreover, because there are important differences, this review focuses specifically on systemic infection and inflammation as opposed to the response of muscle to direct injury and various types of muscular dystrophies. To date, however, there are few definitive muscle-specific studies that are necessary to directly address the relative importance of muscle-derived immune activation as a contributor to either the systemic immune response or the local immune microenvironment within muscle during sepsis and the resultant downstream metabolic disturbances.
Collapse
Affiliation(s)
- Charles H Lang
- Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
5
|
Ono Y, Saito M, Sakamoto K, Maejima Y, Misaka S, Shimomura K, Nakanishi N, Inoue S, Kotani J. C188-9, a specific inhibitor of STAT3 signaling, prevents thermal burn-induced skeletal muscle wasting in mice. Front Pharmacol 2022; 13:1031906. [PMID: 36588738 PMCID: PMC9800842 DOI: 10.3389/fphar.2022.1031906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Burn injury is the leading cause of death and disability worldwide and places a tremendous economic burden on society. Systemic inflammatory responses induced by thermal burn injury can cause muscle wasting, a severe involuntary loss of skeletal muscle that adversely affects the survival and functional outcomes of these patients. Currently, no pharmacological interventions are available for the treatment of thermal burn-induced skeletal muscle wasting. Elevated levels of inflammatory cytokines, such as interleukin-6 (IL-6), are important hallmarks of severe burn injury. The levels of signal transducer and activator of transcription 3 (STAT3)-a downstream component of IL-6 inflammatory signaling-are elevated with muscle wasting in various pro-catabolic conditions, and STAT3 has been implicated in the regulation of skeletal muscle atrophy. Here, we tested the effects of the STAT3-specific signaling inhibitor C188-9 on thermal burn injury-induced skeletal muscle wasting in vivo and on C2C12 myotube atrophy in vitro after the administration of plasma from burn model mice. In mice, thermal burn injury severity dependently increased IL-6 in the plasma and tibialis anterior muscles and activated the STAT3 (increased ratio of phospho-STAT3/STAT3) and ubiquitin-proteasome proteolytic pathways (increased Atrogin-1/MAFbx and MuRF1). These effects resulted in skeletal muscle atrophy and reduced grip strength. In murine C2C12 myotubes, plasma from burn mice activated the same inflammatory and proteolytic pathways, leading to myotube atrophy. In mice with burn injury, the intraperitoneal injection of C188-9 (50 mg/kg) reduced activation of the STAT3 and ubiquitin-proteasome proteolytic pathways, reversed skeletal muscle atrophy, and increased grip strength. Similarly, pretreatment of murine C2C12 myotubes with C188-9 (10 µM) reduced activation of the same inflammatory and proteolytic pathways, and ameliorated myotube atrophy induced by plasma taken from burn model mice. Collectively, these results indicate that pharmacological inhibition of STAT3 signaling may be a novel therapeutic strategy for thermal burn-induced skeletal muscle wasting.
Collapse
Affiliation(s)
- Yuko Ono
- Department of Disaster and Emergency Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan,Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan,*Correspondence: Yuko Ono,
| | - Masafumi Saito
- Department of Disaster and Emergency Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Kazuho Sakamoto
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Shingen Misaka
- Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Nobuto Nakanishi
- Department of Disaster and Emergency Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Shigeaki Inoue
- Department of Disaster and Emergency Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Joji Kotani
- Department of Disaster and Emergency Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
6
|
Vanzant E, Frayman R, Hensley S, Rosenthal M. Should Anabolic Agents be Used for Resolving Catabolism in Post-ICU Recovery? CURRENT SURGERY REPORTS 2022. [DOI: 10.1007/s40137-022-00336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
7
|
Vivas W, Weis S. Tidy up - The unfolded protein response in sepsis. Front Immunol 2022; 13:980680. [PMID: 36341413 PMCID: PMC9632622 DOI: 10.3389/fimmu.2022.980680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Pathogens, their toxic byproducts, and the subsequent immune reaction exert different forms of stress and damage to the tissue of the infected host. This stress can trigger specific transcriptional and post-transcriptional programs that have evolved to limit the pathogenesis of infectious diseases by conferring tissue damage control. If these programs fail, infectious diseases can take a severe course including organ dysfunction and damage, a phenomenon that is known as sepsis and which is associated with high mortality. One of the key adaptive mechanisms to counter infection-associated stress is the unfolded protein response (UPR), aiming to reduce endoplasmic reticulum stress and restore protein homeostasis. This is mediated via a set of diverse and complementary mechanisms, i.e. the reduction of protein translation, increase of protein folding capacity, and increase of polyubiquitination of misfolded proteins and subsequent proteasomal degradation. However, UPR is not exclusively beneficial since its enhanced or prolonged activation might lead to detrimental effects such as cell death. Thus, fine-tuning and time-restricted regulation of the UPR should diminish disease severity of infectious disease and improve the outcome of sepsis while not bearing long-term consequences. In this review, we describe the current knowledge of the UPR, its role in infectious diseases, regulation mechanisms, and further clinical implications in sepsis.
Collapse
Affiliation(s)
- Wolfgang Vivas
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- *Correspondence: Wolfgang Vivas,
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
8
|
Shi M, Hu Z, Zhang X, You Q, Wang W, Yan R, Zhu Z. AMPK activation suppresses mTOR/S6K1 phosphorylation and induces leucine resistance in rats with sepsis. Cell Biol Int 2020; 44:1133-1141. [PMID: 31943518 DOI: 10.1002/cbin.11310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/10/2020] [Indexed: 11/12/2022]
Abstract
Although it has been known that protein synthesis is suppressed in sepsis, which cannot be corrected by leucine supplement (also known as leucine resistance), the molecular signaling mechanism remains unclear. This study aimed to investigate the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway in sepsis-induced leucine resistance and its upstream signals, and to seek a way to correct leucine resistance in sepsis. Sepsis was produced by cecal ligation and puncture (CLP) model in rat. Both septic rats and sham operation rat received total parenteral nutrition (TPN) with or without leucine for 24 h, and then protein synthesis and AMPK/mTOR and protein kinase B (PKB) were tested. In vitro C2C12 cells were treated with or without leucine, and we tested the AMPK/mTOR pathway and protein synthesis. We blocked AMPK by compound C and stimulated it by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) individually. The results showed that AMPK was highly phosphorylated and suppressed mTOR/S6K1 activation in CLP rats. In vitro when AMPK was activated by AICAR, protein synthesis was suppressed and leucine resistance was observed. High phosphorylation of AMPK was accompanied by PKB inactivation in CLP rats. When PKB was blocked, both AMPK activation and leucine resistance were observed. In CLP rats, nutrition support with intensive insulin therapy reversed leucine resistance by activating PKB and suppressing AMPK phosphorylation. These findings suggest that high phosphorylation of AMPK induced by PKB inactivation in sepsis suppresses mTOR, S6K1 phosphorylation, and protein synthesis and leads to leucine resistance. Intensive insulin treatment can reverse leucine resistance by suppressing AMPK activation through activation of PKB.
