1
|
Burke JA, Zhu Y, Zhang X, Rios PD, Joshi I, Lopez D, Nasir H, Roberts S, Rodriguez Q, McGarrigle J, Cook D, Oberholzer J, Luo X, Ameer GA. Phase-changing citrate macromolecule combats oxidative pancreatic islet damage, enables islet engraftment and function in the omentum. SCIENCE ADVANCES 2024; 10:eadk3081. [PMID: 38848367 PMCID: PMC11160476 DOI: 10.1126/sciadv.adk3081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Clinical outcomes for total-pancreatectomy followed by intraportal islet autotransplantation (TP-IAT) to treat chronic pancreatitis (CP) are suboptimal due to pancreas inflammation, oxidative stress during islet isolation, and harsh engraftment conditions in the liver's vasculature. We describe a thermoresponsive, antioxidant macromolecule poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) to protect islet redox status and function and to enable extrahepatic omentum islet engraftment. PPCN solution transitions from a liquid to a hydrogel at body temperature. Islets entrapped in PPCN and exposed to oxidative stress remain functional and support long-term euglycemia, in contrast to islets entrapped in a plasma-thrombin biologic scaffold. In the nonhuman primate (NHP) omentum, PPCN is well-tolerated and mostly resorbed without fibrosis at 3 months after implantation. In NHPs, autologous omentum islet transplantation using PPCN restores normoglycemia with minimal exogenous insulin requirements for >100 days. This preclinical study supports TP-IAT with PPCN in patients with CP and highlights antioxidant properties as a mechanism for islet function preservation.
Collapse
Affiliation(s)
- Jacqueline A. Burke
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yunxiao Zhu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Xiaomin Zhang
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Ira Joshi
- CellTrans Inc., Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | - Xunrong Luo
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Steyn LV, Drew D, Vlachos D, Huey B, Cocchi K, Price ND, Johnson R, Putnam CW, Papas KK. Accelerated absorption of regular insulin administered via a vascularizing permeable microchamber implanted subcutaneously in diabetic Rattus norvegicus. PLoS One 2023; 18:e0278794. [PMID: 37384782 PMCID: PMC10310011 DOI: 10.1371/journal.pone.0278794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
In Type 1 diabetes patients, even ultra-rapid acting insulins injected subcutaneously reach peak concentrations in 45 minutes or longer. The lag time between dosing and peak concentration, as well as intra- and inter-subject variability, render prandial glucose control and dose consistency difficult. We postulated that insulin absorption from subcutaneously implantable vascularizing microchambers would be significantly faster than conventional subcutaneous injection. Male athymic nude R. norvegicus rendered diabetic with streptozotocin were implanted with vascularizing microchambers (single chamber; 1.5 cm2 surface area per side; nominal volume, 22.5 μl). Plasma insulin was assayed after a single dose (1.5 U/kg) of diluted insulin human (Humulin®R U-100), injected subcutaneously or via microchamber. Microchambers were also implanted in additional animals and retrieved at intervals for histologic assessment of vascularity. Following conventional subcutaneous injection, the mean peak insulin concentration was 22.7 (SD 14.2) minutes. By contrast, when identical doses of insulin were injected via subcutaneous microchamber 28 days after implantation, the mean peak insulin time was shortened to 7.50 (SD 4.52) minutes. Peak insulin concentrations were similar by either route; however, inter-subject variability was reduced when insulin was administered via microchamber. Histologic examination of tissue surrounding microchambers showed mature vascularization on days 21 and 40 post-implantation. Implantable vascularizing microchambers of similar design may prove clinically useful for insulin dosing, either intermittently by needle, or continuously by pump including in "closed loop" systems, such as the artificial pancreas.
