1
|
Becker N, Franz N, Eguchi A, Wagner A, Sturm R, Rinderknecht H, Kobayashi Y, Iwasa M, Weber B, Marzi I, Relja B. Elevated extracellular particle concentration in plasma predicts in-hospital mortality after severe trauma. Front Immunol 2024; 15:1390380. [PMID: 38933277 PMCID: PMC11199388 DOI: 10.3389/fimmu.2024.1390380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Background Extracellular particles (EPs), particularly extracellular vesicles, play a crucial role in regulating various pathological mechanisms, including immune dysregulations post-trauma. Their distinctive expression of cell-specific markers and regulatory cargo such as cytokines or micro-ribonucleic acid suggests their potential as early biomarkers for organ-specific damage and for identifying patients at risk for complications and mortality. Given the critical need for reliable and easily assessable makers to identify at-risk patients and guide therapeutic decisions, we evaluated the early diagnostic value of circulating EPs regarding outcomes in severely injured multiple-trauma patients. Methods Plasma samples were collected from 133 severely injured trauma patients (Injury Severity Score (ISS) ≥16) immediately upon arrival at the emergency department (ED). Patients were categorized into survivors and non-survivors. Injury characteristics and outcomes related to sepsis, pneumonia, or early (<1 day after admission) and late mortality were assessed. Circulating EPs, cytokine profiles, and blood counts of platelets and leukocytes were determined. Receiver operating characteristic analyses were conducted. Results Despite no significant differences in injury pattern or severity, non-survivors exhibited significantly elevated counts of circulating EPs compared to survivors. The optimal cut-off for EPs <200 nm indicating non-survivors was 17380/µl plasma, with a sensitivity of 77% and a specificity of 61% in predicting in-hospital mortality. Later non-survivors received significantly higher numbers of units of packed red blood cells [8.54 ± 5.45 vs. 1.29 ± 0.36 units], had higher serum lactate [38.00 ± 7.51 vs. 26.98 ± 1.58 mg/dL], significantly lower platelet counts [181.30 ± 18.06 vs. 213.60 ± 5.85 *10³/µL] and lower heart rates [74.50 ± 4.93 vs. 90.18 ± 2.06 beats/minute] upon arrival at the ED compared to survivors. Conclusion Our results demonstrate the high diagnostic potential of elevated concentrations of circulating EPs <200 nm for identifying patients at risk of mortality after severe trauma. This parameter shows comparable sensitivity to established clinical predictors. Early evaluation of EPs concentration could complement assessment markers in guiding early therapeutic decisions.
Collapse
Affiliation(s)
- Nils Becker
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Niklas Franz
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Alessa Wagner
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Ramona Sturm
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Helen Rinderknecht
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Yoshinao Kobayashi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Birte Weber
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
2
|
Fathi P, Karkanitsa M, Rupert A, Lin A, Darrah J, Thomas FD, Lai J, Babu K, Neavyn M, Kozar R, Griggs C, Cunningham KW, Schulman CI, Crandall M, Sereti I, Ricotta E, Sadtler K. Development of a predictive algorithm for patient survival after traumatic injury using a five analyte blood panel. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.22.24306188. [PMID: 38903094 PMCID: PMC11188118 DOI: 10.1101/2024.04.22.24306188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Severe trauma can induce systemic inflammation but also immunosuppression, which makes understanding the immune response of trauma patients critical for therapeutic development and treatment approaches. By evaluating the levels of 59 proteins in the plasma of 50 healthy volunteers and 1000 trauma patients across five trauma centers in the United States, we identified 6 novel changes in immune proteins after traumatic injury and further new variations by sex, age, trauma type, comorbidities, and developed a new equation for prediction of patient survival. Blood was collected at the time of arrival at Level 1 trauma centers and patients were stratified based on trauma level, tissues injured, and injury types. Trauma patients had significantly upregulated proteins associated with immune activation (IL-23, MIP-5), immunosuppression (IL-10) and pleiotropic cytokines (IL-29, IL-6). A high ratio of IL-29 to IL-10 was identified as a new predictor of survival in less severe patients with ROC area of 0.933. Combining machine learning with statistical modeling we developed an equation ("VIPER") that could predict survival with ROC 0.966 in less severe patients and 0.8873 for all patients from a five analyte panel (IL-6, VEGF-A, IL-21, IL-29, and IL-10). Furthermore, we also identified three increased proteins (MIF, TRAIL, IL-29) and three decreased proteins (IL-7, TPO, IL-8) that were the most important in distinguishing a trauma blood profile. Biologic sex altered phenotype with IL-8 and MIF being lower in healthy women, but higher in female trauma patients when compared to male counterparts. This work identifies new responses to injury that may influence systemic immune dysfunction, serving as targets for therapeutics and immediate clinical benefit in identifying at-risk patients.
