1
|
Rachayon M, Jirakran K, Sodsai P, Sughondhabirom A, Maes M. T cell activation and deficits in T regulatory cells are associated with major depressive disorder and severity of depression. Sci Rep 2024; 14:11177. [PMID: 38750122 PMCID: PMC11096341 DOI: 10.1038/s41598-024-61865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Major depressive disorder (MDD) is associated with T cell activation, but no studies have examined the combined effects of T cell activation and deficits in T regulatory (Treg) cells on the severity of acute phase MDD. Using flow cytometry, we determined the percentage and median fluorescence intensity of CD69, CD71, CD40L, and HLADR-bearing CD3+, CD4+, and CD8+ cells, and cannabinoid type 1 receptor (CB1), CD152 and GARP (glycoprotein A repetitions predominant)-bearing CD25+ FoxP3 T regulatory (Treg) cells in 30 MDD patients and 20 healthy controls in unstimulated and stimulated (anti-CD3/CD28) conditions. Based on cytokine levels, we assessed M1 macrophage, T helper (Th)-1 cell, immune-inflammatory response system (IRS), T cell growth, and neurotoxicity immune profiles. We found that the immune profiles (including IRS and neurotoxicity) were significantly predicted by decreased numbers of CD152 or GARP-bearing CD25+ FoxP3 cells or CD152 and GARP expression in combination with increases in activated T cells (especially CD8+ CD40L+ percentage and expression). MDD patients showed significantly increased numbers of CD3+ CD71+, CD3+ CD40L+, CD4+ CD71+, CD4+ CD40L+, CD4+ HLADR+, and CD8+ HLADR+ T cells, increased CD3+ CD71+, CD4+ CD71+ and CD4+ HLADR+ expression, and lowered CD25+ FoxP3 expression and CD25+ FoxP+ CB1+ numbers as compared with controls. The Hamilton Depression Rating Scale score was strongly predicted (between 30 and 40% of its variance) by a lower number of CB1 or GARP-bearing Treg cells and one or more activated T cell subtypes (especially CD8+ CD40L+). In conclusion, increased T helper and cytotoxic cell activation along with decreased Treg homeostatic defenses are important parts of MDD that lead to enhanced immune responses and, as a result, neuroimmunotoxicity.
Collapse
Affiliation(s)
- Muanpetch Rachayon
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Maximizing Children's Developmental Potential, Chulalongkorn University, Bangkok, Thailand
| | - Pimpayao Sodsai
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Atapol Sughondhabirom
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand.
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
2
|
Fueyo-González F, Vilanova G, Ningoo M, Marjanovic N, González-Vera JA, Orte Á, Fribourg M. Small-molecule TIP60 inhibitors enhance regulatory T cell induction through TIP60-P300 acetylation crosstalk. iScience 2023; 26:108491. [PMID: 38094248 PMCID: PMC10716589 DOI: 10.1016/j.isci.2023.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/12/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Foxp3 acetylation is essential to regulatory T (Treg) cell stability and function, but pharmacologically increasing it remains an unmet challenge. Here, we report that small-molecule compounds that inhibit TIP60, an acetyltransferase known to acetylate Foxp3, unexpectedly increase Foxp3 acetylation and Treg induction. Utilizing a dual experimental/computational approach combined with a newly developed FRET-based methodology compatible with flow cytometry to measure Foxp3 acetylation, we unraveled the mechanism of action of these small-molecule compounds in murine and human Treg induction cell cultures. We demonstrate that at low-mid concentrations they activate TIP60 to acetylate P300, a different acetyltransferase, which in turn increases Foxp3 acetylation, thereby enhancing Treg cell induction. These results reveal a potential therapeutic target relevant to autoimmunity and transplant.
Collapse
Affiliation(s)
- Francisco Fueyo-González
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guillermo Vilanova
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona Spain
| | - Mehek Ningoo
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nada Marjanovic
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan A. González-Vera
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Ángel Orte
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Miguel Fribourg
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Zhang D, Ye Y, Hu X. A non-invasive piTreg-related gene signature for spontaneous tolerance in renal transplantation. Gene X 2023; 848:146901. [DOI: 10.1016/j.gene.2022.146901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022] Open
|
4
|
Effectiveness of Expressive Writing in Kidney Transplanted Patients: A Randomized Controlled Trial Study. Healthcare (Basel) 2022; 10:healthcare10081559. [PMID: 36011216 PMCID: PMC9408275 DOI: 10.3390/healthcare10081559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/16/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to assess the effectiveness of an expressive writing (EW) intervention on psychological and physiological variables after kidney transplant. The final sample of 26 were randomly assigned to an expressive writing group (EWG) and control group (CG). Outcomes were focused on depression, anxiety, alexithymia, empathy, resilience, locus of control, creatinine, CDK-EPI, and azotemia. Depressive symptoms and alexithymia levels decreased in the EWG, with better adherence. Resilience declined over time in both groups. The EWG showed a significantly higher CDK-EPI, indicating better renal functioning. EW seems an effective intervention to improve the psychological health of transplanted patients, with a possible effect on renal functioning. These findings open the possibility of planning brief psychological interventions aimed at processing emotional involvement, in order to increase adherence, the acceptance of the organ, and savings in healthcare costs.
Collapse
|
5
|
Kouyoumdjian A, Tchervenkov J, Paraskevas S. TFNR2 in Ischemia-Reperfusion Injury, Rejection, and Tolerance in Transplantation. Front Immunol 2022; 13:903913. [PMID: 35874723 PMCID: PMC9300818 DOI: 10.3389/fimmu.2022.903913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) has been shown to play a crucial role in CD4+ T regulatory cells (CD4+Tregs) expansion and suppressive function. Increasing evidence has also demonstrated its role in a variety of immune regulatory cell subtypes such as CD8+ T regulatory cells (CD8+ Tregs), B regulatory cells (Bregs), and myeloid-derived suppressor cells (MDSCs). In solid organ transplantation, regulatory immune cells have been associated with decreased ischemia-reperfusion injury (IRI), improved graft survival, and improved overall outcomes. However, despite TNFR2 being studied in the context of autoimmune diseases, cancer, and hematopoietic stem cell transplantation, there remains paucity of data in the context of solid organ transplantation and islet cell transplantation. Interestingly, TNFR2 signaling has found a clinical application in islet transplantation which could guide its wider use. This article reviews the current literature on TNFR2 expression in immune modulatory cells as well as IRI, cell, and solid organ transplantation. Our results highlighted the positive impact of TNFR2 signaling especially in kidney and islet transplantation. However, further investigation of TNFR2 in all types of solid organ transplantation are required as well as dedicated studies on its therapeutic use during induction therapy or treatment of rejection.
