1
|
Paik SS, Lee JM, Ko IG, Kim SR, Kang SW, An J, Kim JA, Kim D, Hwang L, Jin JJ, Kim SH, Cha JY, Choi CW. Pirfenidone Alleviates Inflammation and Fibrosis of Acute Respiratory Distress Syndrome by Modulating the Transforming Growth Factor-β/Smad Signaling Pathway. Int J Mol Sci 2024; 25:8014. [PMID: 39125585 PMCID: PMC11311955 DOI: 10.3390/ijms25158014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) occurs as an acute onset condition, and patients present with diffuse alveolar damage, refractory hypoxemia, and non-cardiac pulmonary edema. ARDS progresses through an initial exudative phase, an inflammatory phase, and a final fibrotic phase. Pirfenidone, a powerful anti-fibrotic agent, is known as an agent that inhibits the progression of fibrosis in idiopathic pulmonary fibrosis. In this study, we studied the treatment efficiency of pirfenidone on lipopolysaccharide (LPS) and bleomycin-induced ARDS using rats. The ARDS rat model was created by the intratracheal administration of 3 mg/kg LPS of and 3 mg/kg of bleomycin dissolved in 0.2 mL of normal saline. The pirfenidone treatment group was administered 100 or 200 mg/kg of pirfenidone dissolved in 0.5 mL distilled water orally 10 times every 2 days for 20 days. The administration of LPS and bleomycin intratracheally increased lung injury scores and significantly produced pro-inflammatory cytokines. ARDS induction increased the expressions of transforming growth factor (TGF)-β1/Smad-2 signaling factors. Additionally, matrix metalloproteinase (MMP)-9/tissue inhibitor of metalloproteinase (TIMP)-1 imbalance occurred, resulting in enhanced fibrosis-related factors. Treatment with pirfenidone strongly suppressed the expressions of TGF-β1/Smad-2 signaling factors and improved the imbalance of MMP-9/TIMP-1 compared to the untreated group. These effects led to a decrease in fibrosis factors and pro-inflammatory cytokines, promoting the recovery of damaged lung tissue. These results of this study showed that pirfenidone administration suppressed inflammation and fibrosis in the ARDS animal model. Therefore, pirfenidone can be considered a new early treatment for ARDS.
Collapse
Affiliation(s)
- Seung Sook Paik
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.S.P.); (D.K.)
| | - Jeong Mi Lee
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Il-Gyu Ko
- Research Support Center, School of Medicine, Keimyung University, Deagu 42601, Republic of Korea;
| | - Sae Rom Kim
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Sung Wook Kang
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Jin An
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Jin Ah Kim
- Department of Nursing, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dongyon Kim
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.S.P.); (D.K.)
| | - Lakkyong Hwang
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (L.H.); (J.-J.J.)
| | - Jun-Jang Jin
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (L.H.); (J.-J.J.)
| | - Sang-Hoon Kim
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, The Stat University of New Jersey, Piscataway, NJ 08854, USA;
| | - Jun-Youl Cha
- Department of Sports and Martial Arts, Howon University, Gunsan 54058, Republic of Korea;
| | - Cheon Woong Choi
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| |
Collapse
|
2
|
Torre A, Martínez‐Sánchez FD, Narvaez‐Chávez SM, Herrera‐Islas MA, Aguilar‐Salinas CA, Córdova‐Gallardo J. Pirfenidone use in fibrotic diseases: What do we know so far? Immun Inflamm Dis 2024; 12:e1335. [PMID: 38967367 PMCID: PMC11225083 DOI: 10.1002/iid3.1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Pirfenidone has demonstrated significant anti-inflammatory and antifibrotic effects in both animal models and some clinical trials. Its potential for antifibrotic activity positions it as a promising candidate for the treatment of various fibrotic diseases. Pirfenidone exerts several pleiotropic and anti-inflammatory effects through different molecular pathways, attenuating multiple inflammatory processes, including the secretion of pro-inflammatory cytokines, apoptosis, and fibroblast activation. OBJECTIVE To present the current evidence of pirfenidone's effects on several fibrotic diseases, with a focus on its potential as a therapeutic option for managing chronic fibrotic conditions. FINDINGS Pirfenidone has been extensively studied for idiopathic pulmonary fibrosis, showing a favorable impact and forming part of the current treatment regimen for this disease. Additionally, pirfenidone appears to have beneficial effects on similar fibrotic diseases such as interstitial lung disease, myocardial fibrosis, glomerulopathies, aberrant skin scarring, chronic liver disease, and other fibrotic disorders. CONCLUSION Given the increasing incidence of chronic fibrotic conditions, pirfenidone emerges as a potential therapeutic option for these patients. However, further clinical trials are necessary to confirm its therapeutic efficacy in various fibrotic diseases. This review aims to highlight the current evidence of pirfenidone's effects in multiple fibrotic conditions.
Collapse
Affiliation(s)
- Aldo Torre
- Metabolic UnitInstituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubiran”Mexico CityMexico
| | - Froylan David Martínez‐Sánchez
- Facultad de MedicinaUniversidad Nacional Autonoma de MexicoMexico CityMexico
- Department of Internal MedicineHospital General “Dr. Manuel Gea González”Mexico CityMexico
| | | | | | | | - Jacqueline Córdova‐Gallardo
- Facultad de MedicinaUniversidad Nacional Autonoma de MexicoMexico CityMexico
- Department of HepatologyHospital General “Dr. Manuel Gea González”Mexico CityMexico
| |
Collapse
|
3
|
Ciampi CM, Sultana A, Ossola P, Farina A, Fragasso G, Spoladore R. Current experimental and early investigational agents for cardiac fibrosis: where are we at? Expert Opin Investig Drugs 2024; 33:389-404. [PMID: 38426439 DOI: 10.1080/13543784.2024.2326024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Myocardial fibrosis (MF) is induced by factors activating pro-fibrotic pathways such as acute and prolonged inflammation, myocardial ischemic events, hypertension, aging process, and genetically-linked cardiomyopathies. Dynamics and characteristics of myocardial fibrosis development are very different. The broad range of myocardial fibrosis presentations suggests the presence of multiple potential targets. AREA COVERED Heart failure treatment involves medications primarily aimed at counteracting neurohormonal activation. While these drugs have demonstrated efficacy against MF, not all specifically target inflammation or fibrosis progression with some exceptions such as RAAS inhibitors. Consequently, new therapies are being developed to address this issue. This article is aimed to describe anti-fibrotic drugs currently employed in clinical practice and emerging agents that target specific pathways, supported by evidence from both preclinical and clinical studies. EXPERT OPINION Despite various preclinical findings suggesting the potential utility of new drugs and molecules for treating cardiac fibrosis in animal models, there is a notable scarcity of clinical trials investigating these effects. However, the pathology of damage and repair in the heart muscle involves a complex network of interconnected inflammatory pathways and various types of immune cells. Our comprehension of the positive and negative roles played by specific immune cells and cytokines is an emerging area of research.
Collapse
Affiliation(s)
- Claudio M Ciampi
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Sultana
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Paolo Ossola
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Farina
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| | - Gabriele Fragasso
- Heart Failure Unit Head, Division of Cardiology, IRCCS Vita-Salute San Raffaele University Hospital, Milan, Italy
| | - Roberto Spoladore
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| |
Collapse
|
4
|
Yang L, Xiang Z, Dai M, Zhang Q, Zhou Y. Prognosis of Lung Transplantation in Patients with Acute Exacerbations of Interstitial Lung Disease: A Meta-Analysis Based on Cohort Studies. Ann Thorac Cardiovasc Surg 2024; 30:24-00086. [PMID: 38972753 PMCID: PMC11237979 DOI: 10.5761/atcs.ra.24-00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024] Open
Abstract
PURPOSE This meta-analysis aimed to examine the prognosis of patients with acute exacerbation of interstitial lung disease (AE-ILD) treated with lung transplantation compared to those with stable interstitial lung disease (ILD). METHODS We conducted a detailed search in PubMed, Embase, Web of Science, and the Cochrane Library, with the primary outcomes being overall survival (OS), acute cellular rejection (ACR), primary graft dysfunction (PGD), and length of stay (LOS). RESULTS Five cohort studies were included in this meta-analysis, with 183 patients enrolled in the AE-ILD group and 337 patients in the stable-ILD group. The results showed that in regard to perioperative outcomes, the AE-ILD group did not differ from the stable-ILD group in the incidence of ACR (relative risks [RR] = 0.34, p = 0.44) and the incidence of PGD Ⅲ (RR = 0.53, p = 0.43), but had a longer LOS (mean difference = 9.15, p = 0.02). Regarding prognosis, the two also did not differ in 90-day OS (RR = 0.97, p = 0.59), 1-year OS (RR = 1.05, p = 0.66), and 3-year OS (RR = 0.91, p = 0.76). CONCLUSION Our study concluded that the efficacy of lung transplantation in patients with AE-ILD is not inferior to that of patients with stable ILD. Lung transplantation is one of the potential treatments for patients with AE-ILD.
Collapse
Affiliation(s)
- Lei Yang
- Emergency Medical Center, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Zhiyi Xiang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Min Dai
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiufeng Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Zhou
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Mutsaers SE, Miles T, Prêle CM, Hoyne GF. Emerging role of immune cells as drivers of pulmonary fibrosis. Pharmacol Ther 2023; 252:108562. [PMID: 37952904 DOI: 10.1016/j.pharmthera.2023.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The pathogenesis of pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF) and other forms of interstitial lung disease, involves a complex interplay of various factors including host genetics, environmental pollutants, infection, aberrant repair and dysregulated immune responses. Highly variable clinical outcomes of some ILDs, in particular IPF, have made it difficult to identify the precise mechanisms involved in disease pathogenesis and thus the development of a specific cure or treatment to halt and reverse the decline in patient health. With the advent of in-depth molecular diagnostics, it is becoming evident that the pathogenesis of IPF is unlikely to be the same for all patients and therefore will likely require different treatment approaches. Chronic inflammation is a cardinal feature of IPF and is driven by both innate and adaptive immune responses. Inflammatory cells and activated fibroblasts secrete various pro-inflammatory cytokines and chemokines that perpetuate the inflammatory response and contribute to the recruitment and activation of more immune cells and fibroblasts. The balance between pro-inflammatory and regulatory immune cell subsets, as well as the interactions between immune cell types and resident cells within the lung microenvironment, ultimately determines the extent of fibrosis and the potential for resolution. This review examines the role of the innate and adaptive immune responses in pulmonary fibrosis, with an emphasis on IPF. The role of different immune cell types is discussed as well as novel anti-inflammatory and immunotherapy approaches currently in clinical trial or in preclinical development.