Collapse
Affiliation(s)
- Mengyao Shi
- Gastro-intestine Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, 415 FengYang Road, Shanghai, 200003, PR China
| | - Zunqi Hu
- Gastro-intestine Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, 415 FengYang Road, Shanghai, 200003, PR China
| | - Xin Zhang
- Gastro-intestine Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, 415 FengYang Road, Shanghai, 200003, PR China
| | - Qing You
- Gastro-intestine Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, 415 FengYang Road, Shanghai, 200003, PR China
| | - Weimin Wang
- Gastro-intestine Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, 415 FengYang Road, Shanghai, 200003, PR China
| | - Ronglin Yan
- Gastro-intestine Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, 415 FengYang Road, Shanghai, 200003, PR China
| | - Zhenxin Zhu
- Gastro-intestine Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, 415 FengYang Road, Shanghai, 200003, PR China
| |
Collapse
|
9
|
Wu J, Liu H, Chu T, Jiang P, Li ST. Neuregulin-1β attenuates sepsis-induced diaphragm atrophy by activating the PI3K/Akt signaling pathway. J Muscle Res Cell Motil 2019; 40:43-51. [PMID: 30989579 DOI: 10.1007/s10974-019-09512-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate the protective effects of neuregulin-1β (NRG-1β) on sepsis-induced diaphragm atrophy and the possible underlying mechanisms. Sprague-Dawley rats were randomly divided into sham, sepsis and NRG groups. Sepsis was induced by cecal ligation and puncture (CLP). In the NRG group, rats received tail vein injections of NRG-1β (10 μg/kg) every 12 h for 72 h after CLP. At 3 days after surgery, diaphragm contractile forces were measured by determining the force-frequency curve and muscle fiber areas by hematoxylin-eosin staining. Moreover, the NRG-1 expression level in the diaphragm was detected by Western blotting. Furthermore, the proteins in the PI3K/Akt signaling pathway and its downstream Akt-mTOR and Akt-FOXO axes were detected by Western blotting analysis. In L6 myotubes treated with lipopolysaccharide (LPS) and NRG-1β, PI3K/Akt signaling pathway-related protein expression was further determined using the PI3K inhibitor LY294002. Exogenous NRG-1β could compensate for sepsis-induced diminished NRG-1 in the diaphragm and attenuate the reduction in diaphragm contractile forces and muscle fiber areas during sepsis. Moreover, NRG-1β treatment could activate the PI3K/Akt signaling pathway in the diaphragm during sepsis. The inhibition of p70S6K and 4E-BP1 on the Akt-mTOR axis and the increased expression of Murf1 on the Akt-FOXO axis were reversed after NRG-1 treatment. In addition, NRG-1β could activate the PI3K/Akt signaling pathway in L6 myotubes treated with LPS, while the PI3K inhibitor LY294002 blocked the effects of NRG-1β. NRG-1 expression in the diaphragm was reduced during sepsis, and exogenously administered recombinant human NRG-1β could attenuate sepsis-induced diaphragm atrophy by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jin Wu
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, 438 Jie Fang Road, Zhenjiang, 212001, Jiangsu, China
| | - Hua Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Hai Ning Road, Shanghai, 200080, China.,Department of Anesthesiology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Ting Chu
- Department of Stomatology, Affiliated People's Hospital of Jiangsu University, 8 Dian Li Road, Zhenjiang, 212002, Jiangsu, China
| | - Peng Jiang
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, 438 Jie Fang Road, Zhenjiang, 212001, Jiangsu, China.
| | - Shi-Tong Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Hai Ning Road, Shanghai, 200080, China.
| |
Collapse
|
10
|
Rudar M, Huber LA, Zhu CL, de Lange CFM. Effects of dietary leucine supplementation and immune system stimulation on plasma AA concentrations and tissue protein synthesis in starter pigs. J Anim Sci 2019; 97:829-838. [PMID: 30476328 DOI: 10.1093/jas/sky449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/20/2018] [Indexed: 01/08/2023] Open
Abstract
Immune system stimulation (ISS) adversely affects protein and AA metabolism and reduces productivity in pigs. Leucine (Leu) has a regulatory role in skeletal muscle protein turnover, which may be affected by ISS. The objective of this study was to evaluate the effects of ISS and dietary Leu supplementation on the protein fractional synthesis rate (FSR) of various tissues in pigs. Yorkshire barrows were surgically fitted with jugular vein catheters and assigned to one of three dietary treatments: (i) CON, 1.36% standardized ileal digestible (SID) Leu; (ii) LEU-M, 2.04% SID Leu; and (iii) LEU-H, 2.72% SID Leu. The diets were formulated to contain all essential AA 10% above estimated requirements for maximum whole-body protein deposition for this BW range. At the start of the 36-h challenge period (initial BW = 14.5 ± 0.8 kg), ISS was induced in pigs with lipopolysaccharide (ISS+; n = 7, 8, and 7 for CON, LEU-M, and LEU-H pigs, respectively); a subset of CON pigs was injected with sterile saline (ISS-; n = 6). During challenge period, pigs were fed every 4 h and feed intake of ISS- pigs was kept equal to ISS+ pigs. At the end of the challenge period, FSR of liver, plasma, gastrocnemius, and LD proteins were determined with a flooding dose of l-[ring-2H5]phenylalanine (40 mol%). All essential AA, most nonessential AA, and plasma urea-N peaked at 12 h and declined to baseline levels at 36 h after ISS was induced in ISS+ pigs (P < 0.05), whereas plasma AA and urea-N concentrations were constant in ISS- pigs. At 36 h, dietary Leu supplementation resulted in a linear decline in plasma isoleucine, valine, glutamine, and urea nitrogen concentrations (P < 0.05), whereas plasma Leu concentration was unaffected. Liver protein FSR was increased in ISS+ pigs (P < 0.05), whereas plasma and skeletal muscle protein FSR was not affected by ISS. Dietary Leu supplementation tended to diminish liver protein FSR (linear reduction; P = 0.052) and increase gastrocnemius protein FSR (linear increase; P = 0.085) in ISS+ pigs. Leucine supplementation above estimated requirements may support repartitioning of AA from visceral to peripheral protein deposition during ISS.
Collapse
Affiliation(s)
- Marko Rudar
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Lee-Anne Huber
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Cuilan L Zhu
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
11
|
Rudar M, Fiorotto ML, Davis TA. Regulation of Muscle Growth in Early Postnatal Life in a Swine Model. Annu Rev Anim Biosci 2018; 7:309-335. [PMID: 30388025 DOI: 10.1146/annurev-animal-020518-115130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscle growth during the early postnatal period is rapid in the pig and dependent on the capacity of muscle to respond to anabolic and catabolic stimuli. Muscle mass is driven by the balance between protein synthesis and degradation. Among these processes, muscle protein synthesis in the piglet is exceptionally sensitive to the feeding-induced postprandial changes in insulin and amino acids, whereas muscle protein degradation is affected only during specific catabolic states. The developmental decline in the response of muscle to feeding is associated with changes in the signaling pathways located upstream and downstream of the mechanistic target of rapamycin protein complex. Additionally, muscle growth is supported by an accretion of nuclei derived from satellite cells. Activated satellite cells undergo proliferation, differentiation, and fusion with adjacent growing muscle fibers. Enhancing early muscle growth through modifying protein synthesis, degradation, and satellite cell activity is key to maximizing performance, productivity, and lifelong pig health.
Collapse
Affiliation(s)
- Marko Rudar
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Teresa A Davis
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| |
Collapse
|
12
|
Kumar V. T cells and their immunometabolism: A novel way to understanding sepsis immunopathogenesis and future therapeutics. Eur J Cell Biol 2018; 97:379-392. [PMID: 29773345 DOI: 10.1016/j.ejcb.2018.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/03/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023] Open
Abstract
Sepsis has always been considered as a big challenge for pharmaceutical companies in terms of discovering and designing new therapeutics. The pathogenesis of sepsis involves aberrant activation of innate immune cells (i.e. macrophages, neutrophils etc.) at early stages. However, a stage of immunosuppression is also observed during sepsis even in the patients who have recovered from it. This stage of immunosuppression is observed due to the loss of conventional (i.e. CD4+, CD8+) T cells, Th17 cells and an upregulation of regulatory T cells (Tregs). This process also impacts metabolic processes controlling immune cell metabolism called immunometabolism. The present review is focused on the T cell-mediated immune response, their immunometabolism and targeting T cell immunometabolism during sepsis as future therapeutic approach. The first part of the manuscripts describes an impact of sepsis on conventional T cells, Th17 cells and Tregs along with their impact on sepsis. The subsequent section further describes the immunometabolism of these cells (CD4+, CD8+, Th17, and Tregs) under normal conditions and during sepsis-induced immunosuppression. The article ends with the therapeutic targeting of T cell immunometabolism (both conventional T cells and Tregs) during sepsis as a future immunomodulatory approach for its management.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
13
|
Dong L, Li H, Zhang S, Su L. Identification of genes related to consecutive trauma-induced sepsis via gene expression profiling analysis. Medicine (Baltimore) 2018; 97:e0362. [PMID: 29642183 PMCID: PMC5908625 DOI: 10.1097/md.0000000000010362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We aimed to identify crucial genes relevant to the development of consecutive trauma-induced sepsis.A microarray dataset was used to identify genes differentially expressed between peripheral blood samples from consecutive traumatized patients complicated with sepsis and not complicated with sepsis. The dataset GSE12624 was obtained from Gene Expression Omnibus, containing 34 peripheral blood samples from consecutive traumatized patients complicated by sepsis and 36 consecutive traumatized controls. The differentially expressed genes (DEGs) were identified using Linear Models for Microarray Data package. Then, gene ontology (GO) enrichment analysis for DEGs was performed by Onto-Express. Subsequently, the protein-protein interaction (PPI) network was constructed and pathway enrichment analysis was performed by Search Tool for the Retrieval of Interacting Genes (STRING). Furthermore, protein complexes in the PPI network were predicted by ClusterONE and validated through GO and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, and protein domain analysis.Totally, 446 upregulated and 447 downregulated DEGs were identified. Some DEGs were related to acyl-CoA binding (eg, ACBD6), chromosome, and centromeric region (eg, CENPN). In the PPI network, some DEGs were enriched in renin-angiotensin system (RAS, eg, AGTR1 and AGTR2). Three predicted protein complexes were validated in the PPI network. Some genes composing protein complex A were associated with cell proliferation (eg, CDC20, CCNB1, MCM4, RPA2, and PRIM2), and several genes composing protein complex F were implicated in regulation of actin cytoskeleton (eg, PFN2, ARPC2, and WASL).The results suggest that those DEGs may be crucial in the etiology of consecutive trauma-induced sepsis, and they are expected to be therapeutic targets.