Collapse
Affiliation(s)
- Araz Kouyoumdjian
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- *Correspondence: Araz Kouyoumdjian,
| | - Jean Tchervenkov
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Steven Paraskevas
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Fueyo-González F, McGinty M, Ningoo M, Anderson L, Cantarelli C, Andrea Angeletti, Demir M, Llaudó I, Purroy C, Marjanovic N, Heja D, Sealfon SC, Heeger PS, Cravedi P, Fribourg M. Interferon-β acts directly on T cells to prolong allograft survival by enhancing regulatory T cell induction through Foxp3 acetylation. Immunity 2022; 55:459-474.e7. [PMID: 35148827 PMCID: PMC8917088 DOI: 10.1016/j.immuni.2022.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 06/18/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Type I interferons (IFNs) are pleiotropic cytokines with potent antiviral properties that also promote protective T cell and humoral immunity. Paradoxically, type I IFNs, including the widely expressed IFNβ, also have immunosuppressive properties, including promoting persistent viral infections and treating T-cell-driven, remitting-relapsing multiple sclerosis. Although associative evidence suggests that IFNβ mediates these immunosuppressive effects by impacting regulatory T (Treg) cells, mechanistic links remain elusive. Here, we found that IFNβ enhanced graft survival in a Treg-cell-dependent murine transplant model. Genetic conditional deletion models revealed that the extended allograft survival was Treg cell-mediated and required IFNβ signaling on T cells. Using an in silico computational model and analysis of human immune cells, we found that IFNβ directly promoted Treg cell induction via STAT1- and P300-dependent Foxp3 acetylation. These findings identify a mechanistic connection between the immunosuppressive effects of IFNβ and Treg cells, with therapeutic implications for transplantation, autoimmunity, and malignancy.
Collapse
Affiliation(s)
- Francisco Fueyo-González
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Mitchell McGinty
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Mehek Ningoo
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lisa Anderson
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Chiara Cantarelli
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Parma, Italy
| | - Andrea Angeletti
- Division of Nephrology, Dialysis, Transplantation, IRCCS Giannina Gaslini, Genoa, Italy
| | - Markus Demir
- Department of Anesthesiology, University of Cologne, Cologne, Germany
| | - Inés Llaudó
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Carolina Purroy
- Department of Nephrology, Complejo Hospitalario de Navarra, Navarra, Spain
| | - Nada Marjanovic
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David Heja
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Stuart C Sealfon
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Peter S Heeger
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Paolo Cravedi
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Miguel Fribourg
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
7
|
Hall BM, Hall RM, Tran GT, Robinson CM, Wilcox PL, Rakesh PK, Wang C, Sharland AF, Verma ND, Hodgkinson SJ. Interleukin-5 (IL-5) Therapy Prevents Allograft Rejection by Promoting CD4 +CD25 + Ts2 Regulatory Cells That Are Antigen-Specific and Express IL-5 Receptor. Front Immunol 2021; 12:714838. [PMID: 34912327 PMCID: PMC8667344 DOI: 10.3389/fimmu.2021.714838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
CD4+CD25+Foxp3+T cell population is heterogenous and contains three major sub-groups. First, thymus derived T regulatory cells (tTreg) that are naïve/resting. Second, activated/memory Treg that are produced by activation of tTreg by antigen and cytokines. Third, effector lineage CD4+CD25+T cells generated from CD4+CD25- T cells' activation by antigen to transiently express CD25 and Foxp3. We have shown that freshly isolated CD4+CD25+T cells are activated by specific alloantigen and IL-4, not IL-2, to Ts2 cells that express the IL-5 receptor alpha. Ts2 cells are more potent than naïve/resting tTreg in suppressing specific alloimmunity. Here, we showed rIL-5 promoted further activation of Ts2 cells to Th2-like Treg, that expressed foxp3, irf4, gata3 and il5. In vivo, we studied the effects of rIL-5 treatment on Lewis heart allograft survival in F344 rats. Host CD4+CD25+T cells were assessed by FACS, in mixed lymphocyte culture and by RT-PCR to examine mRNA of Ts2 or Th2-like Treg markers. rIL-5 treatment given 7 days after transplantation reduced the severity of rejection and all grafts survived ≥60d whereas sham treated rats fully rejected by day 31 (p<0.01). Treatment with anti-CD25 or anti-IL-4 monoclonal antibody abolished the benefits of treatment with rIL-5 and accelerated rejection. After 10d treatment with rIL-5, hosts' CD4+CD25+ cells expressed more Il5ra and responded to specific donor Lewis but not self. Enriched CD4+CD25+ cells from rIL-5 treated rats with allografts surviving >60 days proliferated to specific donor only when rIL-5 was present and did not proliferate to self or third party. These cells had more mRNA for molecules expressed by Th2-like Treg including Irf4, gata3 and Il5. These findings were consistent with IL-5 treatment preventing rejection by activation of Ts2 cells and Th2-like Treg.
Collapse
Affiliation(s)
- Bruce M Hall
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Rachael M Hall
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Giang T Tran
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Paul L Wilcox
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Prateek K Rakesh
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Chuanmin Wang
- Transplantation Immunobiology Group, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra F Sharland
- Transplantation Immunobiology Group, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nirupama D Verma
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
8
|
Kang H, Wei Y, Liu M, Yu D, Tao Y. Flow cytometric analysis of T lymphocytes and cytokines in aqueous humor of patients with varicella zoster virus-mediated acute retinal necrosis. BMC Ophthalmol 2021; 21:193. [PMID: 33933004 PMCID: PMC8088617 DOI: 10.1186/s12886-021-01951-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/16/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The purpose of this study is to investigate the aqueous humor (AH) T lymphocyte subsets and cytokines of acute retinal necrosis (ARN) to elucidate the immunologic inflammatory features of this disorder. METHODS Three patients with ARN infected with varicella zoster virus (VZV) who underwent multiple intravitreal injections of ganciclovir were enrolled in this study. The control group consisted of four non-infectious patients with acute anterior uveitis (AAU). Flow cytometric analysis was performed on the lymphocyte subsets from the AH and peripheral blood (PB) samples during the active phase of intraocular inflammation. Five inflammatory cytokines were measured in each AH sample and various clinical characteristics were also assessed. RESULTS VZV deoxyribonucleic acid (DNA) was detected by real-time polymerase chain reaction (PCR) in AH from all the ARN patients, who showed higher CD8+ T lymphocytes population in AH than the AAU patients (p = 0.006). CD4/CD8 ratios of T lymphocytes and the percentage of CD8 + CD25+ T lymphocytes in AH were significantly lower in ARN than in AAU (p = 0.006; p = 0.012). In the ARN patients, the percentages of CD4+ and CD8+ T lymphocytes in AH were higher than those found in PB. The percentage of CD4 + CD25+ T lymphocytes in AH was significantly higher than the proportion in PB in the AAU patients (p = 0.001). Immunoregulatory cytokine Interleukin-10 in AH was significantly elevated in the ARN patients in comparison with the case of the AAU patients (p = 0.036). In ARN, the copy number of VZV DNA in AH positively correlated with the percentage of CD8+ T lymphocytes in AH and negatively correlated with the CD4/CD8 ratio in AH during the course of disease treatment (p = 0.009, r = 0.92; p = 0.039, r = - 0.834). CONCLUSION The ARN patients caused by VZV had different intraocular T lymphocyte subsets and cytokines profile than those of the non-infectious patients. High percentages of CD8+ T lymphocytes and low CD4/CD8 T cell ratios may be a potential biomarker for diagnosis of viral-infectious uveitis. T lymphocytes examination at the inflammatory sites has the potential to become a useful research tool for differentiating viral and non-viral uveitis.
