1
|
Leonard S, Benfante R. Unanswered questions in the regulation and function of the duplicated α7 nicotinic receptor gene CHRFAM7A. Pharmacol Res 2023; 192:106783. [PMID: 37164281 DOI: 10.1016/j.phrs.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The α7 nicotinic receptor (α7 nAChR) is an important entry point for Ca2+ into the cell, which has broad and important effects on gene expression and function. The gene (CHRNA7), mapping to chromosome (15q14), has been genetically linked to a large number of diseases, many of which involve defects in cognition. While numerous mutations in CHRNA7 are associated with mental illness and inflammation, an important control point may be the function of a recently discovered partial duplication CHRNA7, CHRFAM7A, that negatively regulates the function of the α7 receptor, through the formation of heteropentamers; other functions cannot be excluded. The deregulation of this human specific gene (CHRFAM7A) has been linked to neurodevelopmental, neurodegenerative, and inflammatory disorders and has important copy number variations. Much effort is being made to understand its function and regulation both in healthy and pathological conditions. However, many questions remain to be answered regarding its functional role, its regulation, and its role in the etiogenesis of neurological and inflammatory disorders. Missing knowledge on the pharmacology of the heteroreceptor has limited the discovery of new molecules capable of modulating its activity. Here we review the state of the art on the role of CHRFAM7A, highlighting unanswered questions to be addressed. A possible therapeutic approach based on genome editing protocols is also discussed.
Collapse
Affiliation(s)
- Sherry Leonard
- Department of Psychiatry - University of Colorado Anschutz, Aurora, Colorado, USA
| | - Roberta Benfante
- CNR - Institute of Neuroscience, Vedano al Lambro (MB), Italy; Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; NeuroMI - Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
2
|
Wang S, Zhang L, Zhou Y, Huang J, Zhou Z, Liu Z. A review on pharmacokinetics of sinomenine and its anti-inflammatory and immunomodulatory effects. Int Immunopharmacol 2023; 119:110227. [PMID: 37119677 DOI: 10.1016/j.intimp.2023.110227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Autoimmune diseases (ADs), with significant effects on morbidity and mortality, are a broad spectrum of disorders featured by body's immune responses being directed against its own tissues, resulting in chronic inflammation and tissue damage. Sinomenine (SIN) is an alkaloid isolated from the root and stem of Sinomenium acutum which is mainly used to treat pain, inflammation and immune disorders for centuries in China. Its potential anti-inflammatory role for treating immune-related disorders in experimental animal models and in some clinical applications have been reported widely, suggesting an inspiring application prospect of SIN. In this review, the pharmacokinetics, drug delivery systems, pharmacological mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of SIN, and the possibility of SIN as adjuvant to disease-modifying anti-rheumatic drugs (DMARDs) therapy were summarized and evaluated. This paper aims to reveal the potential prospects and limitations of SIN in the treatment of inflammatory and immune diseases, and to provide ideas for compensating its limitations and reducing the side effects, and thus to make SIN better translate to the clinic.
Collapse
Affiliation(s)
- Siwei Wang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Lvzhuo Zhang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Yanhua Zhou
- Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Jiangrong Huang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Jingzhou Central Hospital Affiliated to Yangtze University, Jingzhou 434020, Hubei Province, China.
| | - Zushan Zhou
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China.
| | - Zhenzhen Liu
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China.
| |
Collapse
|
3
|
Martyn JAJ, Sparling JL, Bittner EA. Molecular mechanisms of muscular and non-muscular actions of neuromuscular blocking agents in critical illness: a narrative review. Br J Anaesth 2023; 130:39-50. [PMID: 36175185 DOI: 10.1016/j.bja.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/05/2023] Open
Abstract
Despite frequent use of neuromuscular blocking agents in critical illness, changes in neuromuscular transmission with critical illness are not well appreciated. Recent studies have provided greater insights into the molecular mechanisms for beneficial muscular effects and non-muscular anti-inflammatory properties of neuromuscular blocking agents. This narrative review summarises the normal structure and function of the neuromuscular junction and its transformation to a 'denervation-like' state in critical illness, the underlying cause of aberrant neuromuscular blocking agent pharmacology. We also address the important favourable and adverse consequences and molecular bases for these consequences during neuromuscular blocking agent use in critical illness. This review, therefore, provides an enhanced understanding of clinical therapeutic effects and novel pathways for the salutary and aberrant effects of neuromuscular blocking agents when used during acquired pathologic states of critical illness.
Collapse
Affiliation(s)
- J A Jeevendra Martyn
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Shriners Hospitals for Children, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jamie L Sparling
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Edward A Bittner
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Shriners Hospitals for Children, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Zhi YK, Li J, Yi L, Zhu RL, Luo JF, Shi QP, Bai SS, Li YW, Du Q, Cai JZ, Liu L, Wang PX, Zhou H, Dong Y. Sinomenine inhibits macrophage M1 polarization by downregulating α7nAChR via a feedback pathway of α7nAChR/ERK/Egr-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154050. [PMID: 35397284 DOI: 10.1016/j.phymed.2022.154050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sinomenine (SIN) is an anti-inflammatory drug that has been used for decades in China to treat arthritis. In a previous study, SIN acted on α7 nicotinic acetylcholine receptor (α7nAChR) to inhibit inflammatory responses in macrophages, which indicates a new anti-inflammatory mechanism of SIN. However, the level of α7nAChR was increased in the inflammatory responses and was downregulated by SIN in vitro, so the underlying mechanisms of SIN acting on α7nAChR remain unclear. PURPOSE To analyze the role of α7nAChR in inflammation and the effect and mechanism of SIN regulation of α7nAChR. METHODS The effects of SIN on α7nAChR in endotoxemic mice and LPS-stimulated macrophages were observed. Nicotine (Nic) was used as a positive control, and berberine (Ber) was used as a negative control targeting α7nAChR. The antagonists of α7nAChR, α-bungarotoxin (BTX) and mecamylamine (Me), were used to block α7nAChR. In RAW264.7 macrophage cells in vitro, α7nAChR short hairpin RNA (shRNA) was used to knock down α7nAChR. Macrophage polarization was analyzed by the detection of TNF-α, IL-6, iNOS, IL-10, Arg-1, and Fizz1. U0126 was used to block ERK phosphorylation. The cytokines α7nAChR, ERK1/2, p-ERK1/2 and Egr-1 were detected. RESULTS SIN decreased the levels of TNF-α, IL-6 and the expression of α7nAChR increased by LPS in endotoxemic mice. The above effects of SIN were attenuated by BTX. In the α7nAChR shRNA transfected RAW264.7 cells, compared with the control, α7nAChR was knocked down, and M1 phenotype markers (including TNF-α, IL-6, and iNOS) were significantly downregulated, whereas M2 phenotype markers (including IL-10, Arg-1, and Fizz1) were significantly upregulated when stimulated by LPS. SIN inhibited the expression of p-ERK1/2 and the transcription factor Egr-1 induced by LPS in RAW264.7 cells, and the above effects of SIN were attenuated by BTX. The expression of α7nAChR was suppressed by U0126, which lessened the expression of p-ERK1/2 and Egr-1. CONCLUSIONS SIN acts on α7nAChR to inhibit inflammatory responses and downregulates high expression of α7nAChR in vivo and in vitro. The increase of α7nAChR expression is correlated with inflammatory responses and participates in macrophage M1 polarization. SIN downregulates α7nAChR via a feedback pathway of α7nAChR/ERK/Egr-1, which contributes to inhibiting macrophage M1 polarization and inflammatory responses.
Collapse
Affiliation(s)
- Ying-Kun Zhi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Lang Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Rui-Li Zhu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jin-Fang Luo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China
| | - Qing-Ping Shi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Sha-Sha Bai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Yan-Wu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Qun Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jia-Zhong Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Liang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China
| | - Pei-Xun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, P.R. China.
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China.
| |
Collapse
|
5
|
Hu JN, Liu Y, Liu SC, Zhang T, Chen GB, Zhao J, Ma T. The α7 Nicotinic Acetylcholine Receptor Agonist GTS-21 Improves Bacterial Clearance via Regulation of Monocyte Recruitment and Activity in Polymicrobial Septic Peritonitis. Front Immunol 2022; 13:839290. [PMID: 35309361 PMCID: PMC8931331 DOI: 10.3389/fimmu.2022.839290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
The cholinergic anti-inflammatory pathway has been identified as an effective pathway to modify inflammatory responses. Here, we verified that delayed administration with a selective α7nAChR agonist GTS-21 enables a more efficient elimination of the offending pathogens, diminished inflammatory response and organ injury, and improved survival rates in the polymicrobial septic peritonitis model. We illustrated that the improved bacterial clearance upon GTS-21 stimulation was accompanied by enhanced recruitment of monocytes into the peritoneal cavity and simultaneously increased phagocytic activity and iNOS expression of these recruited monocytes. Mechanically, splenectomy prior to administration of GTS-21 attenuated the recruitment of monocytes into the peritoneal cavity and abolished the protective benefits of GTS-21 treatment. Meanwhile, GTS-21 administration accelerates the deployment of splenic monocytes during septic peritonitis. Collectively, these data suggested that appropriate selective pharmacological α7nAChR activation promotes monocytes trafficking in a spleen-dependent manner and upregulates the antibacterial activity of recruited monocytes during septic peritonitis, which may be utilized as a promising therapeutic modality for patients suffering from septic peritonitis.
