1
|
Lee DW, Ryu HS, Nikas IP, Koh J, Kim TY, Kim HK, Lee HB, Moon HG, Han W, Lee KH, Im SA. Immune marker expression and prognosis of early breast cancer expressing HER3. Eur J Cancer 2024; 213:115081. [PMID: 39447449 DOI: 10.1016/j.ejca.2024.115081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
INTRODUCTION There is a strong rationale for targeting HER3, as HER3 contributes to tumorigenesis and treatment resistance. However, the prognostic role of HER3 and their association with immunoregulatory protein expression has not been established. METHODS The main objective of this study was to investigate the prognostic role of HER3 expression and identify immunoregulatory marker expression according to HER3 status. HER3 expression and 10 immunoregulatory protein (PD-1/PD-L1/PD-L2/IDO/TIM-3/OX40/OX40L/B7-H2/B7-H3/B7-H4) expression was identified in 320 stage I-III breast cancer patients who received curative surgery at Seoul National University Hospital in 2008. The median follow-up duration was 88.8 months. Criteria for HER3 IHC was adopted from HER2 IHC score and only those with 3 + was considered positive. RESULTS Among 320 patients, 213 (67.2 %) had luminal A disease, 30 (9.5 %) had luminal B disease, 28 (8.8 %) had HER2-positive disease, and 46 (14.5 %) had triple negative disease. HER3 expression was shown in 153 patients (47.8 %). Tumors with HER3-expression had more immunogenic tumor microenvironment compared to HER3-negative tumor. In addition, patients with HER3 expression had favorable 5-year relapse free survival compared to HER3-negative patients (5-year RFS 92.5 % vs. 85.2 %, p = 0.038). However, in the multivariate analysis, HER3 expression was not a prognostic factor, but expression of immunoregulatory protein was a prognostic factor. CONCLUSIONS This study identified immunoregulatory protein expression according to HER3 status in breast cancer patients. As tumor with HER3 expression have more immunogenic microenvironment, investigating combination treatment of HER3 targeting agent and immunotherapy in HER3 expressing breast cancer may be promising.
Collapse
Affiliation(s)
- Dae-Won Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Ilias P Nikas
- Medical School, University of Cyprus, Nicosia, Cyprus
| | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Tae-Yong Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hong Kyu Kim
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Hyeong-Gon Moon
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Kyung-Hun Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Translational Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Krop IE, Masuda N, Mukohara T, Takahashi S, Nakayama T, Inoue K, Iwata H, Yamamoto Y, Alvarez RH, Toyama T, Takahashi M, Osaki A, Saji S, Sagara Y, O'Shaughnessy J, Ohwada S, Koyama K, Inoue T, Li L, Patel P, Mostillo J, Tanaka Y, Sternberg DW, Sellami D, Yonemori K. Patritumab Deruxtecan (HER3-DXd), a Human Epidermal Growth Factor Receptor 3-Directed Antibody-Drug Conjugate, in Patients With Previously Treated Human Epidermal Growth Factor Receptor 3-Expressing Metastatic Breast Cancer: A Multicenter, Phase I/II Trial. J Clin Oncol 2023; 41:5550-5560. [PMID: 37801674 PMCID: PMC10730028 DOI: 10.1200/jco.23.00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/16/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023] Open
Abstract
PURPOSE Human epidermal growth factor receptor 3 (HER3) is broadly expressed in breast cancer; high expression is associated with an adverse prognosis. Patritumab deruxtecan (HER3-DXd) is an investigational HER3-targeted antibody-drug conjugate that is being evaluated as a novel treatment in HER3-expressing advanced breast cancer in the U31402-A-J101 study. METHODS Adults with disease progression on previous therapies were eligible. Patients in the dose-escalation, dose-finding, and dose-expansion parts received HER3-DXd 1.6-8.0 mg/kg intravenously once every 3 weeks or one of two alternative dosing regimens. In the dose-escalation part, the primary objectives were to determine the maximum tolerated dose and recommended dose for expansion (RDE). The safety and efficacy of the RDE were assessed during dose expansion. RESULTS One hundred eighty-two enrolled patients received ≥1 dose of HER3-DXd. Patients had a median of five previous therapies for advanced disease. Efficacy results are reported across clinical subtypes: hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-negative) breast cancer (n = 113; objective response rate [ORR], 30.1%; median progression-free survival [mPFS], 7.4 months), triple-negative breast cancer (n = 53; ORR, 22.6%; mPFS, 5.5 months), and HER2-positive breast cancer (n = 14; ORR, 42.9%; mPFS, 11.0 months). Objective responses were observed in cancers with HER3-high and HER3-low membrane expression. Dose-limiting toxicities observed during dose selection were decreased platelet count and elevated aminotransferases. In dose expansion, GI and hematologic toxicities were the most common treatment-emergent adverse events (TEAEs) observed. Grade ≥3 TEAEs were observed in 71.4% of patients, and 9.9% discontinued treatment because of TEAEs. Three grade 3 and one grade 5 treatment-related interstitial lung disease events occurred. CONCLUSION HER3-DXd demonstrated a manageable safety profile and durable efficacy in heavily pretreated patients across clinical subtypes. These data warrant further evaluation of HER3-DXd in patients with HER3-expressing metastatic breast cancer.
Collapse
Affiliation(s)
| | - Norikazu Masuda
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Shunji Takahashi
- The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | | | | | | | | | - Masato Takahashi
- Department of Breast Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Akihiko Osaki
- Saitama Medical University International Medical Center, Hidaka, Japan
| | | | - Yasuaki Sagara
- Hakuaikai Social Medical Corporation, Sagara Hospital, Kagoshima, Japan
| | | | | | | | | | - Li Li
- Daiichi Sankyo, Inc, Basking Ridge, NJ
| | | | | | | | | | | | | |
Collapse
|
3
|
Zagami P, Boscolo Bielo L, Nicolò E, Curigliano G. HER2-positive breast cancer: cotargeting to overcome treatment resistance. Curr Opin Oncol 2023; 35:461-471. [PMID: 37621172 DOI: 10.1097/cco.0000000000000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PURPOSE OF REVIEW The introduction in clinical practice of anti-HER2 agents changed the prognosis of patients with HER2-positive (HER2+) breast cancer in both metastatic and early setting. Although the incomparable results obtained in the last years with the approval of new drugs targeting HER2, not all patients derive benefit from these treatments, experiencing primary or secondary resistance. The aim of this article is to review the data about cotargeting HER2 with different pathways (or epitopes of receptors) involved in its oncogenic signaling, as a mechanism to overcome resistance to anti-HER2 agents. RECENT FINDINGS Concordantly to the knowledge of the HER2+ breast cancer heterogeneity as well as new drugs, novel predictive biomarkers of response to anti-HER2 treatments are always raised helping to define target to overcome resistance. Cotargeting HER2 and hormone receptors is the most well known mechanism to improve benefit in HER2+/HR+ breast cancer. Additional HER2-cotargeting, such as, with PI3K pathway, as well as different HERs receptors or immune-checkpoints revealed promising results. SUMMARY HER2+ breast cancer is an heterogenous disease. Cotargeting HER2 with other signaling pathways involved in its mechanism of resistance may improve patient outcomes. Research efforts will continue to investigate novel targets and combinations to create more effective treatment regimes.
Collapse
Affiliation(s)
- Paola Zagami
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Lineberger comprehensive cancer center, University of North Carolina, Chapel hill, North Carolina
| | - Luca Boscolo Bielo
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eleonora Nicolò
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Tomasich E, Steindl A, Paiato C, Hatziioannou T, Kleinberger M, Berchtold L, Puhr R, Hainfellner JA, Müllauer L, Widhalm G, Eckert F, Bartsch R, Heller G, Preusser M, Berghoff AS. Frequent Overexpression of HER3 in Brain Metastases from Breast and Lung Cancer. Clin Cancer Res 2023; 29:3225-3236. [PMID: 37036472 DOI: 10.1158/1078-0432.ccr-23-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE HER3 belongs to a family of receptor tyrosine kinases with oncogenic properties and is targeted by a variety of novel anticancer agents. There is a huge unmet medical need for systemic treatment options in patients with brain metastases (BM). Therefore, we aimed to investigate HER3 expression in BM of breast (BCa) and non-small cell lung cancer (NSCLC) as the basis for future clinical trial design. EXPERIMENTAL DESIGN We analyzed 180 BM samples of breast cancer or NSCLC and 47 corresponding NSCLC extracranial tissue. IHC was performed to evaluate protein expression of HER3, and immune cells based on CD3, CD8, and CD68. To identify dysregulated pathways based on differential DNA methylation patterns, we used Infinium MethylationEPIC microarrays. RESULTS A total of 99/132 (75.0%) of BCa-BM and 35/48 (72.9%) of NSCLC-BM presented with HER3 expression. Among breast cancer, HER2-positive and HER2-low BM showed significantly higher rates of HER3 coexpression than HER2-negative BM (87.1%/85.7% vs. 61.0%, P = 0.004). Among NSCLC, HER3 was more abundantly expressed in BM than in matched extracranial samples (72.9% vs. 41.3%, P = 0.003). No correlation of HER3 expression and intratumoral immune cell density was observed. HER3 expression did not correlate with overall survival from BM diagnosis. Methylation signatures differed according to HER3 status in BCa-BM samples. Pathway analysis revealed subtype-specific differences, such as TrkB and Wnt signaling pathways dysregulated in HER2-positive and triple-negative breast cancer BM, respectively. CONCLUSIONS HER3 is highly abundant in BM of breast cancer and NSCLC. Given the promising results of antibody-drug conjugates in extracranial disease, BM-specific trials that target HER3 are warranted. See related commentary by Kabraji and Lin, p. 2961.