Collapse
Affiliation(s)
- Steven E Mutsaers
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia.
| | - Tylah Miles
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia; School of Medical, Molecular and Forensic Sciences, Murdoch University, WA, Australia
| | - Gerard F Hoyne
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia; The School of Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
6
|
Daou D, Gillette TG, Hill JA. Inflammatory Mechanisms in Heart Failure with Preserved Ejection Fraction. Physiology (Bethesda) 2023; 38:0. [PMID: 37013947 PMCID: PMC10396273 DOI: 10.1152/physiol.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is now the most common form of heart failure and a significant public health concern for which limited effective therapies exist. Inflammation triggered by comorbidity burden is a critical element of HFpEF pathophysiology. Here, we discuss evidence for comorbidity-driven systemic and myocardial inflammation and the mechanistic role of inflammation in pathological myocardial remodeling in HFpEF.
Collapse
Affiliation(s)
- Daniel Daou
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Thomas G Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
7
|
Planas-Cerezales L, Fabbri L, Pearmain L. Add-on therapy for pulmonary fibrosis, a forthcoming era with implications for practice: the BI 101550 and RELIEF trials. Breathe (Sheff) 2023; 19:230090. [PMID: 37719242 PMCID: PMC10501707 DOI: 10.1183/20734735.0090-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/01/2023] [Indexed: 09/19/2023] Open
Abstract
The therapeutic landscape for idiopathic pulmonary fibrosis (IPF) and progressive fibrosing interstitial lung disease (PFILD) is increasingly complex, with add-on antifibrotic options now in clinical trials, or available for patients progressing on first-line therapy in both conditions. Here, we review two recent trials of potential add-on therapeutic options, the BI 101550 and RELIEF trials. BI 101550 was a phase 2 randomised control trial (RCT) of a novel phosphodiesterase-4 inhibitor in patients with IPF, with a primary end-point of change in forced vital capacity (ΔFVC) (in mL) at 12 weeks. The RELIEF trial was a phase 2 RCT in patients with PFILD, with a primary end-point of ΔFVC (absolute % predicted) over 48 weeks. Whilst the BI 101550 and RELIEF trials showed positive results in their primary end-points, the strengths and weaknesses of both trials are discussed with importance for their interpretation and clinical impact. We review current clinical practice in IPF and PFILD and place the BI101550 and RELIEF trial results in context, highlighting advances and problems with antifibrotic therapies. Commentary on Richeldi L, et al. Trial of a preferential phosphodiesterase 4B inhibitor for idiopathic pulmonary fibrosis. N Engl J Med 2022; 386: 2178-2187.Behr J, et al. Pirfenidone in patients with progressive fibrotic interstitial lung diseases other than idiopathic pulmonary fibrosis (RELIEF): a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir Med 2021; 9: 476-486.
Collapse
Affiliation(s)
- Lurdes Planas-Cerezales
- Respiratory Department, Hospital de Viladecans, Barcelona, Spain
- Network of Centers of Biomedical Research in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III (ISCI), Madrid, Spain
- Both authors contributed equally
| | - Laura Fabbri
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- Both authors contributed equally
| | - Laurence Pearmain
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, Manchester University, Manchester, United Kingdom
- ILD Unit, North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
8
|
Munker D, Arnold P, Leuschner G, Irlbeck M, Michel S, Kauke T, Meiser B, Behr J, Kneidinger N, Veit T. Impact of ILD-Specific Therapies on Perioperative Course in Patients with Progressive Interstitial Lung Disease Undergoing Lung Transplantation. J Clin Med 2023; 12:4996. [PMID: 37568398 PMCID: PMC10419359 DOI: 10.3390/jcm12154996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Immunosuppressants and antifibrotics are currently used to treat patients with various interstitial lung diseases, which may undergo lung transplantation (LTx). The retrospective study aimed to evaluate the potential effects of therapeutic regimen on the perioperative course in patients with idiopathic pulmonary fibrosis (IPF) or progressive pulmonary fibrosis (PPF) undergoing LTx. All patients with IPF and PPF undergoing LTx between January 2014 and December 2021 were included. We retrospectively screened for previous use of immunosuppressants and antifibrotic therapy. We analyzed perioperative courses, short-term outcomes, and safety retrospectively. In total, 286 patients with diagnosis of IPF or PPF were analyzed. According to the treatment regimen before LTx, the study cohort was divided into four groups and compared. No differences between antifibrotic monotherapy, combined antifibrotic and immunosuppressive therapy with regard to postoperative complications were observed. Length of mechanical ventilation was shorter in patients with antifibrotics prior to LTx. Pretreatment with antifibrotic monotherapy and a combination of antifibrotic drugs with immunosuppressive therapy, lower body mass index (BMI) and lower blood loss, were independently associated with primary graft dysfunction grades 0-3 72 hours after LTx (p < 0.001). Finally, patients with antifibrotic monotherapy developed significantly less de novo donor-specific antibodies (DSA) (p = 0.009). Higher intraoperative blood loss, etiology of interstitial lung disease (ILD) and older age were independently associated with shorter survival after LTx. Use of antifibrotic monotherapy and a combination of antifibrotic drugs with immunosuppressive therapy in IPF/PPF patients undergoing LTx, proved to be safe and might lead to beneficial effects after LTx.
Collapse
Affiliation(s)
- Dieter Munker
- Department of Medicine V, University Hospital LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; (D.M.); (P.A.); (J.B.); (N.K.)
| | - Paola Arnold
- Department of Medicine V, University Hospital LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; (D.M.); (P.A.); (J.B.); (N.K.)
| | - Gabriela Leuschner
- Department of Medicine V, University Hospital LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; (D.M.); (P.A.); (J.B.); (N.K.)
| | - Michael Irlbeck
- Department of Anaesthesiology, University of Munich (LMU), 81377 Munich, Germany;
| | - Sebastian Michel
- Clinic of Cardiac Surgery, University of Munich (LMU), 81377 Munich, Germany;
| | - Teresa Kauke
- Department of Thoracic Surgery, University of Munich (LMU), 81377 Munich, Germany;
| | - Bruno Meiser
- Transplant Center, University of Munich, 81377 Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, University Hospital LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; (D.M.); (P.A.); (J.B.); (N.K.)
| | - Nikolaus Kneidinger
- Department of Medicine V, University Hospital LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; (D.M.); (P.A.); (J.B.); (N.K.)
| | - Tobias Veit
- Department of Medicine V, University Hospital LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany; (D.M.); (P.A.); (J.B.); (N.K.)
| |
Collapse
|
9
|
Zheng H, Huang N, Lin JQ, Yan LY, Jiang QG, Yang WZ. Effect and mechanism of pirfenidone combined with 2-methoxy-estradiol perfusion through portal vein on hepatic artery hypoxia-induced hepatic fibrosis. Adv Med Sci 2023; 68:46-53. [PMID: 36610261 DOI: 10.1016/j.advms.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/20/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE The aim of this study was to explore the effect and mechanism of pirfenidone (PFD) combined with 2-methoxyestradiol (2-ME2) perfusion through portal vein on hepatic artery hypoxia-induced hepatic fibrosis. MATERIALS AND METHODS Sprague-Dawley rats were divided into 5 groups (n = 3/group): control group, hepatic artery ligation (HAL) group, HAL + PFD (portal vein perfusion of PFD) group, HAL+2-ME2 (portal vein perfusion of 2-ME2) group and HAL + PFD+2-ME2 group depending on whether they received HAL and/or portal vein perfusion (PFD and/or 2-ME2). Livers were harvested for pathology, western blotting (WB), and quantitative real-time PCR (qRT-PCR). RESULTS Sirius red staining showed that portal vein perfusion of drugs resulted in degradation of liver fibrosis. Immunohistochemistry showed decreased hypoxia-inducible factor-1 α (HIF-1α) and α-smooth muscle actin (α-SMA) after portal intravenous drugs infusion compared with HAL group (P < 0.05). WB analysis showed increased Smad7 in HAL + PFD group compared with HAL group (P < 0.05). qRT-PCR analysis showed decreased matrix metallo-proteinase 2 (MMP2), transforming growth factor β1 (TGF-β1), monocyte chemoattractant protein-1 (MCP-1), and Collagen I mRNA in HAL + PFD group except for tissue inhibitor of metalloproteinase-1 (TIMP-1) compared with HAL group (P < 0.05). Compared with HAL + PFD group, the addition of 2-ME2 did not lead to better results in qRT-PCR analysis. CONCLUSIONS The portal vein perfusion of PFD significantly reduced the hepatic artery hypoxia-induced fibrosis degree in treated rats by down-regulating the expression of HIF-1α, α-SMA, MMP2, TGF-β1, MCP-1, and Collagen I, as well as up-regulating the TIMP-1 expression and Smad7 protein level. Combined 2-ME2 infusion was not better than PFD alone.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Ning Huang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Jun-Qing Lin
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Le-Ye Yan
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Qing-Gui Jiang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Department of Interventional Therapy, Xiamen Humanity Hospital, Xiamen, Fujian, People's Republic of China
| | - Wei-Zhu Yang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
10
|
Morfino P, Aimo A, Castiglione V, Gálvez-Montón C, Emdin M, Bayes-Genis A. Treatment of cardiac fibrosis: from neuro-hormonal inhibitors to CAR-T cell therapy. Heart Fail Rev 2023; 28:555-569. [PMID: 36221014 PMCID: PMC9553301 DOI: 10.1007/s10741-022-10279-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 02/05/2023]
Abstract
Cardiac fibrosis is characterized by the deposition of extracellular matrix proteins in the spaces between cardiomyocytes following both acute and chronic tissue damage events, resulting in the remodeling and stiffening of heart tissue. Fibrosis plays an important role in the pathogenesis of many cardiovascular disorders, including heart failure and myocardial infarction. Several studies have identified fibroblasts, which are induced to differentiate into myofibroblasts in response to various types of damage, as the most important cell types involved in the fibrotic process. Some drugs, such as inhibitors of the renin-angiotensin-aldosterone system, have been shown to be effective in reducing cardiac fibrosis. There are currently no drugs with primarily anti-fibrotic action approved for clinical use, as well as the evidence of a clinical efficacy of these drugs is extremely limited, despite the numerous encouraging results from experimental studies. A new approach is represented by the use of CAR-T cells engineered in vivo using lipid nanoparticles containing mRNA coding for a receptor directed against the FAP protein, expressed by cardiac myofibroblasts. This strategy has proved to be safe and effective in reducing myocardial fibrosis and improving cardiac function in mouse models of cardiac fibrosis. Clinical studies are required to test this novel approach in humans.
