1
|
Ivison S, Boucher G, Zheng G, Garcia RV, Kohen R, Bitton A, Rioux JD, Levings MK. Improving Reliability of Immunological Assays by Defining Minimal Criteria for Cell Fitness. Immunohorizons 2024; 8:622-634. [PMID: 39248805 PMCID: PMC11447670 DOI: 10.4049/immunohorizons.2300095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Human PBMC-based assays are often used as biomarkers for the diagnosis and prognosis of disease, as well as for the prediction and tracking of response to biological therapeutics. However, the development and use of PBMC-based biomarker assays is often limited by poor reproducibility. Complex immunological assays can be further complicated by variation in cell handling before analysis, especially when using cryopreserved cells. Variation in postthaw viability is further increased if PBMC isolation and cryopreservation are done more than a few hours after collection. There is currently a lack of evidence-based standards for the minimal PBMC viability or "fitness" required to ensure the integrity and reproducibility of immune cell-based assays. In this study, we use an "induced fail" approach to examine the effect of thawed human PBMC fitness on four flow cytometry-based assays. We found that cell permeability-based viability stains at the time of thawing did not accurately quantify cell fitness, whereas a combined measurement of metabolic activity and early apoptosis markers did. Investigation of the impact of different types and levels of damage on PBMC-based assays revealed that only when cells were >60-70% live and apoptosis negative did biomarker values cease to be determined by cell fitness rather than the inherent biology of the cells. These data show that, to reproducibly measure immunological biomarkers using cryopreserved PBMCs, minimal acceptable standards for cell fitness should be incorporated into the assay protocol.
Collapse
Affiliation(s)
- Sabine Ivison
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | | | - Grace Zheng
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Rosa V Garcia
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Rita Kohen
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Alain Bitton
- McGill University Health Centre, Montreal, Quebec, Canada
| | - John D Rioux
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Higdon LE, Scheiding S, Kus AM, Lim N, Long SA, Anderson MS, Wiedeman AE. Impact on in-depth immunophenotyping of delay to peripheral blood processing. Clin Exp Immunol 2024; 217:119-132. [PMID: 38693758 PMCID: PMC11239563 DOI: 10.1093/cei/uxae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/20/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
Peripheral blood mononuclear cell (PBMC) immunophenotyping is crucial in tracking activation, disease state, and response to therapy in human subjects. Many studies require the shipping of blood from clinical sites to a laboratory for processing to PBMC, which can lead to delays that impact sample quality. We used an extensive cytometry by time-of-flight (CyTOF) immunophenotyping panel to analyze the impacts of delays to processing and distinct storage conditions on cell composition and quality of PBMC from seven adults across a range of ages, including two with rheumatoid arthritis. Two or more days of delay to processing resulted in extensive red blood cell contamination and increased variability of cell counts. While total memory and naïve B- and T-cell populations were maintained, 4-day delays reduced the frequencies of monocytes. Variation across all immune subsets increased with delays of up to 7 days in processing. Unbiased clustering analysis to define more granular subsets confirmed changes in PBMC composition, including decreases of classical and non-classical monocytes, basophils, plasmacytoid dendritic cells, and follicular helper T cells, with each subset impacted at a distinct time of delay. Expression of activation markers and chemokine receptors changed by Day 2, with differential impacts across subsets and markers. Our data support existing recommendations to process PBMC within 36 h of collection but provide guidance on appropriate immunophenotyping experiments with longer delays.
Collapse
Affiliation(s)
- Lauren E Higdon
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, USA
| | - Sheila Scheiding
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Anna M Kus
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Noha Lim
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Mark S Anderson
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
3
|
Wei X, Tang N, Zhang L, Wang W, Li Y, Qin J, Yuan D, Wang Y. Optimizing peripheral blood chromosome analysis: effects of refrigeration time and blood volume. Am J Transl Res 2024; 16:1237-1245. [PMID: 38715818 PMCID: PMC11070348 DOI: 10.62347/vzbp5808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVE This study aims to investigate the impact of refrigeration time and blood volume on the success rate of peripheral blood chromosomal analysis using response surface methodology (RSM). METHODS Peripheral blood samples from 30 volunteers were subjected to chromosomal analysis under different refrigeration duration periods (≤7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days) along with different blood volumes (0.2 mL, 0.3 mL, 0.4 mL, 0.5 mL, 0.6 mL, 0.7 mL, and 0.8 mL). The effects of refrigeration time and blood volume on the success rate of peripheral blood chromosomal analysis were determined using the Chi-square test for trend, followed with Spearman's rank correlation coefficient, and RSM analysis to identify the optimal combination of refrigeration time and blood volume. RESULTS The refrigeration time within 10 days had a minor impact on the success rate, while refrigeration time more than 11 days significantly decreased the success rate. An increase in blood volume slightly improved the success rate. The success rate showed both linear and nonlinear changes with refrigeration time, while the effect of blood volume was primarily linear. The highest success rate was observed at a refrigeration time of ≤7 days and a blood volume of 0.8 mL. The interaction between refrigeration time and blood volume had a significant impact on the success rate. CONCLUSION It is recommended to keep the refrigeration time of blood samples within 7 days and control the blood volume at 0.8 mL to maximize the success rate of chromosomal analysis.
Collapse
Affiliation(s)
- Xiaoni Wei
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children’s Medical CenterLiuzhou 545000, Guangxi, China
- Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
| | - Ning Tang
- Comprehensive Experimental Center, Liuzhou Hospital of Guangzhou Women and Children’s Medical CenterLiuzhou 545000, Guangxi, China
| | - Ling Zhang
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children’s Medical CenterLiuzhou 545000, Guangxi, China
- Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
| | - Wendan Wang
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children’s Medical CenterLiuzhou 545000, Guangxi, China
- Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
| | - Yaxing Li
- Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
- Department of Medical Genetics, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
| | - Jiangfeng Qin
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children’s Medical CenterLiuzhou 545000, Guangxi, China
- Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
| | - Dejian Yuan
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children’s Medical CenterLiuzhou 545000, Guangxi, China
- Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
| | - Yujiang Wang
- Guangxi Transportation Industry Key Laboratory of Vehicle-Road-Cloud Integrated CooperationLiuzhou 545000, Guangxi, China
| |
Collapse
|
4
|
Cho T, Wierk A, Gertsenstein M, Rodgers CE, Uetrecht J, Henderson JT. The development and characterization of a CRISPR/Cas9-mediated PD-1 functional knockout rat as a tool to study idiosyncratic drug reactions. Toxicol Sci 2024; 198:233-245. [PMID: 38230816 DOI: 10.1093/toxsci/kfae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Idiosyncratic drug reactions are rare but serious adverse drug reactions unrelated to the known therapeutic properties of the drug and manifest in only a small percentage of the treated population. Animal models play an important role in advancing mechanistic studies examining idiosyncratic drug reactions. However, to be useful, they must possess similarities to those seen clinically. Although mice currently represent the dominant mammalian genetic model, rats are advantageous in many areas of pharmacologic study where their physiology can be examined in greater detail and is more akin to that seen in humans. In the area of immunology, this includes autoimmune responses and susceptibility to diabetes, in which rats more accurately mimic disease states in humans compared with mice. For example, oral nevirapine treatment can induce an immune-mediated skin rash in humans and rats, but not in mice due to the absence of the sulfotransferase required to form reactive metabolites of nevirapine within the skin. Using CRISPR-mediated gene editing, we developed a modified line of transgenic rats in which a segment of IgG-like ectodomain containing the core PD-1 interaction motif containing the native ligand and therapeutic antibody domain in exon 2 was deleted. Removal of this region critical for mediating PD-1/PD-L1 interactions resulted in animals with an increased immune response resulting in liver injury when treated with amodiaquine.