Collapse
Affiliation(s)
- Erwin Tomasich
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ariane Steindl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christina Paiato
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Teresa Hatziioannou
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Markus Kleinberger
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Luzia Berchtold
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Rainer Puhr
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Franziska Eckert
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna Sophie Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Abstract
ABSTRACT Work over the past several decades has identified that aberrations in the ErbB signaling pathways are key drivers of oncogenesis, and concurrent efforts to discover targetable vulnerabilities to counter this aberrant oncogenic signaling offer tremendous promise in treating a host of human cancers. These efforts have been centered primarily on EGFR (also known as HER1), leading to the discovery of the first targeted therapies approved for head and neck cancer. More recently, HER2 and HER3 signaling pathways have been identified as highly dysregulated in head and neck cancer. This review highlights the HER2 and HER3 signaling pathways and clinical efforts to target these receptors and their aberrant signaling to treat head and neck squamous cell carcinomas and other head and neck malignancies, including salivary gland carcinomas. This includes the use of small molecule inhibitors and blocking antibodies, both as single agents or as part of multimodal precision targeted and immunotherapies.
Collapse
Affiliation(s)
- Robert Saddawi-Konefka
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine; San Diego, CA, United States
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Gleiberman Head and Neck Cancer Center, UC San Diego; La Jolla, CA, United States
| | - Shiruyeh Schokrpur
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Gleiberman Head and Neck Cancer Center, UC San Diego; La Jolla, CA, United States
- Department of Medicine, Division of Hematology-Oncology, UC San Diego School of Medicine; San Diego, CA, United States
| | - Asona J. Lui
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine; San Diego, CA, United States
| | - J. Silvio Gutkind
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Gleiberman Head and Neck Cancer Center, UC San Diego; La Jolla, CA, United States
- Department of Pharmacology, UC San Diego; La Jolla, CA, United States
| |
Collapse
|
6
|
Drago JZ, Ferraro E, Abuhadra N, Modi S. Beyond HER2: Targeting the ErbB receptor family in breast cancer. Cancer Treat Rev 2022; 109:102436. [PMID: 35870237 PMCID: PMC10478787 DOI: 10.1016/j.ctrv.2022.102436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Abstract
Targeting the HER2 oncogene represents one of the greatest advances in the treatment of breast cancer. HER2 is one member of the ERBB-receptor family, which includes EGFR (HER1), HER3 and HER4. In the presence or absence of underling genomic aberrations such as mutations or amplification events, intricate interactions between these proteins on the cell membrane lead to downstream signaling that encourages cancer growth and proliferation. In this Review, we contextualize efforts to pharmacologically target the ErbB receptor family beyond HER2, with a focus on EGFR and HER3. Preclinical and clinical efforts are synthesized. We discuss successes and failures of this approach to date, summarize lessons learned, and propose a way forward that invokes new therapeutic modalities such as antibody drug conjugates (ADCs), combination strategies, and patient selection through rational biomarkers.
Collapse
Affiliation(s)
- Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA.
| | - Emanuela Ferraro
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nour Abuhadra
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Soosanabadi M, Ghahfarokhi AM, Pourghazi F, Ehtesham N, Mirfakhraie R, Atanesyan L, Keyhani E, Behjati F. Expression of ERBB gene family in females with breast cancer and its correlation with clinicopathological characteristics of the disease. Mol Biol Rep 2022; 49:8547-8553. [PMID: 35763181 DOI: 10.1007/s11033-022-07684-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent and fatal cancer in women. Given that there are very few studies investigating the overexpression of four members of ERBB genes, we decided to investigate the correlation between these four genes with clinicopathological characteristics in breast cancer cases. METHODS Tumoural tissue of 50 patients with sporadic invasive ductal BC was recruited. Also, control samples were provided from adjacent non-cancerous tissues (ANCTs) of the same patients. The expression of four ERBB genes was evaluated by real-time PCR and its correlation with clinicopathological characteristics was assessed. RESULTS Only ERBB2 (HER2) was overexpressed in tumoural tissue compared with ANCTs. Our data showed a significant relationship between ERBB1 overexpression with triple-negative tumors, ER, and PR negativity (P < 0.05). Also, ERBB2 overexpression indicated a significant correlation with several pathological characteristics such as age < 50, tumor size larger than 2 cm, early and advanced stages, negative involved lymph nodes, luminal B, triple-negative, ERBB2-enrich, estrogen receptor (ER) and progesterone receptor (PR) negative tumors, Ki-67 mutation more than 15%, and finally HER2/neu immunohistochemistry (IHC) positive and intermediate (P < 0.05). Moreover, this study demonstrated that ERBB4 overexpression had a significant correlation with tumor size smaller than 2 cm, grade I and II tumors (early-stage tumors), luminal A, ER and PR positive tumors, HER-2/neu IHC intermediate, and tumors that had a Ki-67 mutation lower than 15% (P < 0.05). Besides, our analysis showed a significant correlation between the expression of ERBB1 with ERBB2 and ERBB3 with ERBB4 (P < 0.05). CONCLUSIONS Our findings showed a significant relationship between unfavorable clinicopathological characteristics with ERBB1 and ERBB2 overexpression, but overexpression of ERBB4 was correlated with favorable outcomes.
Collapse
Affiliation(s)
- Mohsen Soosanabadi
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Arezoo Mosharraf Ghahfarokhi
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Farzad Pourghazi
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Naeim Ehtesham
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elahe Keyhani
- Clinical Research Development Center of Rofeideh Rehabilitation Hospital, Tehran, Iran.
| | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran. .,Sarem Fertility & Infertility Research Center (SAFIR), Sarem Women's Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran. .,Sarem Cell Research Center (SCRC), Sarem Women's Hospital, Tehran, Iran.
| |
Collapse
|
8
|
Differential expression and prognostic relevance of autophagy-related markers ATG4B, GABARAP, and LC3B in breast cancer. Breast Cancer Res Treat 2020; 183:525-547. [PMID: 32685993 DOI: 10.1007/s10549-020-05795-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Previous studies indicate that breast cancer molecular subtypes differ with respect to their dependency on autophagy, but our knowledge of the differential expression and prognostic significance of autophagy-related biomarkers in breast cancer is limited. METHODS Immunohistochemistry (IHC) was performed on tissue microarrays from a large population of 3992 breast cancer patients divided into training and validation cohorts. Consensus staining scores were used to evaluate the expression levels of autophagy proteins LC3B, ATG4B, and GABARAP and determine the associations with clinicopathological variables and molecular biomarkers. Survival analyses were performed using the Kaplan-Meier function and Cox proportional hazards regression models. RESULTS We found subtype-specific expression differences for ATG4B, with its expression lowest in basal-like breast cancer and highest in Luminal A, but there were no significant associations with patient prognosis. LC3B and GABARAP levels were highest in basal-like breast cancers, and high levels were associated with worse outcomes across all subtypes (DSS; GABARAP: HR 1.43, LC3B puncta: HR 1.43). High ATG4B levels were associated with ER, PR, and BCL2 positivity, while high LC3B and GABARAP levels were associated with ER, PR, and BCL2 negativity, as well as EGFR, HER2, HER3, CA-IX, PD-L1 positivity, and high Ki67 index (p < 0.05 for all associations). Exploratory multi-marker analysis indicated that the combination of ATG4B and GABARAP with LC3B could be useful for further stratifying patient outcomes. CONCLUSIONS ATG4B levels varied across breast cancer subtypes but did not show prognostic significance. High LC3B expression and high GABARAP expression were both associated with poor prognosis and with clinicopathological characteristics of aggressive disease phenotypes in all breast cancer subtypes.
Collapse
|
9
|
Zhang Z, Li Q, Du X, Liu M. Application of electrochemical biosensors in tumor cell detection. Thorac Cancer 2020; 11:840-850. [PMID: 32101379 PMCID: PMC7113062 DOI: 10.1111/1759-7714.13353] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
Conventional methods for detecting tumors, such as immunological methods and histopathological diagnostic techniques, often request high analytical costs, complex operation, long turnaround time, experienced personnel and high false-positive rates. In addition, these assays are difficult to obtain an early diagnosis and prognosis quickly for malignant tumors. Compared with traditional technology, electrochemical technology has realized the study of interface charge transfer behavior at the atomic and molecular levels, which has become an important analytical and detection tool in contemporary analytical science. Electrochemical technique has the advantages of rapid detection, high sensitivity (single cell) and specificity in the detection of tumor cells, which has not only been successful in differentiating tumor cells from normal cells, but has also achieved targeted detection of localized tumor cells and circulating tumor cells. Electrochemical biosensors provide powerful tools for early diagnosis, staging and prognosis of tumors in clinical medicine. Therefore, this review mainly discusses the development and application of electrochemical biosensors in tumor cell detection in recent years.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Qingchao Li
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Xin Du
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
10
|
Ahammad I, Sarker MRI, Khan AM, Islam S, Hossain M. Virtual Screening to Identify Novel Inhibitors of Pan ERBB Family of Proteins from Natural Products with Known Anti-tumorigenic Properties. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09992-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Lee A, Jo S, Lee C, Shin HH, Kim TH, Ahn KJ, Park SK, Cho H, Yoon HK, Kim WG, Park J, Choi Y. Diabetes as a prognostic factor in HER-2 positive breast cancer patients treated with targeted therapy. Breast Cancer 2019; 26:672-680. [PMID: 30927244 DOI: 10.1007/s12282-019-00967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/25/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE Recent studies revealed that metabolic stress influences the outcomes of breast cancer treatment. We sought to evaluate the prognostic effect of type 2 diabetes and find the molecular mechanism of relapses in postoperative HER-2+ breast cancer patients treated with HER-2 targeted therapy. MATERIALS AND METHODS We evaluated 190 HER-2+ breast cancer patients (pT1-4N0-2M0) who were treated with surgical resection and trastuzumab (HER-2 targeted therapy) between 2006 and 2015. Survival outcomes and failure patterns were compared between such patients with (n = 12) and without (n = 178) type 2 diabetes. RESULTS The median follow-up period was 42.4 months (range 12.0-124.7 months). Twenty-one patients (11.1%) showed relapse (including nine patients with locoregional failure), and three patients (1.6%) died as a result of cancer relapse. One-third of the patients with diabetes experienced relapse (4/12, 33.3%). The 3-year disease-free survival (DFS) and overall survival (OS) rates were 90.7% and 98.6%, respectively. Diabetic patients showed shorter DFS compared with non-diabetic patients (p = 0.006, 74.1% vs. 91.9%). OS was also shorter in diabetic patients compared with non-diabetic patients (p = 0.017, 91.7% vs. 99.1%). Of our interest, the levels of HER-3 and its ligand neuregulin-1 were significantly increased in the tumor specimen in HER-2+ breast cancer patients suffering with type 2 diabetes than that in the euglycemic control group. CONCLUSIONS Type 2 diabetes was associated with detrimental effects on survival in postoperative HER-2+ breast cancer patients who were treated with trastuzumab. The poor prognostic effect of diabetes in HER-2+ breast cancer patients could be associated with the high levels of HER-3 and neuregulin 1, thus it should be considered and evaluated more.