Collapse
Affiliation(s)
- Paolo Morfino
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Aimo
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | - Vincenzo Castiglione
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Carolina Gálvez-Montón
- Institut del Cor, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Michele Emdin
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Antoni Bayes-Genis
- Institut del Cor, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Spagnolo P, Tonelli R, Samarelli AV, Castelli G, Cocconcelli E, Petrarulo S, Cerri S, Bernardinello N, Clini E, Saetta M, Balestro E. The role of immune response in the pathogenesis of idiopathic pulmonary fibrosis: far beyond the Th1/Th2 imbalance. Expert Opin Ther Targets 2022; 26:617-631. [PMID: 35983984 DOI: 10.1080/14728222.2022.2114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION . Idiopathic pulmonary fibrosis (IPF) is a chronic disease of unknown origin characterized by progressive scarring of the lung leading to irreversible loss of function. Despite the availability of two drugs that are able to slow down disease progression, IPF remains a deadly disease. The pathogenesis of IPF is poorly understood, but a dysregulated wound healing response following recurrent alveolar epithelial injury is thought to be crucial. Areas covered. In the last few years, the role of the immune system in IPF pathobiology has been reconsidered; indeed, recent data suggest that a dysfunctional immune system may promote and unfavorable interplay with pro-fibrotic pathways thus acting as a cofactor in disease development and progression. In this article, we review and critically discuss the role of T cells in the pathogenesis and progression of IPF in the attempt to highlight ways in which further research in this area may enable the development of targeted immunomodulatory therapies for this dreadful disease. EXPERT OPINION A better understanding of T cells interactions has the potential to facilitate the development of immune modulators targeting multiple T cell-mediated pathways thus halting disease initiation and progression.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gioele Castelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Cocconcelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Simone Petrarulo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marina Saetta
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
13
|
Wang J, Wang X, Qi X, Sun Z, Zhang T, Cui Y, Shu Q. The Efficacy and Safety of Pirfenidone Combined With Immunosuppressant Therapy in Connective Tissue Disease-Associated Interstitial Lung Disease: A 24-Week Prospective Controlled Cohort Study. Front Med (Lausanne) 2022; 9:871861. [PMID: 35646960 PMCID: PMC9135161 DOI: 10.3389/fmed.2022.871861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Interstitial lung disease (ILD) is a common manifestation of connective tissue disease (CTD) that manifests as several subtypes with significant differences in prognosis. It is necessary to evaluate the efficacy and safety of pirfenidone (PFD) combined with immunosuppressant (IS) in the treatment of CTD-ILD. Methods A total of 111 patients with CTD-ILD were enrolled, including those with systemic sclerosis (SSc), inflammatory myopathy (IIM), rheumatoid arthritis (RA), and other CTDs (such as systemic lupus erythematosus, primary Sjogren's syndrome, and undifferentiated CTD). After evaluation of the high-resolution computed tomography (HRCT), pulmonary function (PF), and basic disease activity, patients either were or were not prescribed PFD and were followed up regularly for 24 weeks. Results After 24 weeks of treatment, predicted forced vital capacity (FVC%) in the SSc-PFD group had improved by 6.60%, whereas this value was 0.55% in patients with SSc-no-PFD. The elevation in FVC% was also significant in IIM-PFD over the IIM-no-PFD controls (7.50 vs. 1.00%). The predicted diffusing capacity for carbon monoxide (DLCo%) of RA-PFD was enhanced by 7.40%, whereas that of RA-no-PFD decreased by 5.50%. When performing a subtype analysis of HRCT images, the change in FVC% among patients with SSc with a tendency toward usual interstitial pneumonia (UIP) was higher in those given PFD (SSc-PFD-UIP) than the no-PFD group (8.05 vs. −3.20%). However, in IIM patients with a non-UIP tendency, PFD displayed better therapeutic effects than the control (10.50 vs. 1.00%). DLCo% improved significantly in patients with the PFD-treated RA-non-UIP subtype compared with the patients with no-PFD (10.40 vs. −4.45%). Dichotomizing the patients around a baseline FVC% or DLCo% value of 70%, the PFD arm had a more improved FVC% than the no-PFD arm within the high-baseline-FVC% subgroups of patients with SSc and IIM (6.60 vs. 0.10%, 6.30 vs. 1.10%). In patients with RA-PFD, DLCo% showed a significant increase in the subgroup with low baseline DLCo% compared to that in patients with RA-no-PFD (7.40 vs. −6.60%). Conclusion The response of PF to PFD varied between CTD-ILD subsets. Patients with SSc and IIM showed obvious improvements in FVC%, especially patients with SSc-UIP and IIM-non-UIP. In RA, the subsets of patients with non-UIP and a lower baseline DLCo% most benefited from PFD.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Xiao Wang
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Xiaoyan Qi
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Zhijian Sun
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Cui
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Shu
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
- *Correspondence: Qiang Shu
| |
Collapse
|
14
|
Aimo A, Spitaleri G, Nieri D, Tavanti LM, Meschi C, Panichella G, Lupón J, Pistelli F, Carrozzi L, Bayes-Genis A, Emdin M. Pirfenidone for Idiopathic Pulmonary Fibrosis and Beyond. Card Fail Rev 2022; 8:e12. [PMID: 35516794 PMCID: PMC9062707 DOI: 10.15420/cfr.2021.30] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Pirfenidone (PFD) slows the progression of idiopathic pulmonary fibrosis (IPF) by inhibiting the exaggerated fibrotic response and possibly through additional mechanisms, such as anti-inflammatory effects. PFD has also been evaluated in other fibrosing lung diseases. Myocardial fibrosis is a common feature of several heart diseases and the progressive deposition of extracellular matrix due to a persistent injury to cardiomyocytes may trigger a vicious cycle that leads to persistent structural and functional alterations of the myocardium. No primarily antifibrotic medications are used to treat patients with heart failure. There is some evidence that PFD has antifibrotic actions in various animal models of cardiac disease and a phase II trial on patients with heart failure and preserved ejection fraction has yielded positive results. This review summarises the evidence about the possible mechanisms of IPF and modulation by PFD, the main results about IPF or non-IPF interstitial pneumonias and also data about PFD as a potential protective cardiac drug.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giosafat Spitaleri
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Dari Nieri
- Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy
| | - Laura Maria Tavanti
- Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy
| | - Claudia Meschi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Josep Lupón
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesco Pistelli
- Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy
| | - Laura Carrozzi
- Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy; Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Antoni Bayes-Genis
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
15
|
Wilfong EM, Aggarwal R. Role of antifibrotics in the management of idiopathic inflammatory myopathy associated interstitial lung disease. Ther Adv Musculoskelet Dis 2021; 13:1759720X211060907. [PMID: 34917177 PMCID: PMC8669869 DOI: 10.1177/1759720x211060907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/30/2021] [Indexed: 01/13/2023] Open
Abstract
The antifibrotic therapies nintedanib and pirfenidone were first approved by the United States for the treatment of idiopathic pulmonary fibrosis in 2014. In 2020, nintedanib received U.S. Food and Drug Administration (FDA) approval for the treatment of all progressive fibrosing interstitial lung disease (ILD). Given that a major cause of mortality and morbidity in the idiopathic inflammatory myopathies (IIM) is progressive interstitial lung disease and respiratory failure, antifibrotic therapies may be useful as adjuvant to traditional immunosuppression. However, randomized controlled trials of antifibrotic therapies in IIM are lacking. The purpose of this review is to (1) summarize the mechanism of action of nintedanib and pirfenidone in ILD with possible role in IIM-ILD, (2) review the clinical data supporting their use in interstitial lung disease in general, and more specifically in connective tissue disease associated ILD, and (3) discuss the evidence and remaining challenges for using antifibrotic therapies in IIM-ILD.
Collapse
Affiliation(s)
- Erin M. Wilfong
- Divisions of Rheumatology and Immunology & Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232 USA
| | - Rohit Aggarwal
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
16
|
A trial of pirfenidone in hospitalized adult patients with severe coronavirus disease 2019. Chin Med J (Engl) 2021; 135:368-370. [PMID: 34855641 PMCID: PMC8812696 DOI: 10.1097/cm9.0000000000001614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Bos S, De Sadeleer LJ, Vanstapel A, Beeckmans H, Sacreas A, Yserbyt J, Wuyts WA, Vos R. Antifibrotic drugs in lung transplantation and chronic lung allograft dysfunction: a review. Eur Respir Rev 2021; 30:30/160/210050. [PMID: 34415849 DOI: 10.1183/16000617.0050-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/02/2021] [Indexed: 12/30/2022] Open
Abstract
This review aims to provide an overview of pre-transplant antifibrotic therapy on peri-transplant outcomes and to address the possible role of antifibrotics in lung transplant recipients with chronic lung allograft dysfunction.Lung transplantation is an established treatment modality for patients with various end-stage lung diseases, of which idiopathic pulmonary fibrosis and other progressive fibrosing interstitial lung diseases are growing indications. Theoretically, widespread use of antifibrotics prior to lung transplantation may increase the risk of bronchial anastomotic complications and impaired wound healing.Long-term graft and patient survival are still hampered by development of chronic lung allograft dysfunction, on which antifibrotics may have a beneficial impact.Antifibrotics until the moment of lung transplantation proved to be safe, without increasing peri-transplant complications. Currently, best practice is to continue antifibrotics until time of transplantation. In a large multicentre randomised trial, pirfenidone did not appear to have a beneficial effect on lung function decline in established bronchiolitis obliterans syndrome. The results of antifibrotic therapy in restrictive allograft syndrome are eagerly awaited, but nonrandomised data from small case reports/series are promising.
