1
|
Zhang H, Jiang J, Chen X, Zhu F, Fu F, Chen A, Fu L, Mao D. Liu-Shen-Wan inhibits PI3K/Akt and TRPV1 signaling alleviating bone cancer pain in rats. Cancer Biol Ther 2024; 25:2432098. [PMID: 39587385 PMCID: PMC11601056 DOI: 10.1080/15384047.2024.2432098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024] Open
Abstract
Patients with advanced-stage cancers often suffer from severe pain caused by bone metastasis and destruction, for which effective treatment options are limited. Liu-Shen-Wan (LSW) is a widely recognized herbal formula utilized for pain relief. This study aims to elucidate the effects of LSW on bone cancer pain (BCP). In this study, the pharmacology of LSW on BCP was screened by network pharmacology. A BCP model was conducted using Walker 256 cells. Paw withdrawal threshold and paw withdrawal latency were employed as measures to assess the pain threshold in rats. The pathways and cell types of LSW against BCP were explored. Next, the impact of LSW on Walker 256 cells was evaluated, and UPLC-MS was utilized to identify the active ingredients of LSW. Furthermore, the effects of the key active ingredient, Bufalin, on the BCP rats were evaluated. There were 275 shared targets between LSW and BCP, which were enriched in neural tissue ligand-receptor interaction pathway. LSW increased pain threshold and decreased inflammatory cytokines levels in BCP rats by inhibiting PI3K/Akt and transient receptor potential vanilloid 1 (TRPV1) signaling through astrocytes and microglia. LY294002 further alleviated BCP in rats, while the effects were reversed after treatment with insulin-like growth factor 1 (IGF-1). Both LSW and its active ingredient Bufalin were shown to inhibit the viability and migration of Walker 256 cells and induce apoptosis. Bufalin appears to be the key active ingredient of LSW and exerts its pain-relieving effects by suppressing PI3K/Akt and TRPV1 signaling in BCP.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Jingwen Jiang
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Xuewu Chen
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Fengting Zhu
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Fangfang Fu
- Department of Oncology, Affiliated Hainan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Haikou, Hainan, China
| | - Aiying Chen
- Department of Oncology, Affiliated Hainan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Haikou, Hainan, China
| | - Lei Fu
- Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Dan Mao
- Department of Integrated Traditional Chinese and Western Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Chen L, Ni C, Lu D, Zhang S, Li Y, Wang D, Hua B, Ni H, Xu L, Yao M. Curcumin analog C16 attenuates bone cancer pain induced by MADB 106 breast cancer cells in female rats and inhibits the CREB/NLGN2 signaling axis by targeting CaMKⅠα. Neuropharmacology 2024; 266:110284. [PMID: 39725125 DOI: 10.1016/j.neuropharm.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Bone cancer pain (BCP) is one of the most severe complications faced by patients with cancer; however, current pharmacological options are limited. Curcumin has been demonstrated to possess anti-inflammatory and analgesic properties; however, our preliminary research found that the analgesic efficiency of curcumin is not high in BCP. Consequently, curcumin analogs have emerged as a significant focus of our research. This study aimed to systematically investigate the analgesic effects of C16 in rats with BCP induced by MADB 106 breast cancer cells (MADB 106-induced BCP) and elucidate the underlying molecular mechanisms. A range of experimental methods, including kinase profiling, transcriptome sequencing, behavioral tests, immunofluorescence, and biochemical analyses, were employed to comprehensively assess the role of C16 in the MADB 106-induced BCP model. The results indicated that C16 significantly alleviated bone cancer pain induced by Luciferin-MADB 106 cells (10^6 cells) in a dose-dependent manner. Importantly, kinase profiling and validation experiments identified CaMKIα in spinal dorsal horn neurons as the primary target of C16's analgesic effect on MADB 106-induced BCP. Continuous intrathecal administration of C16 markedly suppressed the expression of CREB and P-CREB and reduced the expression of neuroligin 2 in the spinal cords of BCP rats, thereby clarifying the mechanism of action of C16 in alleviating MADB 106-induced BCP. These findings suggest that C16 possesses significant therapeutic potential for mitigating MADB 106-induced BCP nociceptive hypersensitivity, providing a foundation for the future development of novel drugs targeting MADB 106-induced BCP.
Collapse
Affiliation(s)
- Liping Chen
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Dashan Lu
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Shuyao Zhang
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Yuhua Li
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Dongjie Wang
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Bohan Hua
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China.
| | - Ming Yao
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China.
| |
Collapse
|
3
|
Gautier B, Dugast S, Guyonvarc'h P, Longis J, Corre P, Bertin H. Ossifying fibroma and juvenile ossifying fibroma: A systematic review on clinical and radiological parameters, treatment modalities and recurrence. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024:102185. [PMID: 39631529 DOI: 10.1016/j.jormas.2024.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Ossifying fibroma (OF) is a rare benign fibro-osseous neoplasm developing mostly in maxillo-facial bones. OF is divided in cemento-ossifying fibroma (COF), juvenile trabecular ossifying fibroma (JTOF) and psammomatoid ossifying fibroma (PSOF). The aim of this systematic review was to synthetize the existing literature on OF, investigating the clinical and radiological parameters related to the different forms of the disease, and to compare the treatment modalities according to their associated recurrence rate. Three databases were searched in March 2024, with an update in September 2024. Eligibility criteria included studies reporting on patients with OF, surgical treatment and follow-up data. Of the 2016 studies identified, 22 were retained after eligibility assessment. A total of 492 patients were included. Most OF presented with painless swelling. COF affected 61.1 % of women with a mean age of 29.5, JTOF presented in 55.7 % of male children, and PSOF had no predilection for sex with a mean age of 19.5 years. Enucleation and curettage were associated with an elevated recurrence rate in JTOF (12/30) and PSOF (10/16). PSOF (6 cases) and JTOF (15 cases) showed no recurrence with radical surgery. Same recurrence rates in COF were seen for conservative and radical surgery. Although radical surgery seemed to avoid recurrence in JTOF and PSOF, conservative surgery such as enucleation and curettage with additional peripheral ostectomy should be considered primarily to lessen the morbidity induced by radical resection. Close clinical and radiological follow-up should be undertaken to diagnose early recurrence.
Collapse
Affiliation(s)
- Blandine Gautier
- Nantes Université, CHU Nantes, Service de Chirurgie Maxillo-Faciale et Stomatologie, F-44000, Nantes, France.
| | - Sophie Dugast
- Nantes Université, CHU Nantes, Service de Chirurgie Maxillo-Faciale et Stomatologie, F-44000, Nantes, France.
| | - Pierre Guyonvarc'h
- Nantes Université, CHU Nantes, Service de Chirurgie Maxillo-Faciale et Stomatologie, F-44000, Nantes, France.
| | - Julie Longis
- Nantes Université, CHU Nantes, Service de Chirurgie Maxillo-Faciale et Stomatologie, F-44000, Nantes, France.
| | - Pierre Corre
- Nantes Université, CHU Nantes, Service de Chirurgie Maxillo-Faciale et Stomatologie, F-44000, Nantes, France; Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France.
| | - Hélios Bertin
- Nantes Université, CHU Nantes, Service de Chirurgie Maxillo-Faciale et Stomatologie, F-44000, Nantes, France; Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, F-44000, Nantes, France.
| |
Collapse
|
4
|
Zhang WJ, Chen D. Mesenchymal stem cell transplantation plays a role in relieving cancer pain. Front Pharmacol 2024; 15:1483716. [PMID: 39679363 PMCID: PMC11637888 DOI: 10.3389/fphar.2024.1483716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Tumors can invade, compress, and damage nerves, leading to persistent pain and seriously affecting the quality of life of patients. However, their treatment is challenging. Sensitization of peripheral receptors, abnormal activity of primary sensory neurons, activation of glial cells, enhanced inflammatory responses, and sensory information transmission contribute towards cancer pain. Therefore, considerable attention has been paid to exploring prospective methods to inhibit the occurrence of these factors and relieve cancer pain. Studies on different types of pains have revealed that the transplantation of functionally active cells into the host has the pharmacological effect of producing analgesia. Mesenchymal stem cells (MSCs) can act as small active pumps to reduce the expression of pain-related molecules and produce analgesic effects. Moreover, MSCs can establish complex communication networks with non-tumor and cancer cells in the microenvironment, interact with each other, and can be used as destinations for inflammation and tumor sites, affecting their potential for invasion and metastasis. This emphasizes the key role of MSCs in cancer and pain management. The pain relief mechanisms of MSCs include neuronutrition, neural protection, neural network reconstruction, immune regulation, and improvement of the inflammatory microenvironment around the nerve injury. All of these are beneficial for the recovery of injured or stimulated nerves and the reconstruction of neural function, and play a role in relieving pain. The pain treatment strategy of cell transplantation is to repair injured nerves and produce analgesic pharmacological properties that are different from those of painkillers and other physiotherapies. Although the therapeutic role of MSCs in cancer and pain is in its early stages, the therapeutic value of MSCs for cancer pain has great prospects. Therefore, in this study, we explored the possible mechanism between MSCs and cancer pain, the potential therapeutic role of therapeutic cells in cancer pain, and some problems and challenges.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| | - Dingyi Chen
- Emergency department, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| |
Collapse
|
5
|
Asiri YI, Moni SS, Ramar M, Chidambaram K. Advancing Pain Understanding and Drug Discovery: Insights from Preclinical Models and Recent Research Findings. Pharmaceuticals (Basel) 2024; 17:1439. [PMID: 39598351 PMCID: PMC11597627 DOI: 10.3390/ph17111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Despite major advancements in our understanding of its fundamental causes, pain-both acute and chronic-remains a serious health concern. Various preclinical investigations utilizing diverse animal, cellular, and alternative models are required and frequently demanded by regulatory approval bodies to bridge the gap between the lab and the clinic. Investigating naturally occurring painful disorders can speed up medication development at the preclinical and clinical levels by illuminating molecular pathways. A wide range of animal models related to pain have been developed to elucidate pathophysiological mechanisms and aid in identifying novel targets for treatment. Pain sometimes drugs fail clinically, causing high translational costs due to poor selection and the use of preclinical tools and reporting. To improve the study of pain in a clinical context, researchers have been creating innovative models over the past few decades that better represent pathological pain conditions. In this paper, we provide a summary of traditional animal models, including rodents, cellular models, human volunteers, and alternative models, as well as the specific characteristics of pain diseases they model. However, a more rigorous approach to preclinical research and cutting-edge analgesic technologies may be necessary to successfully create novel analgesics. The research highlights from this review emphasize new opportunities to develop research that includes animals and non-animals using proven methods pertinent to comprehending and treating human suffering. This review highlights the value of using a variety of modern pain models in animals before human trials. These models can help us understand the different mechanisms behind various pain types. This will ultimately lead to the development of more effective pain medications.
Collapse
Affiliation(s)
- Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Sivakumar S. Moni
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohankumar Ramar
- Department of Pharmaceutical Sciences, UConn School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| |
Collapse
|
6
|
Jovanovic D, Ceriman-Krstic V, Kabalak PA, Viola L, Papatheodosiou K. Palliative care in lung cancer: tumour- and treatment-related complications in lung cancer and their management. Breathe (Sheff) 2024; 20:230203. [PMID: 39534495 PMCID: PMC11555588 DOI: 10.1183/20734735.0203-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/07/2024] [Indexed: 11/16/2024] Open
Abstract
Palliative care pertains to the holistic multidimensional concept of "patient-centred" care. It is an interprofessional specialty, primarily aiming to improve quality of care for cancer patients and their families, from the time of diagnosis of malignant disease, over the continuum of cancer care, and extending after the patient's death to the period of bereavement to support the patient's family. There are various complex and frequently unmet needs of lung cancer patients and their families/caregivers, not only physical but also psychological, social, spiritual and cultural. Systematic monitoring of patients' symptoms using validated questionnaires and patient-reported outcomes (PROs), on a regular basis, is highly encouraged and recommended in recent guidelines on the role of PRO measures in the continuum of cancer clinical care. It improves patient-physician communication, physician awareness of symptoms, symptom control, patient satisfaction, health-related quality of life and cost-effectiveness. This implies that all treating physicians should improve their skills in communication with lung cancer patients/relatives and become more familiar with this multidimensional assessment, repeatedly screening patients for palliative care needs. Therefore, they should receive education and training to develop palliative care knowledge, skills and attitudes. This review is dedicated to lung cancer palliative care essentials that should be within the competences of treating physicians, i.e. pneumologists/thoracic oncologists.
