1
|
Walmsley R, Chong L, Hii MW, Brown RM, Sumithran P. The effect of bariatric surgery on the expression of gastrointestinal taste receptors: A systematic review. Rev Endocr Metab Disord 2024; 25:421-446. [PMID: 38206483 PMCID: PMC10942945 DOI: 10.1007/s11154-023-09865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Gastrointestinal nutrient sensing via taste receptors may contribute to weight loss, metabolic improvements, and a reduced preference for sweet and fatty foods following bariatric surgery. This review aimed to investigate the effect of bariatric surgery on the expression of oral and post-oral gastrointestinal taste receptors and associations between taste receptor alterations and clinical outcomes of bariatric surgery. A systematic review was conducted to capture data from both human and animal studies on changes in the expression of taste receptors in oral or post-oral gastrointestinal tissue following any type of bariatric surgery. Databases searched included Medline, Embase, Emcare, APA PsychInfo, Cochrane Library, and CINAHL. Two human and 21 animal studies were included. Bariatric surgery alters the quantity of many sweet, umami, and fatty acid taste receptors in the gastrointestinal tract. Changes to the expression of sweet and amino acid receptors occur most often in intestinal segments surgically repositioned more proximally, such as the alimentary limb after gastric bypass. Conversely, changes to fatty acid receptors were observed more frequently in the colon than in the small intestine. Significant heterogeneity in the methodology of included studies limited conclusions regarding the direction of change in taste receptor expression induced by bariatric surgeries. Few studies have investigated associations between taste receptor expression and clinical outcomes of bariatric surgery. As such, future studies should look to investigate the relationship between bariatric surgery-induced changes to gut taste receptor expression and function and the impact of surgery on taste preferences, food palatability, and eating behaviour.Registration code in PROSPERO: CRD42022313992.
Collapse
Affiliation(s)
- Rosalind Walmsley
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Surgery, St Vincent's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Lynn Chong
- Department of Surgery, St Vincent's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Michael W Hii
- Department of Surgery, St Vincent's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Robyn M Brown
- Department of Pharmacology and Biochemistry, University of Melbourne, Victoria, Australia
| | - Priya Sumithran
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Parkville, VIC, 3052, Australia.
- Department of Surgery, Central Clinical School, Monash University, Victoria, Australia.
- Department of Endocrinology and Diabetes, Alfred Health, Victoria, Australia.
| |
Collapse
|
2
|
Mukorako P, St-Pierre DH, Flamand N, Biertho L, Lebel S, Lemoine N, Plamondon J, Roy MC, Tchernof A, Varin TV, Marette A, Silvestri C, Di Marzo V, Richard D. Hypoabsorptive surgeries cause limb-dependent changes in the gut endocannabinoidome and microbiome in association with beneficial metabolic effects. Int J Obes (Lond) 2023:10.1038/s41366-023-01307-3. [PMID: 37142736 DOI: 10.1038/s41366-023-01307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVE To determine whether the metabolic benefits of hypoabsorptive surgeries are associated with changes in the gut endocannabinoidome (eCBome) and microbiome. METHODS Biliopancreatic diversion with duodenal switch (BPD-DS) and single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S) were performed in diet-induced obese (DIO) male Wistar rats. Control groups fed a high-fat diet (HF) included sham-operated (SHAM HF) and SHAM HF-pair-weighed to BPD-DS (SHAM HF-PW). Body weight, fat mass gain, fecal energy loss, HOMA-IR, and gut-secreted hormone levels were measured. The levels of eCBome lipid mediators and prostaglandins were quantified in different intestinal segments by LC-MS/MS, while expression levels of genes encoding eCBome metabolic enzymes and receptors were determined by RT-qPCR. Metataxonomic (16S rRNA) analysis was performed on residual distal jejunum, proximal jejunum, and ileum contents. RESULTS BPD-DS and SADI-S reduced fat gain and HOMA-IR, while increasing glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) levels in HF-fed rats. Both surgeries induced potent limb-dependent alterations in eCBome mediators and in gut microbial ecology. In response to BPD-DS and SADI-S, changes in gut microbiota were significantly correlated with those of eCBome mediators. Principal component analyses revealed connections between PYY, N-oleoylethanolamine (OEA), N-linoleoylethanolamine (LEA), Clostridium, and Enterobacteriaceae_g_2 in the proximal and distal jejunum and in the ileum. CONCLUSIONS BPD-DS and SADI-S caused limb-dependent changes in the gut eCBome and microbiome. The present results indicate that these variables could significantly influence the beneficial metabolic outcome of hypoabsorptive bariatric surgeries.