Collapse
Affiliation(s)
- Anbok Lee
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Sunmi Jo
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Changhu Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institutes of Science and Technology, Ulsan, South Korea
| | - Hyun-Hee Shin
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institutes of Science and Technology, Ulsan, South Korea
| | - Tae Hyun Kim
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Ki Jung Ahn
- Department of Radiation Oncology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Sung-Kwang Park
- Department of Radiation Oncology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Heunglae Cho
- Department of Radiation Oncology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Hye-Kyoung Yoon
- Department of Pathology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Woo Gyeong Kim
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Jiyoung Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institutes of Science and Technology, Ulsan, South Korea.
| | - Yunseon Choi
- Department of Radiation Oncology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea.
| |
Collapse
|
12
|
Comparison of Antibodies for Immunohistochemistry-based Detection of HER3 in Breast Cancer. Appl Immunohistochem Mol Morphol 2019; 26:212-219. [PMID: 27389555 DOI: 10.1097/pai.0000000000000406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Growth factor receptor HER3 (ErbB3) lacks standardized immunohistochemistry (IHC)-based methods for formalin-fixed paraffin-embedded (FFPE) tissue samples. We compared 4 different anti-HER3 antibodies to explain the differences found in the staining results reported in the literature. MATERIALS AND METHODS Four commercial HER3 antibodies were tested on FFPE samples including mouse monoclonal antibody clones, DAK-H3-IC and RTJ1, rabbit monoclonal antibody clone SP71, and rabbit polyclonal antibody (SAB4500793). Membranous and cytoplasmic staining patterns were analyzed and scored as 0, 1+, or 2+ according to the intensity of the staining and completeness of membranous and cytoplasmic staining. A large collection of HER2-amplified breast cancers (n=177) was stained with the best performing HER3 antibody. The breast cancer cell line, MDA-453, and human prostate tissue were used as positive controls. IHC results were confirmed by analysis of flow cytometry performed on breast cancer cell lines. Staining results of FFPE samples were compared with samples fixed with an epitope-sensitive fixative (PAXgene). RESULTS Clear circumferential cell membrane staining was found only with the HER3 antibody clone DAK-H3-IC. Other antibodies (RTJ1, SP71, and polyclonal) yielded uncertain and nonreproducible staining results. In addition to cell membrane staining, DAK-H3-IC was also localized to the cytoplasm, but no nuclear staining was observed. In HER2-amplified breast cancers, 80% of samples were classified as 1+ or 2+ according to the HER3 staining on the cell membrane. The results from FFPE cell line samples were comparable to those obtained from unfixed cells in flow cytometry. IHC conducted on FFPE samples and on PAXgene-fixed samples showed equivalent results. CONCLUSIONS We conclude that IHC with the monoclonal antibody, DAK-H3-IC, on FFPE samples is a reliable staining method for use in translational research. Assessment of membranous HER3 expression may be clinically relevant in selecting patients who may most benefit from pertuzumab or other novel anti-HER3 therapies.
Collapse
|
13
|
Luhtala S, Staff S, Kallioniemi A, Tanner M, Isola J. Clinicopathological and prognostic correlations of HER3 expression and its degradation regulators, NEDD4-1 and NRDP1, in primary breast cancer. BMC Cancer 2018; 18:1045. [PMID: 30367623 PMCID: PMC6204010 DOI: 10.1186/s12885-018-4917-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Background Human epidermal growth factor receptor HER3 (ErbB3), especially in association with its relative HER2 (ErbB2), is known as a key oncogene in breast tumour biology. Nonetheless, the prognostic relevance of HER3 remains controversial. NEDD4–1 and NRDP1 are signalling molecules closely related to the degradation of HER3 via ubiquitination. NEDD4–1 and NRDP1 have been reported to contribute to HER3-mediated signalling by regulating its localization and cell membrane retention. We studied correlations between HER3, NEDD4–1, and NRDP1 protein expression and their association with tumour histopathological characteristics and clinical outcomes. Methods The prevalence of immunohistochemically detectable expression profiles of HER3 (n = 177), NEDD4–1 (n = 145), and NRDP1 (n = 145) proteins was studied in primary breast carcinomas on archival formalin-fixed paraffin-embedded (FFPE) samples. Clinicopathological correlations were determined statistically using Pearson’s Chi-Square test. The Kaplan-Meier method, log-rank test (Mantel-Cox), and Cox regression analysis were utilized for survival analysis. Results HER3 protein was expressed in breast carcinomas without association with HER2 gene amplification status. Absence or low HER3 expression correlated with clinically aggressive features, such as triple-negative breast cancer (TNBC) phenotype, basal cell origin (cytokeratin 5/14 expression combined with ER negativity), large tumour size, and positive lymph node status. Low total HER3 expression was prognostic for shorter recurrence-free survival time in HER2-amplified breast cancer (p = 0.004, p = 0.020 in univariate and multivariate analyses, respectively). The majority (82.8%) of breast cancers demonstrated NEDD4–1 protein expression - while only a minor proportion (8.3%) of carcinomas expressed NRDP1. NEDD4–1 and NRDP1 expression were not associated with clinical outcomes in HER2-amplified breast cancer, irrespective of adjuvant trastuzumab therapy. Conclusions Low HER3 expression is suggested to be a valuable prognostic biomarker to predict recurrence in HER2-amplified breast cancer. Neither NEDD4–1 nor NRDP1 demonstrated relevance in prognostics or in the subclassification of HER2-amplified breast carcinomas. Electronic supplementary material The online version of this article (10.1186/s12885-018-4917-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Satu Luhtala
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - Synnöve Staff
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland.,Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Minna Tanner
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Jorma Isola
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| |
Collapse
|
14
|
Schneeweiss A, Park-Simon TW, Albanell J, Lassen U, Cortés J, Dieras V, May M, Schindler C, Marmé F, Cejalvo JM, Martinez-Garcia M, Gonzalez I, Lopez-Martin J, Welt A, Levy C, Joly F, Michielin F, Jacob W, Adessi C, Moisan A, Meneses-Lorente G, Racek T, James I, Ceppi M, Hasmann M, Weisser M, Cervantes A. Phase Ib study evaluating safety and clinical activity of the anti-HER3 antibody lumretuzumab combined with the anti-HER2 antibody pertuzumab and paclitaxel in HER3-positive, HER2-low metastatic breast cancer. Invest New Drugs 2018; 36:848-859. [PMID: 29349598 PMCID: PMC6153514 DOI: 10.1007/s10637-018-0562-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023]
Abstract
Purpose To investigate the safety and clinical activity of comprehensive human epidermal growth factor receptor (HER) family receptor inhibition using lumretuzumab (anti-HER3) and pertuzumab (anti-HER2) in combination with paclitaxel in patients with metastatic breast cancer (MBC). Methods This phase Ib study enrolled 35 MBC patients (first line or higher) with HER3-positive and HER2-low (immunohistochemistry 1+ to 2+ and in-situ hybridization negative) tumors. Patients received lumretuzumab (1000 mg in Cohort 1; 500 mg in Cohorts 2 and 3) plus pertuzumab (840 mg loading dose [LD] followed by 420 mg in Cohorts 1 and 2; 420 mg without LD in Cohort 3) every 3 weeks, plus paclitaxel (80 mg/m2 weekly in all cohorts). Patients in Cohort 3 received prophylactic loperamide treatment. Results Diarrhea grade 3 was a dose-limiting toxicity of Cohort 1 defining the maximum tolerated dose of lumretuzumab when given in combination with pertuzumab and paclitaxel at 500 mg every three weeks. Grade 3 diarrhea decreased from 50% (Cohort 2) to 30.8% (Cohort 3) with prophylactic loperamide administration and omission of the pertuzumab LD, nonetheless, all patients still experienced diarrhea. In first-line MBC patients, the objective response rate in Cohorts 2 and 3 was 55% and 38.5%, respectively. No relationship between HER2 and HER3 expression or somatic mutations and clinical response was observed. Conclusions Combination treatment with lumretuzumab, pertuzumab and paclitaxel was associated with a high incidence of diarrhea. Despite the efforts to alter dosing, the therapeutic window remained too narrow to warrant further clinical development. TRIAL REGISTRATION on ClinicalTrials.gov with the identifier NCT01918254 first registered on 3rd July 2013.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Diarrhea/chemically induced
- Female
- Humans
- Hypokalemia/chemically induced
- Middle Aged
- Paclitaxel/administration & dosage
- Paclitaxel/adverse effects
- Polymorphism, Single Nucleotide
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
Collapse
Affiliation(s)
- Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Tjoung-Won Park-Simon
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology and Clinical Research Center, Hannover Medical School, Hannover, Germany
| | - Joan Albanell
- Department of Medical Oncology, Hospital del Mar, CIBERONC, Barcelona, Spain
| | | | - Javier Cortés
- Ramon y Cajal University Hospital, Madrid, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Marcus May
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology and Clinical Research Center, Hannover Medical School, Hannover, Germany
| | - Christoph Schindler
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology and Clinical Research Center, Hannover Medical School, Hannover, Germany
| | - Frederik Marmé
- National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Juan Miguel Cejalvo
- Department of Medical Oncology, Biomedical Health Research Institute INCLIVA, University of Valencia, Valencia and CIBERONC, Institute of Health Carlos III, Madrid, Spain
| | | | - Iria Gonzalez
- Department of Medical Oncology, Hospital del Mar, CIBERONC, Barcelona, Spain
| | - Jose Lopez-Martin
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Anja Welt
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Christelle Levy
- Departments of Clinical Research Unit and Medical Oncology, Centre François Baclesse, Caen, France
| | - Florence Joly
- Departments of Clinical Research Unit and Medical Oncology, Centre François Baclesse, Caen, France
| | - Francesca Michielin
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Wolfgang Jacob
- Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany.