Collapse
Affiliation(s)
| | - Vesna Ceriman-Krstic
- Daily hospital, Clinical Center of Serbia Hospital of Pulmonology, Belgrade, Serbia
| | - Pınar Akın Kabalak
- Health Sciences University, Atatürk Sanatoryum Education and Research Hospital, Ankara, Turkey
| | - Lucia Viola
- Interventional Pulmonology, Thoracic Oncology Service, Institutional Lung Cancer Screening Program, Fundación Neumológica Colombiana, Bogotá, Colombia
| | | |
Collapse
|
7
|
Colaco JC, Suresh B, Kaushal K, Singh V, Ramakrishna S. The Role of Deubiquitinating Enzymes in Primary Bone Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01254-y. [PMID: 39177860 DOI: 10.1007/s12033-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Bone is a living, intricate, and dynamic tissue providing locomotion and protection of the body. It also performs hematopoiesis and mineral homeostasis. Osteosarcoma (OS), Ewing sarcoma (ES), and chondrosarcoma (CS) are primary bone cancers. OS and ES mostly develop in younger individuals, and CS generally develops in adults. Ubiquitination regulates numerous cellular processes. The deubiquitinating enzymes (DUBs) detach the ubiquitin molecules from the ubiquitin labeled substrate, altering ubiquitinated protein functions and regulating protein stability via various signaling pathways. Protein homeostasis and bone remodeling are both crucially influenced by the UPS. Recently, there have been several reports on DUBs involved in bone homeostasis and various bone disorders through the regulation of osteoblasts and osteoclasts via NF-κB, Wnt/β-catenin, TRAF6, TGFβ, ERK1/2, and PI3K/Akt pathways. However, DUBs regulating function in bone homeostasis is still in its infancy. Here, we summarized several recent identifications on DUBs, with a focus on their role in bone cancer progression. Therefore, the study attempts to summarize association with the expression level of DUBs as key factors driving bone cancers and also provide new insights on DUBs as key pharmacologic targets for bone cancer therapeutics.
Collapse
Affiliation(s)
- Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382715, India.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
8
|
Flippen A, Khasabova IA, Simone DA, Khasabov SG. Systemic administration of Resolvin D1 reduces cancer-induced bone pain in mice: Lack of sex dependency in pain development and analgesia. Cancer Med 2024; 13:e70077. [PMID: 39101490 PMCID: PMC11299078 DOI: 10.1002/cam4.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
AIMS Bone cancer produces severe pain that is treated with opioids, but serious side effects limit opioid utilization. There is therefore a need to develop effective and safe non-opioid alternatives. The lipid mediator, Resolvin D1 (RvD1), could be a prospective candidate for cancer pain treatment. To assess RvD1 and other potential candidates, appropriate animal models that recapitulate clinical features must be used. Although several preclinical models of cancer pain have been developed, the influence of sex on the development of cancer pain and the effectiveness of RvD1 have not been studied. RESULTS Using a mouse model of fibrosarcoma growth in and around the calcaneus bone, we demonstrated that the mechanical hyperalgesia in the tumor-bearing hind paw develops independently of sex, except that it developed a little sooner in female mice. A single intravenous injection of RvD1 (0.001-10 μg/kg) decreased hyperalgesia in both sexes with similar potency (ED50 = 0.0015 μg/kg) and efficacy. Repeated daily administration of 10 μg/kg RvD1 prolonged the analgesic effect and completely abolished hyperalgesia. This was also independent of sex. CONCLUSION In this preclinical mouse model of bone cancer pain, the development of pain and the analgesic effectiveness of RvD1 are not influenced by sex.
Collapse
Affiliation(s)
- Alyssa Flippen
- Department of Diagnostic and Biological Sciences, School of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Iryna A. Khasabova
- Department of Diagnostic and Biological Sciences, School of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Donald A. Simone
- Department of Diagnostic and Biological Sciences, School of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Sergey G. Khasabov
- Department of Diagnostic and Biological Sciences, School of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
9
|
Qi Y, Wang Y, Yuan J, Xu Y, Pan H. Unveiling the therapeutic promise: exploring Lysophosphatidic Acid (LPA) signaling in malignant bone tumors for novel cancer treatments. Lipids Health Dis 2024; 23:204. [PMID: 38943207 PMCID: PMC11212261 DOI: 10.1186/s12944-024-02196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Malignant bone tumors, including primary bone cancer and metastatic bone tumors, are a significant clinical challenge due to their high frequency of presentation, poor prognosis and lack of effective treatments and therapies. Bone tumors are often accompanied by skeletal complications such as bone destruction and cancer-induced bone pain. However, the mechanisms involved in bone cancer progression, bone metastasis and skeletal complications remain unclear. Lysophosphatidic acid (LPA), an intercellular lipid signaling molecule that exerts a wide range of biological effects mainly through specifically binding to LPA receptors (LPARs), has been found to be present at high levels in the ascites of bone tumor patients. Numerous studies have suggested that LPA plays a role in primary malignant bone tumors, bone metastasis, and skeletal complications. In this review, we summarize the role of LPA signaling in primary bone cancer, bone metastasis and skeletal complications. Modulating LPA signaling may represent a novel avenue for future therapeutic treatments for bone cancer, potentially improving patient prognosis and quality of life.
Collapse
Affiliation(s)
- Yichen Qi
- Huankui Academy, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Yukai Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Jinping Yuan
- The First Clinical Medical College, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Yufei Xu
- The First Clinical Medical College, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Haili Pan
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China.
| |
Collapse
|
10
|
Qin Q, Ramesh S, Li Z, Zhong L, Cherief M, Archer M, Xing X, Thottappillil N, Gomez-Salazar M, Xu M, Zhu M, Chang L, Uniyal A, Mazhar K, Mittal M, McCarthy EF, Morris CD, Levi B, Guan Y, Clemens TL, Price TJ, James AW. TrkA + sensory neurons regulate osteosarcoma proliferation and vascularization to promote disease progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599869. [PMID: 38979210 PMCID: PMC11230162 DOI: 10.1101/2024.06.20.599869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Bone pain is a presenting feature of bone cancers such as osteosarcoma (OS), relayed by skeletal-innervating peripheral afferent neurons. Potential functions of tumor-associated sensory neurons in bone cancers beyond pain sensation are unknown. To uncover neural regulatory functions, a chemical-genetic approach in mice with a knock-in allele for TrkA was used to functionally perturb sensory nerve innervation during OS growth and disease progression. TrkA inhibition in transgenic mice led to significant reductions in sarcoma-associated sensory innervation and vascularization, tumor growth and metastasis, and prolonged overall survival. Single-cell transcriptomics revealed that sarcoma denervation was associated with phenotypic alterations in both OS tumor cells and cells within the tumor microenvironment, and with reduced calcitonin gene-related peptide (CGRP) and vascular endothelial growth factor (VEGF) signaling. Multimodal and multi-omics analyses of human OS bone samples and human dorsal root ganglia neurons further implicated peripheral innervation and neurotrophin signaling in OS tumor biology. In order to curb tumor-associated axonal ingrowth, we next leveraged FDA-approved bupivacaine liposomes leading to significant reductions in sarcoma growth, vascularity, as well as alleviation of pain. In sum, TrkA-expressing peripheral neurons positively regulate key aspects of OS progression and sensory neural inhibition appears to disrupt calcitonin receptor signaling (CALCR) and VEGF signaling within the sarcoma microenvironment leading to significantly reduced tumor growth and improved survival. These data suggest that interventions to prevent pathological innervation of osteosarcoma represent a novel adjunctive therapy to improve clinical outcomes and survival.
Collapse
|
11
|
Yang L, Li M, Liu Y, Bai Y, Yin T, Chen Y, Jiang J, Liu S. MOTS-c is an effective target for treating cancer-induced bone pain through the induction of AMPK-mediated mitochondrial biogenesis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1323-1339. [PMID: 38716540 PMCID: PMC11532206 DOI: 10.3724/abbs.2024048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/20/2024] [Indexed: 10/17/2024] Open
Abstract
Bone cancer pain (BCP), due to cancer bone metastasis and bone destruction, is a common symptom of tumors, including breast, prostate, and lung tumors. Patients often experience severe pain without effective treatment. Here, using a mouse model of bone cancer, we report that MOTS-c, a novel mitochondrial-derived peptide, confers remarkable protection against cancer pain and bone destruction. Briefly, we find that the plasma level of endogenous MOTS-c is significantly lower in the BCP group than in the sham group. Accordingly, intraperitoneal administration of MOTS-c robustly attenuates bone cancer-induced pain. These effects are blocked by compound C, an AMPK inhibitor. Furthermore, MOTS-c treatment significantly enhances AMPKα 1/2 phosphorylation. Interestingly, mechanical studies indicate that at the spinal cord level, MOTS-c relieves pain by restoring mitochondrial biogenesis, suppressing microglial activation, and decreasing the production of inflammatory factors, which directly contribute to neuronal modulation. However, in the periphery, MOTS-c protects against local bone destruction by modulating osteoclast and immune cell function in the tumor microenvironment, providing long-term relief from cancer pain. Additionally, we find that chronic administration of MOTS-c has little effect on liver, renal, lipid or cardiac function in mice. In conclusion, MOTS-c improves BCP through peripheral and central synergistic effects on nociceptors, immune cells, and osteoclasts, providing a pharmacological and biological rationale for the development of mitochondrial peptide-based therapeutic agents for cancer-induced pain.
Collapse
Affiliation(s)
- Long Yang
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
| | - Miaomiao Li
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
| | - Yucheng Liu
- Department of Anesthesiologythe Affiliated Hospital of Xuzhou Medical UniversityXuzhou221018China
| | - Yang Bai
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
| | - Tianyu Yin
- Department of Anesthesiologythe Affiliated Hospital of Xuzhou Medical UniversityXuzhou221018China
| | - Yangyang Chen
- Department of Anesthesiologythe Affiliated Hospital of Xuzhou Medical UniversityXuzhou221018China
| | - Jinhong Jiang
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
| | - Su Liu
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
- Department of Anesthesiologythe Affiliated Hospital of Xuzhou Medical UniversityXuzhou221018China
| |
Collapse
|
12
|
Antoniazzi CTDD, Ruviaro NA, Peres DS, Rodrigues P, Viero FT, Trevisan G. Targeting TRPV4 Channels for Cancer Pain Relief. Cancers (Basel) 2024; 16:1703. [PMID: 38730655 PMCID: PMC11083562 DOI: 10.3390/cancers16091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Despite the unique and complex nature of cancer pain, the activation of different ion channels can be related to the initiation and maintenance of pain. The transient receptor potential vanilloid 4 (TRPV4) is a cation channel broadly expressed in sensory afferent neurons. This channel is activated by multiple stimuli to mediate pain perception associated with inflammatory and neuropathic pain. Here, we focused on summarizing the role of TRPV4 in cancer etiology and cancer-induced pain mechanisms. Many studies revealed that the administration of a TRPV4 antagonist and TRPV4 knockdown diminishes nociception in chemotherapy-induced peripheral neuropathy (CIPN). Although the evidence on TRPV4 channels' involvement in cancer pain is scarce, the expression of these receptors was reportedly enhanced in cancer-induced bone pain (CIBP), perineural, and orofacial cancer models following the inoculation of tumor cells to the bone marrow cavity, sciatic nerve, and tongue, respectively. Effective pain management is a continuous problem for patients diagnosed with cancer, and current guidelines fail to address a mechanism-based treatment. Therefore, examining new molecules with potential antinociceptive properties targeting TRPV4 modulation would be interesting. Identifying such agents could lead to the development of treatment strategies with improved pain-relieving effects and fewer adverse effects than the currently available analgesics.