Collapse
Affiliation(s)
- Paulette Mukorako
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - David H St-Pierre
- Institute of Nutrition and Functional Foods, Centre NUTRISS, Québec, QC, Canada
- Department of Exercise Sciences, Université du Québec à Montréal (UQAM), Québec, QC, Canada
- School of Nutrition, Faculty of Agriculture and Food Sciences, Québec, QC, Canada
| | - Nicolas Flamand
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, QC, Canada
| | - Laurent Biertho
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - Stéfane Lebel
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - Natacha Lemoine
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - Julie Plamondon
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - Marie-Claude Roy
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - André Tchernof
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
- School of Nutrition, Faculty of Agriculture and Food Sciences, Québec, QC, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods, Centre NUTRISS, Québec, QC, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
- Institute of Nutrition and Functional Foods, Centre NUTRISS, Québec, QC, Canada
| | - Cristoforo Silvestri
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, QC, Canada.
| | - Vincenzo Di Marzo
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada.
- Institute of Nutrition and Functional Foods, Centre NUTRISS, Québec, QC, Canada.
- School of Nutrition, Faculty of Agriculture and Food Sciences, Québec, QC, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, QC, Canada.
| | - Denis Richard
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada.
| |
Collapse
|
3
|
Kytikova OY, Denisenko YK, Novgorodtseva TP, Kovalenko IS. Cannabinoids And Cannabinoid-Like Compounds: Biochemical Characterization And Pharmacological Perspectives. RUSSIAN OPEN MEDICAL JOURNAL 2023. [DOI: 10.15275/rusomj.2023.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Publication interest in cannabinoids, including phytocannabinoids, endogenous cannabinoids, synthetic cannabinoids and cannabinomimetic compounds, is due to the therapeutic potential of these compounds in inflammatory pathology. Since recent years, scientific interest was focused on compounds with cannabinomimetic activity. The therapeutic use of phytocannabinoids and endocannabinoids is somewhat limited due to unresolved issues of dosing, toxicity and safety in humans, while cannabinoid-like compounds combine similar therapeutic effects with a high confirmed safety. Targets for endocannabinoids and phytocannabinoids are endocannabinoid receptors 1 and 2, G protein-coupled receptors (GPCRs), peroxisome proliferator-activated receptors (PPARs), and transient receptor potential ion channels (TRPs). Non-endocannabinoid N-acylethanolamines do not interact with cannabinoid receptors and exhibit agonist activity towards non-cannabinoid receptors, such as PPARs, GPCRs and TRPs. This literature review includes contemporary information on the biological activity, metabolism and pharmacological properties of cannabinoids and cannabinoid-like compounds, as well as their receptors. We established that only a few studies were devoted to the relationship of non-endocannabinoid N-acylethanolamines with non-cannabinoid receptors, such as PPARs, GPCRs, and also with TRPs. We have focused on issues that were insufficiently covered in the published sources in order to identify gaps in existing knowledge and determine the prospects for scientific research.