Collapse
Affiliation(s)
- Tiffany Cho
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Antonia Wierk
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Marina Gertsenstein
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Christopher E Rodgers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jack Uetrecht
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jeffrey T Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
5
|
Waerlop G, Leroux-Roels G, Pagnon A, Begue S, Salaun B, Janssens M, Medaglini D, Pettini E, Montomoli E, Gianchecchi E, Lambe T, Godfrey L, Bull M, Bellamy D, Amdam H, Bredholt G, Cox RJ, Clement F. Proficiency tests to evaluate the impact on assay outcomes of harmonized influenza-specific Intracellular Cytokine Staining (ICS) and IFN-ɣ Enzyme-Linked ImmunoSpot (ELISpot) protocols. J Immunol Methods 2023; 523:113584. [PMID: 37918618 DOI: 10.1016/j.jim.2023.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/30/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
The magnitude and quality of cell-mediated immune responses elicited by natural infection or vaccination are commonly measured by Interferon-ɣ (IFN-ɣ) Enzyme-Linked ImmunoSpot (ELISpot) and Intracellular Cytokine Staining (ICS). To date, laboratories apply a variety of in-house procedures which leads to diverging results, complicates interlaboratory comparisons and hampers vaccine evaluations. During the FLUCOP project, efforts have been made to develop harmonized Standard Operating Procedures (SOPs) for influenza-specific IFN-ɣ ELISpot and ICS assays. Exploratory pilot studies provided information about the interlaboratory variation before harmonization efforts were initiated. Here we report the results of two proficiency tests organized to evaluate the impact of the harmonization effort on assay results and the performance of participating FLUCOP partners. The introduction of the IFN-ɣ ELISpot SOP reduced variation of both background and stimulated responses. Post-harmonization background responses were all lower than an arbitrary threshold of 50 SFU/million cells. When stimulated with A/California and B/Phuket, a statistically significant reduction in variation (p < 0.0001) was observed and CV values were strongly reduced, from 148% to 77% for A/California and from 126% to 73% for B/Phuket. The harmonizing effect of applying an ICS SOP was also confirmed by an increased homogeneity of data obtained by the individual labs. The application of acceptance criteria on cell viability and background responses further enhanced the data homogeneity. Finally, as the same set of samples was analyzed by both the IFN-ɣ ELISpot and the ICS assays, a method comparison was performed. A clear correlation between the two methods was observed, but they cannot be considered interchangeable. In conclusion, proficiency tests show that a limited harmonization effort consisting of the introduction of SOPs and the use of the same in vitro stimulating antigens leads to a reduction of the interlaboratory variation of IFN-ɣ ELISpot data and demonstrate that substantial improvements for the ICS assay are achieved as comparable laboratory datasets could be generated. Additional steps to further reduce the interlaboratory variation of ICS data can consist of standardized gating templates and detailed data reporting instructions as well as further efforts to harmonize reagent and instrument use.
Collapse
Affiliation(s)
- Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium.
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Anke Pagnon
- Sanofi, Research Global Immunology, Marcy l'Etoile, France
| | - Sarah Begue
- Sanofi, Research Global Immunology, Marcy l'Etoile, France
| | | | | | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; VisMederi srl, 53100 Siena, Italy
| | | | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| | - Leila Godfrey
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, UK
| | - Maireid Bull
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| | - Duncan Bellamy
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Håkon Amdam
- Influenza Centre, Department of Clinical Science, University of Bergen, N5021 Bergen, Norway
| | - Geir Bredholt
- Influenza Centre, Department of Clinical Science, University of Bergen, N5021 Bergen, Norway
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, N5021 Bergen, Norway
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Ejma-Multański A, Wajda A, Paradowska-Gorycka A. Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases. Cells 2023; 12:2489. [PMID: 37887333 PMCID: PMC10605903 DOI: 10.3390/cells12202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells. This helps in understanding the underlying mechanisms of ACTDs, including inflammation, immune dysregulation and tissue damage. Through the analysis of gene expression patterns, surface proteins and cytokine profiles in peripheral blood mononuclear cell cultures and endothelial cell cultures researchers can identify potential biomarkers that can help in diagnosing, monitoring disease activity and predicting patient's response to treatment. Moreover, cell culturing of mesenchymal stem cells and skin modelling in ACTD research and treatment help to evaluate the effects of potential drugs or therapeutics on specific cell types relevant to the disease. Culturing cells in 3D allows us to assess safety, efficacy and the mechanisms of action, thereby aiding in the screening of potential drug candidates and the development of novel therapies. Nowadays, personalized medicine is increasingly mentioned as a future way of dealing with complex diseases such as ACTD. By culturing cells from individual patients and studying patient-specific cells, researchers can gain insights into the unique characteristics of the patient's disease, identify personalized treatment targets, and develop tailored therapeutic strategies for better outcomes. Cell culturing can help in the evaluation of the effects of these therapies on patient-specific cell populations, as well as in predicting overall treatment response. By analyzing changes in response or behavior of patient-derived cells to a treatment, researchers can assess the response effectiveness to specific therapies, thus enabling more informed treatment decisions. This literature review was created as a form of guidance for researchers and clinicians, and it was written with the use of the NCBI database.
Collapse
Affiliation(s)
- Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (A.W.); (A.P.-G.)
| | | | | |
Collapse
|
7
|
Congrave-Wilson Z, Kim M, Sutherland A, Jumarang J, Lee Y, Del Valle J, Cheng WA, da Silva Antunes R, Pannaraj PS. Effect of wash media type during PBMC isolation on downstream characterization of SARS-CoV-2-specific T cells. J Immunol Methods 2023; 519:113520. [PMID: 37390890 PMCID: PMC10306416 DOI: 10.1016/j.jim.2023.113520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Protocols for the isolation of peripheral blood mononuclear cells (PBMCs) from whole blood vary greatly between laboratories, especially in published studies of SARS-CoV-2-specific T cell responses following infection and vaccination. Research on the effects of different wash media types or centrifugation speeds and brake usage during the PBMC isolation process on downstream T cell activation and functionality is limited. Blood samples from 26 COVID-19-vaccinated participants were processed with different PBMC isolation methods using either PBS or RPMI as the wash media with high centrifugation speed and brakes or RPMI as the wash media with low speed and brakes (RPMI+ method). SARS-CoV-2 spike-specific T cells were quantified and characterized via a flow cytometry-based activation induced markers (AIM) assay and an interferon-γ (IFNγ) FluoroSpot assay and responses were compared between processing methods. Samples washed with RPMI showed higher AIM+ CD4 T cell responses than those washed with PBS and showed a shift away from naïve and towards an effector memory phenotype. The activation marker OX40 showed higher SARS-CoV-2 spike-induced upregulation on RPMI-washed CD4 T cells, while differences in CD137 upregulation were minimal between processing methods. The magnitude of the AIM+ CD8 T cell response was similar between processing methods but showed higher stimulation indices. Background frequencies of CD69+ CD8 T cells were increased in PBS-washed samples and were associated with higher baseline numbers of IFNγ-producing cells in the FluoroSpot assay. Slower braking in the RPMI+ method did not improve detection of SARS-CoV-2-specific T cells and caused longer processing times. Thus, the use of RPMI media with full centrifugation brakes during the wash steps of PBMC isolation was found to be most effective and efficient. Further studies are needed to elucidate the pathways involved in RPMI-mediated preservation of downstream T cell activity.
Collapse
Affiliation(s)
- Zion Congrave-Wilson
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Minjun Kim
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States; Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Jaycee Jumarang
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States; Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Yesun Lee
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States; Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Jennifer Del Valle
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Wesley A Cheng
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States; Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Pia S Pannaraj
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Pediatrics and Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
8
|
Tang Q, Leung J, Peng Y, Sanchez-Fueyo A, Lozano JJ, Lam A, Lee K, Greenland JR, Hellerstein M, Fitch M, Li KW, Esensten JH, Putnam AL, Lares A, Nguyen V, Liu W, Bridges ND, Odim J, Demetris AJ, Levitsky J, Taner T, Feng S. Selective decrease of donor-reactive T regs after liver transplantation limits T reg therapy for promoting allograft tolerance in humans. Sci Transl Med 2022; 14:eabo2628. [PMID: 36322627 PMCID: PMC11016119 DOI: 10.1126/scitranslmed.abo2628] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2024]
Abstract
Promoting immune tolerance to transplanted organs can minimize the amount of immunosuppressive drugs that patients need to take, reducing lifetime risks of mortality and morbidity. Regulatory T cells (Tregs) are essential for immune tolerance, and preclinical studies have shown their therapeutic efficacy in inducing transplantation tolerance. Here, we report the results of a phase 1/2 trial (ARTEMIS, NCT02474199) of autologous donor alloantigen-reactive Treg (darTreg) therapy in individuals 2 to 6 years after receiving a living donor liver transplant. The primary efficacy endpoint was calcineurin inhibitor dose reduction by 75% with stable liver function tests for at least 12 weeks. Among 10 individuals who initiated immunosuppression withdrawal, 1 experienced rejection before planned darTreg infusion, 5 received darTregs, and 4 were not infused because of failure to manufacture the minimal infusible dose of 100 × 106 cells. darTreg infusion was not associated with adverse events. Two darTreg-infused participants reached the primary endpoint, but an insufficient number of recipients were treated for assessing the efficacy of darTregs. Mechanistic studies revealed generalized Treg activation, senescence, and selective reduction of donor reactivity after liver transplantation. Overall, the ARTEMIS trial features a design concept for evaluating the efficacy of Treg therapy in transplantation. The mechanistic insight gained from the study may help guide the design of future trials.