Collapse
Affiliation(s)
- Parinaz Fathi
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892
- Unit for Nanoengineering and Microphysiologic Systems, NIBIB, NIH, Bethesda MD 20892
| | - Maria Karkanitsa
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Adam Rupert
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick MD
| | - Aaron Lin
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892
- Unit for Nanoengineering and Microphysiologic Systems, NIBIB, NIH, Bethesda MD 20892
| | | | | | - Jeffrey Lai
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester MA 01655
| | - Kavita Babu
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester MA 01655
| | - Mark Neavyn
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester MA 01655
| | - Rosemary Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore MD 21201
| | - Christopher Griggs
- Department of Emergency Medicine, Atrium Health’s Carolinas Medical Center, Charlotte NC 28203
| | - Kyle W. Cunningham
- Division of Acute Care Surgery, Atrium Health’s Carolinas Medical Center, Charlotte NC 28203
| | | | - Marie Crandall
- Department of Surgery, University of Florida College of Medicine, Jacksonville FL 33209
| | - Irini Sereti
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH
| | - Emily Ricotta
- Epidemiology and Data Management Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892
- Preventative Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda MD 20814
| | - Kaitlyn Sadtler
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892
| |
Collapse
|
3
|
Cole PA, Schroder LK, Brahme IS, Thomas CN, Kuhn L, Zaehringer E, Petersik A. Three-Dimensional Mapping of Scapular Body, Neck, and Glenoid Fractures. J Orthop Trauma 2024; 38:e48-e54. [PMID: 38031277 DOI: 10.1097/bot.0000000000002734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVES The purpose of this study was to report patterns of scapular fractures and define them with a contemporary methodology. METHODS . DESIGN Retrospective study, 2015-2021. SETTING Single, academic, Level 1 trauma center. PATIENT SELECTION CRITERIA Consecutive patients ≥18 years, presenting with unilateral scapula fracture, with thin-slice (≤0.5-mm) bilateral computed tomography (CT) scans of the entirety of both the injured and uninjured scapulae. OUTCOME MEASURES AND COMPARISONS Thin-slice (0.5-mm) CT scans of injured and normal scapulae were obtained to create three-dimensional (3D) virtual models. 3D modeling software (Stryker Orthopedics Modeling and Analytics, Stryker Trauma GmbH, Kiel, Germany aka SOMA) was used to create a 3D map of fracture location and frequency. Fracture zones were delineated using anatomic landmarks to characterize fracture patterns. RESULTS Eighty-seven patients were identified with 75 (86%) extra-articular and 12 (14%) intra-articular fractures. The dominant fracture pattern emanated from the superior lateral border (zone E) to an area inferior to the spinomedial angle (zone B) and was present in 80% of extra-articular fractures. A second-most common fracture line propagated from the primary (most-common) line toward the inferior medial scapular border with a frequency of 36%. Bare zones (with 1 or no fractures present) were identified in 4 unique areas. Furthermore, intra-articular fractures were found to be heterogenous. CONCLUSIONS The 3D fracture map created in this study confirmed that extra-articular scapular fractures occur in certain patterns with a relatively high frequency. Results provide greater insight into scapular fracture locations and may help to study prognosis of injury and improve treatment strategy including operative approaches and surgical tactics.