Collapse
|
4
|
Sandoval DA, Patti ME. Glucose metabolism after bariatric surgery: implications for T2DM remission and hypoglycaemia. Nat Rev Endocrinol 2023; 19:164-176. [PMID: 36289368 PMCID: PMC10805109 DOI: 10.1038/s41574-022-00757-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Although promising therapeutics are in the pipeline, bariatric surgery (also known as metabolic surgery) remains our most effective strategy for the treatment of obesity and type 2 diabetes mellitus (T2DM). Of the many available options, Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) are currently the most widely used procedures. RYGB and VSG have very different anatomical restructuring but both surgeries are effective, to varying degrees, at inducing weight loss and T2DM remission. Both weight loss-dependent and weight loss-independent alterations in multiple tissues (such as the intestine, liver, pancreas, adipose tissue and skeletal muscle) yield net improvements in insulin resistance, insulin secretion and insulin-independent glucose metabolism. In a subset of patients, post-bariatric hypoglycaemia can develop months to years after surgery, potentially reflecting the extreme effects of potent glucose reduction after surgery. This Review addresses the effects of bariatric surgery on glucose regulation and the potential mechanisms responsible for both the resolution of T2DM and the induction of hypoglycaemia.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Department of Paediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | | |
Collapse
|
5
|
Wang G, Wang Y, Bai J, Li G, Liu Y, Deng S, Zhou R, Tao K, Xia Z. Increased plasma genistein after bariatric surgery could promote remission of NAFLD in patients with obesity. Front Endocrinol (Lausanne) 2023; 13:1024769. [PMID: 36686492 PMCID: PMC9846086 DOI: 10.3389/fendo.2022.1024769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Background Bariatric surgery is associated with a positive effect on the progress of non-alcoholic associated fatty liver disease (NAFLD). Although weight loss is the obvious mechanism, there are also weight-independent mechanisms. Methods We collected blood samples from 5 patients with obesity before and 3 months after surgery and performed an LC-MS-based untargeted metabolomics test to detect potential systemic changes. We also constructed sleeve gastrectomy (SG) mice models. The plasma, liver and intestine samples were collected and analyzed by qPCR, ELISA and HPLC. Cohousing experiments and feces transplantation experiments were performed on mice to study the effect of gut microbiota. Genistein administration experiments were used to study the in vivo function of the metabolites. Results Plasma genistein (GE) was identified to be elevated after surgery. Both clinical data and rodent models suggested that plasma GE is negatively related to the degree of NAFLD. We fed diet-induced obese (DIO) mice with GE, and we found that there was significant remission of NAFLD. Both in vivo and in vitro experiments showed that GE could restrict the inflammation state in the liver and thus relieve NAFLD. Finally, we used co-housing experiments to alter the gut microbiota in mice, and it was identified that sleeve gastrectomy (SG) mice had a special gut microbiota phenotype, which could result in higher plasma GE levels. By feces transplantation experiment (FMT), we found that only feces from the SG mice (and not from other lean mice) could induce higher plasma GE levels. Conclusion Our studies showed that SG but not calorie restriction could induce higher plasma GE levels by altering the gut microbiota. This change could promote NAFLD remission. Our study provides new insights into the systemic effects of bariatric surgery. Bariatric surgery could affect remote organs via altered metabolites from the gut microbiota. Our study also identified that additional supplement of GE after surgery could be a therapy for NAFLD.
Collapse
Affiliation(s)
- Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastrointestinal Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Bai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shichang Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zefeng Xia
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Guerrero-Hreins E, Foldi CJ, Oldfield BJ, Stefanidis A, Sumithran P, Brown RM. Gut-brain mechanisms underlying changes in disordered eating behaviour after bariatric surgery: a review. Rev Endocr Metab Disord 2022; 23:733-751. [PMID: 34851508 DOI: 10.1007/s11154-021-09696-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 02/07/2023]
Abstract
Bariatric surgery results in long-term weight loss and an improved metabolic phenotype due to changes in the gut-brain axis regulating appetite and glycaemia. Neuroendocrine alterations associated with bariatric surgery may also influence hedonic aspects of eating by inducing changes in taste preferences and central reward reactivity towards palatable food. However, the impact of bariatric surgery on disordered eating behaviours (e.g.: binge eating, loss-of-control eating, emotional eating and 'addictive eating'), which are commonly present in people with obesity are not well understood. Increasing evidence suggests gut-derived signals, such as appetitive hormones, bile acid profiles, microbiota concentrations and associated neuromodulatory metabolites, can influence pathways in the brain implicated in food intake, including brain areas involved in sensorimotor, reward-motivational, emotional-arousal and executive control components of food intake. As disordered eating prevalence is a key mediator of weight-loss success and patient well-being after bariatric surgery, understanding how changes in the gut-brain axis contribute to disordered eating incidence and severity after bariatric surgery is crucial to better improve treatment outcomes in people with obesity.