| | - Céline Adessi
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Annie Moisan
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Georgina Meneses-Lorente
- Pharma Research and Early Development (pRED), Roche Innovation Center Welwyn, Welwyn Garden City, UK
| | - Tomas Racek
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | | | - Maurizio Ceppi
- Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Max Hasmann
- Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Martin Weisser
- Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Andrés Cervantes
- Department of Medical Oncology, Biomedical Health Research Institute INCLIVA, University of Valencia, Valencia and CIBERONC, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Jacob W, James I, Hasmann M, Weisser M. Clinical development of HER3-targeting monoclonal antibodies: Perils and progress. Cancer Treat Rev 2018; 68:111-123. [PMID: 29944978 DOI: 10.1016/j.ctrv.2018.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022]
Abstract
The human epidermal growth factor receptor (HER) family consists of four transmembrane receptor tyrosine kinases: epidermal growth factor receptor (EGFR), HER2, HER3, and HER4. They are part of a complex signalling network and stimulate intracellular pathways regulating cell growth and differentiation. So far, monoclonal antibodies (mAbs) and small molecule tyrosine kinase inhibitors targeting EGFR and HER2 have been developed and approved. Recently, focus has turned to HER3 as it may play an important role in resistance to EGFR- and HER2-targeting therapies. HER3-targeting agents have been undergoing clinical evaluation for the last 10 years and currently thirteen mAbs are in phase 1 or 2 clinical studies. Single agent activity has proven to be limited, however, the tolerability was favourable. Thus, combinations of HER3-binding mAbs with other HER-targeting therapies or chemotherapies have been pursued in various solid tumor entities. Data indicate that the HER3-binding ligand heregulin may serve as a response prediction marker for HER3-targeting therapy. Within this review the current status of clinical development of HER3-targeting compounds is described.
Collapse
Affiliation(s)
- Wolfgang Jacob
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany.
| | - Ian James
- A4P Consulting Ltd, Discovery Park, Sandwich, UK
| | - Max Hasmann
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Martin Weisser
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
16
|
Eliseev IE, Yudenko AN, Vysochinskaya VV, Svirina AA, Evstratyeva AV, Drozhzhachih MS, Krendeleva EA, Vladimirova AK, Nemankin TA, Ekimova VM, Ulitin AB, Lomovskaya MI, Yakovlev PA, Bukatin AS, Knyazev NA, Moiseenko FV, Chakchir OB. Crystal structures of a llama VHH antibody BCD090-M2 targeting human ErbB3 receptor. F1000Res 2018; 7:57. [PMID: 30430004 PMCID: PMC6097396 DOI: 10.12688/f1000research.13612.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2018] [Indexed: 01/26/2023] Open
Abstract
Background: The ability of ErbB3 receptor to functionally complement ErbB1-2 and induce tumor resistance to their inhibitors makes it a unique target in cancer therapy by monoclonal antibodies. Here we report the expression, purification and structural analysis of a new anti-ErbB3 single-chain antibody. Methods: The VHH fragment of the antibody was expressed in E. coli SHuffle cells as a SUMO fusion, cleaved by TEV protease and purified to homogeneity. Binding to the extracellular domain of ErbB3 was studied by surface plasmon resonance. For structural studies, the antibody was crystallized by hanging-drop vapor diffusion in two different forms. Results: We developed a robust and efficient system for recombinant expression of single-domain antibodies. The purified antibody was functional and bound ErbB3 with K D =15±1 nM. The crystal structures of the VHH antibody in space groups C2 and P1 were solved by molecular replacement at 1.6 and 1.9 Å resolution. The high-quality electron density maps allowed us to build precise atomic models of the antibody and the putative paratope. Surprisingly, the CDR H2 existed in multiple distant conformations in different crystal forms, while the more complex CDR H3 had a low structural variability. The structures were deposited under PDB entry codes 6EZW and 6F0D. Conclusions: Our results may facilitate further mechanistic studies of ErbB3 inhibition by single-chain antibodies. Besides, the solved structures will contribute to datasets required to develop new computational methods for antibody modeling and design.
Collapse
Affiliation(s)
- Igor E. Eliseev
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Anna N. Yudenko
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Vera V. Vysochinskaya
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Anna A. Svirina
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | | | | | | | | | | | | | | | | | | | - Anton S. Bukatin
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Nickolay A. Knyazev
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Fedor V. Moiseenko
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Oleg B. Chakchir
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| |
Collapse
|
17
|
Eliseev IE, Yudenko AN, Vysochinskaya VV, Svirina AA, Evstratyeva AV, Drozhzhachih MS, Krendeleva EA, Vladimirova AK, Nemankin TA, Ekimova VM, Ulitin AB, Lomovskaya MI, Yakovlev PA, Bukatin AS, Knyazev NA, Moiseenko FV, Chakchir OB. Crystal structures of a llama VHH antibody BCD090-M2 targeting human ErbB3 receptor. F1000Res 2018; 7:57. [PMID: 30430004 PMCID: PMC6097396 DOI: 10.12688/f1000research.13612.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
Background: The ability of ErbB3 receptor to functionally complement ErbB1-2 and induce tumor resistance to their inhibitors makes it a unique target in cancer therapy by monoclonal antibodies. Here we report the expression, purification and structural analysis of a new anti-ErbB3 single-chain antibody. Methods: The VHH fragment of the antibody was expressed in E. coli SHuffle cells as a SUMO fusion, cleaved by TEV protease and purified to homogeneity. Binding to the extracellular domain of ErbB3 was studied by surface plasmon resonance. For structural studies, the antibody was crystallized by hanging-drop vapor diffusion in two different forms. Results: We developed a robust and efficient system for recombinant expression of single-domain antibodies. The purified antibody was functional and bound ErbB3 with K D = 1 μM. The crystal structures of the VHH antibody in space groups C2 and P1 were solved by molecular replacement at 1.6 and 1.9 Å resolution. The high-quality electron density maps allowed us to build precise atomic models of the antibody and the putative paratope. Surprisingly, the CDR H2 existed in multiple distant conformations in different crystal forms, while the more complex CDR H3 had a low structural variability. The structures were deposited under PDB entry codes 6EZW and 6F0D. Conclusions: Our results may facilitate further mechanistic studies of ErbB3 inhibition by single-chain antibodies. Besides, the solved structures will contribute to datasets required to develop new computational methods for antibody modeling and design.
Collapse
Affiliation(s)
- Igor E. Eliseev
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Anna N. Yudenko
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Vera V. Vysochinskaya
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Anna A. Svirina
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | | | | | | | | | | | | | | | | | | | - Anton S. Bukatin
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Nickolay A. Knyazev
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Fedor V. Moiseenko
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| | - Oleg B. Chakchir
- St. Petersburg National Research Academic University RAS, St. Petersburg, 194021, Russian Federation
| |
Collapse
|
18
|
Abstract
Breast cancer affects approximately 1 in 8 women, and it is estimated that over 246,660 women in the USA will be diagnosed with breast cancer in 2016. Breast cancer mortality has decline over the last two decades due to early detection and improved treatment. Over the last few years, there is mounting evidence to demonstrate the prominent role of receptor tyrosine kinases (RTKs) in tumor initiation and progression, and targeted therapies against the RTKs have been developed, evaluated in clinical trials, and approved for many cancer types, including breast cancer. However, not all breast cancers are the same as evidenced by the multiple subtypes of the disease, with some more aggressive than others, showing differential treatment response to different types of drugs. Moreover, in addition to canonical signaling from the cell surface, many RTKs can be trafficked to various subcellular compartments, e.g., the multivesicular body and nucleus, where they carry out critical cellular functions, such as cell proliferation, DNA replication and repair, and therapeutic resistance. In this review, we provide a brief summary on the role of a selected number of RTKs in breast cancer and describe some mechanisms of resistance to targeted therapies.
Collapse
Affiliation(s)
- Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan.,Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. .,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
19
|
Fatty acid synthase affects expression of ErbB receptors in epithelial to mesenchymal transition of breast cancer cells and invasive ductal carcinoma. Oncol Lett 2017; 14:5934-5946. [PMID: 29113229 PMCID: PMC5661422 DOI: 10.3892/ol.2017.6954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 06/09/2017] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to investigate changes in the expression of ErbBs during epithelial-mesenchymal transition (EMT) of breast cancer cells and its association with the expression of fatty acid synthase (FASN). MCF-7-MEK5 cells were used as the experimental model, while MCF-7 cells were used as a control. Tumor cells were implanted into nude mice for in vivo analysis. Cerulenin was used as a FASN inhibitor. Reverse transcription-polymerase chain reaction and western blot analysis were used to detect expression levels of FASN and ErbB1-4. Immunohistochemistry was used to detect the expression of FASN and ErbB1-4 in 58 invasive ductal carcinomas (IDC), as well as their association with clinicopathological characteristics. The expression of FASN and ErbB1-4 in MCF-7-MEK5 cells and tumor tissues increased significantly compared with controls (P<0.001). Inhibition of FASN by cerulenin resulted in a significant decrease in expression of ErbB1, 2 and 4 (P<0.001), whereas there was no evident change in ErbB3. In IDC samples, the expression of FASN and ErbB1-4 increased considerably in lymph node metastases compared with non-lymph node metastases (P<0.05). ErbB2 expression increased in advanced clinical stages (II, III and IV) of IDC and in tumors with larger diameters (P<0.05). The expression of ErbB3 increased in ER-positive tumors (P<0.05). Additionally, a positive association between the expression of FASN and ErbB1, 2 and 4 was observed (P<0.05). FASN activates ErbB1, 2 and 4, and their dimers, which are polymerized via the microstructural domain of the cell membrane. This may initiate EMT and consequentlyincrease the invasion and migration of cancer cells. However, ErbB3 may also affect tumor progression via a FASN-independent pathway.