Collapse
Affiliation(s)
- Peter A Cole
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN
- Department of Orthopaedic Surgery, Regions Hospital, St. Paul, MN
- HealthPartners Orthopaedics & Sports Medicine, Bloomington, MN
| | - Lisa K Schroder
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN
- Department of Orthopaedic Surgery, Regions Hospital, St. Paul, MN
| | - Indraneel S Brahme
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN
- Department of Orthopaedic Surgery, Regions Hospital, St. Paul, MN
| | - Claire N Thomas
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN
- Department of Orthopaedic Surgery, Regions Hospital, St. Paul, MN
| | | | | | | |
Collapse
|
4
|
Thomas CN, Lindquist TJ, Schroder LK, Cole PA. Rib Fracture Map in High-Energy Injuries. J Orthop Trauma 2023; 37:e165-e169. [PMID: 36730005 DOI: 10.1097/bot.0000000000002531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To use a novel rib unfurling technology to investigate the locations of multiple rib fractures occurring from high-energy trauma to discern if there are reproducible rib fracture patterns. METHODS Patients between the ages of 18 and 48 years presenting to a Level 1 academic trauma center with ≥2 rib fractures after a high-energy mechanism of injury between 2017 and 2019 were identified. Curved planar reformatting of CT scans was used to create two-dimensional unfurled rib images by flattening out the view of the ribs from a CT scan. Rib fractures were placed on a template map using a standardized measurement method, and subsequent frequency and heat maps were created. RESULTS Among 100 consecutive patients, 534 fractures on 454 ribs were identified. The most common high-energy mechanism of injury was motor vehicle accidents (41%). Flail chest occurred in 8% of patients. The mean number of ribs fractured per patient was 4.54 ± 3.14 and included a mean of 5.34 ± 4.38 total fractures. Among all fractures, 50.9% were located on ribs 4 through 7. The most common fracture location was located in the lateral or anterolateral zone of the rib cage. CONCLUSIONS Patients with multiple rib fractures from high-energy trauma have rib fractures with locations of common occurrence. An understanding of location and frequency of rib fractures can help inform surgical approaches, prognosis, indications, classifications, and implant design in the management of a complex population of patients with chest wall injury after trauma. LEVEL OF EVIDENCE Diagnostic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Claire N Thomas
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN
- Department of Orthopaedic Surgery, Regions Hospital, St. Paul, MN
| | | | - Lisa K Schroder
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN
- Department of Orthopaedic Surgery, Regions Hospital, St. Paul, MN
| | - Peter A Cole
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN
- Department of Orthopaedic Surgery, Regions Hospital, St. Paul, MN
- HealthPartners Orthopaedics & Sports Medicine, Bloomington, MN
| |
Collapse
|
5
|
Beucler N, Sellier A, Joubert C, Lesquen HD, Schlienger G, Caubere A, Holay Q, Desse N, Esnault P, Dagain A. Severe trauma patients requiring undelayable combined cranial and extracranial surgery: A scoping review of an emerging concept. J Neurosci Rural Pract 2022; 13:585-607. [PMID: 36743747 PMCID: PMC9893946 DOI: 10.25259/jnrp-2022-1-38-r1-(2348)] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives Although patients suffering from severe traumatic brain injury (sTBI) and severe trauma patients (STP) have been extensively studied separately, there is scarce evidence concerning STP with concomitant sTBI. In particular, there are no guidelines regarding the emergency surgical management of patients presenting a concomitant life-threatening intracranial hematoma (ICH) and a life-threatening non-compressible extra-cranial hemorrhage (NCEH). Materials and Methods A scoping review was conducted on Medline database from inception to September 2021. Results The review yielded 138 articles among which 10 were retained in the quantitative analysis for a total of 2086 patients. Seven hundrer and eighty-seven patients presented concomitant sTBI and extra-cranial severe injuries. The mean age was 38.2 years-old and the male to female sex ratio was 2.8/1. Regarding the patients with concomitant cranial and extra-cranial injuries, the mean ISS was 32.1, and the mean AIS per organ were 4.0 for the head, 3.3 for the thorax, 2.9 for the abdomen and 2.7 for extremity. This review highlighted the following concepts: emergency peripheric osteosynthesis can be safely performed in patients with concomitant sTBI (grade C). Invasive intracranial pressure monitoring is mandatory during extra-cranial surgery in patients with sTBI (grade C). The outcome of STP with concomitant sTBI mainly depends on the seriousness of sTBI, independently from the presence of extra-cranial injuries (grade C). After exclusion of early-hospital mortality, the impact of extra-cranial injuries on mortality in patients with concomitant sTBI is uncertain (grade C). There are no recommendations regarding the combined surgical management of patients with concomitant ICH and NCEH (grade D). Conclusion This review revealed the lack of evidence for the emergency surgical management of patients with concomitant ICH and NCEH. Hence, we introduce the concept of combined cranial and extra-cranial surgery. This damage-control surgical strategy aims to reduce the time spent with intracranial hypertension and to hasten the admission in the intensive care unit. Further studies are required to validate this concept in clinical practice.