Collapse
Affiliation(s)
- Hao Kang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yunbo Wei
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Ming Liu
- Beijing GiantMed Diagnostics Co., LTD, Beijing, China
| | - Di Yu
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Zhuang J, Hou J. The Role of Regulatory Myeloid Cell Therapy in Renal Allograft Rejection. Front Immunol 2021; 12:625998. [PMID: 33717141 PMCID: PMC7943475 DOI: 10.3389/fimmu.2021.625998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Kidney transplantation is a primary therapy for end-stage renal disease (ESRD) all the time. But it does not mean that we have fully unraveling the mystery of kidney transplantation and confer every patient favorable prognosis. Immune rejection has always been a stumbling block when we try to increase the success rate of kidney transplantation and improve long-term outcomes. Even if the immune rejection is effectively controlled in acute phase, there is a high possibility that the immune response mediated by chronically activated antibodies will trigger chronic rejection and ultimately lead to graft failure. At present, immunosuppressive agent prepared chemically is mainly used to prevent acute or chronic rejection, but it failed to increase the long-term survival rate of allografts or reduce the incidence of chronic rejection after acute rejection, and is accompanied by many adverse reactions. Therefore, many studies have begun to use immune cells to regulate the immune response in order to control allograft rejection. This article will focus on the latest study and prospects of more popular regulatory myeloid cells in the direction of renal transplantation immunotherapy and introduce their respective progress from experimental research to clinical research.
Collapse
Affiliation(s)
- Jingming Zhuang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiangang Hou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Yang M, Xu Z, Yan H, Tsai HI, Su D, Yan F, Lu Q, Feng J, Zeng W, Xi L, Zha H, Ling Y, He C, Wu Y, Xu X, Zheng G, Liu G, Chen H, Cheng F. PD-L1 cellular nanovesicles carrying rapamycin inhibit alloimmune responses in transplantation. Biomater Sci 2021; 9:1246-1255. [PMID: 33367372 DOI: 10.1039/d0bm01798a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Organ transplantation has been employed upon serious injuries, but a T-cell-mediated potent inflammatory immune response often leads to graft rejection. Immunosuppressive drugs such as rapamycin (RAPA) have to be taken after organ transplantation, but long-term use of these drugs causes severe adverse effects. Immune checkpoint pathways such as the programmed death-receptor 1/programmed death-ligand 1 (PD-1/PD-L1) provides an immunosuppressive environment, preventing excessive tissue destruction due to inflammatory immune responses. In this study, we bioengineered cell membrane-derived PD-L1 nanovesicles (PD-L1 NVs) to carry low doses of RAPA. These NVs inhibited T-cell activation and proliferation in vitro, by enhancing the PD-1/PD-L1 immune co-inhibitory signaling axis and inhibiting the mTOR pathway. Importantly, PD-L1 NVs encapsulated with rapamycin exerted stronger effects on inhibiting T-cell proliferation than PD-L1 NVs or rapamycin alone. This can be recapitulated in a mouse skin transplantation model, leading to the weakened alloimmune response and allograft tolerance. We also found that PD-L1/rapamycin vesicles have additional function to induce regulatory T cells in the recipient spleens. Our study highlighted the power of combining low-dose rapamycin and PD-L1 in the nanovesicles as immunosuppressants to promote allograft acceptance.
Collapse
Affiliation(s)
- Min Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Hailan Yan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Hsiang-I Tsai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Dandan Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Fuxia Yan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Qiumei Lu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jianhua Feng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Weiwei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Lifang Xi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Hualian Zha
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yunzhi Ling
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Chao He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yingyi Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xiaowei Xu
- Clinical Neuroscience Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Gang Zheng
- XuZhou Central Hospital Affiliated to Medical School of Southeast University, XuZhou, 221000, China
| | - Gan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
11
|
Moore TC, Hasenkrug KJ. B-Cell Control of Regulatory T Cells in Friend Virus Infection. J Mol Biol 2021; 433:166583. [PMID: 32598936 DOI: 10.1016/j.jmb.2020.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
B lymphocytes have well-established effector roles during viral infections, including production of antibodies and functioning as antigen-presenting cells for CD4+ and CD8+ T cells. B cells have also been shown to regulate immune responses and induce regulatory T cells (Tregs). In the Friend virus (FV) model, Tregs are known to inhibit effector CD8+ T-cell responses and contribute to virus persistence. Recent work has uncovered a role for B cells in the induction and activation of Tregs during FV infection. In addition to inducing Tregs, B cell antibody production and antigen-presenting cell activity is a target of Treg suppression. This review focuses on the dynamic interactions between B cells and Tregs during FV infection.
Collapse
Affiliation(s)
- Tyler C Moore
- College of Science and Technology, Bellevue University, 1000 Galvin Road South, Bellevue, NE 68005, USA.
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, MT 59840, USA.