Collapse
Affiliation(s)
- Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Joey Leung
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yani Peng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, School of Immunology and Microbial Sciences, King’s College London University, London WC2R 2LS, UK
| | - Juan-Jose Lozano
- Bioinformatic Platform, Biomedical Research Center in Hepatic and Digestive Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alice Lam
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karim Lee
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Medical Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Marc Hellerstein
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mark Fitch
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kelvin W. Li
- Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan H. Esensten
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Lab Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy L. Putnam
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Angela Lares
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vinh Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weihong Liu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nancy D. Bridges
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Jonah Odim
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute and Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Josh Levitsky
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Timucin Taner
- Departments of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sandy Feng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Waerlop G, Leroux-Roels G, Lambe T, Bellamy D, Medaglini D, Pettini E, Cox RJ, Trieu MC, Davies R, Bredholt G, Montomoli E, Gianchecchi E, Clement F. Harmonization and qualification of an IFN-γ Enzyme-Linked ImmunoSpot assay (ELISPOT) to measure influenza-specific cell-mediated immunity within the FLUCOP consortium. Front Immunol 2022; 13:984642. [PMID: 36159843 PMCID: PMC9493492 DOI: 10.3389/fimmu.2022.984642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza continues to be the most important cause of viral respiratory disease, despite the availability of vaccines. Today’s evaluation of influenza vaccines mainly focuses on the quantitative and functional analyses of antibodies to the surface proteins haemagglutinin (HA) and neuraminidase (NA). However, there is an increasing interest in measuring cellular immune responses targeting not only mutation-prone surface HA and NA but also conserved internal proteins as these are less explored yet potential correlates of protection. To date, laboratories that monitor cellular immune responses use a variety of in-house procedures. This generates diverging results, complicates interlaboratory comparisons, and hampers influenza vaccine evaluation. The European FLUCOP project aims to develop and standardize assays for the assessment of influenza vaccine correlates of protection. This report describes the harmonization and qualification of the influenza-specific interferon-gamma (IFN-γ) Enzyme-Linked ImmunoSpot (ELISpot) assay. Initially, two pilot studies were conducted to identify sources of variability during sample analysis and spot enumeration in order to develop a harmonized Standard Operating Procedure (SOP). Subsequently, an assay qualification study was performed to investigate the linearity, intermediate precision (reproducibility), repeatability, specificity, Lower and Upper Limits of Quantification (LLOQ-ULOQ), Limit of Detection (LOD) and the stability of signal over time. We were able to demonstrate that the FLUCOP harmonized IFN-γ ELISpot assay procedure can accurately enumerate IFN-γ secreting cells in the analytical range of 34.4 Spot Forming Units (SFU) per million cells up to the technical limit of the used reader and in the linear range from 120 000 to 360 000 cells per well, in plates stored up to 6 weeks after development. This IFN-γ ELISpot procedure will hopefully become a useful and reliable tool to investigate influenza-specific cellular immune responses induced by natural infection or vaccination and can be an additional instrument in the search for novel correlates of protection.
Collapse
Affiliation(s)
- Gwenn Waerlop
- Center for Vaccinology (CEVAC), University Hospital, Ghent University, Ghent, Belgium
- *Correspondence: Gwenn Waerlop,
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), University Hospital, Ghent University, Ghent, Belgium
| | - Teresa Lambe
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Duncan Bellamy
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Mai-Chi Trieu
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Richard Davies
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Geir Bredholt
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| | | | - Frédéric Clement
- Center for Vaccinology (CEVAC), University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Browne DJ, Kelly AM, Brady JL, Doolan DL. A high-throughput screening RT-qPCR assay for quantifying surrogate markers of immunity from PBMCs. Front Immunol 2022; 13:962220. [PMID: 36110843 PMCID: PMC9469018 DOI: 10.3389/fimmu.2022.962220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunoassays that quantitate cytokines and other surrogate markers of immunity from peripheral blood mononuclear cells (PBMCs), such as flow cytometry or Enzyme-Linked Immunosorbent Spot (ELIspot), allow highly sensitive measurements of immune effector function. However, those assays consume relatively high numbers of cells and expensive reagents, precluding comprehensive analyses and high-throughput screening (HTS). To address this issue, we developed a sensitive and specific reverse transcription-quantitative PCR (RT-qPCR)-based HTS assay, specifically designed to quantify surrogate markers of immunity from very low numbers of PBMCs. We systematically evaluated the volumes and concentrations of critical reagents within the RT-qPCR protocol, miniaturizing the assay and ultimately reducing the cost by almost 90% compared to current standard practice. We assessed the suitability of this cost-optimized RT-qPCR protocol as an HTS tool and determined the assay exceeds HTS uniformity and signal variance testing standards. Furthermore, we demonstrate this technique can effectively delineate a hierarchy of responses from as little as 50,000 PBMCs stimulated with CD4+ or CD8+ T cell peptide epitopes. Finally, we establish that this HTS-optimized protocol has single-cell analytical sensitivity and a diagnostic sensitivity equivalent to detecting 1:10,000 responding cells (i.e., 100 Spot Forming Cells/106 PBMCs by ELIspot) with over 90% accuracy. We anticipate this assay will have widespread applicability in preclinical and clinical studies, especially when samples are limited, and cost is an important consideration.
Collapse
|
11
|
Marashi H, Beihaghi M, Chaboksavar M, Khaksar S, Tehrani H, Abiri A. In silico analysis and in planta production of recombinant ccl21/IL1β protein and characterization of its in vitro anti-tumor and immunogenic activity. PLoS One 2022; 17:e0261101. [PMID: 36037155 PMCID: PMC9423642 DOI: 10.1371/journal.pone.0261101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
CCL21 has an essential role in anti-tumor immune activity. Epitopes of IL1β have adjuvant activity without causing inflammatory responses. CCR7 and its ligands play a vital role in the immune balance; specifically, in transport of T lymphocytes and antigen-presenting cells such as dendritic cells to the lymph nodes. This study aimed to produce epitopes of CCL21 and IL1β as a recombinant protein and characterize its in vitro anti-tumor and immunogenic activity. A codon-optimized ccl21/IL1β gene was designed and synthesized from human genes. Stability and binding affinity of CCL21/IL1β protein and CCR7 receptor were examined through in silico analyses. The construct was introduced into N. tabacum to produce this recombinant protein and the structure and function of CCL21/IL1β were examined. Purified protein from transgenic leaves generated a strong signal in SDS PAGE and western blotting assays. FTIR measurement and MALDI-TOF/TOF mass spectrography showed that ccl21/IL-1β was correctly expressed in tobacco plants. Potential activity of purified CCL21/IL1β in stimulating the proliferation and migration of MCF7 cancer cell line was investigated using the wound healing method. The results demonstrated a decrease in survival rate and metastasization of cancer cells in the presence of CCL21/IL1β, and IC50 of CCL21 on MCF7 cells was less than that of non-recombinant protein. Agarose assay on PBMCsCCR7+ showed that CCL21/IL1β has biological activity and there is a distinguishable difference between chemokinetic (CCL21) and chemotactic (FBS) movements. Overall, the results suggest that CCL21/IL1β could be considered an effective adjuvant in future in vivo and clinical tests.