Collapse
Affiliation(s)
- Jian-nan Hu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Liu
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Shu-chang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Gui-bing Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
6
|
Baris E, Efe H, Gumustekin M, Arici MA, Tosun M. Varenicline Prevents LPS-Induced Inflammatory Response via Nicotinic Acetylcholine Receptors in RAW 264.7 Macrophages. Front Mol Biosci 2021; 8:721533. [PMID: 34712695 PMCID: PMC8546203 DOI: 10.3389/fmolb.2021.721533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
The cholinergic anti-inflammatory pathway plays an important role in controlling inflammation. This study investigated the effects of varenicline, an α7 nicotinic acetylcholine receptor (α7nAChR) agonist, on inflammatory cytokine levels, cell proliferation, and migration rates in a lipopolysaccharide (LPS)-induced inflammation model in RAW 264.7 murine macrophage cell lines. The cells were treated with increasing concentrations of varenicline, followed by LPS incubation for 24 h. Prior to receptor-mediated events, anti-inflammatory effects of varenicline on different cytokines and chemokines were investigated using a cytokine array. Nicotinic AChR-mediated effects of varenicline were investigated by using a non-selective nAChR antagonist mecamylamine hydrochloride and a selective α7nAChR antagonist methyllycaconitine citrate. TNFα, IL-1β, and IL-6 levels were determined by the ELISA test in cell media 24 h after LPS administration and compared with those of dexamethasone. The rates of cellular proliferation and migration were monitored for 24 h after drug treatment using a real-time cell analysis system. Varenicline decreased LPS-induced cytokines and chemokines including TNFα, IL-6, and IL-1β via α7nAChRs to a similar level that observed with dexamethasone. Varenicline treatment decreased LPS-induced cell proliferation, without any nAChR involvement. On the other hand, the LPS-induced cell migration rate decreased with varenicline via α7nAChR. Our data suggest that varenicline inhibits LPS-induced inflammatory response by activating α7nAChRs within the cholinergic anti-inflammatory pathway, reducing the cytokine levels and cell migration.
Collapse
Affiliation(s)
- Elif Baris
- Department of Pharmacology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey.,Department of Pharmacology, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Hande Efe
- Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Mukaddes Gumustekin
- Department of Medical Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Mualla Aylin Arici
- Department of Medical Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Metiner Tosun
- Department of Pharmacology, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| |
Collapse
|
7
|
Zhang X, Xu F, Wang L, Li J, Zhang J, Huang L. The role of dorsal root ganglia alpha-7 nicotinic acetylcholine receptor in complete Freund's adjuvant-induced chronic inflammatory pain. Inflammopharmacology 2021; 29:1487-1501. [PMID: 34514543 DOI: 10.1007/s10787-021-00873-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alpha-7 nicotinic acetylcholine receptor (α7 nAChR) was reported to have a critical role in the regulation of pain sensitivity and neuroinflammation. However, the expression level of α7 nAChR in dorsal root ganglion (DRG) and the underlying neuroinflammatory mechanisms associated with hyperalgesia are still unknown. METHODS In the present study, the expression and mechanism of α7 nAChR in chronic inflammatory pain was investigated using a complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model. Subsequently, a series of assays including immunohistochemistry, western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. RESULTS α7 nAChR was mostly colocalized with NeuN in DRG and upregulated after CFA injection. Microinjection of α7 nAChR siRNA into ipsilateral L4/5 DRGs aggravated the CFA-induced pain hypersensitivity. Intrathecal α7 nAChR agonist GTS-21 attenuated the development of CFA-induced mechanical and temperature-related pain hypersensitivities. In neuronal the SH-SY5Y cell line, the knockdown of α7 nAChRs triggered the upregulation of TRAF6 and NF-κB under CFA-induced inflammatory conditions, while agitation of α7 nAChR suppressed the TRAF6/NF-κB activation. α7 nAChR siRNA also exacerbated the secretion of pro-inflammatory mediators from LPS-induced SH-SY5Y cells. Conversely, α7 nAChR-specific agonist GTS-21 diminished the release of interleukin-1beta (IL-1β), IL-6, IL-8, and tumor necrosis factor-α (TNFα) in SH-SY5Y cells under inflammatory conditions. Mechanistically, the modulation of pain sensitivity and neuroinflammatory action of α7 nAChR may be mediated by the TRAF6/NF-κB signaling pathway. CONCLUSIONS The findings of this study suggest that α7 nAChR may be potentially utilized as a therapeutic target for therapeutics of chronic inflammatory pain.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Fangxia Xu
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Lijuan Wang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Jianhai Zhang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China.
| | - Lina Huang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China.
| |
Collapse
|
8
|
Wu SJ, Shi ZW, Wang X, Ren FF, Xie ZY, Lei L, Chen P. Activation of the Cholinergic Anti-inflammatory Pathway Attenuated Angiotension II-Dependent Hypertension and Renal Injury. Front Pharmacol 2021; 12:593682. [PMID: 33815099 PMCID: PMC8010129 DOI: 10.3389/fphar.2021.593682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Angiotensin II (AngII) induces renal fibrosis, characterized by fibroblast proliferation, inflammatory cell infiltration and excessive extracellular matrix deposition, all of which was relevant closely to hypertension. The vagus nerve-related cholinergic anti-inflammatory pathway (CAP) modulates local and systemic inflammatory responses. The aim of present study was to determine the effect of CAP on renal inflammation and fibrosis. Methods and Results: AngII-induced hypertension was induced in vivo by 14-days low-dose AngII infusion from osmotic minipumps. We used GTS-21 dihydrochloride, a selective nicotinic acetylcholine receptor agonist. Daily intraperitoneal GTS-21 injection and/or vagotomy started after hypertension was confirmed and continued for 4 weeks. The elevated blood pressure caused by AngII was significantly attenuated by GTS-21. Improved baroreflex sensitivity was observed after GTS-21 administration. Masson stain and immunoblotting revealed that deposition of excessive fibrosis and overexpression of inflammatory cytokines induced by AngII was reduced by GTS-21. To determine the role of autonomic control in CAP, unilateral vagotomy was performed. Vagotomy weakened the effect of CAP on AngII-induced hypertension. In vitro, GTS-21 suppressed NF-κB activation, attenuated AngII-induced epithelial-mesenchymal transition and reduced inflammation and fibrosis in NRK-52E cells; α-bungarotoxin (α-Bgt, an α7-nAChR selective antagonist) partly inhibited these effects. Conclusion: CAP protected against AngII-induced hypertension via improvement in autonomic control, suppression of NF-κB activation, and reduction of renal fibrosis and inflammatory response.
Collapse
Affiliation(s)
- Shu-Jie Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhe-Wei Shi
- Department of Cardiology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Xue Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang-Fang Ren
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zuo-Yi Xie
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Lei
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Zhou Y, Leung-Pitt Y, Deng H, Ren Y, You Z, Kem WR, Shen S, Zhang W, Mao J, Martyn JAJ. Nonopioid GTS-21 Mitigates Burn Injury Pain in Rats by Decreasing Spinal Cord Inflammatory Responses. Anesth Analg 2021; 132:240-252. [PMID: 33264122 PMCID: PMC7736563 DOI: 10.1213/ane.0000000000005274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Burn injury (BI) pain consists of inflammatory and neuropathic components and activates microglia. Nicotinic alpha 7 acetylcholine receptors (α7AChRs) expressed in microglia exhibit immunomodulatory activity during agonist stimulation. Efficacy of selective α7AChR agonist GTS-21 to mitigate BI pain and spinal pain-mediators was tested. METHODS Anesthetized rats after hind-paw BI received intraperitoneal GTS-21 or saline daily. Allodynia and hyperalgesia were tested on BI and contralateral paw for 21 days. Another group after BI receiving GTS-21 or saline had lumbar spinal cord segments harvested (day 7 or 14) to quantify spinal inflammatory-pain transducers or microglia activation using fluorescent marker, ionized calcium-binding adaptor protein (Iba1). RESULTS BI significantly decreased allodynia withdrawal threshold from baseline of ~9-10 to ~0.5-1 g, and hyperalgesia latency from ~16-17 to ~5-6 seconds by day 1. Both doses of GTS-21 (4 or 8 mg/kg) mitigated burn-induced allodynia from ~0.5-1 to ~2-3 g threshold (P = .089 and P = .010), and hyperalgesia from ~5-6 to 8-9 seconds (P < .001 and P < .001) by day 1. The GTS-21 group recovered to baseline pain threshold by day 15-17 compared to saline-treated, where the exaggerated nociception persisted beyond 15-17 days. BI significantly (P < .01) increased spinal cord microgliosis (identified by fluorescent Iba1 staining), microglia activation (evidenced by the increased inflammatory cytokine), and pain-transducer (protein and/or messenger RNA [mRNA]) expression (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β], nuclear factor-kappa B [NF-κB], interleukin-6 [IL-6], Janus-associated kinase signal transducer and activator of transcription 3 [JAK-STAT3], and/or N-methyl-D-aspartate receptor [NMDAR]). GTS-21 mitigated pain-transducer changes. The α7AChR antagonist methyllycaconitine nullified the beneficial effects of GTS-21 on both increased nociception and pain-biomarker expression. CONCLUSIONS Nonopioid, α7AChR agonist GTS-21 elicits antinociceptive effects at least in part by decreased activation spinal-cord pain-inducers. The α7AChR agonist GTS-21 holds promise as potential therapeutic adjunct to decrease BI pain by attenuating both microglia changes and expression of exaggerated pain transducers.