Collapse
Affiliation(s)
- Eva Guerrero-Hreins
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Claire J Foldi
- Department of Physiology, Monash University, Clayton, Melbourne, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Brian J Oldfield
- Department of Physiology, Monash University, Clayton, Melbourne, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Aneta Stefanidis
- Department of Physiology, Monash University, Clayton, Melbourne, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Priya Sumithran
- Department of Medicine (St Vincent's), University of Melbourne, Melbourne, Australia
- Department of Endocrinology, Austin Health, Melbourne, Australia
| | - Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Melbourne, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
7
|
Kim KS, Peck BC, Hung YH, Koch-Laskowski K, Wood L, Dedhia PH, Spence JR, Seeley RJ, Sethupathy P, Sandoval DA. Vertical sleeve gastrectomy induces enteroendocrine cell differentiation of intestinal stem cells through bile acid signaling. JCI Insight 2022; 7:154302. [PMID: 35503251 PMCID: PMC9220851 DOI: 10.1172/jci.insight.154302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Vertical sleeve gastrectomy (VSG) results in an increase in the number of hormone-secreting enteroendocrine cells (EECs) in the intestinal epithelium; however, the mechanism remains unclear. Notably, the beneficial effects of VSG are lost in a mouse model lacking the nuclear bile acid receptor farnesoid X receptor (FXR). FXR is a nuclear transcription factor that has been shown to regulate intestinal stem cell (ISC) function in cancer models. Therefore, we hypothesized that the VSG-induced increase in EECs is due to changes in intestinal differentiation driven by an increase in bile acid signaling through FXR. To test this, we performed VSG in mice that express EGFP in ISC/progenitor cells and performed RNA-Seq on GFP-positive cells sorted from the intestinal epithelia. We also assessed changes in EEC number (marked by glucagon-like peptide-1, GLP-1) in mouse intestinal organoids following treatment with bile acids, an FXR agonist, and an FXR antagonist. RNA-Seq of ISCs revealed that bile acid receptors are expressed in ISCs and that VSG explicitly alters expression of several genes that regulate EEC differentiation. Mouse intestinal organoids treated with bile acids and 2 different FXR agonists increased GLP-1-positive cell numbers, and administration of an FXR antagonist blocked these effects. Taken together, these data indicate that VSG drives ISC fate toward EEC differentiation through bile acid signaling.
Collapse
Affiliation(s)
- Ki-Suk Kim
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bailey Ce Peck
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Yu-Han Hung
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | | | - Landon Wood
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Priya H Dedhia
- Department of Surgery, The Ohio State University Comprehensive Cancer Center and The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | - Darleen A Sandoval
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Guo YX, Wang BY, Gao H, Hua RX, Gao L, He CW, Wang Y, Xu JD. Peroxisome Proliferator–Activated Receptor-α: A Pivotal Regulator of the Gastrointestinal Tract. Front Mol Biosci 2022; 9:864039. [PMID: 35558563 PMCID: PMC9086433 DOI: 10.3389/fmolb.2022.864039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Peroxisome proliferator–activated receptor (PPAR)-α is a ligand-activated transcription factor distributed in various tissues and cells. It regulates lipid metabolism and plays vital roles in the pathology of the cardiovascular system. However, its roles in the gastrointestinal tract (GIT) are relatively less known. In this review, after summarizing the expression profile of PPAR-α in the GIT, we analyzed its functions in the GIT, including physiological control of the lipid metabolism and pathologic mediation in the progress of inflammation. The mechanism of this regulation could be achieved via interactions with gut microbes and further impact the maintenance of body circadian rhythms and the secretion of nitric oxide. These are also targets of PPAR-α and are well-described in this review. In addition, we also highlighted the potential use of PPAR-α in treating GIT diseases and the inadequacy of clinical trials in this field.