Collapse
Affiliation(s)
- Hasan Marashi
- College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maria Beihaghi
- College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Masoud Chaboksavar
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Samad Khaksar
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Homan Tehrani
- Department of Paediatric, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Higdon LE, Ahmad AA, Schaffert S, Margulies KB, Maltzman JS. CMV-Responsive CD4 T Cells Have a Stable Cytotoxic Phenotype Over the First Year Post-Transplant in Patients Without Evidence of CMV Viremia. Front Immunol 2022; 13:904705. [PMID: 35837398 PMCID: PMC9275561 DOI: 10.3389/fimmu.2022.904705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Cytomegalovirus (CMV) infection is a known cause of morbidity and mortality in solid organ transplant recipients. While primary infection is controlled by a healthy immune system, CMV is never eradicated due to viral latency and periodic reactivation. Transplantation and associated therapies hinder immune surveillance of CMV. CD4 T cells are an important part of control of CMV reactivation. We therefore investigated how CMV impacts differentiation, functionality, and expansion of protective CD4 T cells from recipients of heart or kidney transplant in the first year post-transplant without evidence of CMV viremia. We analyzed longitudinal peripheral blood samples by flow cytometry and targeted single cell RNA sequencing coupled to T cell receptor (TCR) sequencing. At the time of transplant, CD4 T cells from CMV seropositive transplant recipients had a higher degree of immune aging than the seronegative recipients. The phenotype of CD4 T cells was stable over time. CMV-responsive CD4 T cells in our transplant cohort included a large proportion with cytotoxic potential. We used sequence analysis of TCRαβ to identify clonal expansion and found that clonally expanded CMV-responsive CD4 T cells were of a predominantly aged cytotoxic phenotype. Overall, our analyses suggest that the CD4 response to CMV is dominated by cytotoxicity and not impacted by transplantation in the first year. Our findings indicate that CMV-responsive CD4 T cells are homeostatically stable in the first year after transplantation and identify subpopulations relevant to study the role of this CD4 T cell population in post-transplant health.
Collapse
Affiliation(s)
- Lauren E. Higdon
- Department of Medicine, Nephrology, Stanford University, Palo Alto, CA, United States
- *Correspondence: Lauren E. Higdon, ; Jonathan S. Maltzman,
| | - Ayah A. Ahmad
- Macaulay Honors College, Hunter College, The City University of New York, New York, NY, United States
| | - Steven Schaffert
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, United States
- Department of Medicine/Biomedical Informatics, Stanford University, Stanford, CA, United States
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jonathan S. Maltzman
- Department of Medicine, Nephrology, Stanford University, Palo Alto, CA, United States
- Geriatric Research Education and Clinical Center, Veteran's Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- *Correspondence: Lauren E. Higdon, ; Jonathan S. Maltzman,
| |
Collapse
|
13
|
Delgado-Gonzalez A, Huang YW, Porpiglia E, Donoso K, Gonzalez VD, Fantl WJ. Measuring trogocytosis between ovarian tumor and natural killer cells. STAR Protoc 2022; 3:101425. [PMID: 35693208 PMCID: PMC9185020 DOI: 10.1016/j.xpro.2022.101425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Trogocytosis is an active transport mechanism by which one cell extracts a plasma membrane fragment with embedded molecules from an adjacent cell in a contact-dependent process leading to the acquisition of a new function. Our protocol, which has general applicability, consolidates and optimizes existing protocols while highlighting key experimental variables to demonstrate that natural killer (NK) cells acquire the tetraspanin CD9 by trogocytosis from ovarian tumor cells. For complete details on the use and execution of this protocol, please refer to Gonzalez et al. (2021).
Collapse
Affiliation(s)
- Antonio Delgado-Gonzalez
- Deparment of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ying-Wen Huang
- Deparment of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ermelinda Porpiglia
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Kenyi Donoso
- Deparment of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Veronica D. Gonzalez
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wendy J. Fantl
- Deparment of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Huang D, Yan H. Methyltransferase like 7B is upregulated in sepsis and modulates lipopolysaccharide-induced inflammatory response and macrophage polarization. Bioengineered 2022; 13:11753-11766. [PMID: 35603523 PMCID: PMC9275875 DOI: 10.1080/21655979.2022.2068892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Macrophages play a critical role in the regulation of the inflammatory responses in sepsis. Methyltransferase like 7B (METTL7B) has been implicated in several pathophysiological conditions. Nevertheless, the potential engagement of METTL7B in sepsis remains to be elucidated. In this study, we retrieved transcriptomic profile data of septic patients and healthy donors and compared the expression level of METTL7B between septic patients and healthy controls. We also collected septic patient samples to analyze METTL7B expression via RT-qPCR. Murine bone marrow-derived macrophages (BMDMs) were isolated and treated with incremental doses of LPS as an in vitro cell model. METTL7B was overexpressed or knocked down in BMDMs, and lipopolysaccharide (LPS)-mediated inflammatory cytokines production and macrophage polarization were evaluated. We found that METTL7B was upregulated in the blood and peripheral blood mononuclear cells (PBMC) of septic patients, which also showed a significant diagnostic potential for sepsis. In BMDMs, METTL7B was induced in a time and dose-dependent manner by LPS. Modulating the expression level of METTL7B could regulate LPS-mediated inflammatory cytokines production and macrophage polarization. The functional role of METTL7B was also validated in a septic mouse model. Our findings indicate that METTL7B is implicated in the immunopathogenesis of sepsis through modulating macrophage-mediated inflammatory responses. METTL7B may serve as a potential diagnostic and therapeutic target for sepsis.
Collapse
Affiliation(s)
- Dan Huang
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hai Yan
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
15
|
Kostrzewa-Nowak D, Nowak R. Beep Test Does Not Induce Phosphorylation of Ras/MAPK- or JAK/STAT-Related Proteins in Peripheral Blood T Lymphocytes. Front Physiol 2022; 13:823469. [PMID: 35370792 PMCID: PMC8965037 DOI: 10.3389/fphys.2022.823469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The Th1 cell subset is involved in the immunological response induced by physical exercise. The aim of this work is to evaluate the post-effort activation of Ras/MAPK and JAK/STAT signaling pathways in T cells of young, physically active men. Seventy-six physically active, healthy men between 15 and 21 years old performed a standard physical exercise protocol (Beep test). Phosphorylation levels of Ras/MAPK-(p38 MAPK, ERK1/2) and JAK/STAT-related (STAT1, STAT3, STAT5, and STAT6) proteins were evaluated by flow cytometry in Th and Tc cells post-effort and during the lactate recovery period. The performed physical effort was not a strong enough physiological stimulant to provoke the phosphorylation of ERK1/2, p38 MAPK, STAT1, STAT3, STAT5, and STAT6 in T cells, at least for the duration of our study (the end of the lactate recovery period). We conclude that more observation time-points, including shorter and longer times after the exercise, are required to determine if the Ras/MAPK signaling pathway is involved in modulating the post-effort immunological response.
Collapse
Affiliation(s)
- Dorota Kostrzewa-Nowak
- Institute of Physical Culture Sciences, University of Szczecin, Szczecin, Poland
- Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
- *Correspondence: Dorota Kostrzewa-Nowak,
| | - Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, Szczecin, Poland
| |
Collapse
|
16
|
khodadadi A, Talaiezadeh A, Heike Y, Galehdari H, Oraki Kohshour M, Sheikhi A, Jazayeri SN, Pedram M, Borhani M, Asadirad A. Natural adjuvants ( PC and G2) induce activated natural killer cells with NKG2D expression and cytotoxic properties in colorectal cancer. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2022; 15:15-23. [PMID: 35611258 PMCID: PMC9123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/29/2021] [Indexed: 11/30/2022]
Abstract
Aim This study aimed to investigate the effects of natural adjuvants (G2 and PC) to activate natural killer cells in colorectal cancer. Background Natural killer (NK) cells are an element of the innate immune system that can recognize and kill cancer cells and provide hope for cancer therapy. One of the current methods in cancer immunotherapy is NK cell therapy. Immunotherapy with NK cells has been limited because of the low number and cytotoxicity level of NK cells. Natural adjuvants such as PC and G2 may stimulate the immune system. It seems that these adjuvants could increase cytotoxic NK cells. Methods Twelve patients with colorectal cancer and six healthy individuals qualified for inclusion in this study. Peripheral blood mononuclear cells (PBMCs) from each patient with two distinctive concentrations (105and 5×104 cells/well) were treated with Interleukin2 (IL2), PC, and G2 adjuvant separately. The NK cell's surface markers, including CD16, CD56, and NKG2D, were evaluated by flow cytometry. The cytotoxicity effect of treated PBMCs as effector cells against NK sensitive cell line (K562) was assessed using the LDH assay method. Results The results revealed a significant increase in the level of CD16+NKG2D+ NK cells in PBMCs treated with the G2 group compared with the control group in CRC PBMC (p<0.001) as well as the normal PBMC group (p < 0.01). In addition, the results indicated a significant increase in the level of CD56+NKG2D+ cells in the PBMC treated with PC (p < 0.05) and G2 (p < 0.001) groups compared with the PBMC group. The cytotoxicity result of PBMC from CRC patients in 10:1 ratio of the effector: target showed that the cells' cytotoxicity in the PBMCs treated with PC (p<0.01) and G2 (p<0.05) was significantly higher than the untreated PBMC. Conclusion According to the result of this study, it can be stated that the PC and G2 adjuvants could be candidates for inducing cytotoxic natural killer cells.