Collapse
Affiliation(s)
- Yinhui Zhou
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts.,Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiuka Leung-Pitt
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts
| | - Hao Deng
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts.,DrPh Program of Bloomberg-School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Yang Ren
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts.,Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zerong You
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts
| | - William R Kem
- Department of Pharmacology, University of Florida, Gainesville, Florida
| | - Shiqian Shen
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianren Mao
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts
| | - J A Jeevendra Martyn
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Ríos SC, Colón Sáez JO, Quesada O, Figueroa KQ, Lasalde Dominicci JA. Disruption of the cholinergic anti-inflammatory response by R5-tropic HIV-1 protein gp120 JRFL. J Biol Chem 2021; 296:100618. [PMID: 33811859 PMCID: PMC8102909 DOI: 10.1016/j.jbc.2021.100618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/13/2023] Open
Abstract
Despite current pharmacological intervention strategies, patients with HIV still suffer from chronic inflammation. The nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the nervous and immune systems. In macrophages, activation of alpha7-nAChR (α7-nAChR) controls inflammatory processes through the cholinergic anti-inflammatory response (CAR). Given that this innate immune response controls inflammation and α7-nAChR plays a critical role in the regulation of systemic inflammation, we investigated the effects of an R5-tropic HIV soluble component, gp120JRFL, on the CAR functioning. We previously demonstrated that X4-tropic HIV-1 gp120IIIB disrupts the CAR as well as inducing upregulation of the α7-nAChR in vitro in monocyte-derived macrophages (MDMs), which correlates with the upregulation observed in monocytes, T-lymphocytes, and MDMs recovered from HIV-infected people. We demonstrate here using imaging and molecular assays that the R5-tropic HIV-1 glycoprotein gp120JRFL upregulates the α7-nAChR in MDMs dependent on CD4 and/or CCR5 activation. This upregulation was also dependent on MEK1 since its inhibition attenuates the upregulation of α7-nAChR induced by gp120JRFL and was concomitant with an increase in basal calcium levels, which did not result in apoptosis. Moreover, the CAR was determined to be disrupted, since α7-nAChR activation in MDMs did not reduce the production of the proinflammatory cytokines IL-6, GRO-α, or I-309. Furthermore, a partial antagonist of α7-nAChR, bupropion, rescued IL-6 but not GRO-α or I-309 production. Together, these results demonstrate that gp120JRFL disrupts the CAR in MDMs. Other medications targeting the α7-nAChR need to be tested to reactivate the CAR to ameliorate inflammation in HIV-infected subjects.
Collapse
Affiliation(s)
- Sonnieliz Cotto Ríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, USA
| | - José O Colón Sáez
- Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Orestes Quesada
- Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, USA
| | | | - José A Lasalde Dominicci
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, USA; Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, USA; Institute of Neurobiology, University of Puerto Rico Medical Science Campus, San Juan, Puerto Rico, USA; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA.
| |
Collapse
|
11
|
Sitapara RA, Gauthier AG, Patel VS, Lin M, Zur M, Ashby CR, Mantell LL. The α7 nicotinic acetylcholine receptor agonist GTS-21 improves bacterial clearance in mice by restoring hyperoxia-compromised macrophage function. Mol Med 2020; 26:98. [PMID: 33126860 PMCID: PMC7596622 DOI: 10.1186/s10020-020-00224-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mechanical ventilation, in combination with supraphysiological concentrations of oxygen (i.e., hyperoxia), is routinely used to treat patients with respiratory distress, such as COVID-19. However, prolonged exposure to hyperoxia compromises the clearance of invading pathogens by impairing macrophage phagocytosis. Previously, we have shown that the exposure of mice to hyperoxia induces the release of the nuclear protein high mobility group box-1 (HMGB1) into the pulmonary airways. Furthermore, extracellular HMGB1 impairs macrophage phagocytosis and increases the mortality of mice infected with Pseudomonas aeruginosa (PA). The aim of this study was to determine whether GTS-21 (3-(2,4-dimethoxybenzylidene) anabaseine), an α7 nicotinic acetylcholine receptor (α7nAChR) agonist, could (1) inhibit hyperoxia-induced HMGB1 release into the airways; (2) enhance macrophage phagocytosis and (3) increase bacterial clearance from the lungs in a mouse model of ventilator-associated pneumonia. METHOD GTS-21 (0.04, 0.4, and 4 mg/kg) or saline were administered by intraperitoneal injection to mice that were exposed to hyperoxia (≥ 99% O2) and subsequently challenged with PA. RESULTS The systemic administration of 4 mg/kg i.p. of GTS-21 significantly increased bacterial clearance, decreased acute lung injury and decreased accumulation of airway HMGB1 compared to the saline control. To determine the mechanism of action of GTS-21, RAW 264.7 cells, a macrophage-like cell line, were incubated with different concentrations of GTS-21 in the presence of 95% O2. The phagocytic activity of macrophages was significantly increased by GTS-21 in a dose-dependent manner. In addition, GTS-21 significantly inhibited the cytoplasmic translocation and release of HMGB1 from RAW 264.7 cells and attenuated hyperoxia-induced NF-κB activation in macrophages and mouse lungs exposed to hyperoxia and infected with PA. CONCLUSIONS Our results indicate that GTS-21 is efficacious in improving bacterial clearance and reducing acute lung injury via enhancing macrophage function by inhibiting the release of nuclear HMGB1. Therefore, the α7nAChR represents a possible pharmacological target to improve the clinical outcome of patients on ventilators by augmenting host defense against bacterial infections.
Collapse
Affiliation(s)
- Ravikumar A Sitapara
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Alex G Gauthier
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Vivek S Patel
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Michelle Zur
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA. .,The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, 11030, USA.
| |
Collapse
|
12
|
Chen X, Zhao C, Zhang C, Li Q, Chen J, Cheng L, Zhou J, Su X, Song Y. Vagal-α7nAChR signaling promotes lung stem cells regeneration via fibroblast growth factor 10 during lung injury repair. Stem Cell Res Ther 2020; 11:230. [PMID: 32522255 PMCID: PMC7288553 DOI: 10.1186/s13287-020-01757-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Proliferation and transdifferentiation of lung stem cells (LSCs) could promote lung injury repair. The distal airways of the lung are innervated by the vagus nerve. Vagal-alpha7 nicotinic acetylcholine receptor (α7nAChR) signaling plays a key role in regulating lung infection and inflammation; however, whether this pathway could regulate LSCs remains unknown. METHODS LSCs (Sca1+CD45-CD31- cells) were isolated and characterized according to a previously published protocol. α7nAChR knockout mice and wild-type littermates were intratracheally challenged with lipopolysaccharide (LPS) to induce lung injury. A cervical vagotomy was performed to study the regulatory effect of the vagus nerve on LSCs-mediated lung repair. α7nAChR agonist or fibroblast growth factor 10 (FGF10) was intratracheally delivered to mice. A single-cell suspension of lung cells was analyzed by flow cytometry. Lung tissues were collected for histology, quantitative real-time polymerase chain reaction (RT-PCR), and immunohistochemistry. RESULTS We found that LSCs maintained multilineage differentiation ability and transdifferentiated into alveolar epithelial type II cells (AEC2) following FGF10 stimulation in vitro. Vagotomy or α7nAChR deficiency reduced lung Ki67+ LSCs expansion and hampered the resolution of LPS-induced lung injury. Vagotomy or α7nAChR deficiency decreased lung FGF10 expression and the number of AEC2. The α7nAChR agonist-GTS-21 reversed the reduction of FGF10 expression in the lungs, as well as the number of Ki67+ cells, LSCs, Ki67+ LSCs, and AEC2 in LPS-challenged vagotomized mice. Supplementation with FGF10 counteracted the loss of Ki67+ LSCs and AEC2 in LPS-challenged α7nAChR knockout mice. CONCLUSIONS The vagus nerve deploys α7nAChR to enhance LSCs proliferation and transdifferentiation and promote lung repair in an FGF10-dependent manner during LPS-induced lung injury.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Caiqi Zhao
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Cuiping Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Qingmei Li
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Lianping Cheng
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China.
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China. .,Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai, People's Republic of China. .,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Douaoui S, Djidjik R, Boubakeur M, Ghernaout M, Touil-Boukoffa C, Oumouna M, Derrar F, Amrani Y. GTS-21, an α7nAChR agonist, suppressed the production of key inflammatory mediators by PBMCs that are elevated in COPD patients and associated with impaired lung function. Immunobiology 2020; 225:151950. [PMID: 32387130 PMCID: PMC7194070 DOI: 10.1016/j.imbio.2020.151950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a lung inflammatory disease characterized by progressive airflow limitation, chronic respiratory symptoms and frequent exacerbations. There is an unmet need to identify novel therapeutic alternatives beside bronchodilators that prevent disease progression. Levels of both Nitric Oxide (NO) and IL-6 were significantly increased in the plasma of patients in the exacerbation phase (ECOPD, n = 13) when compared to patients in the stable phase (SCOPD, n = 38). Levels of both NO and IL-6 were also found to inversely correlate with impaired lung function (%FEV1 predicted). In addition, there was a strong positive correlation between levels of IL-6 and NO found in the plasma of patients and those spontaneously produced by their peripheral blood mononuclear cells (PBMCs), identifying these cells as a major source of these key inflammatory mediators in COPD. GTS-21, an agonist for the alpha 7 nicotinic receptors (α7nAChR), was found to exert immune-modulatory actions in PBMCs of COPD patients by suppressing the production of IL-6 and NO. This study provides the first evidence supporting the therapeutic potential of α7nAChR agonists in COPD due to their ability to suppress the production of key inflammatory markers associated with disease severity.