Collapse
Affiliation(s)
- Caren Tatiane de David Antoniazzi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Náthaly Andrighetto Ruviaro
- Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil;
| | - Diulle Spat Peres
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Patrícia Rodrigues
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Fernanda Tibolla Viero
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
- Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil;
| |
Collapse
|
13
|
Hulskotte LMG, Töpfer W, Reyners AKL, Taxis K, Jansman FGA. Drug-drug interaction perpetrators of oxycodone in patients with cancer: frequency and clinical relevance. Eur J Clin Pharmacol 2024; 80:455-464. [PMID: 38217692 PMCID: PMC10873430 DOI: 10.1007/s00228-023-03612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
AIM Oxycodone is known to have numerous drug-drug interactions (DDIs) that can potentially decrease efficacy or lead to adverse drug reactions (ADRs). However, there is limited research on the frequency of DDIs associated with oxycodone, which is important in optimising pharmacovigilance and the need for additional research on certain DDIs. In this study, the frequency of pharmacologically and clinically relevant DDI perpetrators was studied in patients with cancer. METHODS This was a cross-sectional study using hospital pharmacy records of patients with cancer who were prescribed oxycodone between September 2021 and September 2022. Medication records of patients prescribed oxycodone during a period of ≥ 5 consecutive days (= oxycodone treatment episodes) were reviewed to identify the concomitant use of pharmacologically relevant perpetrators, based on reference sources (Lexicomp®, Micromedex®, the Dutch Kennisbank and the Dutch Commentaren Medicatiebewaking). The clinical relevance was examined by a clinical pharmacologist and a medical oncologist. Additionally, the frequency of double interactions-concomitant oxycodone use with two CYP3A4 and / or CYP2D6 perpetrators-was studied. RESULTS Overall, 254 oxycodone treatment episodes were included, of which 227 (89.4%) were found to contain at least one pharmacologically relevant DDI perpetrator. Of these, 210 (82.7%) were considered to be clinically relevant. A total of 80 different pharmacologically relevant perpetrators were identified, with 65 (81.3%) being considered clinically relevant. Double interactions were observed in 21 (8.3%) oxycodone treatment episodes. CONCLUSION A high frequency of pharmacologically and clinically relevant perpetrators of oxycodone was observed in our cohort. Moreover, a high number of double interactions involving oxycodone was registered. More intense monitoring of DDIs may be needed to improve medication safety of patients with cancer taking oxycodone.
Collapse
Affiliation(s)
- L M G Hulskotte
- Department of Clinical Pharmacy, Deventer Teaching Hospital, Nico, Bolkesteinlaan 75, 7416 SE, Deventer, the Netherlands.
- Unit of PharmacoTherapy, -Epidemiology &-Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands.
| | - W Töpfer
- Unit of PharmacoTherapy, -Epidemiology &-Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - A K L Reyners
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - K Taxis
- Unit of PharmacoTherapy, -Epidemiology &-Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - F G A Jansman
- Department of Clinical Pharmacy, Deventer Teaching Hospital, Nico, Bolkesteinlaan 75, 7416 SE, Deventer, the Netherlands
- Unit of PharmacoTherapy, -Epidemiology &-Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| |
Collapse
|
14
|
Pimenta MV, Nakamura AT, Ashmawi HA, Vieira JE, Dos Santos Fernandes H. Ultrasound-guided pericapsular nerve group and obturator nerve phenol neurolysis for refractory inpatient hip cancer metastasis pain: a case report. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2024; 74:744089. [PMID: 33766686 PMCID: PMC10877326 DOI: 10.1016/j.bjane.2021.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Bone cancer metastasis may produce severe and refractory pain. It is often difficult to manage with systemic analgesics. Chemical neurolysis may be an effective alternative in terminally ill patients. CASE REPORT Female terminally ill patient with hip metastasis of gastric cancer in severe pain. Neurolytic ultrasound-guided blocks of the pericapsular nerve group and obturator nerve were performed with 5% phenol. This led to satisfactory pain relief for 10 days, until the patient's death. DISCUSSION This approach may be effective and safe as an analgesic option for refractory hip pain due to metastasis or pathologic fracture in terminally ill patients.
Collapse
Affiliation(s)
- Marcio V Pimenta
- Universidade de S.·o Paulo, Hospital das Cl.ínicas, Departamento de Anestesiologia, S.·o Paulo, SP, Brazil
| | - Amanda T Nakamura
- Universidade de S.·o Paulo, Hospital das Cl.ínicas, Departamento de Anestesiologia, S.·o Paulo, SP, Brazil
| | - Hazem A Ashmawi
- Universidade de S.·o Paulo, Hospital das Cl.ínicas, Departamento de Anestesiologia, S.·o Paulo, SP, Brazil
| | - Joaquim E Vieira
- Universidade de S.·o Paulo, Hospital das Cl.ínicas, Departamento de Anestesiologia, S.·o Paulo, SP, Brazil
| | | |
Collapse
|
15
|
Liu B, Meng D, Luo M, Xu L, Yao M. Fat mass and obesity-related protein contributes to the development and maintenance of bone cancer pain in rats by abrogating m6A methylation of RNA. Mol Pain 2024; 20:17448069241295987. [PMID: 39415414 PMCID: PMC11490980 DOI: 10.1177/17448069241295987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
Effective prevention and treatment options for bone cancer-related pain (BCP) are lacking. In recent years, numerous studies have investigated the association between m6A epigenetic modifications and pain, revealing their significant role in pain initiation and maintenance. This study aimed to provide theoretical support for the treatment of BCP and to identify target drugs for future development. Specifically, we investigated the involvement of fat mass and obesity-related protein (FTO) in rat models of BCP by administering varying doses (1/5/10 mg/kg) of the FTO inhibitor meclofenamic acid (MA) and assessing changes in mechanical sensitivity through domain analysis, gait analysis, and open-field experiments. After successfully establishing the BCP model, we verified it by performing mechanical sensitivity assessments. We observed significantly increased expression levels of the demethylase FTO within the spinal dorsal horn accompanied by decreased m6A methylation levels in the model. Compared with untreated BCP rats, remarkably improved behavioral responses indicative of reduced pain were observed in the model rats after administration of 10 mg/kg MA, concomitant with decreased expression levels of FTO and increased m6A methylation levels. Compared with untreated BCP rats, the expression levels of p-ERK and pro-inflammatory cytokines were also significantly decreased after MA administration. Taken together, FTO can downregulate m6A methylation level and activate ERK/inflammatory cytokines signaling pathway to maintain BCP in rats.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Danyang Meng
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Man Luo
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Longsheng Xu
- Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ming Yao
- Department of Anesthesiology and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
16
|
Jimenez-Andrade JM, Ramírez-Rosas MB, Hee Park S, Parker R, Eber MR, Cain R, Newland M, Hsu FC, Kittel CA, Martin TJ, Muñoz-Islas E, Shiozawa Y, Peters CM. Evaluation of pain related behaviors and disease related outcomes in an immunocompetent mouse model of prostate cancer induced bone pain. J Bone Oncol 2023; 43:100510. [PMID: 38075938 PMCID: PMC10701434 DOI: 10.1016/j.jbo.2023.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/12/2024] Open
Abstract
Cancer-induced bone pain (CIBP) is the most common and devastating symptom of bone metastatic cancer that substantially disrupts patients' quality of life. Currently, there are few effective analgesic treatments for CIBP other than opioids which come with severe side effects. In order to better understand the factors and mechanisms responsible for CIBP it is essential to have clinically relevant animal models that mirror pain-related symptoms and disease progression observed in patients with bone metastatic cancer. In the current study, we characterize a syngeneic mouse model of prostate cancer induced bone pain. We transfected a prostate cancer cell line (RM1) with green fluorescent protein (GFP) and luciferase reporters in order to visualize tumor growth longitudinally in vivo and to assess the relationship between sensory neurons and tumor cells within the bone microenvironment. Following intra-femoral injection of the RM1 prostate cancer cell line into male C57BL/6 mice, we observed a progressive increase in spontaneous guarding of the inoculated limb between 12 and 21 days post inoculation in tumor bearing compared to sham operated mice. Daily running wheel performance was evaluated as a measure of functional impairment and potentially movement evoked pain. We observed a progressive reduction in the distance traveled and percentage of time at optimal velocity between 12 and 21 days post inoculation in tumor bearing compared to sham operated mice. We utilized histological, radiographic and μCT analysis to examine tumor induced bone remodeling and observed osteolytic lesions as well as extra-periosteal aberrant bone formation in the tumor bearing femur, similar to clinical findings in patients with bone metastatic prostate cancer. Within the tumor bearing femur, we observed reorganization of blood vessels, macrophage and nerve fibers within the intramedullary space and periosteum adjacent to tumor cells. Tumor bearing mice displayed significant increases in the injury marker ATF3 and upregulation of the neuropeptides SP and CGRP in the ipsilateral DRG as well as increased measures of central sensitization and glial activation in the ipsilateral spinal cord. This immunocompetent mouse model will be useful when combined with cell type selective transgenic mice to examine tumor, immune cell and sensory neuron interactions in the bone microenvironment and their role in pain and disease progression associated with bone metastatic prostate cancer.
Collapse
Affiliation(s)
| | - Martha B. Ramírez-Rosas
- Universidad Autónoma de Tamaulipas, Campus Reynosa Aztlán, Reynosa, Tamaulipas, 88700 Mexico
| | - Sun Hee Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Renee Parker
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Matthew R. Eber
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Rebecca Cain
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mary Newland
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Carol A. Kittel
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas J. Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Enriqueta Muñoz-Islas
- Universidad Autónoma de Tamaulipas, Campus Reynosa Aztlán, Reynosa, Tamaulipas, 88700 Mexico
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Christopher M. Peters
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
17
|
Kim HY, Shim JH, Heo CY. A Rare Skeletal Disorder, Fibrous Dysplasia: A Review of Its Pathogenesis and Therapeutic Prospects. Int J Mol Sci 2023; 24:15591. [PMID: 37958575 PMCID: PMC10650015 DOI: 10.3390/ijms242115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Fibrous dysplasia (FD) is a rare, non-hereditary skeletal disorder characterized by its chronic course of non-neoplastic fibrous tissue buildup in place of healthy bone. A myriad of factors have been associated with its onset and progression. Perturbation of cell-cell signaling networks and response outputs leading to disrupted building blocks, incoherent multi-level organization, and loss of rigid structural motifs in mineralized tissues are factors that have been identified to participate in FD induction. In more recent years, novel insights into the unique biology of FD are transforming our understandings of its pathology, natural discourse of the disease, and treatment prospects. Herein, we built upon existing knowledge with recent findings to review clinical, etiologic, and histological features of FD and discussed known and potential mechanisms underlying FD manifestations. Subsequently, we ended on a note of optimism by highlighting emerging therapeutic approaches aimed at either halting or ameliorating disease progression.
Collapse
Affiliation(s)
- Ha-Young Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jung-Hee Shim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
- Department of Research Administration Team, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Chan-Yeong Heo
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| |
Collapse
|
18
|
Yang L, Fu Q, Yang L, Zhang Y. HIF-1α/MMP-9 promotes spinal cord central sensitization in rats with bone cancer pain. Eur J Pharmacol 2023; 954:175858. [PMID: 37356787 DOI: 10.1016/j.ejphar.2023.175858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Bone cancer pain (BCP) is one of the most prevalent and serious symptoms of patients with cancer. Currently, the medical interventions used for the treatment of BCP do not act with optimal safety and efficacy. In this study, we appraised whether the hypoxia-inducible factor 1α (HIF-1α)/metalloproteinase-9 (MMP9) axis activates the PI3K/AKT pathway, resulting in elevated spinal cord central sensitization and aggravated BCP. BCP rats were established by tibial injection of Walker 256 cells, followed by different interventions in rats using HIF-1ɑ inhibitor LW6 or antibody treatments. After treatment with LW6 or antibody against HIF-1α, central sensitization in the spinal cord tissues of rats was inhibited, and pain perception in rats was reduced. Moreover, the activation of glial cells in the spinal cord tissues was ameliorated. The expression of MMP9 was remarkably suppressed in spinal cord tissues after inhibition of HIF-1ɑ activity, and the activity of the PI3K/AKT signaling pathway was inhibited. Further activation of MMP9 expression suppressed the alleviating effect of HIF-1ɑ inhibitor LW6 or antibody on pain perception in rats inoculated with tumors. Taken together, our studies suggest a HIF-1α/MMP9-mediated activation of PI3K/AKT in the spinal cord tissues, resulting in increased pain perception in a rat model with BCP.
Collapse
Affiliation(s)
- Liyu Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110003, Liaoning, PR China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110003, Liaoning, PR China
| | - Liqing Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110003, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110003, Liaoning, PR China.
| |
Collapse
|
19
|
Takemura M, Niki K, Okamoto Y, Tamura H, Kawamura T, Kohno M, Matsuda Y, Ikeda K. Differences in the Analgesic Effect of Opioids on Pain in Cancer Patients With Spinal Metastases. Palliat Med Rep 2023; 4:220-230. [PMID: 37637760 PMCID: PMC10457616 DOI: 10.1089/pmr.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Background Spinal metastasis pain includes both inflammatory and neuropathic pain, and opioids, which have only a μ-opioid receptor-stimulating effect, are generally less effective in neuropathic pain. However, no previous study has been conducted for the comparisons of the efficacy of opioids in treating spinal metastasis pain. Objective To compare the efficacy of tapentadol and methadone with other opioids for back pain caused by a metastatic spinal tumor. Design Retrospective cohort study. Setting/Subjects A total of 274 patients were enrolled, who started a tapentadol extended-release tablet, methadone tablet, hydromorphone extended-release tablet, oxycodone extended-release tablet, or transdermal fentanyl patch for cancer pain due to spinal metastasis in Japan from January 1, 2013 to October 31, 2021. Measurements The primary endpoint, the difference in the numerical rating scale (NRS) scores before and seven days after each opioid administration, was compared among the five groups. Results In patients with numbness, a decrease of the NRS score on day seven compared with before starting each opioid was significantly higher in the tapentadol group than those in the hydromorphone, oxycodone, and fentanyl groups and comparable to that in the methadone group. In patients without numbness, no significant differences were observed in decreases of the NRS scores on day seven among the five groups. Conclusions Tapentadol and methadone may be more effective than hydromorphone, oxycodone, and fentanyl for cancer pain due to spinal metastasis with numbness.