Collapse
Affiliation(s)
- Saskia Bos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J De Sadeleer
- Dept of Respiratory Diseases, Ziekenhuis Oost-Limburg, Genk, Belgium.,Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Hanne Beeckmans
- Dept of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Annelore Sacreas
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Wim A Wuyts
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Robin Vos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
van Geffen C, Deißler A, Quante M, Renz H, Hartl D, Kolahian S. Regulatory Immune Cells in Idiopathic Pulmonary Fibrosis: Friends or Foes? Front Immunol 2021; 12:663203. [PMID: 33995390 PMCID: PMC8120991 DOI: 10.3389/fimmu.2021.663203] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The immune system is receiving increasing attention for interstitial lung diseases, as knowledge on its role in fibrosis development and response to therapies is expanding. Uncontrolled immune responses and unbalanced injury-inflammation-repair processes drive the initiation and progression of idiopathic pulmonary fibrosis. The regulatory immune system plays important roles in controlling pathogenic immune responses, regulating inflammation and modulating the transition of inflammation to fibrosis. This review aims to summarize and critically discuss the current knowledge on the potential role of regulatory immune cells, including mesenchymal stromal/stem cells, regulatory T cells, regulatory B cells, macrophages, dendritic cells and myeloid-derived suppressor cells in idiopathic pulmonary fibrosis. Furthermore, we review the emerging role of regulatory immune cells in anti-fibrotic therapy and lung transplantation. A comprehensive understanding of immune regulation could pave the way towards new therapeutic or preventive approaches in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Chiel van Geffen
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Astrid Deißler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Markus Quante
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Dominik Hartl
- Department of Pediatrics I, Eberhard Karls University of Tübingen, Tübingen, Germany.,Dominik Hartl, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
19
|
Fathimath Muneesa M, Shaikh SB, Jeena TM, Bhandary YP. Inflammatory mediators in various molecular pathways involved in the development of pulmonary fibrosis. Int Immunopharmacol 2021; 96:107608. [PMID: 33857801 DOI: 10.1016/j.intimp.2021.107608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease (ILD) that is marked by scarring of lung tissue, ultimately leading to respiratory failure. The survival rate of IPF is disappointing and to date demonstrates a clinical quandary. The exact etiology of the disease remains under discussion. According to the recent hypothesis, inflammatory mediators cause severe damage to the alveolar epithelium leading to the impairment of the alveolar structure. The role of inflammation in the development of the IPF has been controversial for years. There are two schools of thought regarding the role of inflammation. One group of researchers claims that cell death and fibroblast dysfunction are the primary causes and inflammation is just a secondary cause of IPF. The other group claims inflammation to be the primary cause. Studies using human subjects have also reported inflammation as a critical element in IPF. Inflammatory cytokinesserve amajor rolein commencing theinflammatoryresponse in the lungs. Several cytokines are reported to be involved in different molecular mechanisms underlying IPF, someof which alsocontribute additionally by acting as growth factors. The present review addressed to explore the contribution of various inflammatory cytokines, growth factors, and various other inflammatory molecules activating the major molecular pathways involved during the development of IPF.
Collapse
Affiliation(s)
- M Fathimath Muneesa
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore 575018, Karnataka, India
| | - Sadiya B Shaikh
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore 575018, Karnataka, India
| | - T M Jeena
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore 575018, Karnataka, India
| | - Yashodhar P Bhandary
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
20
|
Erre GL, Sebastiani M, Manfredi A, Gerratana E, Atzeni F, Passiu G, Mangoni AA. Antifibrotic drugs in connective tissue disease-related interstitial lung disease (CTD-ILD): from mechanistic insights to therapeutic applications. Drugs Context 2021; 10:2020-8-6. [PMID: 33505482 PMCID: PMC7813437 DOI: 10.7573/dic.2020-8-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Fibrosing interstitial lung disease (ILD) is one of the most important causes of morbidity and mortality in patients with connective tissue diseases (CTDs), which include systemic sclerosis, rheumatoid arthritis, Sjögren's syndrome, idiopathic inflammatory myositis and systemic lupus erythematosus. The treatment of CTD-ILDs is challenging due to the paucity of proven effective treatments. Recently, two antifibrotic drugs conditionally approved for use in patients with idiopathic pulmonary fibrosis, nintedanib and pirfenidone, have been trialled in CTD-ILDs based on overlapping pathological and clinical features between the two diseases. In this narrative review, we discuss the experimental evidence and clinical trials investigating the efficacy and safety of antifibrotic drugs in patients with CTD-ILDs and the potential mechanisms of action involved. Results from clinical trials suggest that nintedanib use retards lung function decline in progressive fibrotic CTD-ILDs. By contrast, the evidence for the efficacy of pirfenidone in these groups is not equally compelling. Further, well-designed randomized clinical trials are needed to evaluate the efficacy and safety of individual antifibrotic drugs in specific CTD-ILD subgroups.
Collapse
Affiliation(s)
- Gian Luca Erre
- Dipartimento di Scienze Mediche, Chirurgiche e sperimentali, Università degli Studi di Sassari, Sassari, Italy
- Dipartimento di Specialità Mediche, Azienda Ospedaliero-Universitaria di Sassari, Sassari, Italy
| | - Marco Sebastiani
- Chair and Rheumatology Unit, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | - Andreina Manfredi
- Chair and Rheumatology Unit, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | - Elisabetta Gerratana
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Messina, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Messina, Italy
| | - Giuseppe Passiu
- Dipartimento di Scienze Mediche, Chirurgiche e sperimentali, Università degli Studi di Sassari, Sassari, Italy
- Dipartimento di Specialità Mediche, Azienda Ospedaliero-Universitaria di Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| |
Collapse
|
21
|
Shah PV, Balani P, Lopez AR, Nobleza CMN, Siddiqui M, Khan S. A Review of Pirfenidone as an Anti-Fibrotic in Idiopathic Pulmonary Fibrosis and Its Probable Role in Other Diseases. Cureus 2021; 13:e12482. [PMID: 33564498 PMCID: PMC7861090 DOI: 10.7759/cureus.12482] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is the result of chronic inflammation and is known to pathologically occur in many organs and systems. Pirfenidone (PFD) is an anti-fibrotic known for its use in idiopathic pulmonary fibrosis (IPF). In addition to being an anti-fibrotic, it acts as an anti-inflammatory and antioxidant as well. There have been studies on PFD in other diseases, some clinical and others preclinical. We have compiled and reviewed them to highlight just how widespread PFD use could be. Among many benefits of PFD in IPF, PFD has effectively improved patients' survival in those who had an acute exacerbation of IPF and has reduced respiratory-related hospitalization, among few others. PFD also has shown an improvement in vital capacity in patients with chronic hypersensitive pneumonitis. Also, it has demonstrated anti-fibrotic effects in systemic sclerosis-associated interstitial lung disease. In other diseases outside the lungs, PFD has reversed insulin resistance and proven to be effective in non-alcoholic steatohepatitis (NASH). It has prevented blindness post-alkali injury to the eye and has proven to decrease the proliferation of mesothelioma cells, just to name a few. This review encourages further research in connection with PFD and its use in other diseases and PFD pros in IPF.
Collapse
Affiliation(s)
- Parth V Shah
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Prachi Balani
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Angel R Lopez
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Chelsea Mae N Nobleza
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mariah Siddiqui
- Neurology, St. George's University, True Blue, GRD.,Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
22
|
Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: Molecular Mechanisms and Potential Clinical Applications in Lung Disease. Am J Respir Cell Mol Biol 2020; 62:413-422. [PMID: 31967851 DOI: 10.1165/rcmb.2019-0328tr] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pirfenidone (PFD) is a pharmacological compound with therapeutic efficacy in idiopathic pulmonary fibrosis. It has been chiefly characterized as an antifibrotic agent, although it was initially developed as an antiinflammatory compound because of its ability to diminish the accumulation of inflammatory cells and cytokines. Despite recent studies that have elucidated key mechanisms, the precise molecular activities of PFD remain incompletely understood. PFD modulates fibrogenic growth factors, thereby attenuating fibroblast proliferation, myofibroblast differentiation, collagen and fibronectin synthesis, and deposition of extracellular matrix. This effect is mediated by suppression of TGF-β1 (transforming growth factor-β1) and other growth factors. Here, we appraise the impact of PFD on TGF-β1 production and its downstream pathways. Accumulating evidence indicates that PFD also downregulates inflammatory pathways and therefore has considerable potential as a viable and innovative antiinflammatory compound. We examine the effects of PFD on inflammatory cells and the production of pro- and antiinflammatory cytokines in the lung. In this context, recent evidence that PFD can target inflammasome pathways and ensuing lung inflammation is highlighted. Finally, the antioxidant properties of PFD, such as its ability to inhibit redox reactions and regulate oxidative stress-related genes and enzymes, are detailed. In summary, this narrative review examines molecular mechanisms underpinning PFD and its recognized benefits in lung fibrosis. We highlight preclinical data that demonstrate the potential of PFD as a nonsteroidal antiinflammatory agent and outline areas for future research.
Collapse
Affiliation(s)
- Saleela M Ruwanpura
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Belinda J Thomas
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Philip G Bardin
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
23
|
Bennett D, Lanzarone N, Fossi A, Perillo F, De Vita E, Luzzi L, Paladini P, Bargagli E, Sestini P, Rottoli P. Pirfenidone in chronic lung allograft dysfunction: a single cohort study. Panminerva Med 2020; 62. [DOI: 10.23736/s0031-0808.19.03840-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
24
|
Pirfenidone is a cardioprotective drug: Mechanisms of action and preclinical evidence. Pharmacol Res 2020; 155:104694. [PMID: 32061664 DOI: 10.1016/j.phrs.2020.104694] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/26/2022]
Abstract
Myocardial fibrosis is an endogenous response to different cardiac insults that may become maladaptive over time and contribute to the onset and progression of heart failure (HF). Fibrosis is a direct and indirect target of established HF therapies, namely inhibitors of the renin-angiotensin-aldosterone system, but its resilience to therapy warrants a search for novel, more targeted approaches to myocardial fibrosis. Pirfenidone is a drug approved for idiopathic pulmonary fibrosis, a severe form of idiopathic interstitial pneumonias. Pirfenidone is a small synthetic molecule with high oral bioavailability, exerting an antifibrotic activity, but also anti-oxidant and anti-inflammatory effects. These effects have been attributed to the inhibition of several growth factors (in particular transforming growth factor-β, but also platelet-derived growth factor and beta fibroblast growth factor), matrix metalloproteinases, and pro-inflammatory mediators (such as interleukin-1β and tumour necrosis factor-α), and possibly also an improvement of mitochondrial function and modulation of lymphocyte activation. Given the activation of similar profibrotic pathways in lung and heart disease, the crucial role of fibrosis in several cardiac disorders, and the wide spectrum of activity of pirfenidone, this drug has been evaluated with interest as a potential treatment for cardiac disorders. In animal studies, pirfenidone has shown cardioprotective effects across different species and in a variety of models of cardiomyopathy. In the present review we summarize the pharmacological characteristics of pirfenidone and the data from animal studies supporting its cardioprotective effects.