Collapse
Affiliation(s)
| | | | - Shunli Zhang
- Department of Pediatrics, Jining NO.1 People's Hospital, Jining City, Shandong Province, China
| | | |
Collapse
|
14
|
Restorative Mechanisms Regulating Protein Balance in Skeletal Muscle During Recovery From Sepsis. Shock 2018; 47:463-473. [PMID: 27749759 DOI: 10.1097/shk.0000000000000762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Muscle deconditioning is commonly observed in patients surviving sepsis. Little is known regarding the molecular mechanisms regulating muscle protein homeostasis during the recovery or convalescence phase. We adapted a sepsis-recovery mouse model that uses cecal ligation and puncture (CLP), followed 24 h later by cecal resection and antibiotic treatment, to identify putative cellular pathways regulating protein synthesis and breakdown in skeletal muscle. Ten days after CLP, body weight and food consumption did not differ between control and sepsis-recovery mice, but gastrocnemius weight was reduced. During sepsis-recovery, muscle protein synthesis was increased 2-fold and associated with enhanced mTOR kinase activity (4E-BP1 and S6K1 phosphorylation). The sepsis-induced increase in 4E-BP1 was associated with enhanced formation of the eIF4E-eIF4G active cap-dependent complex, while the increased S6K1 was associated with increased phosphorylation of downstream targets S6 and eIF4B. Proximal to mTOR, sepsis-recovery increased Akt and TSC2 phosphorylation, did not alter AMPK phosphorylation, and decreased REDD1 protein content. Despite the decreased mRNA content for the E3 ubiquitin ligases atrogin-1 and muscle RING-finger 1, proteasomal activity was increased 50%. In contrast, sepsis-recovery was associated with an apparent decrease in autophagy (e.g., increased ULK-1 phosphorylation, decreased LCB3-II, and increased p62). The mRNA content for IL-1β, IL-18, TNFα, and IL-6 in muscle was elevated in sepsis-recovery. During recovery after sepsis skeletal muscle responds with an increase in Akt-TSC2-mTOR-dependent protein synthesis and decreased autophagy, but full restoration of muscle protein content may be slowed by the continued stimulation of ubiquitin-proteasome activity.
Collapse
|
15
|
Soltani A, Bahreyni A, Boroumand N, Roshan MK, Khazaei M, Ryzhikov M, Soleimanpour S, Avan A, Hassanian SM. Therapeutic potency of mTOR signaling pharmacological inhibitors in the treatment of proinflammatory diseases, current status, and perspectives. J Cell Physiol 2017; 233:4783-4790. [PMID: 29165795 DOI: 10.1002/jcp.26276] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/14/2017] [Accepted: 11/14/2017] [Indexed: 12/26/2022]
Abstract
Mammalian target of rapamycin (mTOR) signaling pathway controls cell energy metabolism. There is an interplay between mTOR and proinflammatory signaling pathways, supporting the role of the pathway in the pathogenesis of inflammatory diseases. Inhibition of mTOR signaling using specific pharmacological inhibitors could offer therapeutic promise in several inflammatory-associated diseases. In this review, we summarize recent findings on the regulatory effects of mTOR signaling on inflammation and the therapeutic potency of mTOR pharmacological inhibitors in the treatment of inflammatory diseases including cancer, neurodegenerative diseases, atherosclerosis, sepsis, and rheumatoid arthritis for a better understanding and hence a better management of these diseases.
Collapse
Affiliation(s)
- Arash Soltani
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Bahreyni
- Department of Clinical Biochemistry and Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Nadia Boroumand
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Karimi Roshan
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Faculty of Medicine, Department of Medical Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology, St. Louis University, School of Medicine, Saint Louis, Missouri
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Abstract
Septic shock remains the major cause of childhood morbidity and mortality worldwide. Although early sepsis recognition, fluid resuscitation, timely administration of antimicrobials, and vasoactive-inotropic drug infusions are all key to achieving good sepsis outcomes, therapy using various steroid drug classes remains an attractive adjunctive intervention to minimize the duration of septic shock and transition to multiple organ dysfunction syndrome. All steroid drug classes possess biological plausibility to affect a beneficial clinical effect among children with septic shock, but none has undergone rigorous, prospective assessment in a large, high-quality pediatric interventional trial.
Collapse
|
17
|
Burn-induced muscle metabolic derangements and mitochondrial dysfunction are associated with activation of HIF-1α and mTORC1: Role of protein farnesylation. Sci Rep 2017; 7:6618. [PMID: 28747716 PMCID: PMC5529411 DOI: 10.1038/s41598-017-07011-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/21/2017] [Indexed: 12/28/2022] Open
Abstract
Metabolic derangements are a clinically significant complication of major trauma (e.g., burn injury) and include various aspects of metabolism, such as insulin resistance, muscle wasting, mitochondrial dysfunction and hyperlactatemia. Nonetheless, the molecular pathogenesis and the relation between these diverse metabolic alterations are poorly understood. We have previously shown that burn increases farnesyltransferase (FTase) expression and protein farnesylation and that FTase inhibitor (FTI) prevents burn-induced hyperlactatemia, insulin resistance, and increased proteolysis in mouse skeletal muscle. In this study, we found that burn injury activated mTORC1 and hypoxia-inducible factor (HIF)-1α, which paralleled dysfunction, morphological alterations (i.e., enlargement, partial loss of cristae structure) and impairment of respiratory supercomplex assembly of the mitochondria, and ER stress. FTI reversed or ameliorated all of these alterations in burned mice. These findings indicate that these burn-induced changes, which encompass various aspects of metabolism, may be linked to one another and require protein farnesylation. Our results provide evidence of involvement of the mTORC1-HIF-1α pathway in burn-induced metabolic derangements. Our study identifies protein farnesylation as a potential hub of the signaling network affecting multiple aspects of metabolic alterations after burn injury and as a novel potential molecular target to improve the clinical outcome of severely burned patients.
Collapse
|
18
|
Rudar M, Zhu CL, de Lange CFM. Effect of supplemental dietary leucine and immune system stimulation on whole-body nitrogen utilization in starter pigs. J Anim Sci 2017; 94:2366-77. [PMID: 27285913 DOI: 10.2527/jas.2015-0120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The increase in circulating pro-inflammatory cytokines following an immune challenge (e.g., with bacterial lipopolysaccharide [LPS]) causes a disruption in normal AA metabolism and increases visceral protein synthesis at the expense of muscle protein synthesis. The objective of this study was to determine the effect of supplemental dietary Leu on the dynamics of whole body nitrogen (N) retention in starter pigs before and after immune system stimulation (ISS) induced by LPS. A total of 28 starter pigs (14.46 ± 0.73 kg BW) were assigned to isoenergetic and isonitrogenous diets formulated to supply essential AA 10% above estimated requirements for maximum whole-body protein deposition (PD) and to contain increasing amounts of Leu: CON (1.36% SID Leu); LEU-M (2.04% SID Leu); and LEU-H (2.72% SID Leu). Pigs were housed in metabolic crates, scale-fed every 4 h based on BW, and adjusted to dietary treatments for 5 d. The 108-h N-balance experiment was divided into two periods: prechallenge (before LPS challenge; six 12-h collections) and challenge (after LPS challenge; three 12-h collections) periods. In both periods, blood was collected to determine plasma AA and urea N concentrations. At the start of the challenge period, one-half of the pigs fed CON and all pigs fed LEU-M and LEU-H were challenged with LPS (ISS+; 30 µg/kg injected intramuscularly); the remaining pigs fed CON were injected with saline (ISS-). Whole-body N retention was determined during subsequent 12-h collections. Plasma free Leu concentration increased linearly with increasing Leu content in the diet before LPS was administered (CON, 124 µmol/L; LEU-M, 185 µmol/L; LEU-H, 227 µmol/L; < 0.01). During the prechallenge period, N retention was lower in pigs fed LEU-M ( < 0.01) and there was no difference between pigs fed CON and LEU-H (7.91, 7.18, and 7.71 g/12 h for CON, LEU-M, and LEU-H, respectively). During the challenge period, N retention in pigs fed CON was higher in ISS- than ISS+ (5.37 vs. 3.83 g/12 h; < 0.01) but was not affected by diet in ISS+ pigs (3.83, 3.21, and 3.45 g/12 h for CON, LEU-M, and LEU-H, respectively; > 0.10). In healthy pigs, feeding a high excess of dietary Leu induced an anabolic response to compensate for reduced N retention that occurred in pigs fed an intermediate excess of dietary Leu. There was no effect of supplemental Leu on N retention in pigs after an LPS challenge.