Collapse
Affiliation(s)
- Miho Takemura
- Department of Clinical Pharmacy Research and Education, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Japan
- Department of Pharmacy, Ashiya Municipal Hospital, Ashiya, Japan
| | - Kazuyuki Niki
- Department of Clinical Pharmacy Research and Education, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Japan
- Department of Pharmacy, Ashiya Municipal Hospital, Ashiya, Japan
| | - Yoshiaki Okamoto
- Department of Pharmacy, Ashiya Municipal Hospital, Ashiya, Japan
| | - Hiroshi Tamura
- Department of Rehabilitation, and Ashiya Municipal Hospital, Ashiya, Japan
| | - Tomohiro Kawamura
- Department of Palliative Care, Ashiya Municipal Hospital, Ashiya, Japan
| | - Makie Kohno
- Department of Palliative Care, Ashiya Municipal Hospital, Ashiya, Japan
| | - Yoshinobu Matsuda
- Department of Palliative Care, Ashiya Municipal Hospital, Ashiya, Japan
| | - Kenji Ikeda
- Department of Clinical Pharmacy Research and Education, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Japan
| |
Collapse
|
20
|
Ge J, Song J, Sun B, Yang X, Du B, Sun X, Zhang J, Ge J, Xie H. Downregulated CAV-1 in mouse spinal cord may alleviate bone cancer pain by inhibiting the ERK/CREB pathway. Mutat Res 2023; 827:111829. [PMID: 37418818 DOI: 10.1016/j.mrfmmm.2023.111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND This study aimed to assess the potential function of Caveolin-1 (CAV-1) in mice with bone cancer pain. METHOD Using a mice bone cancer pain model we explored the contribution of CAV-1 expression to bone cancer pain on the 14th day after surgery, mice in the tumor group were randomized and treated with increasing doses of the CAV-1 inhibitor, methyl-beta-cyclodextrin. Pain was assessed by monitoring the number of spontaneous flinches (NSF) and paw withdrawal mechanical threshold (PMWT)mechanical withdrawal threshold (MWT). The localization and expression of CAV-1 in mouse neurons was also determined. Additionally, the protein levels of CAV-1, extracellular signal regulated kinase (ERK) 1/2, cAMP response element-binding protein (CREB) were monitored in mouse spinal cord tissues by western blotting. RESULTS CAV-1 was remarkably upregulated in the spinal cord of the tumor group on the 4th day after surgery, then downregulated on day 10, and upregulated again at day 14. Such CAV-1 levels were maintained until day 28. In the tumor group, the expression of p-ERK1/2 and p-CERB were upregulated at day 14 after surgery. Intrathecal injection of methyl-beta-cyclodextrin (MCD) downregulated p-ERK1/2 and p-CERB expression which correlated with alleviation of pain. CONCLUSION Inhibition of CAV-1 in the spinal cord alleviates bone cancer pain in mice which correlates with inhibition of the ERK/CREB pathway.
Collapse
Affiliation(s)
- Jianyun Ge
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jie Song
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226001, China
| | - Bo Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xuefeng Yang
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226001, China
| | - Boxiang Du
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226001, China
| | - Xin Sun
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226001, China
| | - Jiejie Zhang
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianlin Ge
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226001, China
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.
| |
Collapse
|
21
|
Yoneda T, Hiasa M, Okui T, Hata K. Cancer-nerve interplay in cancer progression and cancer-induced bone pain. J Bone Miner Metab 2023; 41:415-427. [PMID: 36715764 DOI: 10.1007/s00774-023-01401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Cancer-induced bone pain (CIBP) is one of the most common and debilitating complications associated with bone metastasis. Although our understanding of the precise mechanism is limited, it has been known that bone is densely innervated, and that CIBP is elicited as a consequence of increased neurogenesis, reprogramming, and axonogenesis in conjunction with sensitization and excitation of sensory nerves (SNs) in response to the noxious stimuli that are derived from the tumor microenvironment developed in bone. Recent studies have shown that the sensitized and excited nerves innervating the tumor establish intimate communications with cancer cells by releasing various tumor-stimulating factors for tumor progression. APPROACHES In this review, the role of the interactions of cancer cells and SNs in bone in the pathophysiology of CIBP will be discussed with a special focus on the role of the noxious acidic tumor microenvironment, considering that bone is in nature hypoxic, which facilitates the generation of acidic conditions by cancer. Subsequently, the role of SNs in the regulation of cancer progression in the bone will be discussed together with our recent experimental findings. CONCLUSION It is suggested that SNs may be a newly-recognized important component of the bone microenvironment that contribute to not only in the pathophysiology of CIBP but also cancer progression in bone and dissemination from bone. Suppression of the activity of bone-innervating SNs, thus, may provide unique opportunities in the treatment of cancer progression and dissemination, as well as CIBP.
Collapse
Affiliation(s)
- Toshiyuki Yoneda
- Department of Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan.
| | - Masahiro Hiasa
- Department of Biomaterials and Bioengineering, University of Tokushima Graduate School of Dentistry, Tokushima, Tokushima, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Kenji Hata
- Department of Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
22
|
Sulistio M, Ling N, Finkelstein T, Tee HJ, Gorelik A, Kissane D, Michael N. The Edmonton Classification System for Cancer Pain in Patients with Bone Metastasis: a descriptive cohort study. Support Care Cancer 2023; 31:305. [PMID: 37106261 PMCID: PMC10140090 DOI: 10.1007/s00520-023-07711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE We describe the prevalence of the Edmonton Classification System for Cancer Pain (ECS-CP) features in patients with bone metastasis and cancer-induced bone pain (CIBP) and the relationship between ECS-CP features, pain intensity, and opioid consumption. METHODS We assessed ECS-CP features and recoded pain mechanisms and opioid use in adult patients with bone metastasis. Validated measures were used to assess pain intensity, incident pain, psychological distress, addictive behavior, and cognition. RESULTS Among 147 eligible patients, 95.2% completed the assessment. Mean participant age was 73.2 years, the majority female (52.1%) with breast cancer occurring most commonly (25.7%). One or more ECS-CP features were present in 96.4% and CIBP in 75.7% of patients. The median average and worst pain scores were 3 and 6, respectively. Neuropathic pain was the most prevalent pain mechanism (45.0%) and was associated with breakthrough pain frequency (p=0.014). Three-quarters had incident pain, which was strongly associated with a higher average and worst pain scores (3.5 and 7, p<0.001 for both), background oral morphine equivalent daily dose (26.7mg, p=0.005), and frequency of daily breakthrough analgesia (1.7 doses/day, p=0.007). Psychological distress (n=90, 64.3%) was associated with a significantly higher average pain score (4, p=0.009) and a slightly higher worst pain score (7, p=0.054). Addictive behaviour and cognitive dysfunction were relatively uncommon (18.6% and 12.9%, respectively). CONCLUSION There is a need to promote standardized assessment and classification of pain syndromes such as CIBP. The ECS-CP may allow us to consider CIBP in a systematic manner and develop personalized pain interventions appropriate to the pain profile. TRIAL REGISTRATION Retrospectively registered in ANZCTR ACTRN12622000853741 (16/06/2022).
Collapse
Affiliation(s)
- Merlina Sulistio
- Supportive, Psychosocial and Palliative Care Research Department, Cabrini Health, 181-183 Wattletree Rd, Mlavern, VIC, 3144, Australia.
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
- School of Medicine, University of Notre Dame Australia Sydney, Sydney, NSW, Australia.
| | - Natalie Ling
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Tara Finkelstein
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Hoong Jiun Tee
- Supportive, Psychosocial and Palliative Care Research Department, Cabrini Health, 181-183 Wattletree Rd, Mlavern, VIC, 3144, Australia
- School of Medicine, University of Notre Dame Australia Sydney, Sydney, NSW, Australia
| | - Alexandra Gorelik
- Monash-Cabrini Department of Musculoskeletal Health and Clinical Epidemiology, Cabrini Health, Malvern, VIC, Australia
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Medicine (RMH), University of Melbourne, Melbourne, VIC, Australia
| | - David Kissane
- Supportive, Psychosocial and Palliative Care Research Department, Cabrini Health, 181-183 Wattletree Rd, Mlavern, VIC, 3144, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- School of Medicine, University of Notre Dame Australia Sydney, Sydney, NSW, Australia
- Sacred Heart Health Service, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Natasha Michael
- Supportive, Psychosocial and Palliative Care Research Department, Cabrini Health, 181-183 Wattletree Rd, Mlavern, VIC, 3144, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- School of Medicine, University of Notre Dame Australia Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Ding Z, Liang X, Wang J, Song Z, Guo Q, Schäfer MKE, Huang C. Inhibition of spinal ferroptosis-like cell death alleviates hyperalgesia and spontaneous pain in a mouse model of bone cancer pain. Redox Biol 2023; 62:102700. [PMID: 37084690 PMCID: PMC10141498 DOI: 10.1016/j.redox.2023.102700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
Bone cancer pain (BCP) impairs patients' quality of life. However, the underlying mechanisms are still unclear. This study investigated the role of spinal interneuron death using a pharmacological inhibitor of ferroptosis in a mouse model of BCP. Lewis lung carcinoma cells were inoculated into the femur, resulting in hyperalgesia and spontaneous pain. Biochemical analysis revealed that spinal levels of reactive oxygen species and malondialdehyde were increased, while those of superoxide dismutase were decreased. Histological analysis showed the loss of spinal GAD65+ interneurons and provided ultrastructural evidence of mitochondrial shrinkage. Pharmacologic inhibition of ferroptosis using ferrostatin-1 (FER-1, 10 mg/kg, intraperitoneal for 20 consecutive days) attenuated ferroptosis-associated iron accumulation and lipid peroxidation and alleviated BCP. Furthermore, FER-1 inhibited the pain-associated activation of ERK1/2 and COX-2 expression and prevented the loss of GABAergic interneurons. Moreover, FER-1 improved analgesia by the COX-2 inhibitor Parecoxib. Taken together, this study shows that pharmacological inhibition of ferroptosis-like cell death of spinal interneurons alleviates BCP in mice. The results suggest that ferroptosis is a potential therapeutic target in patients suffering on BCP and possibly other types of pain.
Collapse
Affiliation(s)
- Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xiaoshen Liang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Germany; Focus Program Translational Neurosciences (FTN) and Research Center of Immunotherapy of the Johannes Gutenberg-University Mainz, Germany
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China.
| |
Collapse
|
24
|
Yao J, Novosel M, Bellampalli S, Kapo J, Joseph J, Prsic E. Lung Cancer Supportive Care and Symptom Management. Hematol Oncol Clin North Am 2023; 37:609-622. [PMID: 37024385 DOI: 10.1016/j.hoc.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Lung cancer carries significant mortality and morbidity. In addition to treatment advances, supportive care may provide significant benefit for patients and their caregivers. A multidisciplinary approach is critical in addressing complications of lung cancer, including disease- and treatment-related complications, oncologic emergencies, symptom management and supportive care, and addressing the psychosocial needs of affected patients.