Collapse
Affiliation(s)
- Leah V. Steyn
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona College of Medicine-Tucson, University of Arizona, Tucson, AZ, United States of America
| | - Delaney Drew
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona College of Medicine-Tucson, University of Arizona, Tucson, AZ, United States of America
| | - Demetri Vlachos
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona College of Medicine-Tucson, University of Arizona, Tucson, AZ, United States of America
| | - Barry Huey
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona College of Medicine-Tucson, University of Arizona, Tucson, AZ, United States of America
| | - Katie Cocchi
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona College of Medicine-Tucson, University of Arizona, Tucson, AZ, United States of America
| | - Nicholas D. Price
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona College of Medicine-Tucson, University of Arizona, Tucson, AZ, United States of America
| | - Robert Johnson
- Procyon Technologies, LLC., Medical Research Building (Room 121), University of Arizona, Tucson, AZ, United States of America
| | - Charles W. Putnam
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona College of Medicine-Tucson, University of Arizona, Tucson, AZ, United States of America
| | - Klearchos K. Papas
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona College of Medicine-Tucson, University of Arizona, Tucson, AZ, United States of America
- Procyon Technologies, LLC., Medical Research Building (Room 121), University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
3
|
Dang HP, Chen H, Dargaville TR, Tuch BE. Cell delivery systems: Toward the next generation of cell therapies for type 1 diabetes. J Cell Mol Med 2022; 26:4756-4767. [PMID: 35975353 PMCID: PMC9465194 DOI: 10.1111/jcmm.17499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/17/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022] Open
Abstract
Immunoprotection and oxygen supply are vital in implementing a cell therapy for type 1 diabetes (T1D). Without these features, the transplanted islet cell clusters will be rejected by the host immune system, and necrosis will occur due to hypoxia. The use of anti-rejection drugs can help protect the transplanted cells from the immune system; yet, they also may have severe side effects. Cell delivery systems (CDS) have been developed for islet transplantation to avoid using immunosuppressants. CDS provide physical barriers to reduce the immune response and chemical coatings to reduce host fibrotic reaction. In some CDS, there is architecture to support vascularization, which enhances oxygen exchange. In this review, we discuss the current clinical and preclinical studies using CDS without immunosuppression as a cell therapy for T1D. We find that though CDS have been demonstrated for their ability to support immunoisolation of the grafted cells, their functionality has not been fully optimized. Current advanced methods in clinical trials demonstrate the systems are partly functional, physically complicated to implement or inefficient. However, modifications are being made to overcome these issues.
Collapse
Affiliation(s)
- Hoang Phuc Dang
- School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Hui Chen
- School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Tim R Dargaville
- School of Chemistry and Physics, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bernard E Tuch
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, Victoria, Australia.,Australian Foundation for Diabetes Research, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Oxygenation strategies for encapsulated islet and beta cell transplants. Adv Drug Deliv Rev 2019; 139:139-156. [PMID: 31077781 DOI: 10.1016/j.addr.2019.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023]
Abstract
Human allogeneic islet transplantation (ITx) is emerging as a promising treatment option for qualified patients with type 1 diabetes. However, widespread clinical application of allogeneic ITx is hindered by two critical barriers: the need for systemic immunosuppression and the limited supply of human islet tissue. Biocompatible, retrievable immunoisolation devices containing glucose-responsive insulin-secreting tissue may address both critical barriers by enabling the more effective and efficient use of allogeneic islets without immunosuppression in the near-term, and ultimately the use of a cell source with a virtually unlimited supply, such as human stem cell-derived β-cells or xenogeneic (porcine) islets with minimal or no immunosuppression. However, even though encapsulation methods have been developed and immunoprotection has been successfully tested in small and large animal models and to a limited extent in proof-of-concept clinical studies, the effective use of encapsulation approaches to convincingly and consistently treat diabetes in humans has yet to be demonstrated. There is increasing consensus that inadequate oxygen supply is a major factor limiting their clinical translation and routine implementation. Poor oxygenation negatively affects cell viability and β-cell function, and the problem is exacerbated with the high-density seeding required for reasonably-sized clinical encapsulation devices. Approaches for enhanced oxygen delivery to encapsulated tissues in implantable devices are therefore being actively developed and tested. This review summarizes fundamental aspects of islet microarchitecture and β-cell physiology as well as encapsulation approaches highlighting the need for adequate oxygenation; it also evaluates existing and emerging approaches for enhanced oxygen delivery to encapsulation devices, particularly with the advent of β-cell sources from stem cells that may enable the large-scale application of this approach.