Collapse
Affiliation(s)
- Sana Douaoui
- USTHB, Cytokines and NO Synthases' Team, LBCM, FSB, Algiers, Algeria; Faculty of Sciences, Department of Life and Natural Sciences, University of Medea, Algeria
| | - Reda Djidjik
- Department of Immunology, Issaad Hassani Hospital, Beni Messous, Algiers, Algeria
| | - Mokhtar Boubakeur
- Department of Pneumology & Phtisiology, and Allergology, Rouiba Hospital, Algiers, University of Algiers 1, Faculty of Medicine, Algiers, Algeria
| | - Merzak Ghernaout
- Department of Pneumology & Phtisiology, and Allergology, Rouiba Hospital, Algiers, University of Algiers 1, Faculty of Medicine, Algiers, Algeria
| | | | - Mustapha Oumouna
- Faculty of Sciences, Department of Life and Natural Sciences, University of Medea, Algeria
| | - Fawzi Derrar
- National Influenza Centre, Viral Respiratory Laboratory, Pasteur Institute, Algiers, Algeria
| | - Yassine Amrani
- Department of Respiratory Sciences, Institute of Lung Health and NIHR Leicester BRC-Respiratory, Glenfield Hospital, University of Leicester, Leicester, UK.
| |
Collapse
|
14
|
Siniavin AE, Streltsova MA, Kudryavtsev DS, Shelukhina IV, Utkin YN, Tsetlin VI. Activation of α7 Nicotinic Acetylcholine Receptor Upregulates HLA-DR and Macrophage Receptors: Potential Role in Adaptive Immunity and in Preventing Immunosuppression. Biomolecules 2020; 10:E507. [PMID: 32230846 PMCID: PMC7225944 DOI: 10.3390/biom10040507] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Immune response during sepsis is characterized by hyper-inflammation followed by immunosuppression. The crucial role of macrophages is well-known for both septic stages, since they are involved in immune homeostasis and inflammation, their dysfunction being implicated in immunosuppression. The cholinergic anti-inflammatory pathway mediated by macrophage α7 nicotinic acetylcholine receptor (nAChR) represents possible drug target. Although α7 nAChR activation on macrophages reduces the production of proinflammatory cytokines, the role of these receptors in immunological changes at the cellular level is not fully understood. Using α7 nAChR selective agonist PNU 282,987, we investigated the influence of α7 nAChR activation on the expression of cytokines and, for the first time, of the macrophage membrane markers: cluster of differentiation 14 (CD14), human leukocyte antigen-DR (HLA-DR), CD11b, and CD54. Application of PNU 282,987 to THP-1Mϕ (THP-1 derived macrophages) cells led to inward ion currents and Ca2+ increase in cytoplasm showing the presence of functionally active α7 nAChR. Production of cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 was estimated in classically activated macrophages (M1) and treatment with PNU 282,987 diminished IL-10 expression. α7 nAChR activation on THP-1Mϕ, THP-1M1, and monocyte-derived macrophages (MDMs) increased the expression of HLA-DR, CD54, and CD11b molecules, but decreased CD14 receptor expression, these effects being blocked by alpha (α)-bungarotoxin. Thus, PNU 282,987 enhances the macrophage-mediated immunity via α7 nAChR by regulating expression of their membrane receptors and of cytokines, both playing an important role in preventing immunosuppressive states.
Collapse
Affiliation(s)
- Andrei E. Siniavin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Maria A. Streltsova
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Denis S. Kudryavtsev
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
| | - Irina V. Shelukhina
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
| | - Yuri N. Utkin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
| | - Victor I. Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
- Institute of Engineering Physics for Biomedicine, National Research Nuclear University, Moscow 115409, Russia
| |
Collapse
|
15
|
α7 nAChRs expressed on antigen presenting cells are insensitive to the conventional antagonists α-bungarotoxin and methyllycaconitine. Int Immunopharmacol 2020; 81:106276. [PMID: 32044666 DOI: 10.1016/j.intimp.2020.106276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/22/2022]
Abstract
Expression of α7 nicotinic acetylcholine receptors (nAChRs) on antigen presenting cells (APCs), such as macrophages and dendritic cells, is now well established. We have shown that GTS-21, a selective α7 nAChR agonist, downregulates APC-dependent CD4+ T cell differentiation into regulatory T cells (Tregs) and effector Th1, Th2 and Th17 cells by inhibiting antigen processing, thereby interfering with antigen presentation. α7 nAChRs on Jurkat human leukemic T cells require functional T cell receptors (TCRs)/CD3 and leukocyte-specific tyrosine kinase to mediate nicotine-induced Ca2+-signaling via Ca2+ release from intracellular stores, and are insensitive to two conventional α7 nAChR antagonists, α-bungarotoxin (α-BTX) and methyllycaconitine (MLA). We investigated the effects of GTS-21, α-BTX and MLA on ovalbumin (OVA)-induced Th cytokine release from spleen cells isolated from OVA-specific TCR transgenic DO11.10 mice. We found that: (1) GTS-21 dose-dependently suppresses OVA-induced IFN-γ, IL-4 and IL-17 release, but neither α-BTX nor MLA alone affected the OVA-induced cytokine release. (2) Neither α-BTX nor MLA abolished the suppressive effects of GTS-21 on IFN-γ and IL-17 release from OVA-activated DO11.10 spleen cells. (3) GTS-21 significantly suppressed OVA-induced APC-dependent CD4+ T cell differentiation into Tregs. Neither MLA nor mecamylamine, a non-specific nAChR antagonist, abolished the suppressive effect of GTS-21 on Treg differentiation. These results suggest that α7 nAChRs on APCs involved in cytokine synthesis and T cell differentiation are insensitive to the conventional α7 nAChR antagonists, α-BTX and MLA, and that α7 nAChRs on APCs differ pharmacologically from those in neurons.
Collapse
|
16
|
Toma W, Ulker E, Alqasem M, AlSharari SD, McIntosh JM, Damaj MI. Behavioral and Molecular Basis of Cholinergic Modulation of Pain: Focus on Nicotinic Acetylcholine Receptors. Curr Top Behav Neurosci 2020; 45:153-166. [PMID: 32468494 DOI: 10.1007/7854_2020_135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have emerged as a novel therapeutic strategy for pain and inflammatory disorders. In particular, α4β2∗, α7, and α9α10 nAChR subtypes have been investigated as potential targets to treat pain. The nAChRs are distributed on the pain transmission pathways, including central and peripheral nervous systems and immune cells as well. Several agonists for α4β2∗ nAChR subtypes have been investigated in multiple animal pain models with promising results. However, studies in human indicated a narrow therapeutic window for α4β2∗ agonists. Furthermore, animal studies suggest that using agonists for α7 nAChR subtype and antagonists for α9α10 nAChR subtypes are potential novel therapies for chronic pain management, including inflammatory and neuropathic pain. More recently, alternative nAChRs ligands such as positive allosteric modulators and silent agonists have shown potential to develop into new treatments for chronic pain.
Collapse
Affiliation(s)
- Wisam Toma
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Esad Ulker
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Mashael Alqasem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - J Michael McIntosh
- Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
17
|
Sakuma M, Khan MAS, Yasuhara S, Martyn JA, Palaniyar N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation. FASEB J 2019; 33:13602-13616. [PMID: 31577450 PMCID: PMC6894048 DOI: 10.1096/fj.201901098r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Pulmonary immunosuppression often occurs after burn injury (BI). However, the reasons for BI-induced pulmonary immunosuppression are not clearly understood. Neutrophil recruitment and neutrophil extracellular trap (NET) formation (NETosis) are important components of a robust pulmonary immune response, and we hypothesized that pulmonary inflammation and NETosis are defective after BI. To test this hypothesis, we established a mouse model with intranasal LPS instillation in the presence or absence of BI (15% of body surface burn) and determined the degree of immune cell infiltration, NETosis, and the cytokine levels in the airways and blood on d 2. Presence of LPS recruited monocytes and large numbers of neutrophils to the airways and induced NETosis (citrullinated histone H3, DNA, myeloperoxidase). By contrast, BI significantly reduced LPS-mediated leukocyte recruitment and NETosis. This BI-induced immunosuppression is attributable to the reduction of chemokine (C-C motif) ligand (CCL) 2 (monocyte chemoattractant protein 1) and CCL3 (macrophage inflammatory protein 1α). BI also suppressed LPS-induced increase in IL-17A, IL-17C, and IL-17E/IL-25 levels in the airways. Therefore, BI-mediated reduction in leukocyte recruitment and NETosis in the lungs are attributable to these cytokines. Regulating the levels of some of these key cytokines represents a potential therapeutic option for mitigating BI-mediated pulmonary immunosuppression.-Sakuma, M., Khan, M. A. S., Yasuhara, S., Martyn, J. A., Palaniyar, N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation.