Collapse
Affiliation(s)
- Nathan Beucler
- Department of Neurosurgery, Sainte-Anne Military Teaching Hospital, Toulon, Paris, France
- Ecole du Val-de-Grâce, French Military Health Service Academy, Paris, France
| | - Aurore Sellier
- Department of Neurosurgery, Sainte-Anne Military Teaching Hospital, Toulon, Paris, France
| | - Christophe Joubert
- Department of Neurosurgery, Sainte-Anne Military Teaching Hospital, Toulon, Paris, France
| | - Henri De Lesquen
- Department of Thoracic and Vascular Surgery, Sainte-Anne Military Teaching Hospital, Paris, France
| | - Ghislain Schlienger
- Department of Visceral Surgery, Sainte-Anne Military Teaching Hospital, Paris, France
| | - Alexandre Caubere
- Department of Orthopaedic Surgery, Sainte-Anne Military Teaching Hospital, Paris, France
| | - Quentin Holay
- Ecole du Val-de-Grâce, French Military Health Service Academy, Paris, France
- Department of Diagnostic and Interventional Radiology, Sainte-Anne Military Teaching Hospital, Paris, France
| | - Nicolas Desse
- Department of Neurosurgery, Sainte-Anne Military Teaching Hospital, Toulon, Paris, France
| | - Pierre Esnault
- Department of Intensive care unit, Sainte-Anne Military Teaching Hospital, Toulon, Paris, France
| | - Arnaud Dagain
- Department of Neurosurgery, Sainte-Anne Military Teaching Hospital, Toulon, Paris, France
- Department of Val-de-Grâce Military Academy, Paris, France
| |
Collapse
|
6
|
Thomas CN, Lindquist TJ, Paull TZ, Tatro JM, Schroder LK, Cole PA. Mapping of common rib fracture patterns and the subscapular flail chest associated with operative scapula fractures. J Trauma Acute Care Surg 2021; 91:940-946. [PMID: 34417408 DOI: 10.1097/ta.0000000000003382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Rib fractures occur in approximately 10% of trauma patients and are associated with more than 50% of patients with scapula fractures. This study investigates the location and patterns of rib fractures and flail chest occurring in patients with operatively treated scapula fractures. Novel frequency mapping techniques of rib fracture patterns in patients who also injure the closely associated scapula can yield insight into surgical approaches and fixation strategies for complex, multiple injuries patients. We hypothesize that rib fractures have locations of common occurrence when presenting with concomitant scapula fracture that requires operative treatment. METHODS Patients with one or more rib fractures and a chest computed tomography scan between 2004 and 2018 were identified from a registry of patients having operatively treated scapula fractures. Unfurled rib images were created using Syngo-CT Bone Reading software (Siemens Inc., Munich, Germany). Rib fracture and flail segment locations were marked and measured for standardized placement on a two-dimensional chest wall template. Location and frequency were then used to create a gradient heat map. RESULTS A total of 1,062 fractures on 686 ribs were identified in 86 operatively treated scapula fracture patients. The mean ± SD number of ribs fractured per patient was 8.0 ± 4.1 and included a mean ± SD of 12.3 ± 7.2 total fractures. Rib fractures ipsilateral to the scapula fracture occurred in 96.5% of patients. The most common fracture and flail segment location was ipsilateral and subscapular; 51.4% of rib fractures and 95.7% of flail segments involved ribs 3 to 6. CONCLUSION Patients indicated for operative treatment of scapula fractures have a substantial number of rib fractures that tend to most commonly occur posteriorly on the rib cage. There is a pattern of subscapular rib fractures and flail chest adjacent to the thick bony borders of the scapula. This study enables clinicians to better evaluate and diagnose scapular fracture patients with concomitant rib fractures. LEVEL OF EVIDENCE Diagnostic test, level IV.