Collapse
|
25
|
Distler O, Volkmann ER, Hoffmann-Vold AM, Maher TM. Current and future perspectives on management of systemic sclerosis-associated interstitial lung disease. Expert Rev Clin Immunol 2019; 15:1009-1017. [PMID: 31566449 DOI: 10.1080/1744666x.2020.1668269] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Systemic sclerosis (SSc) is a rare and complex connective tissue disease characterized by fibrosis of the skin and internal organs. Interstitial lung disease (ILD) is a common complication of SSc and the leading cause of SSc-related death. No drugs are licensed for the treatment of SSc-ILD. Areas covered: This review provides an overview of the current treatment of SSc-ILD and a perspective on investigational therapies, focusing on those studied in randomized controlled trials. Expert opinion: There is substantial room for improvement in the treatment of SSc-ILD. Current treatment focuses on immunosuppressant therapies, particularly cyclophosphamide and mycophenolate. Hematopoietic stem cell transplantation has been shown to improve long-term outcomes, but the risk of treatment-related mortality restricts its use to select patients at specialized centers. Modifying the course of disease to improve outcomes remains the goal for new therapies. Several drugs are under investigation as potential therapies for SSc-ILD, providing hope that the limited treatment armamentarium for SSc-ILD will be expanded and improved in the near future. Expert consensus is needed on how to screen for and monitor SSc-ILD and on when to initiate and escalate therapy.
Collapse
Affiliation(s)
- Oliver Distler
- Department of Rheumatology, University Hospital , Zurich , Switzerland
| | - Elizabeth R Volkmann
- Department of Medicine, Division of Rheumatology, David Geffen School of Medicine, University of California , Los Angeles , CA , USA
| | | | - Toby M Maher
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College , London , UK
| |
Collapse
|
26
|
Veit T, Leuschner G, Sisic A, Ceelen F, Munker D, Schmitzer M, Weig T, Michel S, Schneider C, Meiser B, Crispin A, Neurohr C, Behr J, Milger K, Kneidinger N. Pirfenidone exerts beneficial effects in patients with IPF undergoing single lung transplantation. Am J Transplant 2019; 19:2358-2365. [PMID: 30942945 DOI: 10.1111/ajt.15378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/17/2019] [Accepted: 03/24/2019] [Indexed: 01/25/2023]
Abstract
Pirfenidone demonstrated pleiotropic antiinflammatory effects in various experimental and clinical settings. The aim of this study was to assess the impact of previous treatment with pirfenidone on short-term outcomes after single lung transplantation (SLTx). Therefore, patients with idiopathic pulmonary fibrosis (IPF) who were undergoing SLTx were screened retrospectively for previous use of pirfenidone and compared to respective controls. Baseline parameters and short-term outcomes were recorded and analyzed. In total, 17 patients with pirfenidone were compared with 26 patients without antifibrotic treatment. Baseline characteristics and severity of disease did not differ between groups. Use of pirfenidone did not increase blood loss, wound-healing, or anastomotic complications. Severity of primary graft dysfunction at 72 hours was less (0.3 ± 0.6 vs 1.4 ± 1.3, P = .002), and length of mechanical ventilation (37.5 ± 34.8 vs 118.5 ± 151.0 hours, P = .016) and intensive care unit (ICU) stay (6.6 ± 7.1 vs 15.6 ± 20.3, P = .089) were shorter in patients with pirfenidone treatment. An independent beneficial effect of pirfenidone was confirmed by regression analysis while controlling for confounding variables (P = .016). Finally, incidence of acute cellular rejections within the first 30 days after SLTx was lower in patients with previous pirfenidone treatment (0.0% vs 19.2%; P = .040). Our data suggest a beneficial role of previous use of pirfenidone in patients with IPF who were undergoing SLTx.
Collapse
Affiliation(s)
- Tobias Veit
- Department of Internal Medicine V, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), University of Munich, LMU, Munich, Germany
| | - Gabriela Leuschner
- Department of Internal Medicine V, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), University of Munich, LMU, Munich, Germany
| | - Alma Sisic
- Transplant Center, University of Munich, Munich, Germany
| | - Felix Ceelen
- Department of Internal Medicine V, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), University of Munich, LMU, Munich, Germany
| | - Dieter Munker
- Department of Internal Medicine V, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), University of Munich, LMU, Munich, Germany
| | - Magdalena Schmitzer
- Department of Internal Medicine V, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), University of Munich, LMU, Munich, Germany
| | - Thomas Weig
- Department of Anaesthesiology, University of Munich, LMU, Munich, Germany
| | - Sebastian Michel
- Clinic of Cardiac Surgery, University of Munich, LMU, Munich, Germany
| | | | - Bruno Meiser
- Transplant Center, University of Munich, Munich, Germany
| | - Alexander Crispin
- IBE - Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilian University Munich, Munich, Germany
| | - Claus Neurohr
- Department of Internal Medicine V, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), University of Munich, LMU, Munich, Germany
| | - Jürgen Behr
- Department of Internal Medicine V, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), University of Munich, LMU, Munich, Germany
| | - Katrin Milger
- Department of Internal Medicine V, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), University of Munich, LMU, Munich, Germany
| | - Nikolaus Kneidinger
- Department of Internal Medicine V, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), University of Munich, LMU, Munich, Germany
| |
Collapse
|
27
|
Heukels P, Moor C, von der Thüsen J, Wijsenbeek M, Kool M. Inflammation and immunity in IPF pathogenesis and treatment. Respir Med 2019; 147:79-91. [DOI: 10.1016/j.rmed.2018.12.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/21/2018] [Accepted: 12/29/2018] [Indexed: 12/11/2022]
|
28
|
Kolilekas L, Papiris S, Bouros D. Existing and emerging treatments for idiopathic pulmonary fibrosis. Expert Rev Respir Med 2019; 13:229-239. [DOI: 10.1080/17476348.2019.1568244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lykourgos Kolilekas
- 7th Department of Pneumonology, Hospital for Diseases of the Chest, “Sotiria”, Athens, Greece
| | - Spyridon Papiris
- 2nd Department of respiratory Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, Interstitial Lung Diseases Unit, Hospital for Diseases of the Chest, “Sotiria”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Mecott-Rivera GÁ, Aguilar-Baqueiro JA, Bracho S, Miranda-Maldonado I, Franco-Márquez R, Castro-Govea Y, Dorsey-Treviño EG, García-Pérez MM. Pirfenidone increases the epithelialization rate of skin graft donor sites. Burns 2018; 44:2051-2058. [DOI: 10.1016/j.burns.2018.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/25/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
|
30
|
Ozbilgin K, Üner MA, Ozkut M, Hasdemir PS. The effects of pirfenidone on T helper cells in prevention of intraperitoneal adhesions. Kaohsiung J Med Sci 2017; 33:271-276. [DOI: 10.1016/j.kjms.2017.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
|
31
|
Salas-Villalobos T, Lozano-Sepúlveda S, Rincón-Sánchez A, Govea-Salas M, Rivas-Estilla A. Mechanisms involved in liver damage resolution after hepatitis C virus clearance. MEDICINA UNIVERSITARIA 2017. [DOI: 10.1016/j.rmu.2017.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
32
|
Abstract
Cardiac fibrosis is a significant global health problem that is closely associated with multiple forms of cardiovascular disease, including myocardial infarction, dilated cardiomyopathy, and diabetes. Fibrosis increases myocardial wall stiffness due to excessive extracellular matrix deposition, causing impaired systolic and diastolic function, and facilitating arrhythmogenesis. As a result, patient morbidity and mortality are often dramatically elevated compared with those with cardiovascular disease but without overt fibrosis, demonstrating that fibrosis itself is both a pathologic response to existing disease and a significant risk factor for exacerbation of the underlying condition. The lack of any specific treatment for cardiac fibrosis in patients suffering from cardiovascular disease is a critical gap in our ability to care for these individuals. Here we provide an overview of the development of cardiac fibrosis, and discuss new research directions that have recently emerged and that may lead to the creation of novel treatments for patients with cardiovascular diseases. Such treatments would, ideally, complement existing therapy by specifically focusing on amelioration of fibrosis.
Collapse
Affiliation(s)
- Danah Al Hattab
- a Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada.,b Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Michael P Czubryt
- a Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada.,b Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
33
|
George PM, Wells AU. Pirfenidone for the treatment of idiopathic pulmonary fibrosis. Expert Rev Clin Pharmacol 2017; 10:483-491. [PMID: 28266906 DOI: 10.1080/17512433.2017.1295846] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a diffuse parenchymal lung disease with no cure. Up until recently, no treatment had been proven to alter its natural history as judged by rate of lung function decline. In 2014 however, the emergence of two novel anti-fibrotic agents, Pirfenidone and Nintedanib revolutionized the management of this condition. Both have demonstrated the ability to deliver a major reduction in the rate of chronic IPF progression. Areas Covered: This review article focuses on Pirfenidone - a pyridone derivative initially designed as an analgesic and anti-pyretic agent. Here we describe the history of the drug from its inception through to exploratory pre-clinical in-vitro and in-vivo studies where its anti-fibrotic potential was identified, and eventually to large multicenter randomized controlled trials. Expert Commentary: This article also summarizes some of the difficulties surrounding clinical end-point selection in IPF trials and addresses some of the challenges facing the IPF community over the coming years.