Collapse
Affiliation(s)
- Miyuki Sakuma
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Mohammed A. S. Khan
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Shingo Yasuhara
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeevendra A. Martyn
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Nades Palaniyar
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Institute of Medical Sciences, Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Maroli A, Di Lascio S, Drufuca L, Cardani S, Setten E, Locati M, Fornasari D, Benfante R. Effect of donepezil on the expression and responsiveness to LPS of CHRNA7 and CHRFAM7A in macrophages: A possible link to the cholinergic anti-inflammatory pathway. J Neuroimmunol 2019; 332:155-166. [PMID: 31048268 DOI: 10.1016/j.jneuroim.2019.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 01/17/2023]
Abstract
The α7 nicotinic acetylcholine receptor (CHRNA7) modulates the inflammatory response by activating the cholinergic anti-inflammatory pathway. CHRFAM7A, the human-restricted duplicated form of CHRNA7, has a negative effect on the functioning of α7 receptors, suggesting that CHRFAM7A expression regulation may be a key step in the modulation of inflammation in the human setting. The analysis of the CHRFAM7A gene's regulatory region reveals some of the mechanisms driving its expression and responsiveness to LPS in human immune cell models. Moreover, given the immunomodulatory potential of donepezil we show that it differently modulates CHRFAM7A and CHRNA7 responsiveness to LPS, thus contributing to its therapeutic potential.
Collapse
Affiliation(s)
- Annalisa Maroli
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy
| | - Simona Di Lascio
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy
| | - Lorenzo Drufuca
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Silvia Cardani
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy
| | - Elisa Setten
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Massimo Locati
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Diego Fornasari
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; CNR -Neuroscience Institute, via Vanvitelli 32, 20129 Milan, Italy
| | - Roberta Benfante
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; CNR -Neuroscience Institute, via Vanvitelli 32, 20129 Milan, Italy.
| |
Collapse
|
19
|
Garg BK, Loring RH. GTS-21 has cell-specific anti-inflammatory effects independent of α7 nicotinic acetylcholine receptors. PLoS One 2019; 14:e0214942. [PMID: 30947238 PMCID: PMC6448884 DOI: 10.1371/journal.pone.0214942] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
α7 Nicotinic acetylcholine receptors (nAChRs) reportedly reduce inflammation by blocking effects of the important pro-inflammatory transcription factor, nuclear factor kappa-light chain-enhancer of B cells (NFκB). The α7 nAChR partial agonist GTS-21 reduces secretion of pro-inflammatory cytokines including interleukin-6 (IL6) and tumor-necrosis factor (TNF) in models of endotoxemia and sepsis, and its anti-inflammatory effects are widely ascribed to α7 nAChR activation. However, mechanistic details of α7 nAChR involvement in GTS-21 effects on inflammatory pathways remain unclear. Here, we investigate how GTS-21 acts in two cell systems including the non-immune rat pituitary cell line GH4C1 expressing an NFκB-driven reporter gene and cytokine secretion by ex vivo cultures of primary mouse macrophages activated by lipopolysaccharide (LPS). GTS-21 does not change TNF-stimulated NFκB signaling in GH4C1 cells expressing rat α7 nAChRs, suggesting that GTS-21 requires additional unidentified factors besides α7 nAChR expression to allow anti-inflammatory effects in these cells. In contrast, GTS-21 dose-dependently suppresses LPS-induced IL6 and TNF secretion in primary mouse macrophages endogenously expressing α7 nAChRs. GTS-21 also blocks TNF-induced phosphorylation of NFκB inhibitor alpha (IκBα), an important intermediary in NFκB signaling. However, α7 antagonists methyllycaconitine and α-bungarotoxin only partially reverse GTS-21 blockade of IL6 and TNF secretion. Further, GTS-21 significantly inhibited LPS-induced IL6 and TNF secretion in macrophages isolated from knockout mice lacking α7 nAChRs. These data indicate that even though a discrete component of the anti-inflammatory effects of GTS-21 requires expression of α7 nAChRs in macrophages, GTS-21 also has anti-inflammatory effects independent of these receptors depending on the cellular context.
Collapse
Affiliation(s)
- Brijesh K. Garg
- Department of Pharmaceutical Science, Northeastern University, Boston, Massachusetts, United States of America
| | - Ralph H. Loring
- Department of Pharmaceutical Science, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Kong W, Kang K, Gao Y, Liu H, Meng X, Cao Y, Yang S, Liu W, Zhang J, Yu K, Zhao M. GTS-21 Protected Against LPS-Induced Sepsis Myocardial Injury in Mice Through α7nAChR. Inflammation 2018; 41:1073-1083. [PMID: 29680908 DOI: 10.1007/s10753-018-0759-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis-induced myocardial injury is a well-known cause of mortality. The cholinergic anti-inflammatory pathway (CHAIP) is a physiological mechanism by which the central nervous system regulates immune response through the vagus nerve and acetylcholine; the α7-nicotinic acetylcholine receptor (α7nAChR) is the main component of CHAIP; GTS-21, a synthetic α7nAChR selective agonist, has repeatedly shown its powerful anti-inflammatory effect. However, little is known about its effect on LPS-induced myocardial injury. We investigated the protective effects of GTS-21 on lipopolysaccharide (LPS)-induced cardiomyopathy via the cholinergic anti-inflammatory pathway in a mouse sepsis model. We constructed the model of myocardial injury in sepsis mice by C57BL/6 using LPS and determined the time of LPS treatment by hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). C57BL/6 mice were randomized into five groups: blank control group, model group, α-bungarotoxin + LPS group, GTS-21 + LPS group, and α-bungarotoxin + GTS-21 + LPS group. The pathological results of myocardial tissue were detected by the HE method; the apoptosis rate was detected by the TUNEL method; the relative expressions of NF-κB p65, Caspase-3, Caspase-8, Bcl-2, Bax, p53, and a7nAChR were detected by real-time quantitative PCR (RT-PCR); and the protein expressions of IL-6, IL-1 β, TNF-α, and pSTAT3 were detected by western blot. The results showed that LPS-induced myocardial pathological and apoptosis changes were significant compared with the blank group, which was reversed by GTS-21; however, pretreatment with α-bungarotoxin obviously blocked the protective effect of GTS-21. NF-κB p65, Caspase-3, Caspase-8, Bax, p53, IL-6, IL-1β, TNF-α, and pSTAT3 were significantly increased in the model group, while a7nAChR and Bcl-2 were significantly decreased; GTS-21 treatment reversed that result, while pretreatment with α-bungarotoxin strengthened the result in the model. And pretreatment with α-bungarotoxin blocked the protective effect of GTS-21. GTS-21 can alleviate the LPS-induced damage in the heart via a7nAChR, and pretreatment with α-bungarotoxin obviously blocked the protective effect of GTS-21 on sepsis in mice.
Collapse
Affiliation(s)
- Weilan Kong
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Kai Kang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Yang Gao
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Haitao Liu
- Department of Critical Care Medicine, the Cancer Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150081, China
| | - Xianglin Meng
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Yanhui Cao
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Songliu Yang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Wen Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Jiannan Zhang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, the Cancer Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150081, China. .,Institute of Critical Care Medicine in Sino Russian Medical Research Center of Harbin Medical University, 150 Haping Road, Harbin, 150081, China.
| | - Mingyan Zhao
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin, 150001, China.
| |
Collapse
|
21
|
Schaller SJ, Nagashima M, Schönfelder M, Sasakawa T, Schulz F, Khan MAS, Kem WR, Schneider G, Schlegel J, Lewald H, Blobner M, Jeevendra Martyn JA. GTS-21 attenuates loss of body mass, muscle mass, and function in rats having systemic inflammation with and without disuse atrophy. Pflugers Arch 2018; 470:1647-1657. [PMID: 30006848 DOI: 10.1007/s00424-018-2180-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
Abstract
Muscle changes of critical illness are attributed to systemic inflammatory responses and disuse atrophy. GTS-21 (3-(2,4-dimethoxy-benzylidene)anabaseine), also known as DMBX-A) is a synthetic derivative of the natural product anabaseine that acts as an agonist at α7-acetylcholine receptors (α7nAChRs). Hypothesis tested was that modulation of inflammation by agonist GTS-21 (10 mg/kg b.i.d. intraperitoneally) will attenuate body weight (BW) and muscle changes. Systemic sham inflammation was produced in 125 rats by Cornyebacterium parvum (C.p.) or saline injection on days 0/4/8. Seventy-four rats had one immobilized-limb producing disuse atrophy. GTS-21 effects on BW, tibialis muscle mass (TMM), and function were assessed on day 12. Systemically, methemoglobin levels increased 26-fold with C.p. (p < 0.001) and decreased significantly (p < 0.033) with GTS-21. Control BW increased (+ 30 ± 9 g, mean ± SD) at day 12, but decreased with C.p. and superimposed disuse (p = 0.005). GTS-21 attenuated BW loss in C.p. (p = 0.005). Compared to controls, TMM decreased with C.p. (0.43 ± 0.06 g to 0.26 ± 0.03 g) and with superimposed disuse (0.18 ± 0.04 g); GTS-21 ameliorated TMM loss to 0.32 ± 0.04 (no disuse, p = 0.028) and to 0.22 ± 0.03 (with disuse, p = 0.004). Tetanic tensions decreased with C.p. or disuse and GTS-21 attenuated tension decrease in animals with disuse (p = 0.006) and in animals with C.p. and disuse (p = 0.029). C.p.-induced 11-fold increased muscle α7nAChR expression was decreased by > 60% with GTS-21 treatment. In conclusion, GTS-21 modulates systemic inflammation, evidenced by both decreased methemoglobin levels and decrease of α7nAChR expression, and mitigates inflammation-mediated loss of BW, TMM, fiber size, and function.