Collapse
|
19
|
Rudar M, Zhu CL, de Lange CF. Dietary Leucine Supplementation Decreases Whole-Body Protein Turnover before, but Not during, Immune System Stimulation in Pigs. J Nutr 2017; 147:45-51. [PMID: 27798336 DOI: 10.3945/jn.116.236893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/10/2016] [Accepted: 10/03/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Immune system stimulation (ISS) adversely affects protein metabolism and reduces pig productivity. Leu has a regulatory role in skeletal muscle and whole-body protein turnover, which may be affected by ISS. OBJECTIVE We sought to determine the effect of supplemental Leu intake on whole-body protein turnover in pigs before and during ISS. METHODS Pigs [mean ± SD initial body weight (BW): 10.6 ± 1.1 kg] were surgically fitted with jugular vein catheters and assigned to 1 of 3 treatments: 1.36% standardized ileal-digestible (SID) Leu (CON; n = 13); 2.04% SID Leu (LEU-M; n = 8); and 2.72% SID Leu (LEU-H; n = 7). Pigs were infused continuously with 0.66 ± 0.05 mmol 15N ⋅ kg BW-1 ⋅ d-1 to determine whole-body protein kinetics. The study consisted of a 72-h prechallenge period followed by a 36-h challenge period. At the start of the challenge period, ISS was induced in all LEU-M and LEU-H pigs and half of the CON pigs with LPS (ISS+); the remaining CON pigs were administered saline (ISS-). RESULTS Whole-body protein synthesis (309, 273, and 260 ± 14 mmol N ⋅ kg BW-1 ⋅ d-1 for CON, LEU-M, and LEU-H pigs, respectively) and protein degradation (233, 203, and 185 ± 14 mmol N ⋅ kg BW-1 ⋅ d-1 for CON, LEU-M, and LEU-H pigs, respectively) were reduced with increasing Leu intake during the prechallenge period (P < 0.05). ISS reduced whole-body protein synthesis (203 compared with 169 ± 12 mmol N ⋅ kg BW-1 ⋅ d-1 for ISS- and ISS+ pigs fed CON, respectively; P < 0.05) and protein deposition (PD) (64.9 compared with 45.0 ± 2.9 mmol N ⋅ kg BW-1 ⋅ d-1 for ISS- and ISS+ pigs fed CON, respectively; P < 0.01), whereas ISS did not affect whole-body protein degradation. Leu intake did not affect whole-body protein synthesis or degradation in ISS+ pigs. CONCLUSIONS Our results indicate that supplemental Leu intake improves the efficiency of PD rather than PD directly in healthy pigs but did not affect whole-body protein turnover during ISS.
Collapse
Affiliation(s)
- Marko Rudar
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Cuilan L Zhu
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
20
|
Hernandez-García AD, Columbus DA, Manjarín R, Nguyen HV, Suryawan A, Orellana RA, Davis TA. Leucine supplementation stimulates protein synthesis and reduces degradation signal activation in muscle of newborn pigs during acute endotoxemia. Am J Physiol Endocrinol Metab 2016; 311:E791-E801. [PMID: 27624100 PMCID: PMC5241557 DOI: 10.1152/ajpendo.00217.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/06/2016] [Indexed: 11/22/2022]
Abstract
Sepsis disrupts skeletal muscle proteostasis and mitigates the anabolic response to leucine (Leu) in muscle of mature animals. We have shown that Leu stimulates muscle protein synthesis (PS) in healthy neonatal piglets. To determine if supplemental Leu can stimulate PS and reduce protein degradation (PD) signaling in neonatal muscle during endotoxemia, overnight-fasted neonatal pigs were infused for 8 h with LPS or saline while plasma amino acids, glucose, and insulin were maintained at fasting levels during pancreatic-substrate clamps. Leu or saline was infused during the last hour. Markers of PS and PD were determined in skeletal muscle. Compared with controls, Leu increased PS in longissimus dorsi (LD), gastrocnemius, and soleus muscles. LPS decreased PS in these three muscles by 36%, 28%, and 38%, but Leu antagonized that reduction by increasing PS by 84%, 81%, and 83%, respectively, when supplemented to LPS. Leu increased eukaryotic translation initiation factor (eIF)3b-raptor interactions, eIF4E-binding protein-1, and S6 kinase 1 phosphorylation as well as eIF4E·eIF4G complex formation in LD, gastrocnemius, and soleus muscles of control and LPS-treated pigs. In LD muscle, LPS increased the light chain (LC)3-II-to-LC3 ratio and muscle-specific RING finger (MuRF-1) abundance but not atrogin-1 abundance or AMP-activated protein kinase-α phosphorylation. Leu supplementation to LPS-treated pigs reduced the LC3-II-to-LC3 ratio, MuRF-1 abundance, and AMP-activated protein kinase-α phosphorylation compared with LPS alone. In conclusion, parenteral Leu supplementation attenuates the LPS-induced reduction in PS by stimulating mammalian target of rapamycin complex 1-dependent translation and may reduce PD by attenuating autophagy-lysosome and MuRF-1 signaling in neonatal skeletal muscle.
Collapse
Affiliation(s)
- Adriana D Hernandez-García
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and Critical Care Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Daniel A Columbus
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and
| | - Rodrigo Manjarín
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and
| | - Hanh V Nguyen
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and
| | - Agus Suryawan
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and
| | - Renán A Orellana
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and Critical Care Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and
| |
Collapse
|
21
|
Sarath Babu N, Krishnan S, Brahmendra Swamy CV, Venkata Subbaiah GP, Gurava Reddy AV, Idris MM. Quantitative proteomic analysis of normal and degenerated human intervertebral disc. Spine J 2016; 16:989-1000. [PMID: 27125197 DOI: 10.1016/j.spinee.2016.03.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/04/2016] [Accepted: 03/31/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Degenerative disc disease (DDD) is the most common disease of aging in humans. DDD is characterized by the gradual damage of the intervertebral discs. The disease is characterized by progressive dehydration of nucleus pulposus and disruption of annulus fibrosus of intervertebral disc. PURPOSE Even though it is highly prevalent, there is no effective therapy to regenerate the degenerated disc, or decrease or halt the disease progression. Therefore, novel monitoring and diagnostic tests are essential to develop an alternative therapeutic strategies which can prevent further progression of disc degeneration. STUDY DESIGN The study was designed to understand the proteome map of annulus fibrosus and nucleus pulposus tissues of intervertebral disc and its differential expression in patients with DDD. METHODS The proteome map of the annulus fibrosus and nucleus pulposus tissues of intervertebral disc was cataloged involving one-dimensional gel electrophoresis-Fourier transform mass spectrometry/ion trap tandem mass spectrometry (FTMS/ITMSMS) analysis. The altered proteome patterns of annulus fibrosus and nucleus pulposus tissues for DDD were identified using Isobaric tag for relative and absolute quantification (iTRAQ)-based quantitative proteomics coupled with FTMS/ITMSMS and network pathway analysis. RESULTS The study identified a total of 759 and 692 proteins from the annulus fibrosus and the nucleus pulposus tissues of the disc based on FTMS/ITMSMS analysis, which includes 118 proteins commonly identified between the two tissues. Vibrant changes were observed between the normal and the degenerating annulus fibrosus and nucleus pulposus tissues. A total of 73 and 54 proteins were identified as differentially regulated in the annulus and the nucleus tissues, respectively, between the normal and the degenerated tissues independently. Network pathway analysis mapped the differentially expressed proteins to cell adhesion, cell migration, and interleukin13 signaling pathways. CONCLUSIONS Altogether, the current study provides a novel vision in the biomechanism of human disc degeneration and a certain number of proteins with the potential biomarker value for the preliminary diagnosis and scenario of DDD.