Collapse
Affiliation(s)
- Yue-Xin Guo
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bo-Ya Wang
- Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rong-Xuan Hua
- Clinical Medicine of “5+3” Program, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, Faculty of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Cheng-Wei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Wang
- Department of Dermatology, Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing-Dong Xu,
| |
Collapse
|
9
|
Zhang W, Shi B, Li S, Liu Z, Li S, Dong S, Cheng Y, Zhu J, Zhang G, Zhong M. Sleeve gastrectomy improves lipid dysmetabolism by downregulating the USP20-HSPA2 axis in diet-induced obese mice. Front Endocrinol (Lausanne) 2022; 13:1041027. [PMID: 36636478 PMCID: PMC9831654 DOI: 10.3389/fendo.2022.1041027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Obesity is a metabolic disease accompanied by abnormalities in lipid metabolism that can cause hyperlipidemia, non-alcoholic fatty liver disease, and artery atherosclerosis. Sleeve gastrectomy (SG) is a type of bariatric surgery that can effectively treat obesity and improve lipid metabolism. However, its specific underlying mechanism remains elusive. METHODS We performed SG, and sham surgery on two groups of diet-induced obese mice. Histology and lipid analysis were used to evaluate operation effect. Immunohistochemistry, immunoblotting, real-time quantitative PCR, immunoprecipitation, immunofluorescence and mass spectrometry were used to reveal the potential mechanisms of SG. RESULTS Compared to the sham group, the SG group displayed a downregulation of deubiquitinase ubiquitin-specific peptidase 20 (USP20). Moreover, USP20 could promote lipid accumulation in vitro. Co-immunoprecipitation and mass spectrometry analyses showed that heat-shock protein family A member 2 (HSPA2) potentially acts as a substrate of USP20. HSPA2 was also downregulated in the SG group and could promote lipid accumulation in vitro. Further research showed that USP20 targeted and stabilized HSPA2 via the ubiquitin-proteasome pathway. CONCLUSION The downregulation of the USP20-HSPA2 axis in diet-induced obese mice following SG improved lipid dysmetabolism, indicating that USP20-HSPA2 axis was a noninvasive therapeutic target to be investigated in the future.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bowen Shi
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shirui Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zenglin Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Songhan Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yugang Cheng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- *Correspondence: Mingwei Zhong,
| |
Collapse
|
10
|
On the Biomedical Properties of Endocannabinoid Degradation and Reuptake Inhibitors: Pre-clinical and Clinical Evidence. Neurotox Res 2021; 39:2072-2097. [PMID: 34741755 DOI: 10.1007/s12640-021-00424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
The endocannabinoid system (ECS) is composed of endogenous cannabinoids; components involved in their synthesis, transport, and degradation; and an expansive variety of cannabinoid receptors. Hypofunction or deregulation of the ECS is related to pathological conditions. Consequently, endogenous enhancement of endocannabinoid levels and/or regulation of their metabolism represent promising therapeutic approaches. Several major strategies have been suggested for the modulation of the ECS: (1) blocking endocannabinoids degradation, (2) inhibition of endocannabinoid cellular uptake, and (3) pharmacological modulation of cannabinoid receptors as potential therapeutic targets. Here, we focused in this review on degradation/reuptake inhibitors over cannabinoid receptor modulators in order to provide an updated synopsis of contemporary evidence advancing mechanisms of endocannabinoids as pharmacological tools with therapeutic properties for the treatment of several disorders. For this purpose, we revisited the available literature and reported the latest advances regarding the biomedical properties of fatty acid amide hydrolase and monoacylglycerol lipase inhibitors in pre-clinical and clinical studies. We also highlighted anandamide and 2-arachidonoylglycerol reuptake inhibitors with promising results in pre-clinical studies using in vitro and animal models as an outlook for future research in clinical trials.
Collapse
|
11
|
Zhao J, Zhao Y, Hu Y, Peng J. Targeting the GPR119/incretin axis: a promising new therapy for metabolic-associated fatty liver disease. Cell Mol Biol Lett 2021; 26:32. [PMID: 34233623 PMCID: PMC8265056 DOI: 10.1186/s11658-021-00276-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
In the past decade, G protein-coupled receptors have emerged as drug targets, and their physiological and pathological effects have been extensively studied. Among these receptors, GPR119 is expressed in multiple organs, including the liver. It can be activated by a variety of endogenous and exogenous ligands. After GPR119 is activated, the cell secretes a variety of incretins, including glucagon-like peptide-1 and glucagon-like peptide-2, which may attenuate the metabolic dysfunction associated with fatty liver disease, including improving glucose and lipid metabolism, inhibiting inflammation, reducing appetite, and regulating the intestinal microbial system. GPR119 has been a potential therapeutic target for diabetes mellitus type 2 for many years, but its role in metabolic dysfunction associated fatty liver disease deserves further attention. In this review, we discuss relevant research and current progress in the physiology and pharmacology of the GPR119/incretin axis and speculate on the potential therapeutic role of this axis in metabolic dysfunction associated with fatty liver disease, which provides guidance for transforming experimental research into clinical applications.