Collapse
Affiliation(s)
- Johnathan Yao
- Yale Internal Medicine-Traditional Residency Program, Department of Internal Medicine, Yale School of Medicine, Yale University, 333 Cedar Street, PO Box 208030, New Haven, CT 06520-8030, USA
| | - Madison Novosel
- Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Shreya Bellampalli
- Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Jennifer Kapo
- Department of General Internal Medicine, Yale School of Medicine, Yale University, 333 Cedar Street, PO Box 208025, New Haven, CT 06520, USA
| | - Julia Joseph
- Yale Internal Medicine-Traditional Residency Program, Department of Internal Medicine, Yale School of Medicine, Yale University, 333 Cedar Street, PO Box 208030, New Haven, CT 06520-8030, USA
| | - Elizabeth Prsic
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, Yale University, 333 Cedar Street, PO Box 208028, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Landini L, Marini M, Souza Monteiro de Araujo D, Romitelli A, Montini M, Albanese V, Titiz M, Innocenti A, Bianchini F, Geppetti P, Nassini R, De Logu F. Schwann Cell Insulin-like Growth Factor Receptor Type-1 Mediates Metastatic Bone Cancer Pain in Mice. Brain Behav Immun 2023; 110:348-364. [PMID: 36940752 DOI: 10.1016/j.bbi.2023.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Insulin growth factor-1 (IGF-1), an osteoclast-dependent osteolysis biomarker, contributes to metastatic bone cancer pain (MBCP), but the underlying mechanism is poorly understood. In mice, the femur metastasis caused by intramammary inoculation of breast cancer cells resulted in IGF-1 increase in femur and sciatic nerve, and IGF-1-dependent stimulus/non-stimulus-evoked pain-like behaviors. Adeno-associated virus-based shRNA selective silencing of IGF-1 receptor (IGF-1R) in Schwann cells, but not in dorsal root ganglion (DRG) neurons, attenuated pain-like behaviors. Intraplantar IGF-1 evoked acute nociception and mechanical/cold allodynia, which were reduced by selective IGF-1R silencing in DRG neurons and Schwann cells, respectively. Schwann cell IGF-1R signaling promoted an endothelial nitric oxide synthase-mediated transient receptor potential ankyrin 1 (TRPA1) activation and release of reactive oxygen species that, via macrophage-colony stimulating factor-dependent endoneurial macrophage expansion, sustained pain-like behaviors. Osteoclast derived IGF-1 initiates a Schwann cell-dependent neuroinflammatory response that sustains a proalgesic pathway that provides new options for MBCP treatment.
Collapse
Affiliation(s)
- Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | | | - Antonia Romitelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Marco Montini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, 50141, Florence, Italy
| | - Valentina Albanese
- Department of Environmental and Prevention Sciences - DEPS, University of Ferrara, Ferrara, 44121, Italy
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Alessandro Innocenti
- Plastic and Reconstructive Microsurgery - Careggi University Hospital, Florence, 50139, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, 50141, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy.
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| |
Collapse
|
26
|
Primary Bone Lymphoma: A Review of the Literature with Emphasis on Histopathology and Histogenesis. Diseases 2023; 11:diseases11010042. [PMID: 36975591 PMCID: PMC10047712 DOI: 10.3390/diseases11010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Primary bone lymphoma (PBL) is a rare neoplasm of malignant lymphoid cells presenting with one or more bone lesions without nodal or other extranodal involvement. It accounts for approximately 1% of all lymphomas and 7% of malignant primary bone tumors. Diffuse large B-cell lymphoma (DLBCL), not otherwise specified (NOS) represents the predominant histological type and constitutes over 80% of all cases. PBL may occur at all ages with a typical diagnosis age of 45–60 years and a slight male predominance. Local bone pain, soft tissue edema, palpable mass and pathological fracture are the most common clinical features. Diagnosis of the disease, which is frequently delayed due to its non-specific clinical presentation, is based on the combination of clinical examination and imaging studies and confirmed by combined histopathological and immunohistochemical examination. PBL can develop in any part of the skeleton, although it occurs most commonly in the femur, humerus, tibia, spine and pelvis. The imaging appearance of PBL is highly variable and unspecific. In terms of the cell-of-origin, most cases of primary bone DLBCL (PB-DLBCL), NOS belong to the germinal center B-cell-like subtype and specifically originate from germinal center centrocytes. PB-DLBCL, NOS has been considered a distinct clinical entity based on its particular prognosis, histogenesis, gene expression and mutational profile and miRNA signature. PBL carries a favorable prognosis, especially when treated with combined chemoradiotherapy.
Collapse
|
27
|
Pharmacological Interventions Targeting Pain in Fibrous Dysplasia/McCune-Albright Syndrome. Int J Mol Sci 2023; 24:ijms24032550. [PMID: 36768871 PMCID: PMC9916440 DOI: 10.3390/ijms24032550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Fibrous dysplasia (FD) is a rare, non-inherited bone disease occurring following a somatic gain-of-function R201 missense mutation of the guanine-nucleotide binding protein alpha subunit stimulating activity polypeptide 1 (GNAS) gene. The spectrum of the disease ranges from a single FD lesion to a combination with extraskeletal features; an amalgamation with café-au-lait skin hyperpigmentation, precocious puberty, and other endocrinopathies defines McCune-Albright Syndrome (MAS). Pain in FD/MAS represents one of the most prominent aspects of the disease and one of the most challenging to treat-an outcome driven by (i) the heterogeneous nature of FD/MAS, (ii) the variable presentation of pain phenotypes (i.e., craniofacial vs. musculoskeletal pain), (iii) a lack of studies probing pain mechanisms, and (iv) a lack of rigorously validated analgesic strategies in FD/MAS. At present, a range of pharmacotherapies are prescribed to patients with FD/MAS to mitigate skeletal disease activity, as well as pain. We analyze evidence guiding the current use of bisphosphonates, denosumab, and other therapies in FD/MAS, and also discuss the potential underlying pharmacological mechanisms by which pain relief may be achieved. Furthermore, we highlight the range of presentation of pain in individual cases of FD/MAS to further describe the difficulties associated with employing effective pain treatment in FD/MAS. Potential next steps toward identifying and validating effective pain treatments in FD/MAS are discussed, such as employing randomized control trials and probing new pain pathways in this rare bone disease.
Collapse
|
28
|
Simões Corrêa Galendi J, Siefen AC, Moretti DM, Yeo SY, Grüll H, Bratke G, Morganti AG, Bazzocchi A, Gasperini C, De Felice F, Blanco Sequeiros R, Huhtala M, Nijholt IM, Boomsma MF, Bos C, Verkooijen HM, Müller D, Stock S. Factors Influencing the Adoption of Magnetic Resonance-Guided High-Intensity Focused Ultrasound for Painful Bone Metastases in Europe, A Group Concept Mapping Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1084. [PMID: 36673840 PMCID: PMC9858703 DOI: 10.3390/ijerph20021084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) is an innovative treatment for patients with painful bone metastases. The adoption of MR-HIFU will be influenced by several factors beyond its effectiveness. To identify contextual factors affecting the adoption of MR-HIFU, we conducted a group concept mapping (GCM) study in four European countries. The GCM was conducted in two phases. First, the participants brainstormed statements guided by the focus prompt "One factor that may influence the uptake of MR-HIFU in clinical practice is...". Second, the participants sorted statements into categories and rated the statements according to their importance and changeability. To generate a concept map, multidimensional scaling and cluster analysis were conducted, and average ratings for each (cluster of) factors were calculated. Forty-five participants contributed to phase I and/or II (56% overall participation rate). The resulting concept map comprises 49 factors, organized in 12 clusters: "competitive treatments", "physicians' attitudes", "alignment of resources", "logistics and workflow", "technical disadvantages", "radiotherapy as first-line therapy", "aggregating knowledge and improving awareness", "clinical effectiveness", "patients' preferences", "reimbursement", "cost-effectiveness" and "hospital costs". The factors identified echo those from the literature, but their relevance and interrelationship are case-specific. Besides evidence on clinical effectiveness, contextual factors from 10 other clusters should be addressed to support adoption of MR-HIFU.
Collapse
Affiliation(s)
- Julia Simões Corrêa Galendi
- Institute for Health Economics and Clinical Epidemiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany
| | - Ann-Cathrine Siefen
- Institute for Health Economics and Clinical Epidemiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany
| | - Debora M. Moretti
- Institute for Food and Resource Economics, Chair for Technology, Innovation Management and Entrepreneurship, University of Bonn, 53115 Bonn, Germany
| | - Sin Yuin Yeo
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Holger Grüll
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, 50939 Cologne, Germany
| | - Grischa Bratke
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Alessio Giuseppe Morganti
- Radiation Oncology, IRCCS Azienda Ospedaliero, Universitaria of Bologna, 40138 Bologna, Italy
- Radiation Oncology, DIMES, Alma Mater Studiorum Bologna University, 40138 Bologna, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Chiara Gasperini
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesca De Felice
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Mira Huhtala
- Department of Oncology, Turku University Hospital, University of Turku, 20521 Turku, Finland
| | - Ingrid M. Nijholt
- Department of Radiology, Isala Hospital, 8025 AB Zwolle, The Netherlands
| | - Martijn F. Boomsma
- Department of Radiology, Isala Hospital, 8025 AB Zwolle, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Clemens Bos
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Helena M. Verkooijen
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Dirk Müller
- Institute for Health Economics and Clinical Epidemiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany
| | - Stephanie Stock
- Institute for Health Economics and Clinical Epidemiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany
| |
Collapse
|
29
|
Hu JL, Zhang WJ. The role and pharmacological properties of P2Y12 receptor in cancer and cancer pain. Biomed Pharmacother 2023; 157:113927. [PMID: 36462316 DOI: 10.1016/j.biopha.2022.113927] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
The G protein-coupled P2Y12 receptor (P2Y12R) was cloned in platelets and found to play a key role in maintaining platelet function in hemostasis and thrombosis, and these effects could be mediated by the P2Y12R. However, it has recently been found that P2Y12R-mediated the progression of tumor through interactions between platelets and tumor and stromal cells, as well as through products secreted by platelets. During tumor progression, tumor cells or other cells in the tumor microenvironment (such as immune cells) can secrete large amounts of ATP into the extracellular matrix, and extracellular ATP can be hydrolyzed into ADP. ADP is a P2Y12R activator and plays an important regulatory role in the proliferation and metastasis of tumor cells. P2Y12R is involved in platelet-cancer cell crosstalk and become a potential target for anticancer therapy. Moreover, tumor progression can induce pain, which seriously affects the quality of life of patients. P2Y12R is expressed in microglia and mediates the activities of microglial and participates in the occurrence of cancer pain. Conversely, inhibiting P2Y12R activation and down-regulating its expression has the effect of inhibiting tumor progression and pain. Therefore, P2Y12R can be a common therapeutic target for both. In this article, we explored the potential link between P2Y12R and cancer, discussed the intrinsic link of P2Y12R in cancer pain and the pharmacological properties of P2Y12R antagonists in the treatment of both.
Collapse
Affiliation(s)
- Jia-Ling Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
30
|
Li X, Zhang K, Xu D, Xu Y. The effect of Orem's nursing theory on the pain levels, self-care abilities, psychological statuses, and quality of life of bone cancer patients. Am J Transl Res 2023; 15:1438-1445. [PMID: 36915789 PMCID: PMC10006768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 03/16/2023]
Abstract
OBJECTIVE This study aims to explore the impact of Orem-based nursing intervention on the pain levels, self-care abilities, psychological statuses, and quality of life in bone cancer patients. METHODS A total of 91 patients with primary bone cancer admitted to our hospital from January 2019 to January 2020 were randomly placed into one of two groups. The patients in the control group (n=43) underwent routine nursing care, and the patients in the experimental group (n=48) underwent Orem-based nursing care during the perioperative period. The two groups were compared in terms of their postoperative recovery times and treatment effects, and their adverse emotion scores, pain levels, self-care abilities, and quality of life before and after intervention. RESULTS The treatment efficacy in the two groups was similar, but the postoperative recovery times in the experimental group were shorter than they were in the control group (P < 0.05). Compared with before the intervention, the SDS, SAS, and VAS scores were significantly decreased in both groups (P < 0.05), and their self-care abilities and quality of life were significantly higher (P < 0.05) after intervention. CONCLUSION Orem-based nursing combined with perioperative care can mobilize patients' initiative, significantly improve patients' adverse emotions and pain levels, shorten their postoperative recovery times, and help improve their self-care abilities and quality of life.