Collapse
|
5
|
Salg GA, Giese NA, Schenk M, Hüttner FJ, Felix K, Probst P, Diener MK, Hackert T, Kenngott HG. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng 2019; 10:2041731419884708. [PMID: 31700597 PMCID: PMC6823987 DOI: 10.1177/2041731419884708] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
A bioartificial endocrine pancreas is proposed as a future alternative to current treatment options. Patients with insulin-secretion deficiency might benefit. This is the first systematic review that provides an overview of scaffold materials and techniques for insulin-secreting cells or cells to be differentiated into insulin-secreting cells. An electronic literature survey was conducted in PubMed/MEDLINE and Web of Science, limited to the past 10 years. A total of 197 articles investigating 60 different materials met the inclusion criteria. The extracted data on materials, cell types, study design, and transplantation sites were plotted into two evidence gap maps. Integral parts of the tissue engineering network such as fabrication technique, extracellular matrix, vascularization, immunoprotection, suitable transplantation sites, and the use of stem cells are highlighted. This systematic review provides an evidence-based structure for future studies. Accumulating evidence shows that scaffold-based tissue engineering can enhance the viability and function or differentiation of insulin-secreting cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Miriam Schenk
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix J Hüttner
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Felix
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Pascal Probst
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus K Diener
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannes Götz Kenngott
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
6
|
Zhu H, Li W, Liu Z, Li W, Chen N, Lu L, Zhang W, Wang Z, Wang B, Pan K, Zhang X, Chen G. Selection of Implantation Sites for Transplantation of Encapsulated Pancreatic Islets. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:191-214. [PMID: 29048258 DOI: 10.1089/ten.teb.2017.0311] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic islet transplantation has been validated as a valuable therapy for type 1 diabetes mellitus patients with exhausted insulin treatment. However, this therapy remains limited by the shortage of donor and the requirement of lifelong immunosuppression. Islet encapsulation, as an available bioartificial pancreas (BAP), represents a promising approach to enable protecting islet grafts without or with minimal immunosuppression and possibly expanding the donor pool. To develop a clinically implantable BAP, some key aspects need to be taken into account: encapsulation material, capsule design, and implant site. Among them, the implant site exerts an important influence on the engraftment, stability, and biocompatibility of implanted BAP. Currently, an optimal site for encapsulated islet transplantation may include sufficient capacity to host large graft volumes, portal drainage, ease of access using safe and reproducible procedure, adequate blood/oxygen supply, minimal immune/inflammatory reaction, pliable for noninvasive imaging and biopsy, and potential of local microenvironment manipulation or bioengineering. Varying degrees of success have been confirmed with the utilization of liver or extrahepatic sites in an experimental or preclinical setting. However, the ideal implant site remains to be further engineered or selected for the widespread application of encapsulated islet transplantation.
Collapse
Affiliation(s)
- Haitao Zhu
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China .,2 Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University , Xi'an, China
| | - Wenjing Li
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Zhongwei Liu
- 3 Department of Cardiology, Shaanxi Provincial People's Hospital , Xi'an, China
| | - Wenliang Li
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Niuniu Chen
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Linlin Lu
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Wei Zhang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Zhen Wang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Bo Wang
- 2 Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University , Xi'an, China .,4 Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University , Xi'an, China
| | - Kaili Pan
- 5 Department of Pediatrics (No. 2 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Xiaoge Zhang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Guoqiang Chen
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| |
Collapse
|
7
|
Smith KE, Kelly AC, Min CG, Weber CS, McCarthy FM, Steyn LV, Badarinarayana V, Stanton JB, Kitzmann JP, Strop P, Gruessner AC, Lynch RM, Limesand SW, Papas KK. Acute Ischemia Induced by High-Density Culture Increases Cytokine Expression and Diminishes the Function and Viability of Highly Purified Human Islets of Langerhans. Transplantation 2017; 101:2705-2712. [PMID: 28263224 PMCID: PMC6319561 DOI: 10.1097/tp.0000000000001714] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/24/2017] [Accepted: 02/16/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Encapsulation devices have the potential to enable cell-based insulin replacement therapies (such as human islet or stem cell-derived β cell transplantation) without immunosuppression. However, reasonably sized encapsulation devices promote ischemia due to high β cell densities creating prohibitively large diffusional distances for nutrients. It is hypothesized that even acute ischemic exposure will compromise the therapeutic potential of cell-based insulin replacement. In this study, the acute effects of high-density ischemia were investigated in human islets to develop a detailed profile of early ischemia induced changes and targets for intervention. METHODS Human islets were exposed in a pairwise model simulating high-density encapsulation to normoxic or ischemic culture for 12 hours, after which viability and function were measured. RNA sequencing was conducted to assess transcriptome-wide changes in gene expression. RESULTS Islet viability after acute ischemic exposure was reduced compared to normoxic culture conditions (P < 0.01). Insulin secretion was also diminished, with ischemic β cells losing their insulin secretory response to stimulatory glucose levels (P < 0.01). RNA sequencing revealed 657 differentially expressed genes following ischemia, with many that are associated with increased inflammatory and hypoxia-response signaling and decreased nutrient transport and metabolism. CONCLUSIONS In order for cell-based insulin replacement to be applied as a treatment for type 1 diabetes, oxygen and nutrient delivery to β cells will need to be maintained. We demonstrate that even brief ischemic exposure such as would be experienced in encapsulation devices damages islet viability and β cell function and leads to increased inflammatory signaling.