Collapse
Affiliation(s)
| | | | | | - Goli P Venkata Subbaiah
- Sunshine Hospitals, SMART (Sunshine Medical Academy For Research and Training), Penderghast Rd, Secunderabad, 500003, India
| | | | | |
Collapse
|
22
|
Boutry C, El-Kadi SW, Suryawan A, Steinhoff-Wagner J, Stoll B, Orellana RA, Nguyen HV, Kimball SR, Fiorotto ML, Davis TA. Pulsatile delivery of a leucine supplement during long-term continuous enteral feeding enhances lean growth in term neonatal pigs. Am J Physiol Endocrinol Metab 2016; 310:E699-E713. [PMID: 26884386 PMCID: PMC4835946 DOI: 10.1152/ajpendo.00479.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/09/2016] [Indexed: 01/06/2023]
Abstract
Neonatal pigs are used as a model to study and optimize the clinical treatment of infants who are unable to maintain oral feeding. Using this model, we have shown previously that pulsatile administration of leucine during continuous feeding over 24 h via orogastric tube enhanced protein synthesis in skeletal muscle compared with continuous feeding alone. To determine the long-term effects of leucine pulses, neonatal piglets (n = 11-12/group) were continuously fed formula via orogastric tube for 21 days, with an additional parenteral infusion of either leucine (CON + LEU; 800 μmol·kg-1·h-1) or alanine (CON + ALA) for 1 h every 4 h. The results show that body and muscle weights and lean gain were ∼25% greater, and fat gain was 48% lower in CON + LEU than CON + ALA; weights of other tissues were unaffected by treatment. Fractional protein synthesis rates in longissimus dorsi, gastrocnemius, and soleus muscles were ∼30% higher in CON + LEU compared with CON + ALA and were associated with decreased Deptor abundance and increased mTORC1, mTORC2, 4E-BP1, and S6K1 phosphorylation, SNAT2 abundance, and association of eIF4E with eIF4G and RagC with mTOR. There were no treatment effects on PKB, eIF2α, eEF2, or PRAS40 phosphorylation, Rheb, SLC38A9, v-ATPase, LAMTOR1, LAMTOR2, RagA, RagC, and LAT1 abundance, the proportion of polysomes to nonpolysomes, or the proportion of mRNAs encoding rpS4 or rpS8 associated with polysomes. Our results demonstrate that pulsatile delivery of a leucine supplement during 21 days of continuous enteral feeding enhances lean growth by stimulating the mTORC1-dependent translation initiation pathway, leading to protein synthesis in skeletal muscle of neonates.
Collapse
Affiliation(s)
- Claire Boutry
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Samer W El-Kadi
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Julia Steinhoff-Wagner
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Barbara Stoll
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Renán A Orellana
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| |
Collapse
|
23
|
Gao S, Carson JA. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes. Am J Physiol Cell Physiol 2015; 310:C66-79. [PMID: 26491045 DOI: 10.1152/ajpcell.00052.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022]
Abstract
Mechanical stretch can activate muscle and myotube protein synthesis through mammalian target of rapamycin complex 1 (mTORC1) signaling. While it has been established that tumor-derived cachectic factors can induce myotube wasting, the effect of this catabolic environment on myotube mechanical signaling has not been determined. We investigated whether media containing cachectic factors derived from Lewis lung carcinoma (LLC) can regulate the stretch induction of myotube protein synthesis. C2C12 myotubes preincubated in control or LLC-derived media were chronically stretched. Protein synthesis regulation by anabolic and catabolic signaling was then examined. In the control condition, stretch increased mTORC1 activity and protein synthesis. The LLC treatment decreased basal mTORC1 activity and protein synthesis and attenuated the stretch induction of protein synthesis. LLC media increased STAT3 and AMP-activated protein kinase phosphorylation in myotubes, independent of stretch. Both stretch and LLC independently increased ERK1/2, p38, and NF-κB phosphorylation. In LLC-treated myotubes, the inhibition of ERK1/2 and p38 rescued the stretch induction of protein synthesis. Interestingly, either leukemia inhibitory factor or glycoprotein 130 antibody administration caused further inhibition of mTORC1 signaling and protein synthesis in stretched myotubes. AMP-activated protein kinase inhibition increased basal mTORC1 signaling activity and protein synthesis in LLC-treated myotubes, but did not restore the stretch induction of protein synthesis. These results demonstrate that LLC-derived cachectic factors can dissociate stretch-induced signaling from protein synthesis through ERK1/2 and p38 signaling, and that glycoprotein 130 signaling is associated with the basal stretch response in myotubes.
Collapse
Affiliation(s)
- Song Gao
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
24
|
Salutary effect of aurintricarboxylic acid on endotoxin- and sepsis-induced changes in muscle protein synthesis and inflammation. Shock 2015; 41:420-8. [PMID: 24430547 DOI: 10.1097/shk.0000000000000128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Small molecule nonpeptidyl molecules are potentially attractive drug candidates as adjunct therapies in the treatment of sepsis-induced metabolic complications. As such, the current study investigates the use of aurintricarboxylic acid (ATA), which stimulates insulinlike growth factor 1 receptor and AKT signaling, for its ability to ameliorate the protein metabolic effects of endotoxin (lipopolysaccharide [LPS]) + interferon γ (IFN-γ) in C2C12 myotubes and sepsis in skeletal muscle. Aurintricarboxylic acid dose- and time-dependently increases mTOR (mammalian or mechanistic target of rapamycin)-dependent protein synthesis. Pretreatment with ATA prevents the LPS/IFN-γ-induced decrease in protein synthesis at least in part by maintaining mTOR kinase activity, whereas posttreatment with ATA is able to increase protein synthesis when added up to 6 h after LPS/IFN-γ. Aurintricarboxylic acid also reverses the amino acid resistance, which is detected in response to nutrient deprivation. Conversely, ATA decreases the basal rate of protein degradation and prevents the LPS/IFN-γ increase in proteolysis, and the latter change is associated reduced atrogin 1 and MuRF1 mRNA. The ability of ATA to antagonize LPS/IFN-γ-induced changes in protein metabolism was associated with its ability to prevent the increases in interleukin 6 and nitric oxide synthase 2 and decreases in insulinlike growth factor 1. In vivo studies indicate ATA acutely increases skeletal muscle, but not cardiac, protein synthesis and attenuates the loss of lean body mass over 5 days. These data suggest ATA and other small molecule agonists of endogenous anabolic hormones may prove beneficial in treating sepsis by decreasing the inflammatory response and improving muscle protein balance.
Collapse
|
25
|
Gordon BS, Williamson DL, Lang CH, Jefferson LS, Kimball SR. Nutrient-induced stimulation of protein synthesis in mouse skeletal muscle is limited by the mTORC1 repressor REDD1. J Nutr 2015; 145:708-13. [PMID: 25716553 PMCID: PMC4381770 DOI: 10.3945/jn.114.207621] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/29/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND In skeletal muscle, the nutrient-induced stimulation of protein synthesis requires signaling through the mechanistic target of rapamycin complex 1 (mTORC1). Expression of the repressor of mTORC1 signaling, regulated in development and DNA damage 1 (REDD1), is elevated in muscle during various atrophic conditions and diminished under hypertrophic conditions. The question arises as to what extent REDD1 limits the nutrient-induced stimulation of protein synthesis. OBJECTIVE The objective was to examine the role of REDD1 in limiting the response of muscle protein synthesis and mTORC1 signaling to a nutrient stimulus. METHODS Wild type REDD1 gene (REDD1(+/+)) and disruption in the REDD1 gene (REDD1(-/-)) mice were feed deprived for 16 h and randomized to remain feed deprived or refed for 15 or 60 min. The tibialis anterior was then removed for analysis of protein synthesis and mTORC1 signaling. RESULTS In feed-deprived mice, protein synthesis and mTORC1 signaling were significantly lower in REDD1(+/+) than in REDD1(-/-) mice. Thirty minutes after the start of refeeding, protein synthesis in REDD1(+/+) mice was stimulated by 28%, reaching a value similar to that observed in feed-deprived REDD1(-/-) mice, and was accompanied by increased phosphorylation of mTOR (Ser2448), p70S6K1 (Thr389), and 4E-BP1 (Ser65) by 81%, 167%, and 207%, respectively. In refed REDD1(-/-) mice, phosphorylation of mTOR (Ser2448), p70S6K1 (Thr389), and 4E-BP1 (Ser65) were significantly augmented above the values observed in refed REDD1(+/+) mice by 258%, 405%, and 401%, respectively, although protein synthesis was not coordinately increased. Seventy-five minutes after refeeding, REDD1 expression in REDD1(+/+) mice was reduced (∼15% of feed-deprived REDD1(+/+) values), and protein synthesis and mTORC1 signaling were not different between refed REDD1(+/+) mice and REDD1(-/-) mice. CONCLUSIONS The results show that REDD1 expression limits protein synthesis in mouse skeletal muscle by inhibiting mTORC1 signaling during periods of feed deprivation and that a reduction in its expression is necessary for maximal stimulation of protein synthesis in response to refeeding.