Collapse
|
20
|
Osada T, Morse MA, Hobeika A, Diniz MA, Gwin WR, Hartman Z, Wei J, Guo H, Yang XY, Liu CX, Kaneko K, Broadwater G, Lyerly HK. Vaccination targeting human HER3 alters the phenotype of infiltrating T cells and responses to immune checkpoint inhibition. Oncoimmunology 2017; 6:e1315495. [PMID: 28680745 DOI: 10.1080/2162402x.2017.1315495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Expression of human epidermal growth factor family member 3 (HER3), a critical heterodimerization partner with EGFR and HER2, promotes more aggressive biology in breast and other epithelial malignancies. As such, inhibiting HER3 could have broad applicability to the treatment of EGFR- and HER2-driven tumors. Although lack of a functional kinase domain limits the use of receptor tyrosine kinase inhibitors, HER3 contains antigenic targets for T cells and antibodies. Using novel human HER3 transgenic mouse models of breast cancer, we demonstrate that immunization with recombinant adenoviral vectors encoding full length human HER3 (Ad-HER3-FL) induces HER3-specific T cells and antibodies, alters the T cell infiltrate in tumors, and influences responses to immune checkpoint inhibitions. Both preventative and therapeutic Ad-HER3-FL immunization delayed tumor growth but were associated with both intratumoral PD-1 expressing CD8+ T cells and regulatory CD4+ T cell infiltrates. Immune checkpoint inhibition with either anti-PD-1 or anti-PD-L1 antibodies increased intratumoral CD8+ T cell infiltration and eliminated tumor following preventive vaccination with Ad-HER3-FL vaccine. The combination of dual PD-1/PD-L1 and CTLA4 blockade slowed the growth of tumor in response to Ad-HER3-FL in the therapeutic model. We conclude that HER3-targeting vaccines activate HER3-specific T cells and induce anti-HER3 specific antibodies, which alters the intratumoral T cell infiltrate and responses to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Michael A Morse
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Marcio A Diniz
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - William R Gwin
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, WA, USA
| | - Zachary Hartman
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Junping Wei
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Hongtao Guo
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Xiao-Yi Yang
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Cong-Xiao Liu
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Kensuke Kaneko
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Gloria Broadwater
- Duke University, Division of Biostatistics Duke Cancer Institute, Durham, NC, USA
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
21
|
Zeng L, Yang K. Exploring the pharmacological mechanism of Yanghe Decoction on HER2-positive breast cancer by a network pharmacology approach. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:68-85. [PMID: 28130113 DOI: 10.1016/j.jep.2017.01.045] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Certain Chinese medicine formulae from traditional Chinese Medicine (TCM) are effective for treating and preventing diseases in clinical practice. Yanghe Decoction (YHD) is a Chinese medicine formula that is used to treat breast cancer, especially HER-positive breast cancer; however, the active compounds, potential targets, and pharmacological and molecular mechanism of its action against cancer remain unclear. Therefore, further investigation is required. METHODS A network pharmacology approach comprising drug-likeness evaluation, oral bioavailability prediction, Caco-2 permeability prediction, multiple compound target prediction, multiple know target collection, breast cancer genes collection, and network analysis has been used in this study. RESULTS Four networks are set up, including HER2-positive breast cancer network, compound-compound target network of YHD, YHD-HER2-positive breast cancer network and compound-known target-HER2-positive breast cancer network, and some HER2-positive breast cancer and YHD related targets, clusters, biological processes and pathways are found. We also found some potential anti-cancer compounds. CONCLUSION Our works successfully predict, illuminate and confirm the molecular synergy of YHD for HER2-positive breast cancer and found the potential HER2-positive breast cancer associated targets, cluster, biological processes and pathways. This study not only provide clues to the researcher who explores pharmacological and molecular mechanism of YHD acting on HER2-positive breast cancer, but also demonstrates a feasible method for discovering potential drugs from Chinese medicine formulae.
Collapse
Affiliation(s)
- Liuting Zeng
- Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China.
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China.
| |
Collapse
|
22
|
HER-3 targeting alters the dimerization pattern of ErbB protein family members in breast carcinomas. Oncotarget 2016; 7:5576-97. [PMID: 26716646 PMCID: PMC4868707 DOI: 10.18632/oncotarget.6762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023] Open
Abstract
Breast carcinogenesis is a multi-step process in which membrane receptor tyrosine kinases are crucial participants. Lots of research has been done on epidermal growth factor receptor (EGFR) and HER-2 with important clinical results. However, breast cancer patients present intrinsic or acquired resistance to available HER-2-directed therapies, mainly due to HER-3. Using new techniques, such as proximity ligation assay, herein we evaluate the dimerization pattern of HER-3 and the importance of context-dependent dimer formation between HER-3 and other HER protein family members. Additionally, we show that the efficacy of novel HER-3 targeting agents can be better predicted in certain breast cancer patient sub-groups based on the dimerization pattern of HER protein family members. Moreover, this model was also evaluated and reproduced in human paraffin-embedded breast cancer tissues.
Collapse
|
23
|
Biomarkers for the identification of recurrence in human epidermal growth factor receptor 2-positive breast cancer patients. Curr Opin Oncol 2016; 28:476-483. [DOI: 10.1097/cco.0000000000000330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Hao J, Yang X, Ding XL, Guo LM, Zhu CH, Ji W, Zhou T, Wu XZ. Paeoniflorin Potentiates the Inhibitory Effects of Erlotinib in Pancreatic Cancer Cell Lines by Reducing ErbB3 Phosphorylation. Sci Rep 2016; 6:32809. [PMID: 27609096 PMCID: PMC5016851 DOI: 10.1038/srep32809] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/16/2016] [Indexed: 12/30/2022] Open
Abstract
Blockade of the epidermal growth factor receptor (EGFR) by EGFR tyrosine kinase inhibitors is insufficient for effective anti-tumor activity because the reactivation of the ErbB3 signaling pathway significantly contributes to activating the consequent phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Combinatorial therapies including ErbB3 targeting may ameliorate tumor responses to anti-EGFR therapies. In the present study, we found that in BxPC-3 and L3.6pl cells, which highly expressed the ErbB3 receptor, significant reduction in cell viability, induction of apoptosis were observed when treated with a combination of erlotinib and PF compared to either agent alone. Moreover, in ErbB3-expressing BxPC-3, L3.6pl and S2VP10 cell lines, the inhibition of ErbB3/PI3K/Akt phosphorylation were observed when treated with PF. Most strikingly, both EGFR/MAPK/Erk and ErbB3/PI3K/Akt activitions were substantially suppressed when treated with the combination of PF and erlotinib. However, in the ErbB3-deficient cell line MIAPaCa-2, no such effects were observed with similar treatments. Most importantly, these in vitro results were replicated in nude mouse transplanted tumor models. Taken together, our findings show that PF enhances the effect of erlotinib in ErbB3-expressing pancreatic cancer cells by directly suppressing ErbB3 activation, and PF in combination with erlotinib is much more effective as an antitumor agent compared with either agent alone.
Collapse
Affiliation(s)
- Jian Hao
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| | - Xue Yang
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| | - Xiu-li Ding
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| | - Lei-ming Guo
- Clinical Immunology and Rheumatology, Medicine Department of University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cui-hong Zhu
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| | - Wei Ji
- Opening Cancer Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Tong Zhou
- Clinical Immunology and Rheumatology, Medicine Department of University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiong-zhi Wu
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| |
Collapse
|
25
|
Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet 2016; 62:15-24. [PMID: 27439682 DOI: 10.1038/jhg.2016.89] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/11/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate the function of target genes at the post-transcriptional phase. miRNAs are considered to have roles in the development, progression and metastasis of cancer. Recent studies have indicated that particular miRNA signatures are correlated with tumor aggressiveness, response to drug therapy and patient outcome in breast cancer. On the other hand, in routine clinical practice, the treatment regimens for breast cancer are determined based on the intrinsic subtype of the primary tumor. Previous studies have shown that miRNA expression profiles of each intrinsic subtypes of breast cancer differ. In hormone receptor-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer, miRNA expressions are found to be correlated with endocrine therapy resistance, progesterone receptor expression and heat shock protein activity. Some miRNAs are associated with resistance to HER2-targeted therapy and HER3 expression in HER2-positive breast cancer. In triple-negative breast cancer, miRNA expressions are found to be associated with BRCA mutations, immune system, epithelial-mesenchymal transition, cancer stem cell properties and androgen receptor expression. As it has been clarified that the expression levels and functions of miRNA differ among the various subtypes of breast cancer, and it is necessary to take account of the characteristics of each breast cancer subtype during research into the roles of miRNA in breast cancer. In addition, the discovery of the roles played by miRNAs in breast cancer might provide new opportunities for the development of novel strategies for diagnosing and treating breast cancer.
Collapse
|
26
|
Heregulin/ErbB3 Signaling Enhances CXCR4-Driven Rac1 Activation and Breast Cancer Cell Motility via Hypoxia-Inducible Factor 1α. Mol Cell Biol 2016; 36:2011-26. [PMID: 27185877 DOI: 10.1128/mcb.00180-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/06/2016] [Indexed: 01/11/2023] Open
Abstract
The growth factor heregulin (HRG), a ligand of ErbB3 and ErbB4 receptors, contributes to breast cancer development and the promotion of metastatic disease, and its expression in breast tumors has been associated with poor clinical outcome and resistance to therapy. In this study, we found that breast cancer cells exposed to sustained HRG treatment show markedly enhanced Rac1 activation and migratory activity in response to the CXCR4 ligand SDF-1/CXCL12, effects mediated by P-Rex1, a Rac-guanine nucleotide exchange factor (GEF) aberrantly expressed in breast cancer. Notably, HRG treatment upregulates surface expression levels of CXCR4, a G protein-coupled receptor (GPCR) implicated in breast cancer metastasis and an indicator of poor prognosis in breast cancer patients. A detailed mechanistic analysis revealed that CXCR4 upregulation and sensitization of the Rac response/motility by HRG are mediated by the transcription factor hypoxia-inducible factor 1α (HIF-1α) via ErbB3 and independently of ErbB4. HRG caused prominent induction in the nuclear expression of HIF-1α, which transcriptionally activates the CXCR4 gene via binding to a responsive element located in positions -1376 to -1372 in the CXCR4 promoter, as revealed by mutagenesis analysis and chromatin immunoprecipitation (ChIP). Our results uncovered a novel function for ErbB3 in enhancing breast cancer cell motility and sensitization of the P-Rex1/Rac1 pathway through HIF-1α-mediated transcriptional induction of CXCR4.