Collapse
Affiliation(s)
- Peter M George
- a Department of Respiratory Medicine, Royal Brompton Hospital , Interstitial Lung Disease Unit , London , SW3 6NP, UK
| | - Athol U Wells
- a Department of Respiratory Medicine, Royal Brompton Hospital , Interstitial Lung Disease Unit , London , SW3 6NP, UK
| |
Collapse
|
34
|
Pirfenidone ameliorates murine chronic GVHD through inhibition of macrophage infiltration and TGF-β production. Blood 2017; 129:2570-2580. [PMID: 28254742 DOI: 10.1182/blood-2017-01-758854] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is hampered by chronic graft-versus-host disease (cGVHD), resulting in multiorgan fibrosis and diminished function. Fibrosis in lung and skin leads to progressive bronchiolitis obliterans (BO) and scleroderma, respectively, for which new treatments are needed. We evaluated pirfenidone, a Food and Drug Administration (FDA)-approved drug for idiopathic pulmonary fibrosis, for its therapeutic effect in cGVHD mouse models with distinct pathophysiology. In a full major histocompatibility complex (MHC)-mismatched, multiorgan system model with BO, donor T-cell responses that support pathogenic antibody production are required for cGVHD development. Pirfenidone treatment beginning one month post-transplant restored pulmonary function and reversed lung fibrosis, which was associated with reduced macrophage infiltration and transforming growth factor-β production. Pirfenidone dampened splenic germinal center B-cell and T-follicular helper cell frequencies that collaborate to produce antibody. In both a minor histocompatibility antigen-mismatched as well as a MHC-haploidentical model of sclerodermatous cGVHD, pirfenidone significantly reduced macrophages in the skin, although clinical improvement of scleroderma was only seen in one model. In vitro chemotaxis assays demonstrated that pirfenidone impaired macrophage migration to monocyte chemoattractant protein-1 (MCP-1) as well as IL-17A, which has been linked to cGVHD generation. Taken together, our data suggest that pirfenidone is a potential therapeutic agent to ameliorate fibrosis in cGVHD.
Collapse
|
35
|
El-Agamy DS. Pirfenidone ameliorates concanavalin A-induced hepatitis in mice via modulation of reactive oxygen species/nuclear factor kappa B signalling pathways. J Pharm Pharmacol 2016; 68:1559-1566. [DOI: 10.1111/jphp.12651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/18/2016] [Indexed: 01/25/2023]
Abstract
Abstract
Objectives
This study aimed to evaluate the potential protective effects of pirfenidone (PFD) against concanavalin A (Con A)-induced hepatitis in mice.
Methods
Autoimmune model of hepatitis was established using single intravenous injection of Con A. Mice were randomly assigned into four groups as follows: control group; Con A group; and two groups, receiving PFD in two dose levels (200, 300 mg/kg) for 5 days before Con A administration. Extent of hepatitis was studied using biochemical, histopathological and immunohistochemical estimations.
Key findings
Hepatitis was clearly evident through extensive hepatocellular lesions and elevated levels of serum transaminases, alkaline phosphatase and lactate dehydrogenase. Con A induced an imbalance between oxidant and antioxidant status in the hepatic tissue. Furthermore, Con A significantly elevated hepatic nuclear factor kappa B (NF-κB) expression and inflammatory cytokines levels (tumour necrosis factor-alpha, interleukin-6 and nitric oxide). PFD pretreatment potently ameliorated all these pathological changes.
Conclusions
Pirfenidone hepatoprotective activity may be mediated through its antioxidant ability that suppresses NF-κB activation signalling pathways suggesting that PFD may be a new candidate for treatment of acute hepatitis.
Collapse
Affiliation(s)
- Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
36
|
Lopez-de la Mora DA, Sanchez-Roque C, Montoya-Buelna M, Sanchez-Enriquez S, Lucano-Landeros S, Macias-Barragan J, Armendariz-Borunda J. Role and New Insights of Pirfenidone in Fibrotic Diseases. Int J Med Sci 2015; 12:840-7. [PMID: 26640402 PMCID: PMC4643073 DOI: 10.7150/ijms.11579] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/16/2015] [Indexed: 12/16/2022] Open
Abstract
Pirfenidone (PFD) is a non-peptide synthetic molecule issued as a broad-spectrum anti-fibrotic drug with the ability to decrease TGF-β1, TNF-α, PDGF and COL1A1 expression, which is highly related to prevent or remove excessive deposition of scar tissue in several organs. Basic and clinical evidence suggests that PFD may safely slow or inhibit the progressive fibrosis swelling after tissue injuries. Furthermore, a number of evidence suggests that this molecule will have positive effects in the treatment of other inflammatory diseases. This review contains current research in which PFD has been used as the treatment of several diseases, and focus mainly in the outcomes related to improve inflammation and fibrogenesis. Therefore, the main goal of this review is to focus on the novel findings of PFD efficacy rather than deepen in the chemical aspects of the molecule.
Collapse
Affiliation(s)
- David Alejandro Lopez-de la Mora
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Cibeles Sanchez-Roque
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Margarita Montoya-Buelna
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Sergio Sanchez-Enriquez
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Silvia Lucano-Landeros
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Jose Macias-Barragan
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico. ; 2. Departamento de Ciencias de la Salud, CUValles, University of Guadalajara, Guadalajara - Ameca km. 45.5, Ameca (46600), Mexico
| | - Juan Armendariz-Borunda
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| |
Collapse
|
37
|
Scheffert JL, Raza K. Immunosuppression in lung transplantation. J Thorac Dis 2014; 6:1039-53. [PMID: 25132971 DOI: 10.3978/j.issn.2072-1439.2014.04.23] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/16/2014] [Indexed: 01/10/2023]
Abstract
Lung transplantation can be a life-saving procedure for those with end-stage lung diseases. Unfortunately, long term graft and patient survival are limited by both acute and chronic allograft rejection, with a median survival of just over 6 years. Immunosuppressive regimens are employed to reduce the rate of rejection, and while protocols vary from center to center, conventional maintenance therapy consists of triple drug therapy with a calcineurin inhibitor (cyclosporine or tacrolimus), antiproliferative agents [azathioprine (AZA), mycophenolate, sirolimus (srl), everolimus (evl)], and corticosteroids (CS). Roughly 50% of lung transplant centers also utilize induction therapy, with polyclonal antibody preparations [equine or rabbit anti-thymocyte globulin (ATG)], interleukin 2 receptor antagonists (IL2RAs) (daclizumab or basiliximab), or alemtuzumab. This review summarizes these agents and the data surrounding their use in lung transplantation, as well as additional common and novel therapies in lung transplantation. Despite the progression of the management of lung transplant recipients, they continue to be at high risk of treatment-related complications, and poor graft and patient survival. Randomized clinical trials are needed to allow for the development of better agents, regimens and techniques to address above mentioned issues and reduce morbidity and mortality among lung transplant recipients.
Collapse
Affiliation(s)
- Jenna L Scheffert
- 1 NewYork-Presbyterian Hospital/Columbia University Medical Center, Department of Pharmacy, USA ; 2 Lung Transplant Program, Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, USA
| | - Kashif Raza
- 1 NewYork-Presbyterian Hospital/Columbia University Medical Center, Department of Pharmacy, USA ; 2 Lung Transplant Program, Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, USA
| |
Collapse
|
38
|
Avila G, Osornio-Garduño DS, Ríos-Pérez EB, Ramos-Mondragón R. Functional and structural impact of pirfenidone on the alterations of cardiac disease and diabetes mellitus. Cell Calcium 2014; 56:428-35. [PMID: 25108569 DOI: 10.1016/j.ceca.2014.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 12/19/2022]
Abstract
A synthetic compound, termed pirfenidone (PFD), is considered promising for the treatment of cardiac disease. It leads to beneficial effects in animal models of diabetes mellitus (DM); as well as in heart attack, atrial fibrillation, muscular dystrophy, and diabetic cardiomyopathy (DC). The latter is a result of alterations linked to metabolic syndrome as they promote cardiac hypertrophy, fibrosis and contractile dysfunction. Although reduced level of fibrosis and stiffness represent an essential step in the mechanism of PFD action, a wide range of functional effects might also contribute to the therapeutic benefits. For example, PFD stimulates L-type voltage-gated Ca(2+) channels (LTCCs), which are pivotal for a process known as excitation-contraction coupling (ECC). Recent evidence suggests that these two types of actions - namely structural and functional - aid in treating both cardiac disease and DM. This view is supported by the fact that in DC, for example, systolic dysfunction arises from both cardiac stiffness linked to fibrosis and down-regulation of ECC. Thus, not surprisingly, clinical trials have been conducted with PFD in the settings of DM, for treating not only cardiac but also renal disease. This review presents all these concepts, along with the possible mechanisms and pathophysiological consequences.
Collapse
Affiliation(s)
- Guillermo Avila
- Department of Biochemistry, Cinvestav-IPN, AP 14-740, México City, DF 07000, Mexico.
| | | | | | | |
Collapse
|
39
|
Conte E, Gili E, Fagone E, Fruciano M, Iemmolo M, Vancheri C. Effect of pirfenidone on proliferation, TGF-β-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur J Pharm Sci 2014; 58:13-9. [PMID: 24613900 DOI: 10.1016/j.ejps.2014.02.014] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/28/2014] [Accepted: 02/25/2014] [Indexed: 01/04/2023]
Abstract
Pirfenidone is an orally active small molecule that has been shown to inhibit the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis. Although pirfenidone exhibits well documented antifibrotic and antiinflammatory activities, in vitro and in vivo, its molecular targets and mechanisms of action have not been elucidated. In this study, we investigated the effects of pirfenidone on proliferation, TGF-β-induced differentiation and fibrogenic activity of primary human lung fibroblasts (HLFs). Pirfenidone reduced fibroblast proliferation and attenuated TGF-β-induced α-smooth muscle actin (SMA) and pro-collagen (Col)-I mRNA and protein levels. Importantly, pirfenidone inhibited TGF-β-induced phosphorylation of Smad3, p38, and Akt, key factors in the TGF-β pathway. Together, these results demonstrate that pirfenidone modulates HLF proliferation and TGF-β-mediated differentiation into myofibroblasts by attenuating key TGF-β-induced signaling pathways.