Collapse
Affiliation(s)
- Jianan Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yu Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yiyang Hu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China. .,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| | - Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China. .,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| |
Collapse
|
12
|
Hutch CR, Stelmak D, Kanke M, Koch-Laskowski K, Cummings B, Griffin C, Leix K, Sethupathy P, Singer K, Sandoval DA. Diet-dependent sex differences in the response to vertical sleeve gastrectomy. Am J Physiol Endocrinol Metab 2021; 321:E11-E23. [PMID: 33998293 PMCID: PMC8321822 DOI: 10.1152/ajpendo.00060.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Nearly 80% of patients that receive bariatric surgery are women, yet mechanistic preclinical studies have focused on males. The goal of this study was to determine the metabolic impact of diet- and surgery-induced weight loss in males, females, and ovariectomized females. All mice were fed a 60% high-fat diet (HFD) before undergoing either vertical sleeve gastrectomy (VSG) or sham surgery. Mice either remained on an HFD or were switched to a standard chow diet postsurgically. When maintained on an HFD, males and females decreased fat mass and improved oral glucose tolerance after VSG. After dietary intervention, additional adiposity was lost in both surgical groups. Ovariectomized females showed a blunted decrease in fat mass on an HFD, but lost significant adiposity after dietary intervention. Energy expenditure was impacted by dietary and not surgical intervention across all groups. Males decreased hepatic triglyceride levels after VSG, which was further decreased after dietary intervention. Intact and ovariectomized females had a blunted decrease in hepatic triglycerides after VSG, but a significant decrease after dietary intervention. The more pronounced effect of VSG on hepatic lipids in males is strongly associated with changes in hepatic expression of genes and microRNAs previously linked to hepatic lipid regulation and systemic energy homeostasis. These data highlight the importance of postsurgical diet on metabolic outcomes across sexes. Furthermore, these data suggest the impact of VSG on hepatic triglycerides is diet-dependent in females and support the hypothesis that males and females achieve similar metabolic outcome, at least within the liver, via distinct mechanisms.NEW & NOTEWORTHY These data highlight the interaction of postsurgical diet after bariatric surgery on metabolic outcomes across sexes. These data suggest the impact of VSG on hepatic triglycerides is diet-dependent in females and support the hypothesis that males and females achieve similar metabolic outcome, at least within the liver, via distinct mechanisms.
Collapse
Affiliation(s)
- Chelsea R Hutch
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daria Stelmak
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Kieran Koch-Laskowski
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Bethany Cummings
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Cameron Griffin
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kyle Leix
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Kanakadurga Singer
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Darleen A Sandoval
- Department of Pediatrics, Section of Nutrition and Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
13
|
Kim KS, Hutch CR, Wood L, Magrisso IJ, Seeley RJ, Sandoval DA. Glycemic effect of pancreatic preproglucagon in mouse sleeve gastrectomy. JCI Insight 2019; 4:129452. [PMID: 31619587 PMCID: PMC6824314 DOI: 10.1172/jci.insight.129452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
Intestinally derived glucagon-like peptide-1 (GLP-1), encoded by the preproglucagon (Gcg) gene, is believed to function as an incretin. However, our previous work questioned this dogma and demonstrated that pancreatic peptides rather than intestinal Gcg peptides, including GLP-1, are a primary regulator of glucose homeostasis in normal mice. The objective of these experiments was to determine whether changes in nutrition or alteration of gut hormone secretion by bariatric surgery would result in a larger role for intestinal GLP-1 in the regulation of insulin secretion and glucose homeostasis. Multiple transgenic models, including mouse models with intestine- or pancreas tissue-specific Gcg expression and a whole-body Gcg-null mouse model, were generated to study the role of organ-specific GLP-1 production on glucose homeostasis under dietary-induced obesity and after weight loss from bariatric surgery (vertical sleeve gastrectomy; VSG). Our findings indicated that the intestine is a major source of circulating GLP-1 after various nutrient and surgical stimuli. However, even with the 4-fold increase in intestinally derived GLP-1 with VSG, it is pancreatic peptides, not intestinal Gcg peptides, that are necessary for surgery-induced improvements in glucose homeostasis.
Collapse
|