Collapse
|
27
|
Monteiro IDPC, Madureira P, de Vasconscelos A, Pozza DH, de Mello RA. Targeting HER family in HER2-positive metastatic breast cancer: potential biomarkers and novel targeted therapies. Pharmacogenomics 2015; 16:257-71. [PMID: 25712189 DOI: 10.2217/pgs.14.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
HER2-targeted therapies have radically changed the prognosis of HER2-positive breast cancer over the last few years. However, resistance to these therapies has been a constant, leading to treatment-failure and new tumor progression. Recently, the kinase-impaired HER3 emerged as a pivotal player in oncogenic signaling, with an important role in both non-treated progression and treatment response. HER2/HER3 dimerization is required for full signaling potential and constitutes the key oncogenic unit. Also, when inhibiting PI3K/AKT pathway (as with anti-HER2 drugs) feedback mechanisms lead to a rebound in HER3 activity, which is one of the main roads to resistance. As current strategies to treat HER2-positive breast cancer are unable to inhibit this feedback response, two great promises emerged: the combination of targeted-therapies and drugs targeting HER3. In this article HER2 and HER3-targeted drugs and possible combinations between them, as well as the biomarkers to predict and monitor these drugs effect, are reviewed.
Collapse
|
28
|
Cordo Russo RI, Béguelin W, Díaz Flaqué MC, Proietti CJ, Venturutti L, Galigniana N, Tkach M, Guzmán P, Roa JC, O'Brien NA, Charreau EH, Schillaci R, Elizalde PV. Targeting ErbB-2 nuclear localization and function inhibits breast cancer growth and overcomes trastuzumab resistance. Oncogene 2015; 34:3413-28. [PMID: 25174405 DOI: 10.1038/onc.2014.272] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/08/2014] [Accepted: 07/19/2014] [Indexed: 12/11/2022]
Abstract
Membrane overexpression of ErbB-2/HER2 receptor tyrosine kinase (membrane ErbB-2 (MErbB-2)) has a critical role in breast cancer (BC). We and others have also shown the role of nuclear ErbB-2 (NErbB-2) in BC, whose presence we identified as a poor prognostic factor in MErbB-2-positive tumors. Current anti-ErbB-2 therapies, as with the antibody trastuzumab (Ttzm), target only MErbB-2. Here, we found that blockade of NErbB-2 action abrogates growth of BC cells, sensitive and resistant to Ttzm, in a scenario in which ErbB-2, ErbB-3 and Akt are phosphorylated, and ErbB-2/ErbB-3 dimers are formed. Also, inhibition of NErbB-2 presence suppresses growth of a preclinical BC model resistant to Ttzm. We showed that at the cyclin D1 promoter, ErbB-2 assembles a transcriptional complex with Stat3 (signal transducer and activator of transcription 3) and ErbB-3, another member of the ErbB family, which reveals the first nuclear function of ErbB-2/ErbB-3 dimer. We identified NErbB-2 as the major proliferation driver in Ttzm-resistant BC, and demonstrated that Ttzm inability to disrupt the Stat3/ErbB-2/ErbB-3 complex underlies its failure to inhibit growth. Furthermore, our results in the clinic revealed that nuclear interaction between ErbB-2 and Stat3 correlates with poor overall survival in primary breast tumors. Our findings challenge the paradigm of anti-ErbB-2 drug design and highlight NErbB-2 as a novel target to overcome Ttzm resistance.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Antibodies, Monoclonal, Humanized/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Female
- Genes, Dominant/physiology
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Targeted Therapy/methods
- Mutant Proteins/pharmacology
- Mutant Proteins/therapeutic use
- Protein Isoforms/pharmacology
- Protein Isoforms/therapeutic use
- Protein Transport/drug effects
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/physiology
- Trastuzumab
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- R I Cordo Russo
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - W Béguelin
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - M C Díaz Flaqué
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - C J Proietti
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - L Venturutti
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - N Galigniana
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - M Tkach
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - P Guzmán
- Departamento de Anatomía Patológica (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - J C Roa
- Departamento de Anatomía Patológica (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - N A O'Brien
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - E H Charreau
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - R Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - P V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| |
Collapse
|
29
|
Ren XR, Wang J, Osada T, Mook RA, Morse MA, Barak LS, Lyerly HK, Chen W. Perhexiline promotes HER3 ablation through receptor internalization and inhibits tumor growth. Breast Cancer Res 2015; 17:20. [PMID: 25849870 PMCID: PMC4358700 DOI: 10.1186/s13058-015-0528-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/30/2015] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Human epidermal growth factor receptor HER3 has been implicated in promoting the aggressiveness and metastatic potential of breast cancer. Upregulation of HER3 has been found to be a major mechanism underlying drug resistance to EGFR and HER2 tyrosine kinase inhibitors and to endocrine therapy in the treatment of breast cancer. Thus, agents that reduce HER3 expression at the plasma membrane may synergize with current therapies and offer a novel therapeutic strategy to improve treatment. METHODS We devised an image-based screening platform using membrane localized HER3-YFP to identify small molecules that promote HER3 internalization and degradation. In vitro and in vivo tumor models were used to characterize the signaling effects of perhexiline, an anti-anginal drug, identified by the screening platform. RESULTS We found perhexiline, an anti-anginal drug, selectively internalized HER3, decreased HER3 expression, and subsequently inhibited signaling downstream of HER3. Consistent with these results, perhexiline inhibited breast cancer cell proliferation in vitro and tumor growth in vivo. CONCLUSIONS This is the first demonstration that HER3 can be targeted with small molecules by eliminating it from the cell membrane. The novel approach used here led to the discovery that perhexiline ablates HER3 expression, and offers an opportunity to identify HER3 ablation modulators as innovative therapeutics to improve survival in breast cancer patients.
Collapse
|
30
|
Comprehensive profiling of EGFR/HER receptors for personalized treatment of gynecologic cancers. Mol Diagn Ther 2014; 18:137-51. [PMID: 24403167 DOI: 10.1007/s40291-013-0070-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The primary gynecologic cancers include cancers of the endometrium, ovary, and cervix. Worldwide, cervical cancer is the most common gynecologic cancer, whereas endometrial cancer is the most common in the US. Ovarian cancer is the fifth most deadly cancer in women, with 5-year survival rates for advanced disease at only 27 %. As such, there is an urgent need for reliable screening tools and novel targeted therapeutic regimens for these malignancies. The epidermal growth factor receptor (EGFR)/human EGFR (HER) family of receptors has been associated with the development and progression of many solid tumors. Despite clear roles for these receptors in other cancers, the expression of HER family members in gynecologic cancers and their relationship with disease stage, grade, and response to treatment remain controversial. In this review, we describe the existing evidence for the use of HER family members as diagnostic and prognostic indicators as well as their potential as therapeutic targets in gynecologic cancers.
Collapse
|
31
|
Templeton AJ, Diez-Gonzalez L, Ace O, Vera-Badillo F, Šeruga B, Jordán J, Amir E, Pandiella A, Ocaña A. Prognostic relevance of receptor tyrosine kinase expression in breast cancer: A meta-analysis. Cancer Treat Rev 2014; 40:1048-55. [DOI: 10.1016/j.ctrv.2014.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/25/2022]
|
32
|
Berghoff AS, Bartsch R, Preusser M, Ricken G, Steger GG, Bago-Horvath Z, Rudas M, Streubel B, Dubsky P, Gnant M, Fitzal F, Zielinski CC, Birner P. Co-overexpression of HER2/HER3 is a predictor of impaired survival in breast cancer patients. Breast 2014; 23:637-43. [PMID: 25017122 DOI: 10.1016/j.breast.2014.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Recently, HER3-expression was postulated as independent risk factor for metastatic spread. Therefore, we investigated the role of HER3 expression as prognostic marker in metastatic breast cancer patients. METHODS Patients of different breast cancer subtypes diagnosed with metastatic disease (visceral and/or brain metastases) were identified from a breast cancer database. Tissue samples of the respective primary tumors were retrieved, and immunohistochemical staining for estrogen-receptor, progesterone-receptor, HER2, and HER3 was performed. In HER2 equivocal and selected HER3 positive cases, subsequent fluorescent in situ hybridization (FISH) analysis was performed. RESULTS Tissue specimens of 110 patients were available for this analysis. 21% had strong, complete, membranous HER3 staining of at least 10% of all tumor cells; HER3 protein expression was not associated with HER3 gene amplification. HER2/HER3 co-overexpression was observed in 12/110 (11%) specimens and HER3-overexpression showed a statistically significant association with HER2-overexpression (p = 0.02). No correlation was observed for HER3-overexpression and overall survival (OS), time to diagnosis of brain metastases, and incidence of brain metastases. Still, in patients with HER3 overexpression, a higher rate of 'brain only' metastatic behavior was observed (p = 0.042). In the HER2-positive subgroup, HER3-overexpression was significantly associated with shorter OS from diagnosis of metastatic disease (median 17 vs. 35 months; p = 0.04; log rank test). CONCLUSIONS HER2/HER3 co-overexpression is significantly associated with impaired OS from diagnosis of metastatic disease in patients with HER2-positive metastatic breast cancer. Co-inhibition of HER2 and HER3 or the inhibition of HER2/HER3 hetero-dimerization may improve clinical outcome in this subgroup.