Collapse
Affiliation(s)
- Enrico Conte
- Department of Molecular and Clinical Biomedicine, University of Catania, 95123 Catania, Italy.
| | - Elisa Gili
- Department of Molecular and Clinical Biomedicine, University of Catania, 95123 Catania, Italy
| | - Evelina Fagone
- Department of Molecular and Clinical Biomedicine, University of Catania, 95123 Catania, Italy
| | - Mary Fruciano
- Department of Molecular and Clinical Biomedicine, University of Catania, 95123 Catania, Italy
| | - Maria Iemmolo
- Department of Molecular and Clinical Biomedicine, University of Catania, 95123 Catania, Italy
| | - Carlo Vancheri
- Department of Molecular and Clinical Biomedicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
40
|
Takeda Y, Tsujino K, Kijima T, Kumanogoh A. Efficacy and safety of pirfenidone for idiopathic pulmonary fibrosis. Patient Prefer Adherence 2014; 8:361-70. [PMID: 24711695 PMCID: PMC3968083 DOI: 10.2147/ppa.s37233] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating chronic fibrotic lung disease. Although the precise cause of the disease is still unknown, recent studies have shown that the pathogenesis of pulmonary fibrosis involves multiple mechanisms, with abnormal behavior of alveolar epithelial cells considered a primary event. Pirfenidone is a multifunctional, orally available small molecule with anti-fibrotic, anti-inflammatory, and antioxidative activities, and has been shown to be a modulator of cytokines and growth factors, including TGF-β1, TNF-α, bFGF, IFN-γ, IL-1β, and IL-18 in animal models. Although its precise mechanism of action is not currently clear, pirfenidone is considered to exert inhibitory effects on multiple pathways involved in the pathogenesis of IPF. Two randomized placebo-controlled clinical trials in Japan demonstrated that pirfenidone significantly reduced the rate of decline of vital capacity in IPF patients. A Phase III study showed a significant increase in progression-free survival of patients in pirfenidone-treated groups compared to the placebo group. These results paved the way for the approval of pirfenidone for the treatment of IPF patients in Japan in 2008. The promising results of the Phase II study in Japan led to a larger international Phase III trial (CAPACITY). Subsequently, pirfenidone has also been approved in the European Union, South Korea, and Canada to date. Pirfenidone treatment is generally tolerated. Major adverse events are gastrointestinal symptoms, including decreased appetite, abdominal discomfort and nausea, photosensitivity, and fatigue, but many of these are mild and manageable. Clinical experience has shown that reduction in pirfenidone dose and the supportive use of gastrointestinal drugs are effective ways to manage these symptoms. Thus, pirfenidone treatment provides a means of intervention in the clinical course of IPF, and is a promising candidate for improving patient prognosis. For future development, it is important to establish the appropriate modality of treatment with pirfenidone and/or novel potential drugs.
Collapse
Affiliation(s)
- Yoshito Takeda
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Correspondence: Yoshito Takeda, Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka, Japan, Tel +81 6 6879 3833, Fax +81 6 6879 3839, Email
| | - Kazuyuki Tsujino
- Department of Respiratory Medicine, Kinki Central Hospital of the Mutual Aid Association of Public School Teachers, Itami, Hyogo, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
41
|
Mediavilla-Varela M, Luddy K, Noyes D, Khalil FK, Neuger AM, Soliman H, Antonia SJ. Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biol Ther 2013; 14:860-8. [PMID: 23917542 DOI: 10.4161/cbt.25643] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recently it has become clear that the cost associated with the Warburg effect, which is inefficient production of ATP, is offset by selective advantages that are produced by resultant intracellular metabolic alterations. In fact tumors may be addicted to the Warburg effect. In addition these alterations result in changes in the extracellular tumor microenvironment that can also produce selective advantages for tumor cell growth and survival. One such extracellular alteration is increased adenosine concentrations that have been shown to impair T cell mediated rejection and support angiogenesis. The expression of the A2A receptor in non-small cell cancer (NSCLC) tissues, cell lines and cancer associated fibroblasts (CAF) was determined by performing immunohistrochemistry and immunoblot analysis. The efficacy of the A2A receptor antagonists in vivo was evaluated in a PC9 xenograft model. To determine the mode of cell death induced by A2A receptor antagonists flow cytometry, immunoblot, and cytotoxic analysis were performed. We found that a significant number of lung adenocarcinomas express adenosine A2A receptors. Antagonism of these receptors impaired CAF and tumor cell growth in vitro and inhibited human tumor xenograft growth in mice. These observations add to the rationale for testing adenosine A2A receptor antagonists as anticancer therapeutics. Not only could there be prevention of negative signaling in T cells within the tumor microenvironment and inhibition of angiogenesis, but also an inhibitory effect on tumor-promoting, immunosuppressive CAFs and a direct inhibitory effect on the tumor cells themselves.
Collapse
Affiliation(s)
| | - Kimberly Luddy
- Department of Immunology; H. Lee Moffitt Cancer Center; Tampa, FL USA
| | - David Noyes
- Department of Immunology; H. Lee Moffitt Cancer Center; Tampa, FL USA
| | - Farah K Khalil
- Anatomic Pathology Department; H. Lee Moffitt Cancer Center; Tampa, FL USA
| | - Anthony M Neuger
- Translational Research Core; Clinical Pharmacology Lab; H. Lee Moffitt Cancer Center; Tampa, FL USA
| | - Hatem Soliman
- Department of Women's Oncology and Experimental Therapeutics; H. Lee Moffitt Cancer Center; Tampa, FL USA
| | - Scott J Antonia
- Department of Immunology; H. Lee Moffitt Cancer Center; Tampa, FL USA; Thoracic Oncology Department; H. Lee Moffitt Cancer Center; Tampa, FL USA
| |
Collapse
|
42
|
Chen JF, Ni HF, Pan MM, Liu H, Xu M, Zhang MH, Liu BC. Pirfenidone inhibits macrophage infiltration in 5/6 nephrectomized rats. Am J Physiol Renal Physiol 2012; 304:F676-85. [PMID: 23152296 DOI: 10.1152/ajprenal.00507.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tubulointerstitial macrophage infiltration is a hallmark of chronic kidney disease involved in the progression of renal fibrosis. Pirfenidone is a newly identified antifibrotic drug, the potential mechanism of which remains unclear. The aim of this study was to investigate the effects of pirfenidone on M1/M2 macrophage infiltration in nephrectomized rats. Nephrectomized rats were treated with pirfenidone by gavage for 12 wk. Twenty-four hour urinary protein, N-acetyl-β-D-glycosaminidase (NAG) activity, systolic blood pressure, and C-reactive protein were determined. Paraffin-embedded sections were stained for CD68, CCR7, and CD163 macrophages. Monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α), as well as M1 and M2 macrophages secretory markers, were evaluated by real-time RT-PCR and Western blotting analysis. Pirfenidone significantly improved the elevated proteinuria and NAG activity from week 2 onward after surgery. Pirfenidone attenuated interstitial fibrosis and decreased expression of fibrotic markers including transforming growth factor-β(1), connective tissue growth factor, α-smooth muscle actin, fibronectin, and fibroblast-specific protein-1. Pirfenidone significantly decreased the infiltrating macrophages. The number of M1 and M2 macrophages was significantly lower after pirfenidone treatment. MCP-1 and MIP-1α were increased in nephrectomized rats at mRNA and protein levels. Pirfenidone treatment significantly inhibited their expression. The TNF-α, IL-6, and nitric oxide synthases-2 expressed by M1 macrophages were increased in nephrectomized rats, and pirfenidone significantly attenuated their expression. Pirfenidone treatment also significantly decreased arginase-1, dectin-1, CD206, and CD86 expressed by M2 macrophages. Thus pirfenidone inhibits M1 and M2 macrophage infiltration in 5/6 nephrectomized rats, which suggests its efficacy in the early and late periods of renal fibrosis.
Collapse
Affiliation(s)
- Jun-Feng Chen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
BACKGROUND Pirfenidone (PFD) is an antifibrotic agent with beneficial effects on proinflammatory disorders. In this study, we further investigated PFD and long-acting form, "deuterated PFD," immune-modulating properties by evaluating their effects on mouse dendritic cells (DCs). METHODS The effects of PFD on DCs were examined in vivo using an orthotopic mouse lung transplant model and in vitro using isolated bone marrow-derived DCs in response to lipopolysaccharide and allogeneic stimulation. RESULTS In mouse lung transplants, PFD and deuterated PFD treatment improved allograft lung function based on peak airway pressure, less infiltrates/consolidation on micro-computed tomography scan imaging, and reduced lung rejection/injury. DC activation from lung allografts was suppressed with PFD, and there seemed to be a greater effect of PFD on CD11c(+)CD11b(-)CD103(+) lung DCs. In addition, PFD reduced the expression of several proinflammatory cytokines/chemokines from lung allografts. In vitro, DCs treated with PFD showed decreased expression of major histocompatibility complex class II and costimulatory molecules and the capacity of these DCs to stimulate T-cell activation was impaired, although antigen uptake was preserved. PFD directly inhibited the release of inflammatory cytokines from isolated DCs, was associated with a reduction of stress protein kinases, and attenuated lipopolysaccharide-dependent mitogen-activated protein kinase p38 phosphorylation. CONCLUSIONS PFD has lung allograft protective properties, and in addition to its known effects on T-cell biology, PFD immune-modulating activities encompass inhibitory effects on DC activation and function.
Collapse
|
44
|
Alcántar-Díaz BE, Gómez-Meda BC, Zúñiga-González GM, Zamora-Perez AL, González-Cuevas J, Alvarez-Rodríguez BA, Sánchez-Parada MG, García-Bañuelos JJ, Armendáriz-Borunda J. Genotoxic evaluation of pirfenidone using erythrocyte rodent micronucleus assay. Food Chem Toxicol 2012; 50:2760-5. [PMID: 22683486 DOI: 10.1016/j.fct.2012.05.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/25/2012] [Accepted: 05/27/2012] [Indexed: 01/13/2023]
Abstract
Pirfenidone is a non-steroidal antifibrotic compound that has been proposed in clinical protocols and experimental studies as a pharmacological treatment for fibroproliferative diseases. The objective of this study was to determine the genotoxicity or cytotoxicity of three doses of pirfenidone using the micronuclei test in peripheral blood erythrocytes of rodent models. Pirfenidone was administered orally to Balb-C mice for 3 days, and also was administered topically to hairless Sprague Dawley rats during the final stage of gestation. Mice were sampled every 24 h over the course of 6 days; pregnant rats were sampled every 24 h during the last 6 days of gestation, and pups were sampled at birth. Blood smears were analyzed and the frequencies of micronucleated erythrocytes (MNEs), micronucleated polychromatic erythrocytes (MNPCEs), and the proportion of polychromatic erythrocytes (PCEs), were recorded in samples from mice, pregnant rats and rat neonates. Increases in MN frequencies (p<0.03) were noted only in the positive control groups. No genotoxic effects or decreased PCE values were observed neither in newborn rats transplacentally exposed to pirfenidone, or in two adult rodent models when pirfenidone was administered orally or topically.