Collapse
Affiliation(s)
- Kate E. Smith
- Department of Surgery, University of Arizona, Tucson, AZ
- Department of Physiological Sciences GIDP, University of Arizona, Tucson, AZ
| | - Amy C. Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | - Catherine G. Min
- Department of Surgery, University of Arizona, Tucson, AZ
- Department of Physiological Sciences GIDP, University of Arizona, Tucson, AZ
| | - Craig S. Weber
- Department of Physiology, University of Arizona, Tucson, AZ
| | - Fiona M. McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | - Leah V. Steyn
- Department of Surgery, University of Arizona, Tucson, AZ
| | | | | | | | - Peter Strop
- Sanofi-Aventis Group, Tucson, AZ
- Icagen, Inc., Tucson, AZ
| | | | | | - Sean W. Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | | |
Collapse
|
8
|
Effects of Composition of Alginate-Polyethylene Glycol Microcapsules and Transplant Site on Encapsulated Islet Graft Outcomes in Mice. Transplantation 2017; 101:1025-1035. [PMID: 27525644 PMCID: PMC5642344 DOI: 10.1097/tp.0000000000001454] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Understanding the effects of capsule composition and transplantation site on graft outcomes of encapsulated islets will aid in the development of more effective strategies for islet transplantation without immunosuppression. Methods Here, we evaluated the effects of transplanting alginate (ALG)-based microcapsules (Micro) in the confined and well-vascularized epididymal fat pad (EFP) site, a model of the human omentum, as opposed to free-floating in the intraperitoneal cavity (IP) in mice. We also examined the effects of reinforcing ALG with polyethylene glycol (PEG). To allow transplantation in the EFP site, we minimized capsule size to 500 ± 17 μm. Unlike ALG, PEG resists osmotic stress, hence we generated hybrid microcapsules by mixing PEG and ALG (MicroMix) or by coating ALG capsules with a 15 ± 2 μm PEG layer (Double). Results We found improved engraftment of fully allogeneic BALB/c islets in Micro capsules transplanted in the EFP (median reversal time [MRT], 1 day) versus the IP site (MRT, 5 days; P < 0.01) in diabetic C57BL/6 mice and of Micro encapsulated (MRT, 8 days) versus naked (MRT, 36 days; P < 0.01) baboon islets transplanted in the EFP site. Although in vitro viability and functionality of islets within MicroMix and Double capsules were comparable to Micro, addition of PEG to ALG in MicroMix capsules improved engraftment of allogeneic islets in the IP site, but resulted deleterious in the EFP site, probably due to lower biocompatibility. Conclusions Our results suggest that capsule composition and transplant site affect graft outcomes through their effects on nutrient availability, capsule stability, and biocompatibility. By evaluating the effects of the encapsulated islet grafts with different capsule compositions and transplant sites, the authors suggest that the islet grafts with micro capsules and implanted in vascularized sites may increase clinical efficacy. Supplemental digital content is available in the text.