Collapse
Affiliation(s)
- Anna S Berghoff
- Institute of Neurology, Medical University of Vienna, Austria; Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Rupert Bartsch
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria; Department of Medicine I, Clinical Division of Medical Oncology, Medical University of Vienna, Austria.
| | - Matthias Preusser
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria; Department of Medicine I, Clinical Division of Medical Oncology, Medical University of Vienna, Austria
| | - Gerda Ricken
- Institute of Neurology, Medical University of Vienna, Austria; Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Guenther G Steger
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria; Department of Medicine I, Clinical Division of Medical Oncology, Medical University of Vienna, Austria
| | - Zsuzsanna Bago-Horvath
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria; Department of Pathology, Medical University of Vienna, Austria
| | - Margareta Rudas
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria; Department of Pathology, Medical University of Vienna, Austria
| | - Berthold Streubel
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Peter Dubsky
- Department of Surgery, Medical University of Vienna, Austria
| | - Michael Gnant
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria; Department of Surgery, Medical University of Vienna, Austria
| | - Florian Fitzal
- Department of Surgery, Medical University of Vienna, Austria
| | - Christoph C Zielinski
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria; Department of Medicine I, Clinical Division of Medical Oncology, Medical University of Vienna, Austria
| | - Peter Birner
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria; Department of Pathology, Medical University of Vienna, Austria
| |
Collapse
|
33
|
Kol A, Terwisscha van Scheltinga AG, Timmer-Bosscha H, Lamberts LE, Bensch F, de Vries EG, Schröder CP. HER3, serious partner in crime. Pharmacol Ther 2014; 143:1-11. [DOI: 10.1016/j.pharmthera.2014.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 02/07/2023]
|
34
|
Ma J, Lyu H, Huang J, Liu B. Targeting of erbB3 receptor to overcome resistance in cancer treatment. Mol Cancer 2014; 13:105. [PMID: 24886126 PMCID: PMC4022415 DOI: 10.1186/1476-4598-13-105] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/02/2014] [Indexed: 01/12/2023] Open
Abstract
The erbB receptors, including the epidermal growth factor receptor (EGFR), erbB2 (also known as HER2/neu), erbB3 (or HER3), and erbB4 (or HER4), are often aberrantly activated in a wide variety of human cancers. They are excellent targets for selective anti-cancer therapies because of their transmembrane location and pro-oncogenic activity. While several therapeutic agents against erbB2 and/or EGFR have been used in the treatment of human cancers with efficacy, there has been relatively less emphasis on erbB3 as a molecular target. Elevated expression of erbB3 is frequently observed in various malignancies, where it promotes tumor progression via interactions with other receptor tyrosine kinases (RTKs) due to its lack of or weak intrinsic kinase activity. Studies on the underlying mechanisms implicate erbB3 as a major cause of treatment failure in cancer therapy, mainly through activation of the PI-3 K/Akt, MEK/MAPK, and Jak/Stat signaling pathways as well as Src kinase. It is believed that inhibition of erbB3 signaling may be required to overcome therapeutic resistance and effectively treat cancers. To date, no erbB3-targeted therapy has been approved for cancer treatment. Targeting of erbB3 receptor with a monoclonal antibody (Ab) is the only strategy currently under preclinical study and clinical evaluation. In this review, we focus on the role of erbB3-initiated signaling in the development of cancer drug resistance and discuss the latest advances in identifying therapeutic strategies inactivating erbB3 to overcome the resistance and enhance efficacy of cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | - Bolin Liu
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
35
|
Lee Y, Ma J, Lyu H, Huang J, Kim A, Liu B. Role of erbB3 receptors in cancer therapeutic resistance. Acta Biochim Biophys Sin (Shanghai) 2014; 46:190-8. [PMID: 24449784 DOI: 10.1093/abbs/gmt150] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ErbB3 receptors are unique members of the erbB receptor tyrosine kinases (RTKs), which are often aberrantly expressed and/or activated in human cancers. Unlike other members in the family, erbB3 lacks or has impaired kinase activity. To transduce cell signaling, erbB3 has to interact with other RTKs and to be phosphorylated by its interactive partners, of those, erbB2 is the most important one. ErbB3 is frequently co-expressed with other RTKs in cancer cells to activate oncogenic signaling, such as phosphoinositide-3-kinase/protein kinase B (Akt) pathway, mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) pathway, Janus kinase (Jak)/signal transducer and activator of transcription (Stat) pathway, etc. and thereby promote tumorigenesis. Numerous studies have demonstrated that activation of erbB3 signaling plays an important role in the progression of a variety of tumor types, such as erbB2-overexpressing breast cancer, castration-resistant prostate cancer, platinum refractory/resistant ovarian cancer, epidermal growth factor receptor TKI-resistant non-small-cell lung cancer, and others. Basic research on the underlying mechanisms implicated the functions of erbB3 as a major cause of treatment failure in cancer therapy. Thus, concomitant inhibition of erbB3 is thought to be required to overcome the resistance and to effectively treat human cancers. This review focuses on the latest advances in our understanding of erbB3-initiated signaling in the development of resistance to cancer treatments.
Collapse
Affiliation(s)
- Youngseok Lee
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
36
|
HER-3 expression in HER-2-amplified breast carcinoma. Contemp Oncol (Pozn) 2013; 17:446-9. [PMID: 24596534 PMCID: PMC3934027 DOI: 10.5114/wo.2013.38564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/21/2013] [Accepted: 05/27/2013] [Indexed: 11/30/2022] Open
Abstract
Aim of the study To determine whether the expression of HER-3 influences the survival of HER-2 positive patients with breast cancer (BC). Material and methods In the present work, the expression of HER-3 in a group of 35 HER-2 positive patients with BC was studied by performing immunohistochemistry (IHC) in formalin-fixed paraffin embedded tissues. Results Higher HER-3 status if estimated by IHC correlated significantly with older age of the patients. HER-3 expression did not correlate with estrogen or progesterone receptor status, pT or pN. There was also no significant difference in disease-free or overall survival (DFS and OS) between groups with different HER-3 expression, although some tendencies were seen as HER-3 expression in over 50% of cells was a factor of worse 5- and 10-year survival. Conclusions Further studies should be performed on a larger group of patients to confirm the prognostic role of HER-3 status determined by IHC in BC.
Collapse
|
37
|
The function of human epidermal growth factor receptor-3 and its role in tumors (Review). Oncol Rep 2013; 30:2563-70. [DOI: 10.3892/or.2013.2754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/06/2013] [Indexed: 11/05/2022] Open
|
38
|
Inverse regulation of EGFR/HER1 and HER2-4 in normal and malignant human breast tissue. PLoS One 2013; 8:e74618. [PMID: 23991224 PMCID: PMC3750010 DOI: 10.1371/journal.pone.0074618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/05/2013] [Indexed: 01/05/2023] Open
Abstract
Cross-talk between the estrogen and the EGFR/HER signalling pathways has been suggested as a potential cause of resistance to endocrine therapy in breast cancer. Here, we determined HER1-4 receptor and neuregulin-1 (NRG1) ligand mRNA expression levels in breast cancers and corresponding normal breast tissue from patients previously characterized for plasma and tissue estrogen levels. In tumours from postmenopausal women harbouring normal HER2 gene copy numbers, we found HER2 and HER4, but HER3 levels in particular, to be elevated (2.48, 1.30 and 22.27 –fold respectively; P<0.01 for each) compared to normal tissue. Interestingly, HER3 as well as HER4 were higher among ER+ as compared to ER- tumours (P=0.004 and P=0.024, respectively). HER2 and HER3 expression levels correlated positively with ER mRNA (ESR1) expression levels (r=0.525, P=0.044; r=0.707, P=0.003, respectively). In contrast, EGFR/HER1 was downregulated in tumour compared to normal tissue (0.13-fold, P<0.001). In addition, EGFR/HER1 correlated negatively to intra-tumour (r=-0.633, P=0.001) as well as normal tissue (r=-0.556, P=0.006) and plasma estradiol levels (r=-0.625, P=0.002), suggesting an inverse regulation between estradiol and EGFR/HER1 levels. In ER+ tumours from postmenopausal women, NRG1 levels correlated positively with EGFR/HER1 (r=0.606, P=0.002) and negatively to ESR1 (r=-0.769, P=0.003) and E2 levels (r=-0.542, P=0.020). Our results indicate influence of estradiol on the expression of multiple components of the HER system in tumours not amplified for HER2, adding further support to the hypothesis that cross-talk between these systems may be of importance to breast cancer growth in vivo.
Collapse
|
39
|
Yewale C, Baradia D, Vhora I, Patil S, Misra A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials 2013; 34:8690-707. [PMID: 23953842 DOI: 10.1016/j.biomaterials.2013.07.100] [Citation(s) in RCA: 359] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/28/2013] [Indexed: 01/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a cell-surface receptor belonging to ErbB family of tyrosine kinase and it plays a vital role in the regulation of cell proliferation, survival and differentiation. However; EGFR is aberrantly activated by various mechanisms like receptor overexpression, mutation, ligand-dependent receptor dimerization, ligand-independent activation and is associated with development of variety of tumors. Therefore, specific EGFR inhibition is one of the key targets for cancer therapy. Two major approaches have been developed and demonstrated benefits in clinical trials for targeting EGFR; monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs). EGFR inhibitors like, cetuximab, panitumumab, etc. (mAbs) and gefitinib, erlotinib, lapatinib, etc. (TKIs) are now commercially available for treatment of variety of cancers. Recently, many other agents like peptides, nanobodies, affibodies and antisense oligonucleotide have also shown better efficacy in targeting and inhibiting EGFR. Now a days, efforts are being focused to identify molecular markers that can predict patients more likely to respond to anti-EGFR therapy; to find out combinatorial approaches with EGFR inhibitors and to bring new therapeutic agents with clinical efficacy. In this review we have outlined the role of EGFR in cancer, different types of EGFR inhibitors, preclinical and clinical status of EGFR inhibitors as well as summarized the recent efforts made in the field of molecular EGFR targeting.