Collapse
Affiliation(s)
- Claire N Thomas
- From the Department of Orthopaedic Surgery (C.N.T., T.Z.P., J.M.T., L.K.S., P.A.C.), University of Minnesota, Minneapolis; Department of Orthopaedic Surgery (C.N.T., J.M.T., L.K.S., P.A.C.), Regions Hospital, University of Minnesota, St. Paul, Minnesota; Department of Biology (T.J.L.), Wheaton College, Wheaton, Illinois; and HealthPartners Orthopaedics and Sports Medicine (P.A.C.), Bloomington, Minnesota
| | | | | | | | | | | |
Collapse
|
7
|
Dennis EL, Caeyenberghs K, Asarnow RF, Babikian T, Bartnik-Olson B, Bigler ED, Figaji A, Giza CC, Goodrich-Hunsaker NJ, Hodges CB, Hoskinson KR, Königs M, Levin HS, Lindsey HM, Livny A, Max JE, Merkley TL, Newsome MR, Olsen A, Ryan NP, Spruiell MS, Suskauer SJ, Thomopoulos SI, Ware AL, Watson CG, Wheeler AL, Yeates KO, Zielinski BA, Thompson PM, Tate DF, Wilde EA. Challenges and opportunities for neuroimaging in young patients with traumatic brain injury: a coordinated effort towards advancing discovery from the ENIGMA pediatric moderate/severe TBI group. Brain Imaging Behav 2021; 15:555-575. [PMID: 32734437 PMCID: PMC7855317 DOI: 10.1007/s11682-020-00363-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population, and specific developmental issues require a unique context since findings from adult research do not necessarily directly translate to children. Findings in pediatric cohorts tend to lag behind those in adult samples. This may be due, in part, both to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate/Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis of neuroimaging data. In this paper, we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. With the paucity of research studies examining neuroimaging biomarkers in pediatric patients with TBI and the challenges of recruiting large numbers of participants, collaborating to improve statistical power and to address technical challenges like lesions will significantly advance the field. We conclude with recommendations for future research in this field of study.
Collapse
Affiliation(s)
- Emily L Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA.
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA.
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- Brain Research Institute, UCLA, Los Angeles, CA, USA
- Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Erin D Bigler
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Anthony Figaji
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christopher C Giza
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Naomi J Goodrich-Hunsaker
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Cooper B Hodges
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marsh Königs
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, Amsterdam, The Netherlands
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Hannah M Lindsey
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan, Tel-Hashomer, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Tel-Hashomer, Israel
| | - Jeffrey E Max
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, USA
- Department of Psychiatry, Rady Children's Hospital, San Diego, CA, USA
| | - Tricia L Merkley
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Nicholas P Ryan
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Department of Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Matthew S Spruiell
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Stacy J Suskauer
- Kennedy Krieger Institute, Baltimore, MD, USA
- Departments of Physical Medicine & Rehabilitation and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Christopher G Watson
- Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anne L Wheeler
- Hospital for Sick Children, Neuroscience and Mental Health Program, Toronto, Canada
- Physiology Department, University of Toronto, Toronto, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Brandon A Zielinski
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - David F Tate
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