| |
Collapse
|
12
|
Mannie MD, DeOca KB, Bastian AG, Moorman CD. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3 + regulatory T cells. Cell Immunol 2020; 355:104173. [PMID: 32712270 PMCID: PMC7444458 DOI: 10.1016/j.cellimm.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) constitute a critical barrier that enforces tolerance to both the self-peptidome and the extended-self peptidome to ensure tissue-specific resistance to autoimmune, allergic, and other inflammatory disorders. Here, we review intuitive models regarding how T cell antigen receptor (TCR) specificity and antigen recognition efficiency shape the Treg and conventional T cell (Tcon) repertoires to adaptively regulate T cell maintenance, tissue-residency, phenotypic stability, and immune function in peripheral tissues. Three zones of TCR recognition efficiency are considered, including Tcon recognition of specific low-efficiency self MHC-ligands, Treg recognition of intermediate-efficiency agonistic self MHC-ligands, and Tcon recognition of cross-reactive high-efficiency agonistic foreign MHC-ligands. These respective zones of TCR recognition efficiency are key to understanding how tissue-resident immune networks integrate the antigenic complexity of local environments to provide adaptive decisions setting the balance of suppressive and immunogenic responses. Importantly, deficiencies in the Treg repertoire appear to be an important cause of chronic inflammatory disease. Deficiencies may include global deficiencies in Treg numbers or function, subtle 'holes in the Treg repertoire' in tissue-resident Treg populations, or simply Treg insufficiencies that are unable to counter an overwhelming molecular mimicry stimulus. Tolerogenic vaccination and Treg-based immunotherapy are two therapeutic modalities meant to restore dominance of Treg networks to reverse chronic inflammatory disease. Studies of these therapeutic modalities in a preclinical setting have provided insight into the Treg niche, including the concept that intermediate-efficiency TCR signaling, high IFN-β concentrations, and low IL-2 concentrations favor Treg responses and active dominant mechanisms of immune tolerance. Overall, the purpose here is to assimilate new and established concepts regarding how cognate TCR specificity of the Treg repertoire and the contingent cytokine networks provide a foundation for understanding Treg suppressive strategy.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
13
|
PARP-1 inhibitor-AG14361 suppresses acute allograft rejection via stabilizing CD4+FoxP3+ regulatory T cells. Pathol Res Pract 2020; 216:153021. [DOI: 10.1016/j.prp.2020.153021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/22/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
|
14
|
Alvarez P, Augustín JJ, Tamayo E, Iglesias M, Acinas O, Mendiguren MA, Vázquez JA, Genre F, San Segundo D, Merino J, Merino R. Therapeutic Effects of Anti-Bone Morphogenetic Protein and Activin Membrane-Bound Inhibitor Treatment in Psoriasis and Arthritis. Arthritis Rheumatol 2020; 72:1547-1558. [PMID: 32249544 DOI: 10.1002/art.41272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The transforming growth factor β (TGFβ) inhibitor BAMBI (bone morphogenetic protein and activin membrane-bound inhibitor) has been shown to control differentiation of CD4+ T lymphocytes into either tolerogenic Treg cells or pathogenic Th17 cells, through the regulation of TGFβ and interleukin-2 (IL-2) signaling strength. The present study was undertaken to explore the potential beneficial effects of this strategy of pharmacologic inhibition using novel anti-BAMBI monoclonal antibodies (mAb) in different experimental murine models of chronic skin and joint inflammatory/autoimmune disease. METHODS Development of Saccharomyces cerevisiae mannan-induced psoriatic arthritis (MIP) (n = 18-30 mice per group), imiquimod-induced skin psoriasis (n = 20-30 mice per group), or type II collagen-induced arthritis (CIA) (n = 13-16 mice per group) was analyzed in a total of 2-5 different experiments with either wild-type (WT) or BAMBI-deficient B10.RIII mice that were left untreated or treated with mAb B101.37 (mouse IgG1 anti-BAMBI), a mouse IgG1 anti-TNP isotype control, anti-CD25, or anti-TGFβ mAb. RESULTS Treatment of normal mice with IgG1 anti-BAMBI mAb clone B101.37 led to expansion of Treg cells in vivo, and had both preventive and therapeutic effects in mice with MIP (each P < 0.05 versus controls). The conferred protection against disease progression was found to be mediated by Treg cells, which controlled the activation and expansion of pathogenic IL-17-producing cells, and was dependent on the level of TGFβ activity. Furthermore, treatment with B101.37 mAb blocked both the development of skin psoriasis induced by imiquimod and the development of CIA in mice (each P < 0.05 versus controls). Finally, pharmacologic inhibition of BAMBI with the IgM anti-BAMBI mAb B143.14 also potentiated the suppressive activity of Treg cells in vitro (P < 0.001 versus controls). CONCLUSION These results in murine models identify BAMBI as a promising new therapeutic target for chronic inflammatory diseases and other pathologic conditions modulated by Treg cells.
Collapse
Affiliation(s)
- Pilar Alvarez
- Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-Universidad de Cantabria-SODERCAN, Santander, Spain
| | | | - Esther Tamayo
- IDIVAL and Universidad de Cantabria, Santander, Spain
| | | | - Olga Acinas
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | | | | | | | - Jesús Merino
- IDIVAL and Universidad de Cantabria, Santander, Spain
| | - Ramón Merino
- IDIVAL and Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-Universidad de Cantabria-SODERCAN, Santander, Spain
| |
Collapse
|
15
|
Xu Z, Tsai HI, Xiao Y, Wu Y, Su D, Yang M, Zha H, Yan F, Liu X, Cheng F, Chen H. Engineering Programmed Death Ligand-1/Cytotoxic T-Lymphocyte-Associated Antigen-4 Dual-Targeting Nanovesicles for Immunosuppressive Therapy in Transplantation. ACS NANO 2020; 14:7959-7969. [PMID: 32515579 DOI: 10.1021/acsnano.9b09065] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
T cell activation by immune allorecognition is a major contributing factor toward the triggering of organ rejection. Immunosuppressive drugs have to be taken after organ transplantation, but long-term use of these drugs increases the risks of infection and other serious disorders. Here, we showed dysregulation of programmed cell death-ligand 1/programmed cell death 1 (PD-L1/PD-1) and cytotoxic T-lymphocyte-associated protein 4/cluster of differentiation 80 (CTLA-4/CD80) in the spleen of two organ transplantation models. Using a bioengineering approach, cellular exosome-like nanovesicles (NVs) displaying PD-L1/CTLA-4 dual-targeting cargos were designed, and their specificity to bind their ligands PD-1 and CD80 on T cell and dendritic cell surfaces was confirmed. These NVs consequently enhanced PD-L1/PD-1 and CTLA-4/CD80 immune inhibitory pathways, two key immune checkpoints to co-inhibit T cell activation and maintain peripheral tolerance. It was also confirmed that PD-L1/CTLA-4 NVs led to the reduction of T cell activation and proliferation in vitro and in vivo. Finally, it was demonstrated that PD-L1/CTLA-4 NVs reduced density of CD8+ T cells and cytokine production, enriched regulatory T cells, and prolonged the survival of mouse skin and heart grafts. Taken together, these data supported the idea that PD-L1/CTLA-4 dual-targeting NVs exert immune inhibitory effects and may be used as a prospective immunosuppressant in organ transplantation.
Collapse
Affiliation(s)
- Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Hsiang-I Tsai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Youmei Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Yingyi Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Dandan Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Min Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Hualian Zha
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Fuxia Yan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Xiaoyan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| |
Collapse
|
16
|
Abstract
The present review discusses current developments in tolerance induction for solid organ transplantation with a particular emphasis on chimerism-based approaches. It explains the basic mechanisms of chimerism-based tolerance and provides an update on ongoing clinical tolerance trials. The concept of "delayed tolerance" is presented, and ongoing preclinical studies in the nonhuman primate setting-including current limitations and hurdles regarding this approach-are illustrated. In addition, a brief overview and update on cell-based tolerogenic clinical trials is provided. In a critical approach, advantages, limitations, and potential implications for the future of these different regimens are discussed.