Collapse
Affiliation(s)
- Xia Li
- Department of Critical Care Medicine, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine Wenzhou 325000, Zhejiang, China
| | - Kaiya Zhang
- Department of Critical Care Medicine, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine Wenzhou 325000, Zhejiang, China
| | - Duoduo Xu
- Department of Urology Surgery/ENT/Anorectal, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine Wenzhou 325000, Zhejiang, China
| | - Yaoyao Xu
- Department of Critical Care Medicine, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine Wenzhou 325000, Zhejiang, China
| |
Collapse
|
31
|
Limsomwong P, Ingviya T, Fumaneeshoat O. The trend of opioid prescriptions among cancer patients in a tertiary hospital: A multimethod quantitative study. Front Oncol 2023; 13:1138169. [PMID: 37114139 PMCID: PMC10128996 DOI: 10.3389/fonc.2023.1138169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Pain is a major symptom in cancer patients. World Health Organization recommends opioids as the main analgesic agent. Few studies have examined the amount of opioid uses in cancer patients in Southeast Asia, however, none of them have examined the factors associated with the amount of opioid uses which were lower than required. Objectives To assess the trends and factors associated with opioid prescriptions for cancer patients in Songklanagarind Hospital, the largest referral center in Southern Thailand. Design Multi-method quantitative study. Methods We reviewed the electronic medical records of 20,192, outpatients aged ≥18 years diagnosed with cancer between 2016 and 2020 who received opiod prescriptions. Oral morphine equivalents (OME) were calculated using the standard conversion factors and the OME trend during the study period was assessed by a generalized additive model. Factors affecting the morphine equivalent daily dose (MEDD) were assessed using multiple linear regression with a generalized estimating equation. Results The mean overall MEDD for all study patients was 27.8 ± 21.9 mg per day per patient. The bone and articular cartilage cancer patients had the highest MEDD. For every 5-year increase in the duration of cancer, the MEDD increased by 0.02 (95% confidence interval [CI]: 0.01 - 0.04). Patients with stage 4 cancer received a higher average MEDD of 4.04 (95% CI: 0.30-7.62) as compared to those with stage 1 cancer. Patients with bone metastasis received a average higher MEDD of 4.03 (95% CI: 0.82-7.19) compared to those without. Age was inversely associated with the MEDD. Patients aged 42-58, 59-75 and >76years old received MEDDs of 4.73 (95% CI: 2.31-7.15), 6.12 (95% CI: 3.66-8.59) and 8.59 (95% CI: 6.09-11.09) compared with those aged 18-42 years old. Brain metastasis was inversely associated with MEDD of 4.49 (95% CI: 0.61-8.37) compared to those without. Conclusion Opioid use in cancer patients in this study is lower than the average global usage. Promoting opioid prescriptions for pain management through medical education can help doctors overcome opiophobia.
Collapse
Affiliation(s)
- Pawita Limsomwong
- Department of Family and Preventive Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Thammasin Ingviya
- Department of Family and Preventive Medicine, Prince of Songkla University, Songkhla, Thailand
- Division of Digital Innovation and Data Analytics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Orapan Fumaneeshoat
- Department of Family and Preventive Medicine, Prince of Songkla University, Songkhla, Thailand
- *Correspondence: Orapan Fumaneeshoat,
| |
Collapse
|
32
|
Lei X, Yan Y, Zeng J, Wang R, Li S, Xiao Z, Liu X. Activation of HCN channels caused by elevated cAMP levels in periaqueductal gray promotes bone cancer pain. Neurochem Int 2023; 162:105437. [PMID: 36336089 DOI: 10.1016/j.neuint.2022.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
The periaqueductal gray (PAG) is an important relay center for the descending pathways that regulate nociceptive information transduction. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play critical roles in the nerve injury-induced pain hypersensitivity. Previous studies have identified that HCN1 and HCN2 channel protein located in the ventral-lateral periaqueductal gray (vlPAG), a region important for pain regulation. However, it is not clear whether the HCN channel in vlPAG is involved in bone cancer pain (BCP). In this study, we assessed the role of HCN channels in BCP by measuring changes of HCN channel expression and activity in vlPAG neurons in bone cancer rats. In the present study, the BCP model was established by injecting SHZ-88 breast cancer cells into the right tibia bone marrow in rats. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured to evaluate pain behavior in rats. HCN1 and HCN2 channels expression in vlPAG were detected by using Western Blot and immunohistochemistry. In addition, the cAMP level in vlPAG neurons was detected by ELISA, and HCN channel current (Ih) of vlPAG neurons was recorded by whole cell patch-clamp to evaluate HCN channel activity. As a result, decreased MWT and TWL were observed in rats on 7d after SHZ-88 cell inoculation, and the allodynia was sustained until 21d after inoculation. At the same time, HCN1 and HCN2 channels expression and neuronal Ih in vlPAG were significantly increased in BCP rats. In addition, the level of cAMP in vlPAG also increased after SHZ-88 cell inoculation. Furthermore, intravlPAG injection of ZD7288 (HCN channels antagonist) could significantly reduce hyperalgesia and the elevation of cAMP in vlPAG in BCP rats. Our observations suggest that the elevation of cAMP may promote the activation of HCN channels in vlPAG in bone cancer rats, thereby promoting the development of bone cancer pain.
Collapse
Affiliation(s)
- Xiaolu Lei
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China; Guizhou Key Laboratory of Anaesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China
| | - Yan Yan
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China; Guizhou Key Laboratory of Anaesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, China
| | - Rong Wang
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, China
| | - Song Li
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, China
| | - Zhi Xiao
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China; Guizhou Key Laboratory of Anaesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaohong Liu
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
33
|
Slotman DJ, Bartels MMTJ, Ferrer CJ, Bos C, Bartels LW, Boomsma MF, Phernambucq ECJ, Nijholt IM, Morganti AG, Siepe G, Buwenge M, Grüll H, Bratke G, Yeo SY, Blanco Sequeiros R, Minn H, Huhtala M, Napoli A, De Felice F, Catalano C, Bazzocchi A, Gasperini C, Campanacci L, Simões Corrêa Galendi J, Müller D, Braat MNGJA, Moonen C, Verkooijen HM. Focused Ultrasound and RadioTHERapy for non-invasive palliative pain treatment in patients with bone metastasis: a study protocol for the three armed randomized controlled FURTHER trial. Trials 2022; 23:1061. [PMID: 36582001 PMCID: PMC9798627 DOI: 10.1186/s13063-022-06942-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/17/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer-induced bone pain (CIBP), caused by bone metastases, is a common complication of cancer and strongly impairs quality of life (QoL). External beam radiotherapy (EBRT) is the current standard of care for treatment of CIBP. However, approximately 45% of patients have no adequate pain response after EBRT. Magnetic resonance image-guided high-intensity focused ultrasound (MR-HIFU) may improve pain palliation in this patient population. The main objective of this trial was to compare MR-HIFU, EBRT, and MR-HIFU + EBRT for the palliative treatment of bone metastases. METHODS/DESIGN The FURTHER trial is an international multicenter, three-armed randomized controlled trial. A total of 216 patients with painful bone metastases will be randomized in a 1:1:1 ratio to receive EBRT only, MR-HIFU only, or combined treatment with EBRT followed by MR-HIFU. During a follow-up period of 6 months, patients will be contacted at eight time points to retrieve information about their level of pain, QoL, and the occurrence of (serious) adverse events. The primary outcome of the trial is pain response at 14 days after start of treatment. Secondary outcomes include pain response at 14 days after trial enrolment, pain scores (daily until the 21st day and at 4, 6, 12 and 24 weeks), toxicity, adverse events, QoL, and survival. Cost-effectiveness and cost-utility analysis will be conducted. DISCUSSION The FURTHER trial aims to evaluate the effectiveness and cost-effectiveness of MR-HIFU-alone or in combination with EBRT-compared to EBRT to relieve CIBP. The trial will be performed in six hospitals in four European countries, all of which are partners in the FURTHER consortium. TRIAL REGISTRATION The FURTHER trial is registered under the Netherlands Trials Register number NL71303.041.19 and ClinicalTrials.gov registration number NCT04307914. Date of trial registration is 13-01-2020.
Collapse
Affiliation(s)
- Derk J. Slotman
- grid.7692.a0000000090126352Division of Imaging and Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands ,grid.452600.50000 0001 0547 5927Department of Radiology, Isala Hospital, Zwolle, The Netherlands
| | - Marcia M. T. J. Bartels
- grid.7692.a0000000090126352Division of Imaging and Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Cyril J. Ferrer
- grid.7692.a0000000090126352Division of Imaging and Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Clemens Bos
- grid.7692.a0000000090126352Division of Imaging and Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lambertus W. Bartels
- grid.7692.a0000000090126352Division of Imaging and Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Martijn F. Boomsma
- grid.7692.a0000000090126352Division of Imaging and Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands ,grid.452600.50000 0001 0547 5927Department of Radiology, Isala Hospital, Zwolle, The Netherlands
| | - Erik C. J. Phernambucq
- grid.452600.50000 0001 0547 5927Department of Radiation Oncology, Isala Hospital, Zwolle, The Netherlands
| | - Ingrid M. Nijholt
- grid.452600.50000 0001 0547 5927Department of Radiology, Isala Hospital, Zwolle, The Netherlands
| | - Alessio G. Morganti
- grid.6292.f0000 0004 1757 1758DIMES, Alma Mater Studiorum - Bologna University, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Giambattista Siepe
- grid.6292.f0000 0004 1757 1758Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Milly Buwenge
- grid.6292.f0000 0004 1757 1758DIMES, Alma Mater Studiorum - Bologna University, Bologna, Italy
| | - Holger Grüll
- grid.6190.e0000 0000 8580 3777Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Grischa Bratke
- grid.6190.e0000 0000 8580 3777Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sin Yuin Yeo
- grid.6190.e0000 0000 8580 3777Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roberto Blanco Sequeiros
- grid.410552.70000 0004 0628 215XDepartment of Radiology, Turku University Hospital, Turku, Finland
| | - Heikki Minn
- grid.1374.10000 0001 2097 1371Department of Oncology, University of Turku and Turku University Hospital, Turku, Finland
| | - Mira Huhtala
- grid.1374.10000 0001 2097 1371Department of Oncology, University of Turku and Turku University Hospital, Turku, Finland
| | - Alessandro Napoli
- grid.7841.aDepartment of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca De Felice
- grid.7841.aDepartment of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Catalano
- grid.7841.aDepartment of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Alberto Bazzocchi
- grid.419038.70000 0001 2154 6641Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Chiara Gasperini
- grid.419038.70000 0001 2154 6641Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura Campanacci
- grid.419038.70000 0001 2154 66413Rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Julia Simões Corrêa Galendi
- grid.6190.e0000 0000 8580 3777Institute of Health Economics and Clinical Epidemiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Dirk Müller
- grid.6190.e0000 0000 8580 3777Institute of Health Economics and Clinical Epidemiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Manon N. G. J. A. Braat
- grid.7692.a0000000090126352Division of Imaging and Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Chrit Moonen
- grid.7692.a0000000090126352Division of Imaging and Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Helena M. Verkooijen
- grid.7692.a0000000090126352Division of Imaging and Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
34
|
Ollodart J, Contino KF, Deep G, Shiozawa Y. The impacts of exosomes on bone metastatic progression and their potential clinical utility. Bone Rep 2022; 17:101606. [PMID: 35910404 PMCID: PMC9335387 DOI: 10.1016/j.bonr.2022.101606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Bone is one of the most common sites of cancer metastasis. Once cancer metastasizes to the bone, the mortality rate of cancer patients dramatically increases. Although the exact mechanisms for this observation remain elusive, recent studies have revealed that the complex crosstalk between bone marrow microenvironment and bone metastatic cancer cells is responsible for the induction of treatment resistance. Consequently, bone metastasis is currently considered incurable. Bone metastasis not only impairs the patients' survival, but also negatively affects their quality of life by causing painful complications. It has recently been implicated the regulatory role of exosomes in cancer development and/or progression as a delivery biomaterial between cancer cells and tumor microenvironment. However, little is known as to how exosomes contribute to the progression of bone metastasis by impaction on the crosstalk between bone metastatic cancer cells and bone marrow microenvironment. Here, we highlighted the emerging roles of cancer-derived exosomes in (i) the process of dissemination and bone colonization of bone metastatic cancer cells, (ii) the enhancement of crosstalk between bone marrow microenvironment and bone metastatic cancer cells, (iii) the development of its resultant painful complications, and (iv) the clinical applications of exosomes in the bone metastatic setting. Cancer-derived exosomes facilitate cancer dissemination and colonization to bone. Cancer-derived exosomes are crucial for controlling bone metastatic phenotype. Cancer-derived exosomes prime bone marrow microenvironment for further metastasis. Cancer-derived exosomes are involved in development of cancer-induced bone pain. Exosomes can be used as therapies and/or diagnostic tools for bone metastasis.