Collapse
Affiliation(s)
- Ali khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Abdolhassan Talaiezadeh
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Surgery, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yuji Heike
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Centre Research and Development, Tokyo, Japan.
- Deceased
| | - Hamid Galehdari
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Iran.
| | - Mojtaba Oraki Kohshour
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Abdolkarim Sheikhi
- Department of Immunology, Faculty of Medicine, Dezful Faculty of Medical Sciences, Dezful, Iran.
| | - Seyed Nematollah Jazayeri
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Pedram
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrdad Borhani
- Department of Statistics, Faculty of Epidemiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Deceased
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
17
|
Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021; 179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is shaped by dynamic metabolic and immune interactions between precancerous and cancerous tumor cells and stromal cells like epithelial cells, fibroblasts, endothelial cells, and hematopoietically-derived immune cells. The metabolic states of the TME, including the hypoxic and acidic niches, influence the immunosuppressive phenotypes of the stromal and immune cells, which confers resistance to both host-mediated tumor killing and therapeutics. Numerous in vitro TME platforms for studying immunotherapies, including cell therapies, are being developed. However, we do not yet understand which immune and stromal components are most critical and how much model complexity is needed to answer specific questions. In addition, scalable sourcing and quality-control of appropriate TME cells for reproducibly manufacturing these platforms remain challenging. In this regard, lessons from the manufacturing of immunomodulatory cell therapies could provide helpful guidance. Although immune cell therapies have shown unprecedented results in hematological cancers and hold promise in solid tumors, their manufacture poses significant scale, cost, and quality control challenges. This review first provides an overview of the in vivo TME, discussing the most influential cell populations in the tumor-immune landscape. Next, we summarize current approaches for cell therapies against cancers and the relevant manufacturing platforms. We then evaluate current immune-tumor models of the TME and immunotherapies, highlighting the complexity, architecture, function, and cell sources. Finally, we present the technical and fundamental knowledge gaps in both cell manufacturing systems and immune-TME models that must be addressed to elucidate the interactions between endogenous tumor immunity and exogenous engineered immunity.
Collapse
|
18
|
Higdon LE, Schaffert S, Cohen RH, Montez-Rath ME, Lucia M, Saligrama N, Margulies KB, Martinez OM, Tan JC, Davis MM, Khatri P, Maltzman JS. Functional Consequences of Memory Inflation after Solid Organ Transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2086-2095. [PMID: 34551963 PMCID: PMC8492533 DOI: 10.4049/jimmunol.2100405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
CMV is a major infectious complication following solid organ transplantation. Reactivation of CMV leads to memory inflation, a process in which CD8 T cells expand over time. Memory inflation is associated with specific changes in T cell function, including increased oligoclonality, decreased cytokine production, and terminal differentiation. To address whether memory inflation during the first year after transplantation in human subjects alters T cell differentiation and function, we employed single-cell-matched TCRαβ and targeted gene expression sequencing. Expanded T cell clones exhibited a terminally differentiated, immunosenescent, and polyfunctional phenotype whereas rare clones were less differentiated. Clonal expansion occurring between pre- and 3 mo posttransplant was accompanied by enhancement of polyfunctionality. In contrast, polyfunctionality and differentiation state were largely maintained between 3 and 12 mo posttransplant. Highly expanded clones had a higher degree of polyfunctionality than rare clones. Thus, CMV-responsive CD8 T cells differentiated during the pre- to posttransplant period then maintained their differentiation state and functional capacity despite posttransplant clonal expansion.
Collapse
Affiliation(s)
- Lauren E Higdon
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - Steven Schaffert
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Department of Medicine/Biomedical Informatics, Stanford University, Stanford, CA; and
| | - Rachel H Cohen
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | | | - Marc Lucia
- Department of Surgery, Stanford University, Stanford, CA
| | - Naresha Saligrama
- Department of Microbiology and Immunology, Stanford University, Stanford CA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Jane C Tan
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA; and
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Department of Medicine/Biomedical Informatics, Stanford University, Stanford, CA; and
| | - Jonathan S Maltzman
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
19
|
Higdon LE, Schaffert S, Huang H, Montez-Rath ME, Lucia M, Jha A, Saligrama N, Margulies KB, Martinez OM, Davis MM, Khatri P, Maltzman JS. Evolution of Cytomegalovirus-Responsive T Cell Clonality following Solid Organ Transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2077-2085. [PMID: 34551964 PMCID: PMC8492537 DOI: 10.4049/jimmunol.2100404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
CMV infection is a significant complication after solid organ transplantation. We used single cell TCR αβ sequencing to determine how memory inflation impacts clonality and diversity of the CMV-responsive CD8 and CD4 T cell repertoire in the first year after transplantation in human subjects. We observed CD8 T cell inflation but no changes in clonal diversity, indicating homeostatic stability in clones. In contrast, the CD4 repertoire was diverse and stable over time, with no evidence of CMV-responsive CD4 T cell expansion. We identified shared CDR3 TCR motifs among patients but no public CMV-specific TCRs. Temporal changes in clonality in response to transplantation and in the absence of detectable viral reactivation suggest changes in the repertoire immediately after transplantation followed by an expansion with stable clonal competition that may mediate protection.
Collapse
Affiliation(s)
- Lauren E Higdon
- Nephrology Division, Department of Medicine, Stanford University, Palo Alto, CA
| | - Steven Schaffert
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Biomedical Informatics Division, Department of Medicine, Stanford University, Stanford, CA
| | - Huang Huang
- Department of Microbiology and Immunology, Stanford University, Stanford CA
| | - Maria E Montez-Rath
- Nephrology Division, Department of Medicine, Stanford University, Palo Alto, CA
| | - Marc Lucia
- Department of Surgery, Stanford University, Stanford, CA
| | - Alokkumar Jha
- Cardiovascular Institute, Stanford University, Stanford, CA
| | - Naresha Saligrama
- Department of Microbiology and Immunology, Stanford University, Stanford CA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford University, Stanford, CA; and
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Biomedical Informatics Division, Department of Medicine, Stanford University, Stanford, CA
| | - Jonathan S Maltzman
- Nephrology Division, Department of Medicine, Stanford University, Palo Alto, CA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
20
|
Hope CM, Huynh D, Wong YY, Oakey H, Perkins GB, Nguyen T, Binkowski S, Bui M, Choo AYL, Gibson E, Huang D, Kim KW, Ngui K, Rawlinson WD, Sadlon T, Couper JJ, Penno MAS, Barry SC. Optimization of Blood Handling and Peripheral Blood Mononuclear Cell Cryopreservation of Low Cell Number Samples. Int J Mol Sci 2021; 22:ijms22179129. [PMID: 34502038 PMCID: PMC8431655 DOI: 10.3390/ijms22179129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Rural/remote blood collection can cause delays in processing, reducing PBMC number, viability, cell composition and function. To mitigate these impacts, blood was stored at 4 °C prior to processing. Viable cell number, viability, immune phenotype, and Interferon-γ (IFN-γ) release were measured. Furthermore, the lowest protective volume of cryopreservation media and cell concentration was investigated. Methods: Blood from 10 individuals was stored for up to 10 days. Flow cytometry and IFN-γ ELISPOT were used to measure immune phenotype and function on thawed PBMC. Additionally, PBMC were cryopreserved in volumes ranging from 500 µL to 25 µL and concentration from 10 × 106 cells/mL to 1.67 × 106 cells/mL. Results: PBMC viability and viable cell number significantly reduced over time compared with samples processed immediately, except when stored for 24 h at RT. Monocytes and NK cells significantly reduced over time regardless of storage temperature. Samples with >24 h of RT storage had an increased proportion in Low-Density Neutrophils and T cells compared with samples stored at 4 °C. IFN-γ release was reduced after 24 h of storage, however not in samples stored at 4 °C for >24 h. The lowest protective volume identified was 150 µL with the lowest density of 6.67 × 106 cells/mL. Conclusion: A sample delay of 24 h at RT does not impact the viability and total viable cell numbers. When long-term delays exist (>4 d) total viable cell number and cell viability losses are reduced in samples stored at 4 °C. Immune phenotype and function are slightly altered after 24 h of storage, further impacts of storage are reduced in samples stored at 4 °C.