Collapse
|
17
|
Bao Z, Li J, Zhang P, Pan Q, Liu B, Zhu J, Jian Q, Jia D, Yi C, Moeller CJ, Liu H. Toll-Like Receptor 3 Activator Preconditioning Enhances Modulatory Function of Adipose‑Derived Mesenchymal Stem Cells in a Fully MHC-Mismatched Murine Model of Heterotopic Heart Transplantation. Ann Transplant 2020; 25:e921287. [PMID: 32366814 PMCID: PMC7219555 DOI: 10.12659/aot.921287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Donor-specific tolerance is the ultimate goal in organ transplantation. Diverse approaches, including the use of mesenchymal stem cells (MSCs), have been investigated to induce graft tolerance. Non-stimulated MSCs showed limited regulatory functions through interaction with multiple immune-regulatory cells, such as regulatory T cells (Tregs). To augment their functions, MSCs have been preconditioned with toll-like receptor (TLR3/4) agonist in autoimmune disease models, but results were conflicting. Material/Methods We evaluated the immunomodulatory effects of mouse adipose-derived mesenchymal stem cells (ADSCs) preconditioned with various combinations of TLR3/4 agonist and antagonists, including polyinosinic-polycytidylic acid poly(I:C)-TLR3 agonist, lipopolysaccharide (LPS) -TLR4 agonist, and TAK242-TLR4 antagonist. In vitro and in vivo experiments including mixed lymphocyte reaction, cytokines measurement, Tregs analysis, and a fully mismatched MHC heterotopic heart transplantation in mice (BALB/c to C57BL/6) were conducted. Results ADSCs preconditioned with poly(I:C) showed the highest efficiency in inhibiting lymphocyte proliferation, which was correlated with the upregulation of fibrinogen-like protein 2 (FGL2), an effector molecule of Tregs. The mean survival of cardiac allografts was extended from 8 to 12 days by intravenous injection of a single dose of ADSCs preconditioned with TLR3 agonist. The proportion of Tregs in the recipient’s spleen was significantly increased by injecting the poly(I:C)-stimulated ADSCs. Conclusions These results show that short-term TLR3 agonist preconditioning enhances the immunomodulatory efficacy of ADSCs, which can induce the generation of Tregs and upregulate the expression of FGL2, thereby improving the outcome of patients receiving organ transplantation.
Collapse
Affiliation(s)
- Zhiye Bao
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Jingjing Li
- Department of Pediatric Surgery, Tianjin Children's Hospital, Tianjin, China (mainland)
| | - Pengju Zhang
- Oncology Center of People's Liberation Army (PLA), 81st Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Boqian Liu
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Jiayi Zhu
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Qian Jian
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Degong Jia
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Caiyu Yi
- China Medical University, Shenyang, Liaoning, China (mainland)
| | | | - Hao Liu
- The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
18
|
Tran GT, Hodgkinson SJ, Carter N, Verma ND, Robinson CM, Plain KM, Nomura M, Hall BM. Autoantigen specific IL-2 activated CD4 +CD25 +T regulatory cells inhibit induction of experimental autoimmune neuritis. J Neuroimmunol 2020; 341:577186. [PMID: 32058174 DOI: 10.1016/j.jneuroim.2020.577186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/22/2020] [Accepted: 02/02/2020] [Indexed: 01/04/2023]
Abstract
Experimental autoimmune neuritis (EAN) induced by peripheral nerve myelin (PNM) is self-limiting and re-immunization with PNM does not re-activate disease. This study showed inhibition of EAN by CD4+CD25+T cells both from sensitized hosts or from naïve hosts after ex-vivo activation by PNM and rIL-2. Transfer of naïve CD4+CD25+T cells has no effect on EAN, nor did naïve CD4+CD25+T cells activated with rIL-2 and renal tubular antigen. Culture of naive CD4+CD25+Treg with rIL-2 and PNM induced mRNA for the IFN-gamma receptor. We showed naïve CD4+CD25+T cells activated by specific auto-antigen and rIL-2 produced more potent antigen-specific Treg that may have therapeutic potential.
Collapse
Affiliation(s)
- Giang T Tran
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia.
| | - Nicole Carter
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Nirupama D Verma
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Catherine M Robinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Karren M Plain
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Masaru Nomura
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia.
| |
Collapse
|
19
|
Fribourg M. A case for the reuse and adaptation of mechanistic computational models to study transplant immunology. Am J Transplant 2020; 20:355-361. [PMID: 31562790 PMCID: PMC6984985 DOI: 10.1111/ajt.15623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023]
Abstract
Computational mechanistic models constitute powerful tools for summarizing our knowledge in quantitative terms, providing mechanistic understanding, and generating new hypotheses. The present review emphasizes the advantages of reusing publicly available computational models as a way to capitalize on existing knowledge, reduce the number of parameters that need to be adjusted to experimental data, and facilitate hypothesis generation. Finally, it includes a step-by-step example of the reuse and adaptation of an existing model of immune responses to tuberculosis, tumor growth, and blood pathogens, to study donor-specific antibody (DSA) responses. This review aims to illustrate the benefit of leveraging the currently available computational models in immunology to accelerate the study of alloimmune responses, and to encourage modelers to share their models to further advance our understanding of transplant immunology.
Collapse
Affiliation(s)
- Miguel Fribourg
- Translational Transplant Research Center, Department of Medicine, and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
20
|
Ius F, Salman J, Knoefel AK, Sommer W, Nakagiri T, Verboom M, Siemeni T, Poyanmehr R, Bobylev D, Kuehn C, Avsar M, Erdfelder C, Hallensleben M, Boethig D, Hecker H, Schwerk N, Mueller C, Welte T, Falk C, Preissler G, Haverich A, Tudorache I, Warnecke G. Increased frequency of CD4 + CD25 high CD127 low T cells early after lung transplant is associated with improved graft survival - a retrospective study. Transpl Int 2020; 33:503-516. [PMID: 31903646 DOI: 10.1111/tri.13568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/04/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022]
Abstract
In this retrospective study, we analyzed the presence of any association of three CD4+ CD25high regulatory T-cell subpopulations at 3 weeks after lung transplantation with the later incidence of chronic lung allograft dysfunction and graft survival. Among lung-transplanted patients between January 2009 and April 2018, only patients with sufficient T-cell measurements at 3 weeks after transplantation were included into the study. Putative regulatory T cells were defined as CD4+ CD25high T cells, detected in peripheral blood and further analyzed for CD127low , FoxP3+ , and CD152+ using fluorescence-activated cell sorting (FACS) analysis. Associations of regulatory T cells with chronic lung allograft dysfunction (CLAD) and graft survival were evaluated using Cox analysis. During the study period, 724 (71%) patients were included into the study. Freedom from chronic lung allograft dysfunction (CLAD) and graft survival amounted to 66% and 68% at 5 years. At the multivariable analysis, increasing frequencies of CD127low were associated with better freedom from CLAD (hazard ratio for each 1% increase of %CD127low , HR = 0.989, 95% CI = 0.981-0.996, P = 0.003) and better graft survival (HR = 0.991, 95% CI = 0.984-0.999, P = 0.026). A higher frequency of CD127low regulatory T cells in peripheral blood early after lung transplantation estimated a protective effect against chronic lung allograft dysfunction, mortality, and re-transplantation.