Collapse
Affiliation(s)
- Jenna Ollodart
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Kelly F Contino
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Gagan Deep
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| |
Collapse
|
35
|
Dexmedetomidine alleviates pain in MPTP-treated mice by activating the AMPK/mTOR/NF-κB pathways in astrocytes. Neurosci Lett 2022; 791:136933. [DOI: 10.1016/j.neulet.2022.136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
|
36
|
Monteiro BP, Lascelles BDX, Murrell J, Robertson S, Steagall PVM, Wright B. 2022
WSAVA
guidelines for the recognition, assessment and treatment of pain. J Small Anim Pract 2022. [DOI: 10.1111/jsap.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- B. P. Monteiro
- Department of Clinical Sciences, Faculty of Veterinary Medicine Université de Montréal 3200 rue Sicotte, Saint‐Hyacinthe Quebec Canada
| | - B. D. X. Lascelles
- Comparative Pain Research Laboratory and Surgery Section North Carolina State University 4700 Hillsborough Street Raleigh NC USA
| | - J. Murrell
- Highcroft Veterinary Referrals 615 Wells Rd, Whitchurch Bristol BS149BE UK
| | - S. Robertson
- Senior Medical Director Lap of Love Veterinary Hospice 17804 N US Highway 41 Lutz FL 33549 USA
| | - P. V. M. Steagall
- Department of Clinical Sciences, Faculty of Veterinary Medicine Université de Montréal 3200 rue Sicotte, Saint‐Hyacinthe Quebec Canada
| | - B. Wright
- Mistral Vet 4450 Thompson Pkwy Fort Collins CO 80534 USA
| |
Collapse
|
37
|
Colosia A, Njue A, Bajwa Z, Dragon E, Robinson RL, Sheffield KM, Thakkar S, Richiemer SH. The Burden of Metastatic Cancer-Induced Bone Pain: A Narrative Review. J Pain Res 2022; 15:3399-3412. [PMID: 36317162 PMCID: PMC9617513 DOI: 10.2147/jpr.s371337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022] Open
Abstract
Bone pain is one of the most common forms of pain reported by cancer patients with metastatic disease. We conducted a review of oncology literature to further understand the epidemiology of and treatment approaches for metastatic cancer–induced bone pain and the effect of treatment of painful bone metastases on the patient’s quality of life. Two-thirds of patients with advanced, metastatic, or terminal cancer worldwide experience pain. Cancer pain due to bone metastases is the most common form of pain in patients with advanced disease and has been shown to significantly reduce patients’ quality of life. Treatment options for cancer pain due to bone metastases include nonsteroidal anti-inflammatory drugs, palliative radiation, bisphosphonates, denosumab, and opioids. Therapies including palliative radiation and opioids have strong evidence supporting their efficacy treating cancer pain due to bone metastases; other therapies, like bisphosphonates and denosumab, do not. There is sufficient evidence that patients who experience pain relief after radiation therapy have improved quality of life; however, a substantial proportion are nonresponders. For those still requiring pain management, even with available analgesics, many patients are undertreated for cancer pain due to bone metastases, indicating an unmet need. The studies in this review were not designed to determine why cancer pain due to bone metastases was undertreated. Studies specifically addressing cancer pain due to bone metastases, rather than general cancer pain, are limited. Additional research is needed to determine patient preferences and physician attitudes regarding choice of analgesic for moderate to severe cancer pain due to bone metastases.
Collapse
Affiliation(s)
- Ann Colosia
- Department of Market Access and Outcomes Strategy, RTI Health Solutions, Research Triangle Park, NC, USA
| | - Annete Njue
- Department of Market Access and Outcomes Strategy, RTI Health Solutions, Manchester, UK
| | - Zahid Bajwa
- Medical Affairs, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Rebecca L Robinson
- Value, Evidence, and Outcomes, Eli Lilly and Company, Indianapolis, IN, USA,Correspondence: Rebecca L Robinson, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA, Tel +1 3174331323, Fax +1 3172777444, Email
| | | | | | - Steven H Richiemer
- Division of Pain Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
38
|
Smith AE, Muralidharan A, Smith MT. Prostate cancer induced bone pain: pathobiology, current treatments and pain responses from recent clinical trials. Discov Oncol 2022; 13:108. [PMID: 36258057 PMCID: PMC9579264 DOI: 10.1007/s12672-022-00569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Metastatic spread of prostate cancer to the skeleton may result in debilitating bone pain. In this review, we address mechanisms underpinning the pathobiology of metastatic prostate cancer induced bone pain (PCIBP) that include sensitization and sprouting of primary afferent sensory nerve fibres in bone. We also review current treatments and pain responses evoked by various treatment modalities in clinical trials in this patient population. METHODS We reviewed the literature using PubMed to identify research on the pathobiology of PCIBP. Additionally, we reviewed clinical trials of various treatment modalities in patients with PCIBP with pain response outcomes published in the past 7 years. RESULTS Recent clinical trials show that radionuclides, given either alone or in combination with chemotherapy, evoked favourable pain responses in many patients and a single fraction of local external beam radiation therapy was as effective as multiple fractions. However, treatment with chemotherapy, small molecule inhibitors and/or immunotherapy agents, produced variable pain responses but pain response was the primary endpoint in only one of these trials. Additionally, there were no published trials of potentially novel analgesic agents in patients with PCIBP. CONCLUSION There is a knowledge gap for clinical trials of chemotherapy, small molecule inhibitors and/or immunotherapy in patients with PCIBP where pain response is the primary endpoint. Also, there are no novel analgesic agents on the horizon for the relief of PCIBP and this is an area of large unmet medical need that warrants concerted research attention.
Collapse
Affiliation(s)
- A. E. Smith
- St Vincent’s Hospital, Darlinghurst, Sydney, NSW Australia
| | - A. Muralidharan
- Neurobiology of Chronic Pain, The Charles Perkins Centre, Faculty of Science, The University of Sydney, Sydney, NSW 2006 Australia
| | - M. T. Smith
- Centre for Integrated Preclinical Drug Development, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072 Australia
| |
Collapse
|
39
|
Gao Q, Yao Y, Xu Q. Guideline and Implementation of Osteosarcoma Nursing Care for Children and Adolescents. Appl Bionics Biomech 2022; 2022:2021162. [PMID: 36267672 PMCID: PMC9578899 DOI: 10.1155/2022/2021162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical trials on pediatric oncology use therapeutic techniques with the overwhelming majority of children's cancer patients obtaining therapy via clinical investigation procedures. Medical treatment is scheduled according to a specific protocol for enrolled patients. These protocols often do not refer to nursing care. Nursing care, on the other hand, must complement the medical care specified in the medical research protocol. Safe treatment administration, assessment of treatment responses, patients' and families' education, and communication with the whole medical team are just a few of the critical nursing tasks that should be properly managed. Nursing care standards have been developed in this study to strike a good balance between the procedure for clinical research and the nursing care connected with it. These recommendations outline the nursing activities and considerations that must be made while caring for pediatric cancer patients who are engaged in a specific clinical investigation procedure. The objective of this study is to outline the procedure through which nursing care guidelines could be developed and evaluated. The goal of this study was to find out the involvement of nurses in the process of health education for osteosarcoma and family patients.
Collapse
Affiliation(s)
- Qian Gao
- Nursing Department, Department of Bone Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, China
| | - Yuhong Yao
- Nursing Department, Department of Bone Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, China
| | - Qi Xu
- Nursing Department, Department of Thoracic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, China
| |
Collapse
|
40
|
Koca GY, Aylaz R. The effect of music on pain and anxiety in patients receiving chemotherapy during COVID-19. Eur J Cancer Care (Engl) 2022; 31:e13715. [PMID: 36168097 DOI: 10.1111/ecc.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This research has been conducted to determine the effect of music on pain and anxiety levels of patients receiving chemotherapy during COVID-19. METHODS The research has been carried out in a real trial model with 92 adult patients (45 in the experimental group who received chemotherapy and 47 in the control group). The data have been collected by the researcher with Google Forms (using State and Trait Anxiety Inventory [STAI] and visual analogue scale [VAS]) through the links sent to the phones of participants on the day they received chemotherapy, between March 2020 and July 2020. RESULTS The mean scores obtained from the post-test STAI (53.11 ± 4.77) and VAS (3.44 ± 2.53) in the experimental group have been determined to statistically significantly decrease when compared to the pre-test measurement data (STAI: 54.26 ± 4.26; VAS: 4.22 ± 2.41) (p < 0.05). No statistically significant difference has been determined between pre-test and post-test mean scores of the patients in the control group. CONCLUSION It has been observed that music applications reduce the pain and anxiety levels of patients receiving chemotherapy during the COVID-19 process. It can be recommended to use music applications in the management of pain and anxiety symptoms.
Collapse
Affiliation(s)
- Gülsüm Yetiş Koca
- Department of Public Health Nursing, Faculty of Nursing, İnönü University, Malatya, Turkey.,Home Care Program, Health Services Vocational School, İnönü University, Malatya, Turkey
| | - Rukuye Aylaz
- Department of Public Health Nursing, Faculty of Nursing, İnönü University, Malatya, Turkey
| |
Collapse
|
41
|
β-Elemene Improves Morphine Tolerance in Bone Cancer Pain via N-Methyl-D-Aspartate Receptor 2B Subunit-Mediated μ-Opioid Receptor. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9897669. [PMID: 36164617 PMCID: PMC9509249 DOI: 10.1155/2022/9897669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Background Improving morphine tolerance (MT) is an urgent problem in the clinical treatment of bone cancer pain. Considering that β-Elemene is widely used in the treatment of cancer pain, we explored the effects and mechanism of β-Elemene in preventing MT of bone cancer pain. Method Bone cancer pain and chronic MT rat model was established by injecting MADB106 cells and morphine (10 mg/kg). SH-SY5Y cells were treated with morphine (10 μg/mL) for 48 h to establish a cell model. The mechanical withdrawal threshold and thermal withdrawal latency of rats were detected by mechanical allodynia and thermal hyperalgesia tests, respectively. The protein expressions of μ-opioid receptor (MOPR), cyclic adenosine monophosphate (cAMP), N-methyl-D-aspartate receptor subunit 2B (NR2B), phosphorylated-calmodulin-dependent protein kinase II (p-CaMKII), and CaMKII were detected by western blot. The viability of SH-SY5Y cells was determined by the cell counting kit-8 assay. cAMP content in SH-SY5Y cells was measured by a LANCE cAMP kit. Result Animal experiments showed that MT strengthened over time, while increased β-Elemene dosage alleviated MT. The viability of SH-SY5Y cells was down-regulated by high-dose β-Elemene. In the rat and cell models, long-term morphine treatment decreased the expression of MOPR and increased the cAMP and NR2B expressions and p-CaMKII/CaMKII, while β-Elemene and siNR2B counteracted the effects of morphine treatment. In addition, siNR2B reversed the effects of β-Elemene on related protein expressions and cAMP content in the cell model. Conclusion β-Elemene improved MT in bone cancer pain through the regulation of NR2B-mediated MOPR.
Collapse
|
42
|
Zhang L, Miao X, Li Y, Hu F, Ma D, Zhang Z, Sun Q, Zhu Y, Zhu Q. Traditional processing, uses, phytochemistry, pharmacology and toxicology of Aconitum sinomontanum Nakai: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115317. [PMID: 35469829 DOI: 10.1016/j.jep.2022.115317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a folk medicine, Aconitum sinomontanum Nakai (Ranunculaceae) a perennial herbaceous flowering plant, is a widely used traditional Chinese medicine. Its rhizomes and roots are known as 'Gaowutou' in China, and it has been traditionally used for the treatment of rheumatoid arthritis, painful swelling of joints, bruises and injuries and has been known to grow well in regions of high altitude such as Gansu, Tibet etc. THE AIM OF THE REVIEW: This systematic review the comprehensive knowledge of the A. sinomontanum, including its traditional processing and uses, chemical constituents, pharmacological activities, toxicity assessment, pharmacokinetics and metabolism, and its use in clinical settings to emphasize the benefits of this species. We also discuss expectations for prospective research and implementation of this herb. This work lays a solid foundation for further development of A. sinomontanum. MATERIALS AND METHOD Information on the studies of A. sinomontanum was collected from scientific journals, books, and reports via library and electronic data search (PubMed, Elsevier, Scopus, Google Scholar, Springer, Science Direct, Wiley, ACS, EMBASE, Web of Science and CNKI). Meanwhile, it was also obtained from published works of material medica, folk records, ethnopharmacological literatures, Ph.D. and Masters dissertation. RESULTS As a member of the Ranunculaceae family, A. sinomontanum possesses its up-and-coming biological characteristics. It is widely reported for treating rheumatoid arthritis, painful swelling of joints, bruises and injuries. Currently, over 71 phytochemical ingredients have been obtained and identified from different parts of A. sinomontanum. Among them, alkaloids, flavonoids, steroids, glycosides are the major bioactive constituents. Activities such as antinociceptive, anti-inflammatory, antitumor, antiarrhythmic, local anesthetic, antipyretic, antimicrobial, insecticidal and others have been corroborated in vivo and in vitro. These properties are attributed to different alkaloids. In addition, many of the active ingredients, such as lappaconitine, ranaconitine and total alkaloids have been used as quality markers. CONCLUSION This work contributes to update the ethnopharmacological uses, chemical constituents, pharmacological activities, toxicity assessment, pharmacokinetics and metabolism, and clinical settings information for A. sinomontanum, which provide basic information to help better understand the pharmacological and toxicological activities of A. sinomontanum in human. However, further in-depth studies are needed to determine the medical uses of this herb and its chemical constituents, pharmacological activities, clinical applications and toxicology.