Collapse
Affiliation(s)
- Christopher M. Hope
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
- Women’s and Children’s Hospital, Adelaide, SA 5006, Australia
| | - Dao Huynh
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Ying Ying Wong
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Helena Oakey
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Griffith Boord Perkins
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Trung Nguyen
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Sabrina Binkowski
- Children’s Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA 6009, Australia; (S.B.); (A.Y.L.C.)
| | - Minh Bui
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia;
| | - Ace Y. L. Choo
- Children’s Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA 6009, Australia; (S.B.); (A.Y.L.C.)
| | - Emily Gibson
- School of Women’s and Children’s Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; (E.G.); (K.W.K.); (W.D.R.)
| | - Dexing Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (D.H.); (K.N.)
| | - Ki Wook Kim
- School of Women’s and Children’s Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; (E.G.); (K.W.K.); (W.D.R.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Katrina Ngui
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (D.H.); (K.N.)
| | - William D. Rawlinson
- School of Women’s and Children’s Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; (E.G.); (K.W.K.); (W.D.R.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Timothy Sadlon
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Jennifer J. Couper
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
- Women’s and Children’s Hospital, Adelaide, SA 5006, Australia
| | - Megan A. S. Penno
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Simon C. Barry
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
- Women’s and Children’s Hospital, Adelaide, SA 5006, Australia
- Correspondence:
| | | |
Collapse
|
21
|
Hou Y, Liang HL, Yu X, Liu Z, Cao X, Rao E, Huang X, Wang L, Li L, Bugno J, Fu Y, Chmura SJ, Wu W, Luo SZ, Zheng W, Arina A, Jutzy J, McCall AR, Vokes EE, Pitroda SP, Fu YX, Weichselbaum RR. Radiotherapy and immunotherapy converge on elimination of tumor-promoting erythroid progenitor cells through adaptive immunity. Sci Transl Med 2021; 13:13/582/eabb0130. [PMID: 33627484 DOI: 10.1126/scitranslmed.abb0130] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/20/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Tumor-induced CD45-Ter119+CD71+ erythroid progenitor cells, termed "Ter cells," promote tumor progression by secreting artemin (ARTN), a neurotrophic peptide that activates REarranged during Transfection (RET) signaling. We demonstrate that both local tumor ionizing radiation (IR) and anti-programmed death ligand 1 (PD-L1) treatment decreased tumor-induced Ter cell abundance in the mouse spleen and ARTN secretion outside the irradiation field in an interferon- and CD8+ T cell-dependent manner. Recombinant erythropoietin promoted resistance to radiotherapy or anti-PD-L1 therapies by restoring Ter cell numbers and serum ARTN concentration. Blockade of ARTN or potential ARTN signaling partners, or depletion of Ter cells augmented the antitumor effects of both IR and anti-PD-L1 therapies in mice. Analysis of samples from patients who received radioimmunotherapy demonstrated that IR-mediated reduction of Ter cells, ARTN, and GFRα3, an ARTN signaling partner, were each associated with tumor regression. Patients with melanoma who received immunotherapy exhibited favorable outcomes associated with decreased expression of GFRα3. These findings demonstrate an out-of-field, or "abscopal," effect mediated by adaptive immunity, which is induced during local tumor irradiation. This effect, in turn, governs the therapeutic effects of radiation and immunotherapy. Therefore, our results identify multiple targets to potentially improve outcomes after radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi 710061, China. .,Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Hua L Liang
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Xinshuang Yu
- Department of Oncology, First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Zhida Liu
- Department of Pathology, University of Texas Southwest Medical Center, Dallas, TX 75235, USA
| | - Xuezhi Cao
- Department of Pathology, University of Texas Southwest Medical Center, Dallas, TX 75235, USA
| | - Enyu Rao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaona Huang
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Liangliang Wang
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Lei Li
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Jason Bugno
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| | - Yanbin Fu
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Steven J Chmura
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Wenjun Wu
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sean Z Luo
- Whitney Young High School, Chicago, IL 60607, USA
| | - Wenxin Zheng
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Ainhoa Arina
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Jessica Jutzy
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Anne R McCall
- Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Everett E Vokes
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sean P Pitroda
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwest Medical Center, Dallas, TX 75235, USA.
| | - Ralph R Weichselbaum
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA.
| |
Collapse
|
22
|
GŁaczynska M, Machcinska M, Donskow-Lysoniewska K. Effects of Different Media on Human T Regulatory Cells Phenotype. In Vivo 2021; 35:283-289. [PMID: 33402475 DOI: 10.21873/invivo.12257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM Functional and quantitative Treg cell defects have been identified in a variety of autoimmune diseases. Therefore, Tregs are a major pharmaceutical target for these disorders. In the last decades, studies have been mainly focused on the identification and experimental understanding of the activity of Tregs and their mechanisms of action. MATERIALS AND METHODS This study describes how overnight storage of isolated peripheral blood mononuclear cells in different media (PBS pH 7.3, PBS pH 7.3 containing 0.5% BSA, RPMI 1640 and RPMI 1640 containing 10% FBS) affects the viability and expression of the commonly used markers for Tregs identification: CD25, CD127, CTLA-4, GITR, PD-1, FoxP3 and Helios. RESULTS Incorrectly selected storage conditions (temperature, time, medium) may affect the expression of surface and intracellular markers, thus, compromising the quality of the obtained results. CONCLUSION Appropriate protocols of cell isolation and storage are important for providing appropriate conditions for cell growth. This is crucial when analyzing small cell populations like Tregs.
Collapse
Affiliation(s)
- Magdalena GŁaczynska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Maja Machcinska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | | |
Collapse
|
23
|
Lee LM, Zhang H, Lee K, Liang H, Merleev A, Vincenti F, Maverakis E, Thomson AW, Tang Q. A Comparison of Ex Vivo Expanded Human Regulatory T Cells Using Allogeneic Stimulated B Cells or Monocyte-Derived Dendritic Cells. Front Immunol 2021; 12:679675. [PMID: 34220826 PMCID: PMC8253048 DOI: 10.3389/fimmu.2021.679675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Alloreactive regulatory T cells (arTregs) are more potent than polyclonal Tregs at suppressing immune responses to transplant antigens. Human arTregs can be expanded with allogeneic CD40L-stimulated B cells (sBcs) or stimulated-matured monocyte-derived dendritic cells (sDCs). Here, we compared the expansion efficiency and properties of arTregs stimulated ex vivo using these two types of antigen-presenting cells. Compared to sBcs, sDCs stimulated Tregs to expand two times more in number. The superior expansion-inducing capacity of sDCs correlated with their higher expression of CD80, CD86, and T cell-attracting chemokines. sBc- and sDC-arTregs expressed comparable levels of FOXP3, HELIOS, CD25, CD27, and CD62L, demethylated FOXP3 enhancer and in vitro suppressive function. sBc- and sDCs-arTregs had similar gene expression profiles that were distinct from primary Tregs. sBc- and sDC-arTregs exhibited similar low frequencies of IFN-γ, IL-4, and IL-17A-producing cells, and the cytokine-producing arTregs expressed high levels of FOXP3. Almost all sBc- and sDC-arTregs expressed CXCR3, which may enable them traffic to inflammatory sites. Thus, sDCs-arTregs that expand more readily, are phenotypically similar to sBc-arTregs, supporting sDCs as a viable alternative for arTreg production for clinical evaluation.
Collapse
Affiliation(s)
- Linda M Lee
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Hong Zhang
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karim Lee
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Horace Liang
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Alexander Merleev
- Department of Dermatology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Flavio Vincenti
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
24
|
Ray A, Joshi JM, Sundaravadivelu PK, Raina K, Lenka N, Kaveeshwar V, Thummer RP. An Overview on Promising Somatic Cell Sources Utilized for the Efficient Generation of Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2021; 17:1954-1974. [PMID: 34100193 DOI: 10.1007/s12015-021-10200-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Human induced Pluripotent Stem Cells (iPSCs) have enormous potential in understanding developmental biology, disease modeling, drug discovery, and regenerative medicine. The initial human iPSC studies used fibroblasts as a starting cell source to reprogram them; however, it has been identified to be a less appealing somatic cell source by numerous studies due to various reasons. One of the important criteria to achieve efficient reprogramming is determining an appropriate starting somatic cell type to induce pluripotency since the cellular source has a major influence on the reprogramming efficiency, kinetics, and quality of iPSCs. Therefore, numerous groups have explored various somatic cell sources to identify the promising sources for reprogramming into iPSCs with different reprogramming factor combinations. This review provides an overview of promising easily accessible somatic cell sources isolated in non-invasive or minimally invasive manner such as keratinocytes, urine cells, and peripheral blood mononuclear cells used for the generation of human iPSCs derived from healthy and diseased subjects. Notably, iPSCs generated from one of these cell types derived from the patient will offer ethical and clinical advantages. In addition, these promising somatic cell sources have the potential to efficiently generate bona fide iPSCs with improved reprogramming efficiency and faster kinetics. This knowledge will help in establishing strategies for safe and efficient reprogramming and the generation of patient-specific iPSCs from these cell types.