Collapse
|
9
|
Barkai U, Rotem A, de Vos P. Survival of encapsulated islets: More than a membrane story. World J Transplant 2016; 6:69-90. [PMID: 27011906 PMCID: PMC4801806 DOI: 10.5500/wjt.v6.i1.69] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/02/2015] [Accepted: 12/20/2015] [Indexed: 02/05/2023] Open
Abstract
At present, proven clinical treatments but no cures are available for diabetes, a global epidemic with a huge economic burden. Transplantation of islets of Langerhans by their infusion into vascularized organs is an experimental clinical protocol, the first approach to attain cure. However, it is associated with lifelong use of immunosuppressants. To overcome the need for immunosuppression, islets are encapsulated and separated from the host immune system by a permselective membrane. The lead material for this application is alginate which was tested in many animal models and a few clinical trials. This review discusses all aspects related to the function of transplanted encapsulated islets such as the basic requirements from a permselective membrane (e.g., allowable hydrodynamic radii, implications of the thickness of the membrane and relative electrical charge). Another aspect involves adequate oxygen supply, which is essential for survival/performance of transplanted islets, especially when using large retrievable macro-capsules implanted in poorly oxygenated sites like the subcutis. Notably, islets can survive under low oxygen tension and are physiologically active at > 40 Torr. Surprisingly, when densely crowded, islets are fully functional under hyperoxic pressure of up to 500 Torr (> 300% of atmospheric oxygen tension). The review also addresses an additional category of requirements for optimal performance of transplanted islets, named auxiliary technologies. These include control of inflammation, apoptosis, angiogenesis, and the intra-capsular environment. The review highlights that curing diabetes with a functional bio-artificial pancreas requires optimizing all of these aspects, and that significant advances have already been made in many of them.
Collapse
|
10
|
Schulz TC. Concise Review: Manufacturing of Pancreatic Endoderm Cells for Clinical Trials in Type 1 Diabetes. Stem Cells Transl Med 2015; 4:927-31. [PMID: 26062982 DOI: 10.5966/sctm.2015-0058] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/13/2015] [Indexed: 01/28/2023] Open
Abstract
The cellular component of ViaCyte's VC-01 combination product for type 1 diabetes, pancreatic endoderm cells (PEC-01) derived from CyT49 human embryonic stem cells, matures after transplantation and functions to regulate blood glucose in rodent models. The aims in manufacturing PEC-01 at scale are to generate a consistent and robust transplantable population that functions reliably and safely in vivo. ViaCyte has integrated multiple bioprocessing strategies to enable a tightly controlled PEC-01 manufacturing process for clinical entry.
Collapse
|
11
|
Gao B, Wang L, Han S, Pingguan-Murphy B, Zhang X, Xu F. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications. Crit Rev Biotechnol 2015; 36:619-29. [PMID: 25669871 DOI: 10.3109/07388551.2014.1002381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.
Collapse
Affiliation(s)
- Bin Gao
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education , Xi'an Jiaotong University School of Life Science and Technology , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China .,c Department of Endocrinology and Metabolism , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Lin Wang
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education , Xi'an Jiaotong University School of Life Science and Technology , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Shuang Han
- d Institute of Digestive Disease, Xijing Hospital, Fourth Military Medical University , Xi'an , China , and
| | - Belinda Pingguan-Murphy
- e Department of Biomedical Engineering, Faculty of Engineering , University of Malaya , Kuala Lumpur , Malaysia
| | - Xiaohui Zhang
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education , Xi'an Jiaotong University School of Life Science and Technology , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Feng Xu
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education , Xi'an Jiaotong University School of Life Science and Technology , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
12
|
Samy KP, Martin BM, Turgeon NA, Kirk AD. Islet cell xenotransplantation: a serious look toward the clinic. Xenotransplantation 2014; 21:221-9. [PMID: 24806830 DOI: 10.1111/xen.12095] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/14/2014] [Indexed: 01/09/2023]
Abstract
Type I diabetes remains a significant clinical problem in need of a reliable, generally applicable solution. Both whole organ pancreas and islet allotransplantation have been shown to grant patients insulin independence, but organ availability has restricted these procedures to an exceptionally small subset of the diabetic population. Porcine islet xenotransplantation has been pursued as a potential means of overcoming the limits of allotransplantation, and several preclinical studies have achieved near-physiologic function and year-long survival in clinically relevant pig-to-primate model systems. These proof-of-concept studies have suggested that xenogeneic islets may be poised for use in clinical trials. In this review, we examine recent progress in islet xenotransplantation, with a critical eye toward the gaps between the current state of the art and the state required for appropriate clinical investigation.
Collapse
Affiliation(s)
- Kannan P Samy
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|