Collapse
Affiliation(s)
- Lijun Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China.
| | - Yun Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China
| | - Dongni Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Pharmacy Department, Dunhuang Hospital of Gansu Province, Dunhuang, 736200, PR China
| | - Zhuanping Zhang
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Quanming Sun
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Yuanfeng Zhu
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Qingli Zhu
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| |
Collapse
|
43
|
Lattanzi R, Severini C, Miele R. Prokineticin 2 in cancer-related inflammation. Cancer Lett 2022; 546:215838. [DOI: 10.1016/j.canlet.2022.215838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
|
44
|
Hansen RB, Sayilekshmy M, Sørensen MS, Jørgensen AH, Kanneworff IB, Bengtsson EKE, Grum-Schwensen TA, Petersen MM, Ejersted C, Andersen TL, Andreasen CM, Heegaard AM. Neuronal Sprouting and Reorganization in Bone Tissue Infiltrated by Human Breast Cancer Cells. FRONTIERS IN PAIN RESEARCH 2022; 3:887747. [PMID: 35712449 PMCID: PMC9197453 DOI: 10.3389/fpain.2022.887747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPain is a common complication for patients with metastatic bone disease. Animal models suggest that the pain, in part, is driven by pathological sprouting and reorganization of the nerve fibers innervating the bone. Here, we investigate how these findings translate to humans.MethodsBone biopsies were collected from healthy volunteers (n = 7) and patients with breast cancer and metastatic bone disease (permissions H-15000679, S-20180057 and S-20110112). Cancer-infiltrated biopsies were from patients without recent anticancer treatment (n = 10), patients with recent anticancer treatment (n = 10), and patients with joint replacement surgery (n = 9). Adjacent bone sections were stained for (1) protein gene product 9.5 and CD34, and (2) cytokeratin 7 and 19. Histomorphometry was used to estimate the area of bone marrow and tumor burden. Nerve profiles were counted, and the nerve profile density calculated. The location of each nerve profile within 25 μm of a vascular structure and/or cancer cells was determined.ResultsCancer-infiltrated bone tissue demonstrated a significantly higher nerve profile density compared to healthy bone tissue. The percentage of nerve profiles found close to vascular structures was significantly lower in cancer-infiltrated bone tissue. No difference was found in the percentage of nerve profiles located close to cancer between the subgroups of cancer-infiltrated bone tissue. Interestingly, no correlation was found between nerve profile density and tumor burden.ConclusionsTogether, the increased nerve profile density and the decreased association of nerve profiles to vasculature strongly suggests that neuronal sprouting and reorganization occurs in human cancer-infiltrated bone tissue.
Collapse
Affiliation(s)
- Rie B. Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Manasi Sayilekshmy
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Michala S. Sørensen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Astrid H. Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ida B. Kanneworff
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Emma K. E. Bengtsson
- Clinical Cell Biology Group, Department of Pathology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tomas A. Grum-Schwensen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michael M. Petersen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ejersted
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Thomas L. Andersen
- Clinical Cell Biology Group, Department of Pathology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina M. Andreasen
- Clinical Cell Biology Group, Department of Pathology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Anne-Marie Heegaard
| |
Collapse
|
45
|
Ge MM, Li DY, Wang L, Zhang LQ, Liu DQ, Tian YK, Ye DW, Liu ZH, Zhou YQ, Yang H. Naringenin promoted spinal microglia M2 polarization in rat model of cancer-induced bone pain via regulating AMPK/PGC-1α signaling axis. Biomed Pharmacother 2022; 149:112912. [DOI: 10.1016/j.biopha.2022.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022] Open
|
46
|
Ortiz YT, McMahon LR, Wilkerson JL. Medicinal Cannabis and Central Nervous System Disorders. Front Pharmacol 2022; 13:881810. [PMID: 35529444 PMCID: PMC9070567 DOI: 10.3389/fphar.2022.881810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/05/2022] [Indexed: 01/02/2023] Open
Abstract
Cannabinoids, including those found in cannabis, have shown promise as potential therapeutics for numerous health issues, including pathological pain and diseases that produce an impact on neurological processing and function. Thus, cannabis use for medicinal purposes has become accepted by a growing majority. However, clinical trials yielding satisfactory endpoints and unequivocal proof that medicinal cannabis should be considered a frontline therapeutic for most examined central nervous system indications remains largely elusive. Although cannabis contains over 100 + compounds, most preclinical and clinical research with well-controlled dosing and delivery methods utilize the various formulations of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the two most abundant compounds in cannabis. These controlled dosing and delivery methods are in stark contrast to most clinical studies using whole plant cannabis products, as few clinical studies using whole plant cannabis profile the exact composition, including percentages of all compounds present within the studied product. This review will examine both preclinical and clinical evidence that supports or refutes the therapeutic utility of medicinal cannabis for the treatment of pathological pain, neurodegeneration, substance use disorders, as well as anxiety-related disorders. We will predominately focus on purified THC and CBD, as well as other compounds isolated from cannabis for the aforementioned reasons but will also include discussion over those studies where whole plant cannabis has been used. In this review we also consider the current challenges associated with the advancement of medicinal cannabis and its derived potential therapeutics into clinical applications.
Collapse
Affiliation(s)
- Yuma T. Ortiz
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Lance R. McMahon
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Jenny L. Wilkerson
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
- *Correspondence: Jenny L. Wilkerson,
| |
Collapse
|
47
|
Abstract
Cannabinoids, including those found in cannabis, have shown promise as potential therapeutics for numerous health issues, including pathological pain and diseases that produce an impact on neurological processing and function. Thus, cannabis use for medicinal purposes has become accepted by a growing majority. However, clinical trials yielding satisfactory endpoints and unequivocal proof that medicinal cannabis should be considered a frontline therapeutic for most examined central nervous system indications remains largely elusive. Although cannabis contains over 100 + compounds, most preclinical and clinical research with well-controlled dosing and delivery methods utilize the various formulations of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the two most abundant compounds in cannabis. These controlled dosing and delivery methods are in stark contrast to most clinical studies using whole plant cannabis products, as few clinical studies using whole plant cannabis profile the exact composition, including percentages of all compounds present within the studied product. This review will examine both preclinical and clinical evidence that supports or refutes the therapeutic utility of medicinal cannabis for the treatment of pathological pain, neurodegeneration, substance use disorders, as well as anxiety-related disorders. We will predominately focus on purified THC and CBD, as well as other compounds isolated from cannabis for the aforementioned reasons but will also include discussion over those studies where whole plant cannabis has been used. In this review we also consider the current challenges associated with the advancement of medicinal cannabis and its derived potential therapeutics into clinical applications.
Collapse
|
48
|
3-T magnetic resonance-guided high-intensity focused ultrasound (3 T-MR-HIFU) for the treatment of pain from bone metastases of solid tumors. Support Care Cancer 2022; 30:5737-5745. [PMID: 35332373 DOI: 10.1007/s00520-022-06990-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Bone metastases (BM) are still the main cause of morbidity and mortality in cancer patients, not only because of their complications, defined as skeletal-related events (SREs), but also because of the negative impact bone pain has on quality of life (QoL) and survival, especially when opioid analgesics and locoregional treatments fail. MATERIALS AND METHODS A single-center prospective study was carried out on 12 patients with symptomatic BM treated with MRI-guided focused ultrasound (MR-HIFU). The primary endpoint was the effectiveness of MR-HIFU in reducing current and breakthrough cancer pain (BTCP) scores. The main secondary aims were the evaluation of circulating markers at different time-points and their relation to pain and procedure efficacy. Other secondary objectives included temporal evolution of pain response, evaluation of QoL, and side effects of the treatment. Descriptive statistics were used to evaluate primary and secondary endpoints. Questionnaires on pain and QoL completed at baseline and at 30 days were compared using appropriate statistical tests with exploratory intent. RESULTS MR-HIFU was successfully completed in all 12 patients enrolled between September 2015 and December 2018. On day 30, 6 (50.0%) patients showed a complete response of current pain and 6 a partial response, while 5 (41.7%) obtained a complete BTCP response. A partial response of BM evaluated by MD Anderson criteria was obtained in 9 (81.8%) patients. Only one patient progressed in the target lesion after MR-HIFU. No treatment-related adverse events were recorded. Bone turnover markers CTX/RANK-L (P) do not demonstrate any significant change with the pain or BM response. CONCLUSION In our patients, targeted therapy of painful BM with MRI-guided focused ultrasound ablation was safe and showed encouraging early-onset and functional results.
Collapse
|
49
|
Liu Q, Feng L, Han X, Zhang W, Zhang H, Xu L. The TRPA1 Channel Mediates Mechanical Allodynia and Thermal Hyperalgesia in a Rat Bone Cancer Pain Model. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 2:638620. [PMID: 35295475 PMCID: PMC8915568 DOI: 10.3389/fpain.2021.638620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/22/2021] [Indexed: 11/24/2022]
Abstract
Background: Bone cancer pain (BCP) significantly affects patient quality of life, results in great bodily and emotional pain, and creates difficulties in follow-up treatment and normal life. Transient receptor potential ankyrin 1 (TRPA1) is an essential transduction ion channel related to neuropathic and inflammatory pain. However, the role of TRPA1 in BCP remains poorly understood. This study aimed to explore the relationship between TRPA1 and BCP. Methods: A BCP model was induced by Walker256 cells to the left tibia. The sham group was induced by normal saline to the left tibia. Thereafter, pain behaviors and TRPA1 expression between the BCP group and the sham group were observed on the 14th day of modeling. The TRPA1 antagonist A967079 (10 mg/kg) was injected via tail vein. TRPA1 antisense oligodeoxynucleotide (AS-ODN, 5 nmol/10 μl) and missense oligodeoxynucleotide (MS-ODN, 5 nmol/10 μl) were intrathecally delivered via a mini-osmotic pump for 5 consecutive days to assess the effect of TRPA1 on BCP. Behavioral tests were assessed preoperatively and postoperatively. Real-time quantitative PCR and western blot analyses were used to measure TRPA1 levels among the different groups. Results: The BCP model was successfully established via X-ray and pathological sections at 14 days. Compared to the sham group, the BCP group was more sensitive to mechanical stimuli, cool stimuli and hot stimuli. Intravenously injected A967079 can relieve paw mechanical withdrawal threshold and paw withdrawal thermal latency in rats with BCP. Moreover, AS-ODN can relieve paw mechanical withdrawal threshold and paw withdrawal thermal latency in rats with BCP. Additionally, relative mRNA and protein expression of TRPA1 in the BCP group were much higher than those in the sham group (14.55 ± 1.97 vs. 1 ± 0.04, P < 0.01). Compared to the BCP group, the relative mRNA and protein expression of TRPA1 in the BCP+AS-ODN group was reduced (14.55 ± 1.97 vs. 2.59 ± 0.34, P < 0.01). Conclusions: The TRPA1 channel mediates mechanical allodynia and thermal hyperalgesia in a rat BCP model.
Collapse
Affiliation(s)
- Qiangwei Liu
- Department of Anesthesiology and Operation, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Long Feng
- Department of Anesthesiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Xiujing Han
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weidong Zhang
- Department of Anesthesiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hong Zhang
- Department of Anesthesiology and Operation, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Longhe Xu
- Department of Anesthesiology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
50
|
Wang C, Ma Z, Yuan K, Ji T. Using scaffolds as drug delivery systems to treat bone tumor. NANOTECHNOLOGY 2022; 33:212002. [PMID: 35092950 DOI: 10.1088/1361-6528/ac5017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Surgery is the principal strategy to treat osteosarcoma and other types of bone tumors, but it causes bone defects that cannot be healed spontaneously. After surgery, patients still need to receive radiotherapy and/or chemotherapy to prevent tumor recurrence and metastasis, which leads to systemic side effects. Bone scaffolds exhibit the potentials to load cargos (drugs or growth factors) and act as drug delivery systems (DDSs) in the osteosarcoma postoperative treatment. This review introduces current types of bone scaffolds and highlights representative works using scaffolds as DDSs to treat osteosarcomas. Challenges and perspectives in the scaffold-based DDSs are also discussed. This review may provide references to develop effective and safe strategies for osteosarcoma postoperative treatment.
Collapse
Affiliation(s)
- Caifeng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zijiu Ma
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kemeng Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|