| | - Elisabeth A Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Tachino J, Katayama Y, Kitamura T, Kiyohara K, Nakao S, Umemura Y, Ishida K, Hirose T, Nakagawa Y, Shimazu T. Assessment of the interaction effect between injury regions in multiple injuries: A nationwide cohort study in Japan. J Trauma Acute Care Surg 2021; 90:185-190. [PMID: 33021602 PMCID: PMC7748042 DOI: 10.1097/ta.0000000000002969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND There have been no clinical studies to sufficiently reveal the interaction effect generated by combinations of injury regions of multiple injuries. We hypothesized that certain combinations of trauma regions might lead to increased risk of traumatic death and aimed to verify this hypothesis using a nationwide trauma registry in Japan. MATERIALS AND METHODS This was a retrospective study of trauma patients registered in the Japan Trauma Data Bank between 2004 and 2017. We included patients who suffered blunt trauma with an Injury Severity Score of 16 or more. The trauma was classified into four regions (head, chest, abdomen, and extremities), and a multivariable logistic regression analysis was performed that included interaction terms derived from the combination of two regions as covariates. RESULTS We included 78,280 trauma patients in this study. Among them, 16,100 (20.6%) patients were discharged to death. Multivariable logistic regression showed the odds ratio (OR) of in-hospital death compared with patients without injury of an Abbreviated Injury Scale score of 3 or more in each injured region as follows: head score, 2.31 (95% confidence interval [CI], 2.13-2.51); chest score, 2.28 (95% CI, 2.17-2.39); abdomen score, 1.68 (95% CI, 1.56-1.82); and extremities score, 1.84 (95% CI, 1.76-1.93), respectively. In addition, the ORs of the statistically significant interaction terms were as follows: head-chest 1.29 (95% CI, 1.13-1.48), chest-abdomen 0.77 (95% CI, 0.67-0.88), chest-extremities 1.95 (95% CI, 1.77-2.14), and abdomen-extremities 0.70 (95% CI, 0.62-0.79), respectively. CONCLUSION In this population, among patients with multiple injuries, a combination of head-chest trauma and chest-extremities trauma was shown to increase the risk of traumatic death. LEVEL OF EVIDENCE Prognostic, Level III.
Collapse
|
9
|
Schindler CR, Lustenberger T, Woschek M, Störmann P, Henrich D, Radermacher P, Marzi I. Severe Traumatic Brain Injury (TBI) Modulates the Kinetic Profile of the Inflammatory Response of Markers for Neuronal Damage. J Clin Med 2020; 9:jcm9061667. [PMID: 32492963 PMCID: PMC7356222 DOI: 10.3390/jcm9061667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The inflammatory response plays an important role in the pathophysiology of multiple injuries. This study examines the effects of severe trauma and inflammatory response on markers of neuronal damage. A retrospective analysis of prospectively collected data in 445 trauma patients (Injury Severity Score (ISS) ≥ 16) is provided. Levels of neuronal biomarkers (calcium-binding Protein B (S100b), Enolase2 (NSE), glial fibrillary acidic protein (GFAP)) and Interleukins (IL-6, IL-10) in severely injured patients (with polytrauma (PT)) without traumatic brain injury (TBI) or with severe TBI (PT+TBI) and patients with isolated TBI (isTBI) were measured upon arrival until day 5. S100b, NSE, GFAP levels showed a time-dependent decrease in all cohorts. Their expression was higher after multiple injuries (p = 0.038) comparing isTBI. Positive correlation of marker level after concomitant TBI and isTBI (p = 0.001) was noted, while marker expression after PT appears to be independent. Highest levels of IL-6 and -10 were associated to PT und lowest to isTBI (p < 0.001). In all groups pro-inflammatory response (IL-6/-10 ratio) peaked on day 2 and at a lower level on day 4. Severe TBI modulates kinetic profile of inflammatory response by reducing interleukin expression following trauma. Potential markers for neuronal damage have a limited diagnostic value after severe trauma because undifferentiated increase.
Collapse
Affiliation(s)
- Cora Rebecca Schindler
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, 60596 Frankfurt, Germany; (T.L.); (M.W.); (P.S.); (D.H.); (I.M.)
- Correspondence: ; Tel./Fax: +49-69-6301-83304
| | - Thomas Lustenberger
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, 60596 Frankfurt, Germany; (T.L.); (M.W.); (P.S.); (D.H.); (I.M.)
| | - Mathias Woschek
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, 60596 Frankfurt, Germany; (T.L.); (M.W.); (P.S.); (D.H.); (I.M.)
| | - Philipp Störmann
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, 60596 Frankfurt, Germany; (T.L.); (M.W.); (P.S.); (D.H.); (I.M.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, 60596 Frankfurt, Germany; (T.L.); (M.W.); (P.S.); (D.H.); (I.M.)