Collapse
Affiliation(s)
- Fabio Ius
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jawad Salman
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ann-Kathrin Knoefel
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Wiebke Sommer
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research (DZL), Hannover, Germany
| | - Tomoyuki Nakagiri
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Murielle Verboom
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Thierry Siemeni
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Reza Poyanmehr
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Dmitry Bobylev
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christian Kuehn
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Murat Avsar
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Caroline Erdfelder
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | - Dietmar Boethig
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Hartmut Hecker
- Institute for Biometry, Hannover Medical School, Hannover, Germany
| | - Nicolaus Schwerk
- Department of pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Carsten Mueller
- Department of pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research (DZL), Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Gerhard Preissler
- German Center for Lung Research (DZL), Hannover, Germany.,Department of Surgery, Munich Lung Transplant Group, Ludwig-Maximilian's University, Munich, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research (DZL), Hannover, Germany
| | - Igor Tudorache
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
21
|
Verma ND, Robinson CM, Carter N, Wilcox P, Tran GT, Wang C, Sharland A, Nomura M, Plain KM, Bishop GA, Hodgkinson SJ, Hall BM. Alloactivation of Naïve CD4 +CD8 -CD25 +T Regulatory Cells: Expression of CD8α Identifies Potent Suppressor Cells That Can Promote Transplant Tolerance Induction. Front Immunol 2019; 10:2397. [PMID: 31681288 PMCID: PMC6802415 DOI: 10.3389/fimmu.2019.02397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/24/2019] [Indexed: 01/08/2023] Open
Abstract
Therapy with alloantigen-specific CD4+CD25+ T regulatory cells (Treg) for induction of transplant tolerance is desirable, as naïve thymic Treg (tTreg) are not alloantigen-specific and are weak suppressor cells. Naïve tTreg from DA rats cultured with fully allogeneic PVG stimulator cells in the presence of rIL-2 express IFN-gamma receptor (IFNGR) and IL-12 receptor beta2 (IL-12Rβ2) and are more potent alloantigen-specific regulators that we call Ts1 cells. This study examined additional markers that could identify the activated alloantigen-specific Treg as a subpopulation within the CD4+CD25+Foxp3+Treg. After culture of naïve DA CD4+CD8−CD25+T cells with rIL-2 and PVG alloantigen, or rIL-2 without alloantigen, CD8α was expressed on 10–20% and CD8β on <5% of these cells. These cells expressed ifngr and Il12rb2. CD8α+ cells had increased Ifngr that characterizes Ts1 cells as well was Irf4, a transcription factor induced by TCR activation. Proliferation induced by re-culture with rIL-12 and alloantigen was greater with CD4+CD8α+CD25+Treg consistent with the CD8α+ cells expressing IL-12R. In MLC, the CD8α+ fraction suppressed responses against allogeneic stimulators more than the mixed Ts1 population, whereas the CD4+CD8−CD25+T cells were less potent. In an adoptive transfer assay, rIL-2 and alloantigen activated Treg suppress rejection at a ratio of 1:10 with naïve effector cells, whereas alloantigen and rIL-2 activated tTreg depleted of the CD8α+ cells were much less effective. This study demonstrated that expression of CD8α by rIL-2 and alloantigen activation of CD4+CD8−CD25+Foxp3+T cells was a marker of activated and potent Treg that included alloantigen-specific Treg.
Collapse
Affiliation(s)
- Nirupama D Verma
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| | - Nicole Carter
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| | - Paul Wilcox
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| | - Giang T Tran
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| | - Chaunmin Wang
- Transplantation Immunobiology Research Group, Faculty of Medicine and Health, Charles Perkins Centre, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Alexandra Sharland
- Transplantation Immunobiology Research Group, Faculty of Medicine and Health, Charles Perkins Centre, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Masaru Nomura
- Department of Surgery, Keiwakai Ebetsu Hospital, Ebetsu, Japan
| | - Karren M Plain
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| | - G Alexander Bishop
- Transplantation Immunobiology Research Group, Faculty of Medicine and Health, Charles Perkins Centre, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Suzanne J Hodgkinson
- Transplantation Immunobiology Research Group, Faculty of Medicine and Health, Charles Perkins Centre, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
22
|
Staats J. Immunophenotyping of Human Regulatory T Cells. Methods Mol Biol 2019; 2032:141-177. [PMID: 31522418 DOI: 10.1007/978-1-4939-9650-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Regulatory T cells, also known as Tregs, play a pivotal role in maintaining homeostasis of the immune system and self-tolerance. Tregs express CD3, CD4, CD25, and FOXP3 but lack CD127. CD4 and CD3 identify helper T lymphocytes, of which Tregs are a subset. CD25 is IL-2Rα, an essential activation marker that is expressed in high levels on Tregs. FOXP3 is the canonical transcription factor, important in the development, maintenance, and identification of Tregs. CD127 is IL-7 receptor, expressed inversely with suppression, and is therefore downregulated on Tregs. Flow cytometry is a powerful tool that is capable of simultaneously measuring Tregs along with several markers associated with subpopulations of Tregs, activation, maturation, proliferation, and surrogates of functional suppression. This chapter describes a multicolor flow cytometry-based approach to measure human Tregs, including details for surface staining, fixation/permeabilization, intracellular/intranuclear staining, acquisition of samples on a flow cytometer, plus analysis and interpretation of resulting FCS files.
Collapse
Affiliation(s)
- Janet Staats
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
- Duke Immune Profiling Core, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Mesenchymal stromal cells (MSC) have emerged as one of the most promising candidates for immunomodulatory cell therapy in kidney transplantation. Here we describe novel insights into the MSC mechanism of action and provide an overview of initial safety and feasibility studies with MSC in kidney transplantation. RECENT FINDINGS Clinical studies of MSC-based cell therapy in kidney transplant recipients demonstrated the safety and feasibility of cell therapy and provide the first encouraging evidence of the efficacy of MSC in enabling the minimization of immunosuppressive drugs. In our initial experience with MSC-based therapy in kidney transplant recipients we carried out extensive clinical and immunological monitoring of MSC-treated patients and found possible biomarkers of MSC immunomodulation in some of them. Based on these biomarkers we identified a patient in whom complete discontinuation of immunosuppression has been achieved safely and successfully. SUMMARY Many issues should be addressed before MSC-based therapy becomes a standard treatment protocol for kidney transplantation. A better understanding of the MSC mechanism of action and the identification of biomarkers of response to therapy will inform the rational design of the most effective clinical protocol and the selection of patients amenable to safe immunosuppressive drug withdrawal.
Collapse
|
24
|
Lalfer M, Chappert P, Carpentier M, Urbain D, Davoust JM, Gross DA. Foxp3 + Regulatory and Conventional CD4 + T Cells Display Similarly High Frequencies of Alloantigen-Reactive Cells. Front Immunol 2019; 10:521. [PMID: 30941146 PMCID: PMC6434998 DOI: 10.3389/fimmu.2019.00521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/26/2019] [Indexed: 01/22/2023] Open
Abstract
Foxp3+ regulatory T cells (Tregs) play a major role in acquired immune tolerance to allogenic transplants. Their suppressive activity is thought to require T cell receptor (TCR)-driven antigen recognition; little, however, is known about the fraction of Tregs able to recognize alloantigens within this T cell subset primarily educated against self-antigens. Performing transfer experiments of Tregs or conventional T cells (Tconv) into both lymphoreplete and lymphopenic mice, we observed a similarly high proportion of cells signaling through their TCR and proliferating in allogenic hosts. Furthermore, using an in vivo proliferation assay with limited T cell numbers infused into lymphopenic mice, we found that the overall frequency of alloreactive Tregs was similar if not higher to that of alloreactive Tconv. Overall our study highlights a noticeably high level of alloreactive Foxp3+ regulatory T cells accounting for their predominant role in transplantation tolerance.