Collapse
Affiliation(s)
- Stefan J Schaller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA.
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany.
| | - Michio Nagashima
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
- Department of Intensive Care Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Martin Schönfelder
- Institute of Exercise Biology, Technische Universität München, Georg-Brauchle-Ring 60/62, 80992, Munich, Germany
| | - Tomoki Sasakawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, 1 Chome-1-1 Midorigaoka Higashi 2 Jō, Asahikawa-shi, Hokkaidō, 078-8802, Japan
| | - Fabian Schulz
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany
| | - Mohammed A S Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, P.O. Box 100267, Gainesville, FL, 32610-0267, USA
| | - Gerhard Schneider
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany
| | - Jürgen Schlegel
- Institute of Pathology, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Heidrun Lewald
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany
| | - Manfred Blobner
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany
| | - J A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| |
Collapse
|
22
|
An ALPHA7 Nicotinic Acetylcholine Receptor Agonist (GTS-21) Promotes C2C12 Myonuclear Accretion in Association with Release of Interleukin-6 (IL-6) and Improves Survival in Burned Mice. Shock 2018; 48:227-235. [PMID: 28282360 DOI: 10.1097/shk.0000000000000849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of interleukin-6 (IL-6) in physiological processes and disease is poorly understood. The hypothesis tested in this study was that selective alpha7 acetylcholine receptor (α7AChR) agonist, GTS-21, releases IL-6 in association with myonuclear accretion and enhances insulin signaling in muscle cells, and improves survival of burn injured (BI) mice. The in vitro effects of GTS-21 were determined in C2C12 myoblasts and 7-day differentiated myotubes (myotubes). The in vivo effects of GTS-21 were tested in BI wild-type (WT) and IL-6 knockout (IL6KO) mice. GTS-21 dose-dependently (0 μM, 100 μM, and 200 μM) significantly increased IL-6 levels in myoblasts and myotubes at 6 and 9 h. GTS-21-induced IL-6 release in myotubes was attenuated by methyllycaconitine (α7AChR antagonist), and by Stat-3 or Stat-5 inhibitors. GTS-21 increased MyoD and Pax7 protein expression, myonuclear accretion, and insulin-induced phosphorylation of Akt, GSK-3β, and Glut4 in myotubes. The glucose levels of burned IL6KO mice receiving GTS-21 decreased significantly compared with sham-burn IL6KO mice. Superimposition of BI on IL6KO mice caused 100% mortality; GTS-21 reduced mortality to 75% in the IL6KO mice. The 75% mortality in burned WT mice was reduced to 0% with GTS-21. The in vitro findings suggest that GTS-21-induced IL-6 release from muscle is mediated via α7AChRs upstream of Stat-3 and -5 pathways and is associated with myonuclear accretion, possibly via MyoD and Pax7 expression. GTS-21 in vivo improves survival in burned WT mice and IL6KO mice, suggesting a potential therapeutic application of α7AChR agonists in the treatment of BI.
Collapse
|
23
|
Prevention of Burn-Induced Inflammatory Responses and Muscle Wasting by GTS-21, a Specific Agonist for α7 Nicotinic Acetylcholine Receptors. Shock 2018; 47:61-69. [PMID: 27529131 DOI: 10.1097/shk.0000000000000729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Muscle wasting (MW) in catabolic conditions (e.g., burn injury [BI]) is a major risk factor affecting prognosis. Activation of interleukin-1β (IL-1β)/nuclear factor-kappa B (NF-κB), interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3), and/or forkhead box O transcriptional factor (FOXO)-mediated gene transcription pathways is the pivotal trigger of inflammatory response-induced protein catabolic processes in muscle. The α7 acetylcholine receptors (α7AChRs) are upregulated in macrophages and peripheral tissues including skeletal muscle during MW conditions. Stimulation of α7AChRs mitigates inflammatory responses. Hypothesis tested is that attenuation of inflammation by α7AChR stimulation with specific α7AChR agonist, GTS-21, will reverse BI-induced body mass and MW by modulating inflammatory and proteolytic signals. METHODS Body surface area (30%) BI or sham BI mice were treated with GTS-21 or saline. Tibialis anterior (TA) muscle was harvested at 6 h, day 1 or 3 to examine inflammatory and proteolytic signals. RESULTS GTS-21 significantly ameliorated the BI-induced increased expression of inflammatory cytokines IL-6, IL-1β, C-X-C motif chemokine ligand 2 (6 h), phosphorylated STAT3, and NF-κB (day 1) in TA muscle. GTS-21 also significantly inhibited BI-induced increase of MuRF1 and FOXO1 (day 1). Consistent with the cytokine and inflammatory mediator changes, BI-induced body weight and TA muscle mass loss at day 3 were mitigated by GTS-21 treatment. The beneficial effect of GTS-21 on BI changes was absent in methyllycaconitine (α7AChR antagonist)-treated wild-type and α7AChR knockout mice. CONCLUSION GTS-21 stimulation of α7AChRs, by modulating multiple molecular signals related to inflammation and proteolysis, attenuates protein wasting, evidenced by maintenance of body weight and attenuation of distant muscle mass loss after BI. GTS-21 can be a novel, potent therapeutic option for reversal of BI-induced MW.
Collapse
|
24
|
Schmidt K, Bhakdisongkhram S, Uhle F, Philipsenburg C, Zivkovic AR, Brenner T, Motsch J, Weigand MA, Hofer S. GTS-21 reduces microvascular permeability during experimental endotoxemia. Microvasc Res 2017; 115:75-82. [PMID: 28818494 DOI: 10.1016/j.mvr.2017.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/03/2017] [Accepted: 08/12/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION No effective pharmacological therapy is currently available to attenuate tissue edema formation due to increased microvascular permeability in sepsis. Cholinergic mediators have been demonstrated to exert anti-inflammatory effects via the α7 nicotinic acetylcholine receptor (α7nAChR) during inflammation. GTS-21, a partial α7nAChR agonist, is an appealing therapeutic substance for sepsis-induced microvascular inflammation due to its demonstrated cholinergic anti-inflammatory properties and its favorable safety profile in clinical trials. This study evaluated the effect of GTS-21 on microvascular permeability and leukocyte adhesion during experimental endotoxemia. METHODS Male Wistar rats (n=60) were anesthetized and prepared for intravital microscopy (IVM). Sevoflurane inhalation combined with propofol (10mg/kg) and fentanyl (5μg/kg) was used for anesthesia induction, followed by continuous intravenous anesthesia with propofol (10-40mg/kg/h) and fentanyl (10μg/kg/h). The rat mesentery was prepared for evaluation of macromolecular leakage, leukocyte adhesion and venular wall shear rate in postcapillary venules using IVM. Following baseline IVM recording, GTS-21 (1mg/kg) was applied simultaneously with, 1h prior to and 1h after administration of lipopolysaccharide (LPS, 5mg/kg). Test substances (crystalloid solution, LPS, GTS-21) were administered as volume equivalent intravenous infusions over 5min in the respective treatment groups. The consecutive IVMs were performed at 60, 120 and 180min after the baseline IVM. The systemic inflammatory response was evaluated by measuring TNF-α levels after the 180min IVM. RESULTS Microvascular permeability was significantly reduced in animals treated with GTS-21 simultaneously and 1h after induction of endotoxemia. Leukocyte adhesion, venular wall shear rate and TNF-α levels were not affected by GTS-21 treatment compared to the untreated endotoxemic animals. CONCLUSION GTS-21 has a protective effect on microvascular barrier function during endotoxemia. Considering its anti-inflammatory efficacy and safety profile, its clinical use might prove beneficial for the treatment of capillary leakage in sepsis therapy.
Collapse
Affiliation(s)
- Karsten Schmidt
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Sukanya Bhakdisongkhram
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Christoph Philipsenburg
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Aleksandar R Zivkovic
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Thorsten Brenner
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Johann Motsch
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Stefan Hofer
- Clinic for Anesthesiology, Intensive Care and Emergency Medicine I, Westpfalz Hospital, Hellmut-Hartert-Str. 1, 67655 Kaiserslautern, Germany.
| |
Collapse
|
25
|
Hoover DB. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol Ther 2017; 179:1-16. [PMID: 28529069 DOI: 10.1016/j.pharmthera.2017.05.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nervous system and immune system have broad and overlapping distributions in the body, and interactions of these ubiquitous systems are central to the field of neuroimmunology. Over the past two decades, there has been explosive growth in our understanding of neuroanatomical, cellular, and molecular mechanisms that mediate central modulation of immune functions through the autonomic nervous system. A major catalyst for growth in this field was the discovery that vagal nerve stimulation (VNS) caused a prominent attenuation of the systemic inflammatory response evoked by endotoxin in experimental animals. This effect was mediated by acetylcholine (ACh) stimulation of nicotinic receptors on splenic macrophages. Hence, the circuit was dubbed the "cholinergic anti-inflammatory pathway". Subsequent work identified the α7 nicotinic ACh receptor (α7nAChR) as the crucial target for attenuation of pro-inflammatory cytokine release from macrophages and dendritic cells. Further investigation made the important discovery that cholinergic T cells within the spleen and not cholinergic nerve cells were the source of ACh that stimulated α7 receptors on splenic macrophages. Given the important role that inflammation plays in numerous disease processes, cholinergic anti-inflammatory mechanisms are under intensive investigation from a basic science perspective and in translational studies of animal models of diseases such as inflammatory bowel disease and rheumatoid arthritis. This basic work has already fostered several clinical trials examining the efficacy of VNS and cholinergic therapeutics in human inflammatory diseases. This review provides an overview of basic and translational aspects of the cholinergic anti-inflammatory response and relevant pharmacology of drugs acting at the α7nAChR.