Collapse
Affiliation(s)
- Arnab Ray
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Jahnavy Madhukar Joshi
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Khyati Raina
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nibedita Lenka
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Ganeshkhind, Maharashtra, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
25
|
Higdon LE, Gustafson CE, Ji X, Sahoo MK, Pinsky BA, Margulies KB, Maecker HT, Goronzy J, Maltzman JS. Association of Premature Immune Aging and Cytomegalovirus After Solid Organ Transplant. Front Immunol 2021; 12:661551. [PMID: 34122420 PMCID: PMC8190404 DOI: 10.3389/fimmu.2021.661551] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Immune function is altered with increasing age. Infection with cytomegalovirus (CMV) accelerates age-related immunological changes resulting in expanded oligoclonal memory CD8 T cell populations with impaired proliferation, signaling, and cytokine production. As a consequence, elderly CMV seropositive (CMV+) individuals have increased mortality and impaired responses to other infections in comparison to seronegative (CMV–) individuals of the same age. CMV is also a significant complication after organ transplantation, and recent studies have shown that CMV-associated expansion of memory T cells is accelerated after transplantation. Thus, we investigated whether immune aging is accelerated post-transplant, using a combination of telomere length, flow cytometry phenotyping, and single cell RNA sequencing. Telomere length decreased slightly in the first year after transplantation in a subset of both CMV+ and CMV– recipients with a strong concordance between CD57+ cells and short telomeres. Phenotypically aged cells increased post-transplant specifically in CMV+ recipients, and clonally expanded T cells were enriched for terminally differentiated cells post-transplant. Overall, these findings demonstrate a pattern of accelerated aging of the CD8 T cell compartment in CMV+ transplant recipients.
Collapse
Affiliation(s)
- Lauren E Higdon
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA, United States
| | - Claire E Gustafson
- Department of Medicine/Immunology & Rheumatology, Stanford University, Palo Alto, CA, United States
| | - Xuhuai Ji
- Human Immune Monitoring Center, Stanford University, Palo Alto, CA, United States
| | - Malaya K Sahoo
- Department of Pathology, Stanford University, Palo Alto, CA, United States
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University, Palo Alto, CA, United States.,Department of Medicine/Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, CA, United States
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Holden T Maecker
- Human Immune Monitoring Center, Stanford University, Palo Alto, CA, United States.,Department of Microbiology & Immunology, Stanford University, Palo Alto, CA, United States
| | - Jorg Goronzy
- Department of Medicine/Immunology & Rheumatology, Stanford University, Palo Alto, CA, United States.,Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Jonathan S Maltzman
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA, United States.,Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
26
|
Guan Z, Liu Y, Liu C, Wang H, Feng J, Yang G. Staphylococcus aureus β-Hemolysin Up-Regulates the Expression of IFN-γ by Human CD56 bright NK Cells. Front Cell Infect Microbiol 2021; 11:658141. [PMID: 33854984 PMCID: PMC8039520 DOI: 10.3389/fcimb.2021.658141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 01/12/2023] Open
Abstract
IFN-γ is produced upon stimulation with S. aureus and may play a detrimental role during infection. However, whether hemolysins play a role in the mechanism of IFN-γ production has not been fully characterized. In this study, we demonstrated that Hlb, one of the major hemolysins of S. aureus, upregulated IFN-γ production by CD56bright NK cells from human peripheral blood mononuclear cells (PBMCs). Further investigation showed that Hlb increased calcium influx and induced phosphorylation of ERK1/2. Either blocking calcium or specifically inhibiting phosphorylation of ERK1/2 decreased the production of IFN-γ induced by Hlb. Moreover, we found that this process was dependent on the sphingomyelinase activity of Hlb. Our findings revealed a novel mechanism of IFN-γ production in NK cells induced by Hlb, which may be involved in the pathogenesis of S. aureus.
Collapse
Affiliation(s)
- Zhangchun Guan
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yu Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Chenghua Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Huiting Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jiannan Feng
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Guang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| |
Collapse
|
27
|
Stark HL, Wang HC, Kuburic J, Alzhrani A, Hester J, Issa F. Immune Monitoring for Advanced Cell Therapy Trials in Transplantation: Which Assays and When? Front Immunol 2021; 12:664244. [PMID: 33841448 PMCID: PMC8027493 DOI: 10.3389/fimmu.2021.664244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022] Open
Abstract
A number of immune regulatory cellular therapies, including regulatory T cells and mesenchymal stromal cells, have emerged as novel alternative therapies for the control of transplant alloresponses. Clinical studies have demonstrated their feasibility and safety, however developing our understanding of the impact of cellular therapeutics in vivo requires advanced immune monitoring strategies. To accurately monitor the immune response, a combination of complementary methods is required to measure the cellular and molecular phenotype as well as the function of cells involved. In this review we focus on the current immune monitoring strategies and discuss which methods may be utilized in the future.
Collapse
Affiliation(s)
- Helen L Stark
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Hayson C Wang
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Division of Plastic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jasmina Kuburic
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alaa Alzhrani
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Exosome-based photoacoustic imaging guided photodynamic and immunotherapy for the treatment of pancreatic cancer. J Control Release 2021; 330:293-304. [PMID: 33359580 DOI: 10.1016/j.jconrel.2020.12.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 01/09/2023]
Abstract
Exosomes, which are released from all cells and take part in cell-to-cell communication, have been utilized as drug delivery vehicles in many recent studies. Immunotherapy is an emerging technology which uses patients' innate immune systems. In immunotherapy, immune cells are stimulated through antibodies, the other immune cells and genetic modifications for the purposes of, for instance, cancer therapy. In this study, tumor-derived re-assembled exosome (R-Exo) was simultaneously utilized as both a drug delivery carrier and an immunostimulatory agent. A chlorin e6 photosensitizer was loaded into tumor-derived exosomes during exosomal re-assembly. After this modification, R-Exo retains its original average size and has the same membrane proteins, which allows for targeting of tumor cells. Chlorin e6-loaded R-Exo (Ce6-R-Exo) can be visualized by photoacoustic imaging and can efficiently generate reactive oxygen species inside tumor cells under laser irradiation. In addition, Ce6-R-Exo increased the release of cytokines from immune cells, which indicates that these modified exosomes can be used as an immunotherapeutic agent. In conclusion, we developed a novel strategy that enables photoacoustic imaging-guided photodynamic and immune-combination therapy for the treatment of cancer with tumor-derived Ce6-R-Exo.
Collapse
|
29
|
Hirata M, Masuda M, Noguchi M, Tomita T, Ishibashi-Ueda H. An Efficient Culture Method of CD3-Positive T Cells from Human Cryopreserved Buffy Coat Specimens. Biopreserv Biobank 2020; 19:178-183. [PMID: 33305983 DOI: 10.1089/bio.2020.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Context: In the National Cerebral and Cardiovascular Center (NCVC) Biobank, buffy coats have been collected from patients and stored with cryoprotective agents as a possible source for viable blood cells, using cost-efficient methods for storage. However, whether viable cells for in vitro studies can be recovered from these biospecimens has not been verified. Objective: To investigate whether T cells can be collected and expanded as viable cells from cryopreserved human buffy coats. Design: After thawing of cryopreserved buffy coat specimens, CD3-positive cells were isolated from the cell suspension using a leukocyte separation filter coated with an anti-CD3 antibody, and the filter-attached cells were cultured in T cell culture medium. To analyze the characteristics of these cultured cells, histocytological analyses of Giemsa staining, immunocytochemical (ICC) staining for CD3, and flow cytometry for CD3 in live cells were conducted. Results: A few days after starting cell culture, cell clusters were observed, and they gradually grew in size. Using Giemsa staining, the expanded cells were found to be ∼15 μm in diameter, having round nuclei, a high nucleus/cytoplasm ratio, and cytoplasm stained light blue, which is characteristic of lymphocytes. From ICC staining, these cells were CD3 positive, a pan-T cell marker among lymphocytes. Furthermore, CD3 immunoreactivity in live cells was detected in a flow cytometry assay, though that for CD19 was not detected, which is a marker of pan-B cells. Conclusions: These results suggest that T cells can be expanded from buffy coats cryopreserved at -180°C as an adequate method of NCVC Biobank, highlighting these biospecimens as a possible useful source for future in vitro studies.