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, 89070 Ulm, Germany;
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, 60596 Frankfurt, Germany; (T.L.); (M.W.); (P.S.); (D.H.); (I.M.)
| |
Collapse
|
10
|
Gavelli F, Patrucco F, Daverio M, De Vita N, Bellan M, Rena O, Balbo PE, Avanzi GC, Castello LM. Sequelae of traumatic rib fractures: management in the Emergency Department. ACTA ACUST UNITED AC 2020. [DOI: 10.23736/s0026-4954.19.01863-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Katar S, Aydin Ozturk P, Ozel M, Arac S, Evran S, Cevik S, Baran O. The Use of Rotterdam CT Score for Prediction of Outcomes in Pediatric Traumatic Brain Injury Patients Admitted to Emergency Service. Pediatr Neurosurg 2020; 55:237-243. [PMID: 33147582 DOI: 10.1159/000510016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Rotterdam CT score for prediction of outcome in traumatic brain injury is widely used for patient evaluation. The data on the assessment of pediatric traumatic brain injury patients with the Rotterdam scale in our country are still limited. In this study, we aimed to evaluate the use of the Rotterdam scale on pediatric trauma patients in our country and assess its relationship with lesion type, location and severity, trauma type, and need for surgery. METHODS A total of 229 pediatric patients admitted to the emergency service due to head trauma were included in our study. Patients were evaluated in terms of age, gender, Glasgow Coma Scale (GCS), initial and follow-up Rotterdam scale scores, length of stay, presence of other traumas, seizures, antiepileptic drug use, need for surgical necessity, and final outcome. RESULTS A total of 229 patients were included in the study, and the mean age of the patients was 95.8 months. Of the patients, 87 (38%) were girls and 142 (62%) were boys. Regarding GCS at the time of admission, 59% (n = 135) of the patients had mild (GCS = 13-15), 30.6% (n = 70) had moderate (GCS = 9-12), and 10.5% (n = 24) had severe (GCS < 9) head trauma. The mean Rotterdam scale score was calculated as 1.51 (ranging from 1 to 3) for mild, 2.22 (ranging from 1 to 4) for moderate, and 4.33 (ranging from 2 to 6) for severe head trauma patients. Rotterdam scale score increases significantly as the degree of head injury increases (p < 0.001). DISCUSSION With the adequate use of GCS and cerebral computed tomography imaging, pediatric patients with a higher risk of mortality and need for surgery can be predicted. We recommend the follow-up of pediatric traumatic brain injury patients with repeated CT scans to observe alterations in Rotterdam CT scores, which may be predictive for the need for surgery and intensive care.
Collapse
Affiliation(s)
- Salim Katar
- Department of Neurosurgery, Balikesir University, Balikesir, Turkey
| | - Pinar Aydin Ozturk
- Department of Neurosurgery, University of Health Sciences, Diyarbakır Gazi Yasargil Education and Research Hospital, Diyarbakır, Turkey,
| | - Mehmet Ozel
- Department of Emergency Medicine, University of Health Sciences, Diyarbakır Gazi Yasargil Education and Research Hospital, Diyarbakır, Turkey
| | - Songul Arac
- Department of Emergency Medicine, University of Health Sciences, Diyarbakır Gazi Yasargil Education and Research Hospital, Diyarbakır, Turkey
| | - Sevket Evran
- Department of Neurosurgery, Haseki Education and Research Hospital, Istanbul, Turkey
| | - Serdar Cevik
- Department of Physical Therapy and Rehabilitation, School of Health Sciences, Gelişim University, Istanbul, Turkey.,Department of Neurosurgery, Memorial Sisli Hospital, Istanbul, Turkey
| | - Oguz Baran
- Department of Neurosurgery, Koç University Hospital, Istanbul, Turkey
| |
Collapse
|