Collapse
Affiliation(s)
- Donald B Hoover
- Department of Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
26
|
Dong MW, Li M, Chen J, Fu TT, Lin KZ, Ye GH, Han JG, Feng XP, Li XB, Yu LS, Fan YY. Activation of α7nAChR Promotes Diabetic Wound Healing by Suppressing AGE-Induced TNF-α Production. Inflammation 2017; 39:687-99. [PMID: 26650489 DOI: 10.1007/s10753-015-0295-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes frequently presents accumulation of advanced glycation end products (AGEs), which might induce excessive TNF-α production from macrophages to cause impaired wound healing. Recent studies have shown that activation of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages efficiently suppressed TNF-α synthesis. The aim of this study was to investigate the accumulation of AGEs in the wounds and determine whether PNU282987, an α7nAChR agonist, can improve wound repair by inhibiting AGE-mediated TNF-α production in a streptozotocin (STZ)-induced diabetic mouse model. Animals were assigned into four groups: wounded control group, wounded diabetic group, wounded diabetic group treated intraperitoneally with PNU282987, or wounded diabetic group treated intraperitoneally with vehicle. Compared with the non-diabetic control mice, the diabetic mice exhibited delayed wound healing that was characterized by elevated accumulation of AGEs, increased TNF-α level and macrophage infiltration, and decreased fibroblast number and collagen deposition at the late stage of repair. Besides, macrophages of diabetic wounds showed expression of α7nAChR. During late repair, PNU282987 treatment of diabetic mice significantly reduced the level of TNF-α, accelerated wound healing, and elevated fibroblast number and collagen deposition. To investigate the cellular mechanism of these observations, RAW 264.7 cells, a macrophage cell line, were incubated with AGEs in the presence or absence of PNU282987. TNF-α production from AGE-stimulated macrophages was significantly decreased by PNU282987 in a dose-dependent manner. Furthermore, PNU282987 significantly inhibited AGE-induced nuclear factor-κB (NF-κB) activation and receptor for AGE (RAGE) expression. These results strongly suggest that activating α7nAChR can promote diabetic wound healing by suppressing AGE-induced TNF-α production, which may be closely associated with the blockage of NF-κB activation in macrophages.
Collapse
Affiliation(s)
- Miao-Wu Dong
- Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Ming Li
- Renji College, Wenzhou Medical University, Higher Education District, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Jie Chen
- Renji College, Wenzhou Medical University, Higher Education District, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Tong-Tong Fu
- Renji College, Wenzhou Medical University, Higher Education District, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Ke-Zhi Lin
- Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Guang-Hua Ye
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Jun-Ge Han
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Xiang-Ping Feng
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Xing-Biao Li
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Lin-Sheng Yu
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Yan-Yan Fan
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, Zhejiang Province, 325035, People's Republic of China.
| |
Collapse
|
27
|
Ren C, Tong YL, Li JC, Lu ZQ, Yao YM. The Protective Effect of Alpha 7 Nicotinic Acetylcholine Receptor Activation on Critical Illness and Its Mechanism. Int J Biol Sci 2017; 13:46-56. [PMID: 28123345 PMCID: PMC5264260 DOI: 10.7150/ijbs.16404] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022] Open
Abstract
Critical illnesses and injuries are recognized as major threats to human health, and they are usually accompanied by uncontrolled inflammation and dysfunction of immune response. The alpha 7 nicotinic acetylcholine receptor (α7nAchR), which is a primary receptor of cholinergic anti-inflammatory pathway (CAP), exhibits great benefits for critical ill conditions. It is composed of 5 identical α7 subunits that form a central pore with high permeability for calcium. This putative structure is closely associated with its functional states. Activated α7nAChR exhibits extensive anti-inflammatory and immune modulatory reactions, including lowered pro-inflammatory cytokines levels, decreased expressions of chemokines as well as adhesion molecules, and altered differentiation and activation of immune cells, which are important in maintaining immune homeostasis. Well understanding of the effects and mechanisms of α7nAChR will be of great value in exploring effective targets for treating critical diseases.
Collapse
Affiliation(s)
- Chao Ren
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Ya-Lin Tong
- Department of Burns and Plastic Surgery, the 181st Hospital of Chinese PLA, Guilin 541002, People's Republic of China
| | - Jun-Cong Li
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Zhong-Qiu Lu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, People's Republic of China.; State Key Laboratory of Kidney Disease, the Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| |
Collapse
|
28
|
Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem Pharmacol 2015; 97:463-472. [DOI: 10.1016/j.bcp.2015.07.032] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/27/2015] [Indexed: 12/15/2022]
|
29
|
α7 Nicotinic Acetylcholine Receptor is a Novel Mediator of Sinomenine Anti-Inflammation Effect in Macrophages Stimulated by Lipopolysaccharide. Shock 2015; 44:188-95. [DOI: 10.1097/shk.0000000000000389] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
McAllen RM, Cook AD, Khiew HW, Martelli D, Hamilton JA. The interface between cholinergic pathways and the immune system and its relevance to arthritis. Arthritis Res Ther 2015; 17:87. [PMID: 25889979 PMCID: PMC4378008 DOI: 10.1186/s13075-015-0597-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The nervous and immune systems are likely to be interacting in arthritis, with the possible involvement of both neural and non-neural cholinergic transmission. Centrally acting muscarinic agonists, electrical stimulation of the vagus and treatment with nicotinic receptor agonists can all act systemically to reduce inflammation, although the responsible pathways are incompletely understood. While this ‘cholinergic anti-inflammatory pathway’ is widely viewed as a significant pathophysiological mechanism controlling inflammation, the evidence supporting this view is critically reviewed and considered inconclusive; an alternative pathway via sympathetic nerves is implicated. This review also discusses how cholinergic pathways, both neural and non-neural, may impact on inflammation and specifically arthritis. Nicotinic agonists have been reported to reduce the incidence and severity of murine arthritis, albeit an observation we could not confirm, and clinical studies in rheumatoid arthritis have been proposed and/or are underway. While the therapeutic potential of nicotinic agonists and vagal stimulation is clear, we suggest that the ‘cholinergic anti-inflammatory pathway’ should not be uncritically embraced as a significant factor in the pathogenesis of rheumatoid arthritis.
Collapse
Affiliation(s)
- Robin M McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Andrew D Cook
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Hsu Wei Khiew
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Davide Martelli
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
31
|
Sitapara RA, Antoine DJ, Sharma L, Patel VS, Ashby CR, Gorasiya S, Yang H, Zur M, Mantell LL. The α7 nicotinic acetylcholine receptor agonist GTS-21 improves bacterial clearance in mice by restoring hyperoxia-compromised macrophage function. Mol Med 2014; 20:238-47. [PMID: 24664237 DOI: 10.2119/molmed.2013.00086] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 03/19/2014] [Indexed: 12/12/2022] Open
Abstract
Mechanical ventilation with supraphysiological concentrations of oxygen (hyperoxia) is routinely used to treat patients with respiratory distress. However, prolonged exposure to hyperoxia compromises the ability of the macrophage to phagocytose and clear bacteria. Previously, we showed that the exposure of mice to hyperoxia elicits the release of the nuclear protein high mobility group box-1 (HMGB1) into the airways. Extracellular HMGB1 impairs macrophage phagocytosis and increases the mortality of mice infected with Pseudomonas aeruginosa (PA). The aim of this study was to determine whether GTS-21 [3-(2,4 dimethoxybenzylidene)-anabaseine dihydrochloride], an α7 nicotinic acetylcholine receptor (α7nAChR) agonist, could inhibit hyperoxia-induced HMGB1 release into the airways, enhance macrophage function and improve bacterial clearance from the lungs in a mouse model of ventilator-associated pneumonia. GTS-21 (0.04, 0.4 and 4 mg/kg) or saline was systemically administered via intraperitoneal injection to mice that were exposed to hyperoxia (≥99% O2) and subsequently challenged with PA. We found that systemic administration of 4 mg/kg GTS-21 significantly increased bacterial clearance, decreased acute lung injury and decreased accumulation of airway HMGB1. To investigate the cellular mechanism of these observations, RAW 264.7 cells, a macrophagelike cell line, were incubated with different concentrations of GTS-21 in the presence of 95% O2. The phagocytic activity of macrophages was significantly increased by GTS-21 in a dose-dependent manner. In addition, hyperoxia-induced hyperacetylation of HMGB1 was significantly reduced in macrophages incubated with GTS-21. Furthermore, GTS-21 significantly inhibited the cytoplasmic translocation and release of HMGB1 from these macrophages. Our results indicate that GTS-21 is effective in improving bacterial clearance and reducing acute lung injury by enhancing macrophage function via inhibiting the release of nuclear HMGB1. Therefore, the α7nAChR represents a possible pharmacological target to improve the clinical outcome of patients on ventilators by augmenting host defense against bacterial infections.