Collapse
Affiliation(s)
- Bradley S Gordon
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA; and
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA; and
| | - Leonard S Jefferson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA; and
| |
Collapse
|
26
|
Gilbert SR, Camara J, Camara R, Duffy L, Waites K, Kim H, Zinn K. Contaminated open fracture and crush injury: a murine model. Bone Res 2015; 3:14050. [PMID: 26273534 PMCID: PMC4472147 DOI: 10.1038/boneres.2014.50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/16/2014] [Accepted: 12/27/2014] [Indexed: 12/27/2022] Open
Abstract
Modern warfare has caused a large number of severe extremity injuries, many of which become infected. In more recent conflicts, a pattern of co-infection with Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus has emerged. We attempted to recreate this pattern in an animal model to evaluate the role of vascularity in contaminated open fractures. Historically, it has been observed that infected bones frequently appear hypovascular, but vascularity in association with bone infection has not been examined in animal models. Adult rats underwent femur fracture and muscle crush injury followed by stabilization and bacterial contamination with A. baumannii complex and methicillin-resistant Staphylococcus aureus. Vascularity and perfusion were assessed by microCT angiography and SPECT scanning, respectively, at 1, 2 and 4 weeks after injury. Quantitative bacterial cultures were also obtained. Multi-bacterial infections were successfully created, with methicillin-resistant S. aureus predominating. There was overall increase in blood flow to injured limbs that was markedly greater in bacteria-inoculated limbs. Vessel volume was greater in the infected group. Quadriceps atrophy was seen in both groups, but was greater in the infected group. In this animal model, infected open fractures had greater perfusion and vascularity than non-infected limbs.
Collapse
Affiliation(s)
- Shawn R Gilbert
- Department of Surgery, University of Alabama at Birmingham , AL USA
| | | | | | - Lynn Duffy
- Departments of Pathology, University of Alabama at Birmingham , AL USA
| | - Ken Waites
- Departments of Pathology, University of Alabama at Birmingham , AL USA
| | - Hyunki Kim
- Department of Radiology, University of Alabama at Birmingham , AL USA
| | - Kurt Zinn
- Department of Radiology, University of Alabama at Birmingham , AL USA
| |
Collapse
|
27
|
Laufenberg LJ, Pruznak AM, Navaratnarajah M, Lang CH. Sepsis-induced changes in amino acid transporters and leucine signaling via mTOR in skeletal muscle. Amino Acids 2014; 46:2787-98. [PMID: 25218136 DOI: 10.1007/s00726-014-1836-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
Abstract
The present study tested the hypothesis that sepsis-induced leucine (Leu) resistance in skeletal muscle is associated with a down-regulation of amino acid transporters important in regulating Leu flux or an impairment in the formation of the Leu-sensitive mTOR-Ragulator complex. Sepsis in adult male rats decreased basal protein synthesis in gastrocnemius, associated with a reduction in mTOR activation as indicated by decreased 4E-BP1 and S6K1 phosphorylation. The ability of oral Leu to increase protein synthesis and mTOR kinase after 1 h was largely prevented in sepsis. Sepsis increased CAT1, LAT2 and SNAT2 mRNA content two- to fourfold, but only the protein content for CAT1 (20 % decrease) differed significantly. Conversely, sepsis decreased the proton-assisted amino acid transporter (PAT)-2 mRNA by 60 %, but without a coordinate change in PAT2 protein. There was no sepsis or Leu effect on the protein content for RagA-D, LAMTOR-1 and -2, raptor, Rheb or mTOR in muscle. The binding of mTOR, PRAS40 and RagC to raptor did not differ for control and septic muscle in the basal condition; however, the Leu-induced decrease in PRAS40·raptor and increase in RagC·raptor seen in control muscle was absent in sepsis. The intracellular Leu concentration was increased in septic muscle, compared to basal control conditions, and oral Leu further increased the intracellular Leu concentration similarly in both control and septic rats. Hence, while alterations in select amino acid transporters are not associated with development of sepsis-induced Leu resistance, the Leu-stimulated binding of raptor with RagC and the recruitment of mTOR/raptor to the endosome-lysosomal compartment may partially explain the inability of Leu to fully activate mTOR and muscle protein synthesis.
Collapse
Affiliation(s)
- Lacee J Laufenberg
- Departments of Cellular and Molecular Physiology (H166), and Surgery, Penn State College of Medicine, Hershey, PA, 17033, USA
| | | | | | | |
Collapse
|
28
|
Steiner JL, Pruznak AM, Deiter G, Navaratnarajah M, Kutzler L, Kimball SR, Lang CH. Disruption of genes encoding eIF4E binding proteins-1 and -2 does not alter basal or sepsis-induced changes in skeletal muscle protein synthesis in male or female mice. PLoS One 2014; 9:e99582. [PMID: 24945486 PMCID: PMC4063727 DOI: 10.1371/journal.pone.0099582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/15/2014] [Indexed: 12/31/2022] Open
Abstract
Sepsis decreases skeletal muscle protein synthesis in part by impairing mTOR activity and the subsequent phosphorylation of 4E-BP1 and S6K1 thereby controlling translation initiation; however, the relative importance of changes in these two downstream substrates is unknown. The role of 4E-BP1 (and -BP2) in regulating muscle protein synthesis was assessed in wild-type (WT) and 4E-BP1/BP2 double knockout (DKO) male mice under basal conditions and in response to sepsis. At 12 months of age, body weight, lean body mass and energy expenditure did not differ between WT and DKO mice. Moreover, in vivo rates of protein synthesis in gastrocnemius, heart and liver did not differ between DKO and WT mice. Sepsis decreased skeletal muscle protein synthesis and S6K1 phosphorylation in WT and DKO male mice to a similar extent. Sepsis only decreased 4E-BP1 phosphorylation in WT mice as no 4E-BP1/BP2 protein was detected in muscle from DKO mice. Sepsis decreased the binding of eIF4G to eIF4E in WT mice; however, eIF4E•eIF4G binding was not altered in DKO mice under either basal or septic conditions. A comparable sepsis-induced increase in eIF4B phosphorylation was seen in both WT and DKO mice. eEF2 phosphorylation was similarly increased in muscle from WT septic mice and both control and septic DKO mice, compared to WT control values. The sepsis-induced increase in muscle MuRF1 and atrogin-1 (markers of proteolysis) as well as TNFα and IL-6 (inflammatory cytokines) mRNA was greater in DKO than WT mice. The sepsis-induced decrease in myocardial and hepatic protein synthesis did not differ between WT and DKO mice. These data suggest overall basal protein balance and synthesis is maintained in muscle of mice lacking both 4E-BP1/BP2 and that sepsis-induced changes in mTOR signaling may be mediated by a down-stream mechanism independent of 4E-BP1 phosphorylation and eIF4E•eIF4G binding.