Collapse
Affiliation(s)
- Chetan Yewale
- Pharmacy Department, Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara 390 001, Gujarat, India
| | | | | | | | | |
Collapse
|
40
|
Mapping C-terminal transactivation domains of the nuclear HER family receptor tyrosine kinase HER3. PLoS One 2013; 8:e71518. [PMID: 23951180 PMCID: PMC3738522 DOI: 10.1371/journal.pone.0071518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/02/2013] [Indexed: 12/28/2022] Open
Abstract
Nuclear localized HER family receptor tyrosine kinases (RTKs) have been observed in primary tumor specimens and cancer cell lines for nearly two decades. Inside the nucleus, HER family members (EGFR, HER2, and HER3) have been shown to function as co-transcriptional activators for various cancer-promoting genes. However, the regions of each receptor that confer transcriptional potential remain poorly defined. The current study aimed to map the putative transactivation domains (TADs) of the HER3 receptor. To accomplish this goal, various intracellular regions of HER3 were fused to the DNA binding domain of the yeast transcription factor Gal4 (Gal4DBD) and tested for their ability to transactivate Gal4 UAS-luciferase. Results from these analyses demonstrated that the C-terminal domain of HER3 (CTD, amino acids distal to the tyrosine kinase domain) contained potent transactivation potential. Next, nine HER3-CTD truncation mutants were constructed to map minimal regions of transactivation potential using the Gal4 UAS-luciferase based system. These analyses identified a bipartite region of 34 (B1) and 27 (B2) amino acids in length that conferred the majority of HER3’s transactivation potential. Next, we identified full-length nuclear HER3 association and regulation of a 122 bp region of the cyclin D1 promoter. To understand how the B1 and B2 regions influenced the transcriptional functions of nuclear HER3, we performed cyclin D1 promoter-luciferase assays in which HER3 deleted of the B1 and B2 regions was severely hindered in regulating this promoter. Further, the overexpression of HER3 enhanced cyclin D1 mRNA expression, while HER3 deleted of its identified TADs was hindered at doing so. Thus, the ability for HER3 to function as a transcriptional co-activator may be dependent on specific C-terminal TADs.
Collapse
|
41
|
Bae SY, La Choi Y, Kim S, Kim M, Kim J, Jung SP, Choi MY, Lee SK, Kil WH, Lee JE, Nam SJ. HER3 status by immunohistochemistry is correlated with poor prognosis in hormone receptor-negative breast cancer patients. Breast Cancer Res Treat 2013; 139:741-50. [PMID: 23722313 DOI: 10.1007/s10549-013-2570-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
Breast cancer is a highly heterogeneous malignancy. The triple-negative breast cancer (TNBC) and human epidermal growth factor receptor 2 (HER2) breast cancer subtypes are highly aggressive and are associated with a poor prognosis. The therapeutic targets for TNBC remain undefined, and many patients with the HER2 subtype acquire resistance to therapy after prolonged treatment. The objective of this study was to evaluate the prognostic significance of HER3 expression in invasive breast carcinoma. We established matched tissue microarray (TMA) blocks and clinical data from 950 cases of invasive breast carcinoma with long-term clinical follow-up data (median 109.7 months). Using the TMAs, we characterized the expression of ER, PR, HER2, EGFR, and HER3 by immunohistochemistry. Each case was classified as one of four IHC-based subtypes based on the expression of hormonal receptor (HR) and HER2. The clinicopathological characteristics and survival of 950 patients were analyzed by subtype. In the TNBC subtype, the HER3(+) group showed poorer disease-free survival (DFS, P = 0.010) and overall survival (OS, P = 0.015) than the HER3(-) group. In the HER2 subtype, the HER3(+) group also showed poorer DFS (P = 0.022) and OS (P = 0.077) than the HER3(-) group. However, there was no difference in patients with HR-positive breast cancer. HER3 expression was associated with poor DFS in both the TNBC and HER2 subtypes and poor OS in the TNBC subtype. HER3 overexpression is an important prognostic marker in hormone receptor-negative breast cancer, and further study is needed to clarify the role of HER-3 targeted treatment.
Collapse
Affiliation(s)
- Soo Youn Bae
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Is HER2 overexpression sufficient for optimal response to Pertuzumab? Med Oncol 2012; 29:2565-6. [DOI: 10.1007/s12032-012-0183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/01/2012] [Indexed: 11/26/2022]
|
43
|
Fujiwara S, Ibusuki M, Yamamoto S, Yamamoto Y, Iwase H. Association of ErbB1-4 expression in invasive breast cancer with clinicopathological characteristics and prognosis. Breast Cancer 2012; 21:472-81. [PMID: 23100016 DOI: 10.1007/s12282-012-0415-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/18/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Human epidermal growth factor receptor type 2 (Her2)/ErbB2 plays a key role in the initiation and progression of invasive breast cancer. However, the prognostic relevance to breast cancer patients of the other ErbB family members has long been a matter of debate. METHODS In a series of 250 primary invasive breast cancer patients, we performed a comprehensive analysis of ErbB1-4 at the levels of mRNA expression and gene copy number using real-time quantitative PCR. The relationship between the status of ErbB1-4 and the clinicopathological characteristics or prognosis was evaluated. RESULTS The mRNA expression of ErbB2, but not the other ErbB genes, was significantly correlated to copy number (P = 0.0005). ErbB3 and ErbB4 mRNA expression were positively correlated to each other (P < 0.0001). The mRNA expression of ErbB1/2 was inversely correlated to estrogen receptor (ER) and progesterone receptor (PgR) positivity, although mRNA expression of ErbB3/4 was positively correlated to ER and PgR positivity. Kaplan-Meier survival analysis showed that ErbB1 mRNA expression was associated with reduced survival. Neither ErbB2 nor ErbB3 mRNA expression had any association with survival, because half of the patients with Her2-positive tumors were treated with trastuzumab. High ErbB4 mRNA expression showed good prognosis with respect to breast cancer-specific survival CONCLUSIONS ErbB3 and ErbB4 mRNA expression, as well as well as that of ErbB1 and ErbB2, could be histopathological factors. ErbB3 mRNA was highly expressed in ER-positive tumors and has controversial prognostic value. ErbB4 mRNA expression was well correlated with ER positivity and good prognosis, indicating that ErbB4 may contribute to ER-dependent growth.
Collapse
Affiliation(s)
- Saori Fujiwara
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | | | | | | | | |
Collapse
|
44
|
Şendur MAN, Aksoy S, Zengin N. Pertuzumab plus trastuzumab in metastatic breast cancer. N Engl J Med 2012; 366:1349; author reply 1349-50. [PMID: 22475602 DOI: 10.1056/nejmc1201462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Phosphoinositide 3-kinase signaling is critical for ErbB3-driven breast cancer cell motility and metastasis. Oncogene 2011; 31:706-15. [PMID: 21725367 PMCID: PMC3469325 DOI: 10.1038/onc.2011.275] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many malignancies show increased expression of the EGF receptor family member ErbB3 (HER3). ErbB3 binds beta-1 (HRGβ1), and forms a heterodimer with other ErbB family members, such as ErbB2 (HER2) or EGFR (HER1), enhancing phosphorylation of specific C terminal tyrosine residues and activation of downstream signaling pathways. ErbB3 contains six YXXM motifs that bind the p85 subunit of PI3-kinase. Previous studies demonstrated that overexpression of ErbB3 in mammary tumor cells can significantly enhance chemotaxis to HRGβ1 and overall metastatic potential. We tested the hypothesis that ErbB3-mediated PI3-kinase signaling is critical for heregulin-induced motility, and therefore crucial for ErbB3-mediated invasion, intravasation and metastasis. The tyrosines in the six YXXM motifs on the ErbB3 C-terminus were replaced with phenylalanine. In contrast to overexpression of the wild-type ErbB3, overexpression of the mutant ErbB3 did not enhance chemotaxis towards HRGβ1 in vitro or in vivo. We also observed reduced tumor cell motility in the primary tumor by multiphoton microscopy, as well as a dramatically reduced ability of these cells to cross the endothelium and intravasate into the circulation. Moreover, while mutation of the ErbB3 C-terminus had no effect on tumor growth, it had a dramatic effect on spontaneous metastatic potential. Treatment with the PI3-kinase inhibitor PIK-75 similarly inhibited motility and invasion in vitro and in vivo. Our results indicate that stimulation of the early metastatic steps of motility and invasion by ErbB3 requires activation of the PI3-kinase pathway by the ErbB3 receptor.
Collapse
|
46
|
Hutcheson IR, Goddard L, Barrow D, McClelland RA, Francies HE, Knowlden JM, Nicholson RI, Gee JMW. Fulvestrant-induced expression of ErbB3 and ErbB4 receptors sensitizes oestrogen receptor-positive breast cancer cells to heregulin β1. Breast Cancer Res 2011; 13:R29. [PMID: 21396094 PMCID: PMC3219190 DOI: 10.1186/bcr2848] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/10/2011] [Accepted: 03/11/2011] [Indexed: 12/12/2022] Open
Abstract
Introduction We have previously reported that induction of epidermal growth factor receptor and ErbB2 in response to antihormonal agents may provide an early mechanism to allow breast cancer cells to evade the growth-inhibitory action of such therapies and ultimately drive resistant cell growth. More recently, the other two members of the ErbB receptor family, ErbB3 and ErbB4, have been implicated in antihormone resistance in breast cancer. In the present study, we have investigated whether induction of ErbB3 and/or ErbB4 may provide an alternative resistance mechanism to antihormonal action in a panel of four oestrogen receptor (ER)-positive breast cancer cell lines. Methods MCF-7, T47D, BT474 and MDAMB361 cell lines were exposed to fulvestrant (100 nM) for seven days, and effects on ErbB3/4 expression and signalling, as well as on cell growth, were assessed. Effects of heregulin β1 (HRGβ1) were also examined in the absence and presence of fulvestrant to determine the impact of ER blockade on the capacity of this ErbB3/4 ligand to promote signalling and cell proliferation. Results Fulvestrant potently reduced ER expression and transcriptional activity and significantly inhibited growth in MCF-7, T47D, BT474 and MDAMB361 cells. However, alongside this inhibitory activity, fulvestrant also consistently induced protein expression and activity of ErbB3 in MCF-7 and T47D cells and ErbB4 in BT474 and MDAMB361 cell lines. Consequently, fulvestrant treatment sensitised all cell lines to the actions of the ErbB3/4 ligand HRGβ1 with enhanced ErbB3/4-driven signalling activity, reexpression of cyclin D1 and significant increases in cell proliferation being observed when compared to untreated cells. Indeed, in T47D and MDAMB361 HRGβ1 was converted from a ligand having negligible or suppressive growth activity into one that potently promoted cell proliferation. Consequently, fulvestrant-mediated growth inhibition was completely overridden by HRGβ1 in all four cell lines. Conclusions These findings suggest that although antihormones such as fulvestrant may have potent acute growth-inhibitory activity in ER-positive breast cancer cells, their ability to induce and sensitise cells to growth factors may serve to reduce and ultimately limit their inhibitory activity.
Collapse
Affiliation(s)
- Iain R Hutcheson
- Department of Pharmacology, Radiology & Oncology, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
|