Collapse
Affiliation(s)
- Ravikumar A Sitapara
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, United States of America
| | - Daniel J Antoine
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Lokesh Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, United States of America
| | - Vivek S Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, United States of America
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, United States of America
| | - Samir Gorasiya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, United States of America
| | - Huan Yang
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
| | - Michelle Zur
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, United States of America
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, United States of America Center for Inflammation and Immunology, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America Center for Heart and Lung Research, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
| |
Collapse
|
32
|
Downs A, Bond C, Hoover D. Localization of α7 nicotinic acetylcholine receptor mRNA and protein within the cholinergic anti-inflammatory pathway. Neuroscience 2014; 266:178-85. [DOI: 10.1016/j.neuroscience.2014.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 01/10/2023]
|
33
|
Immobilization with atrophy induces de novo expression of neuronal nicotinic α7 acetylcholine receptors in muscle contributing to neurotransmission. Anesthesiology 2014; 120:76-85. [PMID: 24126263 DOI: 10.1097/aln.0000000000000025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Mature acetylcholine receptor (AChR) isoform normally mediates muscle contraction. The hypothesis that α7AChRs up-regulate during immobilization and contribute to neurotransmission was tested pharmacologically using specific blockers to mature (waglerin-1), immature (αA-OIVA), and α7AChRs (methyllycaconitine), and nonspecific muscle AChR antagonist, α-bungarotoxin. METHODS Mice were immobilized; contralateral limbs were controls. Fourteen days later, anesthetized mice were mechanically ventilated. Nerve-stimulated tibialis muscle contractions on both sides were recorded, and blockers enumerated above sequentially administered via jugular vein. Data are mean ± standard error. RESULTS Immobilization (N = 7) induced tibialis muscle atrophy (40.6 ± 2.8 vs. 52.1 ± 2.0 mg; P < 0.01) and decrease of twitch tension (34.8 ± 1.1 vs. 42.9 ± 1.5 g; P < 0.01). Waglerin-1 (0.3 ± 0.05 μg/g) significantly (P = 0.001; N = 9) depressed twitch tension on contralateral (≥97%) versus immobilized side (approximately 45%). Additional waglerin-1 (total dose 1.06 ± 0.12 μg/g or approximately 15.0 × ED50 in normals) could not depress twitch of 80% or greater on immobilized side. Immature AChR blocker, αA-OIVA (17.0 ± 0.25 μg/g) did not change tension bilaterally. Administration of α-bungarotoxin (N = 4) or methyllycaconitine (N = 3) caused 96% or greater suppression of the remaining twitch tension on immobilized side. Methyllycaconitine, administered first (N = 3), caused equipotent inhibition by waglerin-1 on both sides. Protein expression of α7AChRs was significantly (N = 3; P < 0.01) increased on the immobilized side. CONCLUSIONS Ineffectiveness of waglerin-1 suggests that the twitch tension during immobilization is maintained by receptors other than mature AChRs. Because αA-OIVA caused no neuromuscular changes, it can be concluded that immature AChRs contribute minimally to neurotransmission. During immobilization approximately 20% of twitch tension is maintained by up-regulation of α-bungarotoxin- and methyllycaconitine-sensitive α7AChRs.
Collapse
|
34
|
Nicotine attenuates activation of tissue resident macrophages in the mouse stomach through the β2 nicotinic acetylcholine receptor. PLoS One 2013; 8:e79264. [PMID: 24223920 PMCID: PMC3815157 DOI: 10.1371/journal.pone.0079264] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/26/2013] [Indexed: 01/20/2023] Open
Abstract
Background The cholinergic anti-inflammatory pathway is an endogenous mechanism by which the autonomic nervous system attenuates macrophage activation via nicotinic acetylcholine receptors (nAChR). This concept has however not been demonstrated at a cellular level in intact tissue. To this end, we have studied the effect of nicotine on the activation of resident macrophages in a mouse stomach preparation by means of calcium imaging. Methods Calcium transients ([Ca2+]i) in resident macrophages were recorded in a mouse stomach preparation containing myenteric plexus and muscle layers by Fluo-4. Activation of macrophages was achieved by focal puff administration of ATP. The effects of nicotine on activation of macrophages were evaluated and the nAChR involved was pharmacologically characterized. The proximity of cholinergic nerves to macrophages was quantified by confocal microscopy. Expression of β2 and α7 nAChR was evaluated by β2 immunohistochemistry and fluorophore-tagged α-bungarotoxin. Results In 83% of macrophages cholinergic varicose nerve fibers were detected at distances <900nm. The ATP induced [Ca2+]i increase was significantly inhibited in 65% or 55% of macrophages by 100µM or 10µM nicotine, respectively. This inhibitory effect was reversed by the β2 nAChR preferring antagonist dihydro-β-eryhtroidine but not by hexamethonium (non-selective nAChR-antagonist), mecamylamine (α3β4 nAChR-preferring antagonist), α-bungarotoxin or methyllycaconitine (both α7 nAChR-preferring antagonist). Macrophages in the stomach express β2 but not α7 nAChR at protein level, while those in the intestine express both receptor subunits. Conclusion This study is the first insitu demonstration of an inhibition of macrophage activation by nicotine suggesting functional signaling between cholinergic neurons and macrophages in the stomach. The data suggest that the β2 subunit of the nAChR is critically involved in the nicotine-induced inhibition of these resident macrophages.
Collapse
|
35
|
Khan MAS, Sahani N, Neville KA, Nagashima M, Lee S, Sasakawa T, Kaneki M, Martyn JAJ. Nonsurgically induced disuse muscle atrophy and neuromuscular dysfunction upregulates alpha7 acetylcholine receptors. Can J Physiol Pharmacol 2013; 92:1-8. [PMID: 24383867 DOI: 10.1139/cjpp-2013-0063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous models of muscle disuse have invariably used surgical methods that require the repetitive application of plaster casts. A method of disuse atrophy that does not require such repetitive applications is described herein. Modified plastic pipette tubing was applied to a single hindlimb (mouse), from thigh to foot, resulting in immobilization of the knee in the extension position, and the ankle in the plantar flexion position. This method resulted in the loss of soleus muscle to 11%, 22%, 39%, and 45% of its original mass at 3, 7, 14, and 21 days, respectively, in association with a significant decrease of tibialis twitch (25%) and tetanic tensions (26%) at 21 days, compared with the contralateral side and (or) sham-immobilized controls. Immunohistochemical analysis of the soleus using fluorescent α-bungarotoxin revealed a significant increase in the number of synapses per unit area (818 + 31 compared with 433 + 16/mm(2)) and an increase in muscle fibers per unit area (117 compared with 83/mm(2)), most likely related to the atrophy of muscle fibers bringing synapses closer. A 3-fold increase in alpha7 acetylcholine receptor (α7AChR) protein expression, along with increased expression of α1AChR subunit in the immobilized side compared with the contralateral side was observed. The physiology and pharmacology of the novel finding of upregulation of α7AChRs with disuse requires further study.
Collapse
Affiliation(s)
- Mohammed A S Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Shriners Hospitals for Children®, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Thomsen MS, Mikkelsen JD. The α7 nicotinic acetylcholine receptor ligands methyllycaconitine, NS6740 and GTS-21 reduce lipopolysaccharide-induced TNF-α release from microglia. J Neuroimmunol 2012; 251:65-72. [PMID: 22884467 DOI: 10.1016/j.jneuroim.2012.07.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/09/2012] [Accepted: 07/18/2012] [Indexed: 12/11/2022]
Abstract
The anti-inflammatory properties of, particularly the α7, nicotinic acetylcholine receptors (nAChRs) in the peripheral immune system are well documented. There are also reports of anti-inflammatory actions of nicotine in the CNS, but it is unclear, whether this is due to activation or inhibition of nAChRs. Here we investigate the mechanisms behind α7 nAChR-mediated modulation of TNF-α release. We show that α7 nAChR agonists or positive allosteric modulators do not affect LPS-induced release of the pro-inflammatory cytokine TNF-α from cultured microglia. This suggests that classical activation of, i.e. ion-flux through, the α7 nAChR does not reduce TNF-α release from activated microglia. Contrarily, the α7 nAChR antagonist methyllycaconitine and the weak (<10%) agonist NS6740 reduced LPS-induced TNF-α release, indicating that α7 nAChR antagonism conveys anti-inflammatory properties on microglia. The effect of methyllycaconitine or NS6740 was not due to changes in MAPK signaling. These results suggest that the anti-inflammatory effects of nicotine seen in vivo are not due to classical activation of the α7 nAChR, and further suggest that antagonism of α7 nAChRs may reduce neuroinflammation.
Collapse
Affiliation(s)
- Morten S Thomsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| | | |
Collapse
|
37
|
Chon JY. Muscle Relaxants in Critically Ill Patients with Renal Disease. Korean J Crit Care Med 2012. [DOI: 10.4266/kjccm.2012.27.3.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jin Young Chon
- Department of Anesthesiology and Pain Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|