Collapse
Affiliation(s)
- Mélanie Lalfer
- Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pascal Chappert
- Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maxime Carpentier
- Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dominique Urbain
- Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean M Davoust
- Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - David-Alexandre Gross
- Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The application of regulatory T cell (Treg) therapy in organ transplantation is actively being pursued using unmodified, typically polyclonal cells. As the results of these ongoing clinical trials emerge, it is time to plan the next wave of clinical trials of Tregs. Here we will review a key strategy to improve Treg effectiveness and reduce side effects, namely increasing Treg specificity - both in terms of antigen recognition and localization to the allograft. RECENT FINDINGS Study of chemokine signatures accompanying acute rejection has revealed several chemokines that could be targeted to increase Treg homing. For example, Tregs possessing a Th1-like phenotype and expressing CXCR3 are better able to migrate towards local inflammation. Allografts themselves can be modified to increase Treg-attracting chemokines and Tregs themselves can produce chemokines, facilitating local proximity to their targets of suppression. Finally, tailoring Treg antigen specificity by T-cell or chimeric antigen receptor engineering is another approach to increase the specificity of suppression and optimize localization. SUMMARY Treg localization to the graft is important, but the important role of lymph node and germinal center homing cannot be overlooked. There is an opportunity to learn from advances made in cancer immunotherapy to optimize Treg therapy for transplantation.
Collapse
|
26
|
Hu Y, Zhou H, Gao B, Wang G, Wang Y. Role of regulatory T cells in CD47/donor-specific transfusion-induced immune tolerance in skin-heart transplantation mice. Transpl Infect Dis 2018; 21:e13012. [PMID: 30320937 DOI: 10.1111/tid.13012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To explore the role of regulatory T (Treg ) cells in the establishment of immune tolerance induced by donor-specific transfusion (DST) in mice with skin-heart transplantation. METHODS C57BL/6 mice received DST of splenocytes from CD47+/+ or CD47-/- H-2bm1 mice or no DST 7 days before skin-heart transplantation from major histocompatibility complex class I-mismatched H-2bm1 donors. The number and proportion of Treg cells in graft and lymphoid organs were measured by flow cytometry (FACS) and immunohistochemistry (IHC). The inhibitory function of Treg cells and anti-donor T-cell responses were assessed by mixed lymphocyte reaction. RESULTS We observed that mean survival time (MST) of skin or heart graft was significantly longer in C57BL/6 mice which received DST from CD47+/+ H-2bm1 mice than from CD47-/- H-2bm1 mice. By FACS, we found that the number of Treg cells in spleen was increased significantly in mice which received CD47-/- DST compared to mice which received CD47+/+ DST. However, the percentages of Treg cells in total splenocytes and lymph node cells were significantly higher in mice that received CD47+/+ DST than mice which received CD47-/- DST. Immunohistochemistry showed an increased heart grafts infiltration of Treg cells in the recipients with CD47-/- DST, but not CD47+/+ DST. Supporting this, we found that donor T-cell proliferation was significantly suppressed in mice which received CD47+/+ DST compared to mice which received CD47-/- DST. There was no difference of inhibitory function of Treg cells between these two groups. CONCLUSION Our results indicated that CD47 expression on DST cells plays an important role in the induction of immune tolerance in mice with skin-heart transplantation. Increased percentage of Treg cells may contribute to immune tolerance induced by CD47+/+ DST.
Collapse
Affiliation(s)
- Yu Hu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Gang Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yuantao Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Wang Z, Louras NJ, Lellouch AG, Pratts SG, Zhang H, Wang H, Huang CA, Cetrulo CL, Madsen JC, Sachs DH, Wang Z. Dosing optimization of CCR4 immunotoxin for improved depletion of CCR4 + Treg in nonhuman primates. Mol Oncol 2018; 12:1374-1382. [PMID: 29873181 PMCID: PMC6068354 DOI: 10.1002/1878-0261.12331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 12/15/2022] Open
Abstract
Recently, we have developed a diphtheria toxin‐based recombinant anti‐human CCR4 immunotoxin for targeting CCR4+ tumors and Tregs. In this study, we further optimized the dosing schedule for improved CCR4+ Treg depletion. We have demonstrated that up to a 90% depletion was achieved and the depletion extended to approximately 2 weeks in the peripheral blood and more than 48 days in the lymph node at 25 μg·kg−1, BID for 8 consecutive days in cynomolgus monkeys. Expansion was observed including monocytes and NK cells. Antibody against the CCR4 immunotoxin was detected after approximately 2 weeks, affecting further depletion efficacy for multiple course treatment.
Collapse
Affiliation(s)
- Zhaohui Wang
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nathan J Louras
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandre G Lellouch
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shannon G Pratts
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Huiping Zhang
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Haoyu Wang
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christene A Huang
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Curtis L Cetrulo
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joren C Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David H Sachs
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,TBRC Laboratories, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhirui Wang
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Tran GT, Wilcox PL, Dent LA, Robinson CM, Carter N, Verma ND, Hall BM, Hodgkinson SJ. Interleukin-5 Mediates Parasite-Induced Protection against Experimental Autoimmune Encephalomyelitis: Association with Induction of Antigen-Specific CD4 +CD25 + T Regulatory Cells. Front Immunol 2017; 8:1453. [PMID: 29163523 PMCID: PMC5671975 DOI: 10.3389/fimmu.2017.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022] Open
Abstract
Objective To examine if the protective effect of parasite infection on experimental autoimmune encephalomyelitis (EAE) was due to interleukin (IL)-5, a cytokine produced by a type-2 response that induces eosinophilia. We hypothesize that, in parasite infections, IL-5 also promotes expansion of antigen-specific T regulatory cells that control autoimmunity. Methods Nippostrongylus brasiliensis larvae were used to infect Lewis rats prior to induction of EAE by myelin basic protein. Animals were sham treated, or given blocking monoclonal antibodies to interleukin 4 or 5 or to deplete CD25+ T cells. Reactivity of CD4+CD25+ T regulatory cells from these animals was examined. Results Parasite-infected hosts had reduced severity and length of EAE. The beneficial effect of parasitic infection was abolished with an anti-IL-5 or an anti-CD25 monoclonal antibody (mAb), but not anti-IL-4 mAb. Parasite-infected animals with EAE developed antigen-specific CD4+CD25+ T regulatory cells earlier than EAE controls and these expressed more Il5ra than controls. Treatment with IL-5 also reduced the severity of EAE and induced Il5ra expressing CD4+CD25+ T regulatory cells. Interpretation The results of this study suggested that IL-5 produced by the type-2 inflammatory response to parasite infection promoted induction of autoantigen-specific CD25+Il5ra+ T regulatory cells that reduced the severity of autoimmunity. Such a mechanism may explain the protective effect of parasite infection in patients with multiple sclerosis where eosinophilia is induced by IL-5, produced by the immune response to parasites.