Collapse
Affiliation(s)
- Jennifer L. Steiner
- Department of Cellular and Molecular Physiology, and Surgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Anne M. Pruznak
- Department of Cellular and Molecular Physiology, and Surgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Gina Deiter
- Department of Cellular and Molecular Physiology, and Surgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Maithili Navaratnarajah
- Department of Cellular and Molecular Physiology, and Surgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Lydia Kutzler
- Department of Cellular and Molecular Physiology, and Surgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, and Surgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Charles H. Lang
- Department of Cellular and Molecular Physiology, and Surgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Wandrag L, Brett SJ, Frost G, Hickson M. Impact of supplementation with amino acids or their metabolites on muscle wasting in patients with critical illness or other muscle wasting illness: a systematic review. J Hum Nutr Diet 2014; 28:313-30. [DOI: 10.1111/jhn.12238] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- L. Wandrag
- Department of Investigative Medicine; Nutrition and Dietetic Research Group; Imperial College London; London UK
| | - S. J. Brett
- Centre for Peri-operative Medicine and Critical Care Research; Imperial College Healthcare NHS Trust; London UK
| | - G. Frost
- Department of Investigative Medicine; Nutrition and Dietetic Research Group; Imperial College London; London UK
| | - M. Hickson
- Department of Investigative Medicine; Nutrition and Dietetic Research Group; Imperial College London; London UK
| |
Collapse
|
30
|
Lang CH, Korzick DH. Chronic alcohol consumption disrupts myocardial protein balance and function in aged, but not adult, female F344 rats. Am J Physiol Regul Integr Comp Physiol 2013; 306:R23-33. [PMID: 24226028 DOI: 10.1152/ajpregu.00414.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to assess whether the deleterious effect of chronic alcohol consumption differs in adult and aged female rats. To address this aim, adult (4 mo) and aged (18 mo) F344 rats were fed a nutritionally complete liquid diet containing alcohol (36% total calories) or an isocaloric isonitrogenous control diet for 20 wk. Cardiac structure and function, assessed by echocardiography, as well as myocardial protein synthesis and proteolysis did not differ in either alcohol- versus control-fed adult rats or in adult versus aged control-fed rats. In contrast, cardiac function was impaired in alcohol-fed aged rats compared with age-matched control rats. Additionally, alcohol feeding decreased cardiac protein synthesis that was associated with decreased phosphorylation of 4E-BP1 and S6K1. This reduction in mammalian target of rapamycin (mTOR) kinase activity was associated with reduced eIF3f and binding of both Raptor and eIF4G to eIF3. Proteasome activity was increased in alcohol-fed aged rats with a coordinate elevation in the E3 ligases atrogin-1 and muscle RING-finger protein-1 (MuRF1). These changes were associated with increased regulated in development and DNA damage response 1 (REDD1) and phosphorylation of AMP-activated protein kinase (AMPK) but no increase in AKT or forkhead transcription factor (FOXO)3 phosphorylation. Finally, markers of autophagy (e.g., LC3B, Atg7, Atg12) and TNF-α were increased to a greater extent in alcohol-fed aged rats. These data demonstrate that aged female rats exhibit an enhanced sensitivity to alcohol compared with adult animals. Our data are consistent with a model whereby alcohol increases proteolysis via FOXO-independent increase in atrogin-1, which degrades eIF3f and therefore impairs formation of a functional preinitiation complex and protein synthesis.
Collapse
|
31
|
Korzick DH, Sharda DR, Pruznak AM, Lang CH. Aging accentuates alcohol-induced decrease in protein synthesis in gastrocnemius. Am J Physiol Regul Integr Comp Physiol 2013; 304:R887-98. [PMID: 23535459 DOI: 10.1152/ajpregu.00083.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study sought to determine whether the protein catabolic response in skeletal muscle produced by chronic alcohol feeding was exaggerated in aged rats. Adult (3 mo) and aged (18 mo) female F344 rats were fed a nutritionally complete liquid diet containing alcohol (36% of total calories) or an isocaloric isonitrogenous control diet for 20 wk. Muscle (gastrocnemius) protein synthesis, as well as mTOR and proteasome activity did not differ between control-fed adult and aged rats, despite the increased TNF-α and IL-6 mRNA and decreased IGF-I mRNA in muscle of aged rats. Compared with alcohol-fed adult rats, aged rats demonstrated an exaggerated alcohol-induced reduction in lean body mass and protein synthesis (both sarcoplasmic and myofibrillar) in gastrocnemius. Alcohol-fed aged rats had enhanced dephosphorylation of 4E-BP1, as well as enhanced binding of raptor with both mTOR and Deptor, and a decreased binding of raptor with 4E-BP1. Alcohol feeding of both adult and aged rats reduced RagA binding to raptor. The LKB1-AMPK-REDD1 pathway was upregulated in gastrocnemius from alcohol-fed aged rats. These exaggerated alcohol-induced effects in aged rats were associated with a greater decrease in muscle but not circulating IGF-I, but no further increase in inflammatory mediators. In contrast, alcohol did not exaggerate the age-induced increase in atrogin-1 and MuRF1 mRNA or the increased proteasome activity. Our results demonstrate that, compared with adult rats, the gastrocnemius from aged rats is more sensitive to the catabolic effects of alcohol on protein synthesis, but not protein degradation, and this exaggerated response may be AMPK-dependent.
Collapse
Affiliation(s)
- Donna H Korzick
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
32
|
White JP, Gao S, Puppa MJ, Sato S, Welle SL, Carson JA. Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol Cell Endocrinol 2013; 365:174-86. [PMID: 23116773 PMCID: PMC3529800 DOI: 10.1016/j.mce.2012.10.019] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 09/14/2012] [Accepted: 10/18/2012] [Indexed: 01/07/2023]
Abstract
Low endogenous testosterone production, known as hypogonadism is commonly associated with conditions inducing muscle wasting. Akt signaling can control skeletal muscle mass through mTOR regulation of protein synthesis and FoxO regulation of protein degradation, and this pathway has been previously identified as a target of androgen signaling. However, the testosterone sensitivity of Akt/mTOR signaling requires further understanding in order to grasp the significance of varied testosterone levels seen with wasting disease on muscle protein turnover regulation. Therefore, the purpose of this study is to determine the effect of androgen availability on muscle Akt/mTORC1/FoxO3a regulation in skeletal muscle and cultured C(2)C(12) myotubes. C57BL/6 mice were either castrated for 42 days or castrated and treated with the nandrolone decanoate (ND) (6 mg/kg bw/wk). Testosterone loss (TL) significantly decreased volitional grip strength, body weight, and gastrocnemius (GAS) muscle mass, and ND reversed these changes. Related to muscle mass regulation, TL decreased muscle IGF-1 mRNA, the rate of myofibrillar protein synthesis, Akt phosphorylation, and the phosphorylation of Akt targets, GSK3β, PRAS40 and FoxO3a. TL induced expression of FoxO transcriptional targets, MuRF1, atrogin1 and REDD1. Muscle AMPK and raptor phosphorylation, mTOR inhibitors, were not altered by low testosterone. ND restored IGF-1 expression and Akt/mTORC1 signaling while repressing expression of FoxO transcriptional targets. Testosterone (T) sensitivity of Akt/mTORC1 signaling was examined in C(2)C(12) myotubes, and mTOR phosphorylation was induced independent of Akt activation at low T concentrations, while a higher T concentration was required to activate Akt signaling. Interestingly, low concentration T was sufficient to amplify myotube mTOR and Akt signaling after 24 h of T withdrawal, demonstrating the potential in cultured myotubes for a T initiated positive feedback mechanism to amplify Akt/mTOR signaling. In summary, androgen withdrawal decreases muscle myofibrillar protein synthesis through Akt/mTORC1 signaling, which is independent of AMPK activation, and readily reversible by anabolic steroid administration. Acute Akt activation in C(2)C(12) myotubes is sensitive to a high concentration of testosterone, and low concentrations of testosterone can activate mTOR signaling independent of Akt.