Collapse
Affiliation(s)
- Blanca E Alcántar-Díaz
- Instituto de Biología Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de Salud, Universidad de Guadalajara, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Issa F, Chandrasekharan D, Wood KJ. Regulatory T cells as modulators of chronic allograft dysfunction. Curr Opin Immunol 2012; 23:648-54. [PMID: 21752619 DOI: 10.1016/j.coi.2011.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/20/2011] [Indexed: 12/19/2022]
Abstract
Chronic allograft dysfunction (CAD) in solid organ transplantation is a principal cause of patient morbidity and late allograft loss. The pathogenesis of CAD is largely secondary to chronic damage by the adaptive immune system and long-term immunosuppression. Manipulating these factors may be possible with the use of regulatory T cells (Treg), which have the ability to suppress specific immune responses and therefore potentially remove the need for immunosuppressive drugs. Studies of CAD in experimental models have demonstrated the capacity for both mouse and human Treg cellular therapy to prevent the development of some manifestations of CAD. Furthermore, a role for Treg has been demonstrated in clinically tolerant transplant patients. Certain immunosuppressive therapies are also proving to be 'Treg friendly' and may be helpful in promoting Treg while maintaining other immunosuppressive activity. With this in mind, monitoring for biomarkers of operational tolerance with tailored immunosuppressive therapy or controlled weaning in conjunction with Treg cellular therapy may be a useful strategy to pursue.
Collapse
Affiliation(s)
- Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, United Kingdom
| | | | | |
Collapse
|
46
|
Navarro-Partida J, Martinez-Rizo AB, Gonzalez-Cuevas J, Arrevillaga-Boni G, Ortiz-Navarrete V, Armendariz-Borunda J. Pirfenidone restricts Th2 differentiation in vitro and limits Th2 response in experimental liver fibrosis. Eur J Pharmacol 2011; 678:71-7. [PMID: 22222821 DOI: 10.1016/j.ejphar.2011.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/14/2011] [Accepted: 12/17/2011] [Indexed: 02/06/2023]
Abstract
Polarized T helper type 2 (Th2) response is linked with fibrosis. Here, we evaluated the effect of the anti-fibrotic agent pirfenidone on Th type 1 (Th1) and Th2 responses. For in vivo testing; Wistar rats were made cirrhotic by intraperitoneal administration of thioacetamide. Once hepatic damage was established, pirfenidone was administered intragastrically on a daily basis during three weeks. Gene expression of Th marks was evaluated by RT-PCR and Western blot assays from liver homogenates. Pirfenidone therapy induced down-regulation of Th2 transcripts and proteins (GATA3 and IL-4), without affecting significantly Th1 genes expression (T-bet and IFN-γ). We found that the activated form of p38 MAPK (identified by Western blot) was reduced by pirfenidone treatment, which is consistent with the anti-Th2 activity observed. Pirfenidone reduced GATA3 nuclear localization without modifying its DNA binding activity (evaluated by electrophoretic mobility shift assay). For in vitro testing; human naive CD4+ T cells were cultured in either Th1 or Th2 polarizing conditions in the presence of pirfenidone and flow cytometric analysis of intracellular synthesis of IFN-γ and IL-4 was conducted. Pirfenidone impaired development of Th2 subpopulation. In conclusion, pirfenidone is capable of impairing Th2 differentiation and limits Th2 profibrogenic response. The mechanism involves p38 inhibition and regulation of GATA3 expression and translocation.
Collapse
Affiliation(s)
- Jose Navarro-Partida
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, CUCS, University of Guadalajara, Mexico.
| | | | | | | | | | | |
Collapse
|
47
|
Shi Q, Liu X, Bai Y, Cui C, Li J, Li Y, Hu S, Wei Y. In vitro effects of pirfenidone on cardiac fibroblasts: proliferation, myofibroblast differentiation, migration and cytokine secretion. PLoS One 2011; 6:e28134. [PMID: 22132230 PMCID: PMC3223242 DOI: 10.1371/journal.pone.0028134] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/01/2011] [Indexed: 01/14/2023] Open
Abstract
Cardiac fibroblasts (CFs) are the primary cell type responsible for cardiac fibrosis during pathological myocardial remodeling. Several studies have illustrated that pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) attenuates cardiac fibrosis in different animal models. However, the effects of pirfenidone on cardiac fibroblast behavior have not been examined. In this study, we investigated whether pirfenidone directly modulates cardiac fibroblast behavior that is important in myocardial remodeling such as proliferation, myofibroblast differentiation, migration and cytokine secretion. Fibroblasts were isolated from neonatal rat hearts and bioassays were performed to determine the effects of pirfenidone on fibroblast function. We demonstrated that treatment of CFs with pirfenidone resulted in decreased proliferation, and attenuated fibroblast α-smooth muscle actin expression and collagen contractility. Boyden chamber assay illustrated that pirfenidone inhibited fibroblast migration ability, probably by decreasing the ratio of matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1. Furthermore, pirfenidone attenuated the synthesis and secretion of transforming growth factor-β1 but elevated that of interleukin-10. These direct and pleiotropic effects of pirfenidone on cardiac fibroblasts point to its potential use in the treatment of adverse myocardial remodeling.
Collapse
Affiliation(s)
- Qiang Shi
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People Republic China
| | - Xiaoyan Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People Republic China
| | - Yuanyuan Bai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People Republic China
| | - Chuanjue Cui
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People Republic China
| | - Jun Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People Republic China
| | - Yishi Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People Republic China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People Republic China
- * E-mail: (YW); (SH)
| | - Yingjie Wei
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People Republic China
- * E-mail: (YW); (SH)
| |
Collapse
|
48
|
Gan Y, Herzog EL, Gomer RH. Pirfenidone treatment of idiopathic pulmonary fibrosis. Ther Clin Risk Manag 2011; 7:39-47. [PMID: 21339942 PMCID: PMC3039013 DOI: 10.2147/tcrm.s12209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Indexed: 12/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a discrete clinicopathologic entity defined by the presence of usual interstitial pneumonia on high-resolution CT scan and/or open lung biopsy and the absence of an alternate diagnosis or exposure explaining these findings. There are currently no FDA-approved therapies available to treat this disease, and the 5-year mortality is ∼80%. The pyridone derivative pirfenidone has been studied extensively as a possible therapeutic agent for use in this deadly disease. This review will present the unique clinical features and management issues encountered by physicians caring for IPF patients, including the poor response to conventional therapy. The biochemistry and preclinical efficacy of pirfenidone will be discussed along with a comprehensive review of the clinical efficacy, safety, and side effects and patient-centered foci such as quality of life and tolerability. It is hoped that this information will lend insight into the complex issues surrounding the use of pirfenidone in IPF and lead to further investigation of this agent as a possible therapy in this devastating disease.
Collapse
Affiliation(s)
- Ye Gan
- Department of Medicine, Central South University, Changsha, Hunan, China
| | | | | |
Collapse
|
49
|
Macías-Barragán J, Sandoval-Rodríguez A, Navarro-Partida J, Armendáriz-Borunda J. The multifaceted role of pirfenidone and its novel targets. FIBROGENESIS & TISSUE REPAIR 2010; 3:16. [PMID: 20809935 PMCID: PMC2944211 DOI: 10.1186/1755-1536-3-16] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 09/01/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Pirfenidone (PFD) is a molecule that exhibits antifibrotic properties in a variety of in vitro and animal models of lung, liver and renal fibrosis. These pathologies share many fibrogenic pathways with an abnormal fibrous wound-healing process; consequently, tissue repair and tissue regeneration-regulating mechanisms are altered. OBJECTIVE To investigate the usefulness of PFD as an antifibrotic agent in clinical and experimental models of fibrotic disease. CONCLUSIONS There is a growing understanding of the molecular effects of PFD on the wound healing mechanism, leading to novel approaches for the management of fibrosis in lung, liver and renal tissues. Although the optimum treatment for fibrosis remains undefined, it is possible that combined therapeutic regimens that include this wide-application molecule, pirfenidone, could offer a useful treatment for fibrotic disease.
Collapse
Affiliation(s)
- José Macías-Barragán
- Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Guadalajara, Mexico
| | - Ana Sandoval-Rodríguez
- Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Guadalajara, Mexico
| | - Jose Navarro-Partida
- Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Guadalajara, Mexico
| | - Juan Armendáriz-Borunda
- Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Guadalajara, Mexico
- O.P.D. Hospital Civil de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
50
|
Cho ME, Kopp JB. Pirfenidone: an anti-fibrotic therapy for progressive kidney disease. Expert Opin Investig Drugs 2010; 19:275-83. [PMID: 20050822 DOI: 10.1517/13543780903501539] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Many chronic diseases of various etiologies lead to fibrosis and organ dysfunction. Despite many advances in medicine in recent years, options to slow the progression of fibrotic diseases have remained limited. The recent availability of pirfenidone, an antifibrotic and anti-inflammatory investigational agent, thus offers a new hope for treating progressive fibrotic diseases. AREAS COVERED IN THIS REVIEW This review provides concise review of the available data regarding the mechanism and pharmacokinetics of pirfenidone and preclinical and clinical data regarding efficacy and safety in fibrotic diseases of the kidney. It also reviews results of clinical trials involving pirfenidone in other fibrotic diseases. WHAT THE READER WILL GAIN The review will provide in-depth review of pirfenidone with a renal focus. TAKE HOME MESSAGE Because many of the available clinical trials have been small and/or uncontrolled, conclusive evidence regarding efficacy and safety of pirfenidone is lacking, particularly in patients with renal or hepatic dysfunction. Larger studies are needed to better understand long-term efficacy and safety of this medication in various patient populations.
Collapse
Affiliation(s)
- Monique E Cho
- National Institutes of Health, Kidney Disease Branch, 10/CRC 5-5750, 9000 Rockville Pike, Bethesda, MD 20892-1268, USA.
| | | |
Collapse
|