Collapse
Affiliation(s)
- Giang T Tran
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Paul L Wilcox
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Lindsay A Dent
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Nicole Carter
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Nirupama D Verma
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, UNSW Australia, Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
| |
Collapse
|
29
|
Liao T, Xue Y, Zhao D, Li S, Liu M, Chen J, Brand DD, Zheng H, Zhang Y, Zheng SG, Sun Q. In Vivo Attenuation of Antibody-Mediated Acute Renal Allograft Rejection by Ex Vivo TGF-β-Induced CD4 +Foxp3 + Regulatory T Cells. Front Immunol 2017; 8:1334. [PMID: 29085374 PMCID: PMC5650643 DOI: 10.3389/fimmu.2017.01334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/02/2017] [Indexed: 11/28/2022] Open
Abstract
Antibody-mediated rejection (AMR) has emerged as the major cause of renal allograft dysfunction, and more effective strategies need to be explored for improving transplant outcomes. Regulatory T cells (Tregs), consisting of at least natural and induced Treg subsets, suppress effector responses at multiple levels and play a key role in transplantation tolerance. In this study, we investigated the effect of induced Tregs (iTregs) on preventing antibody-mediated renal injury and rejection in a mouse model. We observed that infusion of iTregs markedly attenuated histological graft injury and rejection and significantly improved renal allograft survival. iTregs exhibited a comprehensive ability to regulate immunological disorders in AMR. First, iTreg treatment decreased the levels of circulating antidonor antibody and the antibody deposition within allografts. Second, iTregs significantly reduced cell infiltration including CD4+ T cells (including Th1, Th17, and Tfh), CD8+IFN-γ+ cells, natural killer cells, B cells, and plasma cells, which are involved in the process of AMR. Our results also highlight a predominance of M1 macrophage infiltration in grafts with acute AMR, and M1 macrophage could be reduced by iTreg treatment. Collectively, our data demonstrate, for the first time, that TGF-β-induced Tregs can attenuate antibody-mediated acute renal allograft injury through targeting multiple effectors. Thus, use of iTregs in prevention of AMR in clinical practice could be expected.
Collapse
Affiliation(s)
- Tao Liao
- Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Youqiu Xue
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Daqiang Zhao
- Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Siwen Li
- Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyu Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Science of Sun Yat-sen University, Guangzhou, China
| | - Jingrong Chen
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Haofeng Zheng
- Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yannan Zhang
- Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Qiquan Sun
- Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Cytokines affecting CD4 +T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4 + T regulatory cells. Transpl Immunol 2017; 43-44:33-41. [PMID: 28652007 DOI: 10.1016/j.trim.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022]
Abstract
CD4+T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however. We observed that activation of naïve CD4+CD25+FOXP3+Treg with alloantigen and the Th2 cytokine rIL-4 induces them to express interleukin-5 specific receptor alpha (IL-5Rα) suggesting that IL-5, a Th2 cytokine that is produced later in the immune response may promote tolerance mediating Treg. This study examined if recombinant IL-5(rIL-5) promoted survival of tolerant CD4+, especially CD4+CD25+T cells. CD4+T cells, from DA rats tolerant to fully allogeneic PVG heart allografts surviving over 100days without on-going immunosuppression, were cultured with PVG alloantigen and rIL-5. The ability of these cells to adoptively transfer tolerance to specific-donor allograft and suppress normal CD4+T cell mediated rejection in adoptive DA hosts was examined. Tolerant CD4+CD25+T cells' response to rIL-5 and expression of IL-5Rα was also assessed. rIL-5 was sufficient to promote transplant tolerance mediating CD4+T cells' survival in culture with specific-donor alloantigen. Tolerant CD4+T cells cultured with rIL-5 retained the capacity to transfer alloantigen-specific tolerance and inhibited naïve CD4+T cells' capacity to effect specific-donor graft rejection. rIL-5 promoted tolerant CD4+CD25+T cells' proliferation in vitro when stimulated with specific-donor but not third-party stimulator cells. Tolerant CD4+CD25+T cells expressed IL-5Rα. This study demonstrated that IL-5 promoted the survival of alloantigen-specific CD4+CD25+T cells that mediate transplant tolerance.
Collapse
|
31
|
Nomura M, Hodgkinson SJ, Tran GT, Verma ND, Robinson C, Plain KM, Boyd R, Hall BM. Cytokines affecting CD4 +T regulatory cells in transplant tolerance. II. Interferon gamma (IFN-γ) promotes survival of alloantigen-specific CD4 +T regulatory cells. Transpl Immunol 2017; 42:24-33. [PMID: 28487237 DOI: 10.1016/j.trim.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/21/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
CD4+T cells that transfer alloantigen-specific transplant tolerance are short lived in culture unless stimulated with specific-donor alloantigen and lymphocyte derived cytokines. Here, we examined if IFN-γ maintained survival of tolerance transferring CD4+T cells. Alloantigen-specific transplant tolerance was induced in DA rats with heterotopic adult PVG heart allografts by a short course of immunosuppression and these grafts functioned for >100days with no further immunosuppression. In previous studies, we found the CD4+T cells from tolerant rats that transfer tolerance to an irradiated DA host grafted with a PVG heart, lose their tolerance transferring ability after 3days of culture, either with or without donor alloantigen, and effect rejection of specific-donor grafts. If cultures with specific-donor alloantigen are supplemented by supernatant from ConA activated lymphocytes the tolerance transferring cells survive, suggesting these cells depend on cytokines for their survival. In this study, we found addition of rIFN-γ to MLC with specific-donor alloantigen maintained the capacity of tolerant CD4+T cells to transfer alloantigen-specific tolerance and their ability to suppress PVG allograft rejection mediated by co-administered naïve CD4+T cells. IFN-γ suppressed the in vitro proliferation of tolerant CD4+T cells. Tolerant CD4+CD25+T cells did not proliferate in MLC to PVG stimulator cells with no cytokine added, but did when IFN-γ was present. IFN-γ did not alter proliferation of tolerant CD4+CD25+T cells to third-party Lewis. Tolerant CD4+CD25+T cells' expression of IFN-γ receptor (IFNGR) was maintained in culture when IFN-γ was present. This study suggested that IFN-γ maintained tolerance mediating alloantigen-specific CD4+CD25+T cells.
Collapse
Affiliation(s)
- Masaru Nomura
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Suzanne J Hodgkinson
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Giang T Tran
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Nirupama D Verma
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Catherine Robinson
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Karren M Plain
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Rochelle Boyd
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia.
| |
Collapse
|