Collapse
MESH Headings
- Adenylate Kinase/metabolism
- Androgens/pharmacology
- Animals
- Cell Line
- Enzyme Activation
- Forkhead Box Protein O3
- Forkhead Transcription Factors/metabolism
- Gene Expression
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Male
- Mechanistic Target of Rapamycin Complex 1
- Mice
- Mice, Inbred C57BL
- Multiprotein Complexes
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/physiology
- Muscle Strength
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Nandrolone/analogs & derivatives
- Nandrolone/pharmacology
- Nandrolone Decanoate
- Orchiectomy
- Phosphorylation
- Protein Processing, Post-Translational
- Proteins/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases
- Testosterone/physiology
- Transcriptional Activation
Collapse
Affiliation(s)
- James P. White
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Song Gao
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Melissa J. Puppa
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Shuichi Sato
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Stephen L. Welle
- Department of Medicine, University of Rochester Medical School, Rochester, NY
| | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| |
Collapse
|
33
|
Coelho CW, Jannig PR, Souza ABD, Fronza H, Westphal GA, Petronilho F, Constantino L, Dal-Pizzol F, Ferreira GK, Streck EE, Silva E. Exercise training prevents skeletal muscle damage in an experimental sepsis model. Clinics (Sao Paulo) 2013; 68:107-14. [PMID: 23420166 PMCID: PMC3552448 DOI: 10.6061/clinics/2013(01)oa17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/22/2012] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Oxidative stress plays an important role in skeletal muscle damage in sepsis. Aerobic exercise can decrease oxidative stress and enhance antioxidant defenses. Therefore, it was hypothesized that aerobic exercise training before a sepsis stimulus could attenuate skeletal muscle damage by modulating oxidative stress. Thus, the aim of this study was to evaluate the effects of aerobic physical preconditioning on the different mechanisms that are involved in sepsis-induced myopathy. METHODS Male Wistar rats were randomly assigned to either the untrained or trained group. The exercise training protocol consisted of an eight-week treadmill program. After the training protocol, the animals from both groups were randomly assigned to either a sham group or a cecal ligation and perforation surgery group. Thus, the groups were as follows: sham, cecal ligation and perforation, sham trained, and cecal ligation and perforation trained. Five days after surgery, the animals were euthanized and their soleus and plantaris muscles were harvested. Fiber cross-sectional area, creatine kinase, thiobarbituric acid reactive species, carbonyl, catalase and superoxide dismutase activities were measured. RESULTS The fiber cross-sectional area was smaller, and the creatine kinase, thiobarbituric acid reactive species and carbonyl levels were higher in both muscles in the cecal ligation and perforation group than in the sham and cecal ligation and perforation trained groups. The muscle superoxide dismutase activity was higher in the cecal ligation and perforation trained group than in the sham and cecal ligation and perforation groups. The muscle catalase activity was lower in the cecal ligation and perforation group than in the sham group. CONCLUSION In summary, aerobic physical preconditioning prevents atrophy, lipid peroxidation and protein oxidation and improves superoxide dismutase activity in the skeletal muscles of septic rats.
Collapse
Affiliation(s)
- Carla Werlang Coelho
- Faculdade de Medicina da Universidade de São Paulo, Anesthesiology Strict Sensus Post Graduation Program of the Medical School, São Paulo/SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW This review highlights the role of cytokines, in particular tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), in relation to the nature of human in-vivo muscle wasting in disease. RECENT FINDINGS Infusion of human TNF-α and IL-6 in healthy individuals, acutely raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle protein synthesis and breakdown, that is, reduced turnover with a minor increase in net muscle degradation. Very similar observations have been made in models of acute inflammation, induced by high-dose endotoxin injection. However, these changes were suggested not to be attributed to a direct effect of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However, these cytokines can initiate important changes in secondary mediators and/or clinical complications that need correction therapies causing muscle wasting. Moreover, the general view from animal work is that in muscle wasting the rate of muscle protein synthesis is decreased and the rate of breakdown is increased. However, this does not seem applicable for inflammatory diseases or human models of sepsis, in which the enhanced imbalance between these two processes is observed within an enhanced, normal or reduced muscle protein turnover.
Collapse
Affiliation(s)
- Gerrit van Hall
- Clinical Metabolomics Core Facility, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
35
|
Frost RA, Lang CH. mTor signaling in skeletal muscle during sepsis and inflammation: where does it all go wrong? Physiology (Bethesda) 2011; 26:83-96. [PMID: 21487027 DOI: 10.1152/physiol.00044.2010] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that exquisitely regulates protein metabolism in skeletal muscle. mTOR integrates input from amino acids, growth factors, and intracellular cues to make or break muscle protein. mTOR accomplishes this task by stimulating the phosphorylation of substrates that control protein translation while simultaneously inhibiting proteasomal and autophagic protein degradation. In a metabolic twist of fate, sepsis induces muscle atrophy in part by the aberrant regulation of mTOR. In this review, we track the steps of normal mTOR signaling in muscle and examine where they go astray in sepsis and inflammation.
Collapse
Affiliation(s)
- Robert A Frost
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | |
Collapse
|
36
|
Inhibition of glycogen synthase kinase 3[beta] activity with lithium in vitro attenuates sepsis-induced changes in muscle protein turnover. Shock 2011; 35:266-74. [PMID: 20926980 DOI: 10.1097/shk.0b013e3181fd068c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Loss of lean body mass is a characteristic feature of the septic response, and the mechanisms responsible for this decrease and means of prevention have not been fully elucidated. The present study tested the hypothesis that in vitro treatment of skeletal muscle with lithium chloride (LiCl), a glycogen synthase kinase (GSK) 3 inhibitor, would reverse both the sepsis-induced increase in muscle protein degradation and inhibition of protein synthesis. Sepsis decreased GSK-3[beta] phosphorylation and increased GSK-3[beta] activity, under basal conditions. Sepsis increased muscle protein degradation, with a concomitant increase in atrogin 1 and MuRF1 mRNA and 26S proteosome activity. Incubation of septic muscle with LiCl completely reversed the increased GSK-3[beta] activity and decreased proteolysis to basal nonseptic values, but only partially reduced proteosome activity and did not diminish atrogene expression. Lithium chloride also did not ameliorate the sepsis-induced increase in LC3-II, a marker for activated autophagy. In contrast, LiCl increased protein synthesis only in nonseptic control muscle. The inability of septic muscle to respond to LiCl was independent of its ability to reverse the sepsis-induced increase in eukaryotic initiation factor (eIF) 2B[varepsilon] phosphorylation, decreased eIF2B activity, or the reduced phosphorylation of FOXO3, but instead was more closely associated with the continued suppression of mTOR (mammalian target of rapamycin) kinase activity (e.g., reduced phosphorylation of 4E-BP1 and S6). These data suggest that in vitro lithium treatment, which inhibited GSK-3[beta] activity, (a) effectively reversed the sepsis-induced increase in proteolysis, but only in part by a reduction in the ubiquitin-proteosome pathway and not by a reduction in autophagy; and (b) was ineffective at reversing the sepsis-induced decrease in muscle protein synthesis. This lithium-resistant state seems mediated at the level of mTOR and not eIF2/eIF2B. Hence, use of GSK-3[beta] inhibitors in the treatment of sepsis may not be expected to fully correct the imbalance in muscle protein turnover.
Collapse
|
37
|
Kazi AA, Hong-Brown L, Lang SM, Lang CH. Deptor knockdown enhances mTOR Activity and protein synthesis in myocytes and ameliorates disuse muscle atrophy. Mol Med 2011; 17:925-36. [PMID: 21607293 DOI: 10.2119/molmed.2011.00070] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/18/2011] [Indexed: 11/06/2022] Open
Abstract
Deptor is an mTOR binding protein that affects cell metabolism. We hypothesized that knockdown (KD) of Deptor in C2C12 myocytes will increase protein synthesis via stimulating mTOR-S6K1 signaling. Deptor KD was achieved using lentiviral particles containing short hairpin (sh)RNA targeting the mouse Deptor mRNA sequence, and control cells were transfected with a scrambled control shRNA. KD reduced Deptor mRNA and protein content by 90%, which increased phosphorylation of mTOR kinase substrates, 4E-BP1 and S6K1, and concomitantly increased protein synthesis. Deptor KD myoblasts were both larger in diameter and exhibited an increased mean cell volume. Deptor KD increased the percentage of cells in the S phase, coincident with an increased phosphorylation (S807/S811) of retinoblastoma protein (pRb) that is critical for the G(1) to S phase transition. Deptor KD did not appear to alter basal apoptosis or autophagy, as evidenced by the lack of change for cleaved caspase-3 and light chain (LC)3B, respectively. Deptor KD increased proliferation rate and enhanced myotube formation. Finally, in vivo Deptor KD (~50% reduction) by electroporation into gastrocnemius of C57/BL6 mice did not alter weight or protein synthesis in control muscle. However, Deptor KD prevented atrophy produced by 3 d of hindlimb immobilization, at least in part by increasing protein synthesis. Thus, our data support the hypothesis that Deptor is an important regulator of protein metabolism in myocytes and demonstrate that decreasing Deptor expression in vivo is sufficient to ameliorate muscle atrophy.
Collapse
Affiliation(s)
- Abid A Kazi
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | |
Collapse
|
38
|
Osuchowski MF. What's New in Shock, February 2011? Shock 2011; 35:103-6. [DOI: 10.1097/shk.0b013e318204f0c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|