Collapse
Affiliation(s)
- Mitsuhi Hirata
- Biobank, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Michitaka Masuda
- Biobank, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Michio Noguchi
- Biobank, National Cerebral and Cardiovascular Center, Suita, Japan.,Divisions of Diabetes and Lipid Metabolism and National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tsutomu Tomita
- Biobank, National Cerebral and Cardiovascular Center, Suita, Japan.,Divisions of Diabetes and Lipid Metabolism and National Cerebral and Cardiovascular Center, Suita, Japan.,Divisions of Genomic Diagnosis and Health Care, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hatsue Ishibashi-Ueda
- Biobank, National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
30
|
Chakraborty I, Hossain CM, Basak P. Synthesis and characterization of ester-diol based polyurethane: a potentiality check for hypopharyngeal tissue engineering application. Biomed Eng Lett 2020; 11:25-37. [PMID: 33747601 DOI: 10.1007/s13534-020-00180-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/22/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022] Open
Abstract
Abstract Hypopharyngeal tissue engineering is increasing rapidly in this developing world. Tissue damage or loss needs the replacement by another biological or synthesized membrane using tissue engineering. Tissue engineering research is emerging to provide an effective solution for damaged tissue replacement. Polyurethane in tissue engineering has successfully been used to repair and restore the function of damaged tissues. In this context, Can polyurethane be a useful material to deal with hypopharyngeal tissue defects? To explore this, here ester diol based polyurethane (PU) was synthesized in two steps: firstly, polyethylene glycol 400 (PEG 400) was reacted with lactic acid to prepare ester diol, and then it was polymerized with hexamethylene diisocyanate. The physical, mechanical, and biological testing was done to testify the characterization of the membrane. The morphology of the synthesized membrane was investigated by using field emission scanning electron microscopy. Functional groups of the obtained membrane were characterized by fourier transform infrared spectroscopy spectroscopy. Several tests were performed to check the in vitro and in vivo biocompatibility of the membrane. A highly connected homogeneous network was obtained due to the appropriate orientation of a hard segment and soft segment in the synthesized membrane. Mechanical property analysis indicates the membrane has a strength of 5.15 MPa and strain 124%. The membrane showed high hemocompatibility, no cytotoxicity on peripheral blood mononuclear cell, and susceptible to degradation in simulated body fluid solution. Antimicrobial activity assessment has shown promising results against clinically significant bacteria. Primary hypopharyngeal cell growth on the PU membrane revealed the cytocompatibility and subcutaneous implantation on the back of Wistar rats were given in vivo biocompatibility of the membrane. Therefore, the synthesized material can be considered as a potential candidate for a hypopharyngeal tissue engineering application. Graphic abstract
Collapse
Affiliation(s)
- Imon Chakraborty
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| | | | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| |
Collapse
|
31
|
Automated dry thawing of cryopreserved haematopoietic cells is not adversely influenced by cryostorage time, patient age or gender. PLoS One 2020; 15:e0240310. [PMID: 33104704 PMCID: PMC7588046 DOI: 10.1371/journal.pone.0240310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023] Open
Abstract
Cell therapies are becoming increasingly widely used, and their production and cryopreservation should take place under tightly controlled GMP conditions, with minimal batch-to-batch variation. One potential source of variation is in the thawing of cryopreserved samples, typically carried out in water baths. This study looks at an alternative, dry thawing, to minimise variability in the thawing of a cryopreserved cell therapy, and compares the cellular outcome on thaw. Factors such as storage time, patient age, and gender are considered in terms of cryopreservation and thawing outcomes. Cryopreserved leukapheresis samples from 41 donors, frozen by the same protocol and stored for up to 17 years, have been thawed using automated, water-free equipment and by conventional wet thawing using a water bath. Post-thaw viability, assessed by both trypan blue and flow cytometry, showed no significant differences between the techniques. Similarly, there was no negative effect of the duration of frozen storage, donor age at sample collection or donor gender on post-thaw viability using either thawing method. The implication of these results is that the cryopreservation protocol chosen initially remains robust and appropriate for use with a wide range of donors. The positive response of the samples to water-free thawing offers potential benefits for clinical situations by removing the subjective element inherent in water bath thawing and eliminating possible contamination issues.
Collapse
|
32
|
Juhl M, Christensen JP, Pedersen AE, Kastrup J, Ekblond A. Cryopreservation of peripheral blood mononuclear cells for use in proliferation assays: First step towards potency assays. J Immunol Methods 2020; 488:112897. [PMID: 33049298 DOI: 10.1016/j.jim.2020.112897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/01/2020] [Accepted: 10/06/2020] [Indexed: 11/28/2022]
Abstract
Investigational cell-based therapeutics are rapidly heading towards pivotal clinical trials. The premise is that the scientific rationale is well defined, and that product quality reflects exactly this. In vitro potency assays are necessary tools for evaluating cell products, and with potency assays comes high demands for standardization and reproducibility of the methods involved. For demonstrating principles of cell therapeutics for allogeneic use or with claimed immunosuppressive efficacies, assays involving peripheral blood mononuclear cells (PBMC) are critical. Establishment of a cryopreserved bank of PBMC favors standardization, as it allows repeated use of a single donor and simultaneous testing of several donors. The first step to fulfil such potential is to ensure optimum conditions for preservation of PBMC function, and secondly to design assays which heightens the reproducibility. Emphasis should be put on application of the assay. The objective of the present study was to establish a methodological foundation for cell therapeutics to be tested, and several aspects were factored in, including cell concentrations and partial changes of medium. PBMC were isolated and cryopreserved in six formulations of cryoprotective medium consisting of fetal bovine serum (90%, 60%, and 30%) in combination with dimethyl sulfoxide (10% or 5%). The proliferative capacity of the cryopreserved cells was assayed by labeling with carboxyfluorescein succinimidyl ester and stimulation by phytohemagglutinin or in mixed lymphocyte reactions, analyzed by flow cytometry. To counter an eventual lag phase post thaw, the assays were designed to include two durations and to explore the possibility of reducing cell numbers, two cell concentrations. Qualitative and quantitative aspects of the staining were affected by formulation as well as design, stressing the importance of basic optimization for assay development. We conclude that the established methods allow for optimized preservation of function and will serve as a platform for further development of robust functional assays.
Collapse
Affiliation(s)
- Morten Juhl
- Cardiology Stem Cell Centre, The Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Denmark.
| | | | | | - Jens Kastrup
- Cardiology Stem Cell Centre, The Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Denmark
| |
Collapse
|
33
|
Cryopreservation of peripheral blood mononuclear cells using uncontrolled rate freezing. Cell Tissue Bank 2020; 21:631-641. [PMID: 32809089 DOI: 10.1007/s10561-020-09857-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/08/2020] [Indexed: 12/25/2022]
Abstract
Peripheral blood mononuclear cells are widely used as source material for anticancer immunotherapies. The conventional cryopreservation method for peripheral blood mononuclear cells is time-consuming and expansive, which involves controlled rate freezing followed by storage in liquid nitrogen. Instead, the convenient uncontrolled rate freezing cryopreservation method had been reported successfully in peripheral blood hematopoietic stem cells and peripheral blood progenitor cells. Therefore, we hypothesized that uncontrolled rate freezing cooling method maybe also applied to peripheral blood mononuclear cells cryopreservation. In this study, we evaluated the performance of uncontrolled rate freezing and controlled rate freezing cooling methods through cell recovery rate, viability, differentiation potential into cytokine-induced killer cells and the cellular properties of the cultured cytokine-induced killer cells. The results showed similar post-thaw viability and recovery rate in both controlled rate freezing and uncontrolled rate freezing cryopreserved peripheral blood mononuclear cells. Importantly, the uncontrolled rate freezing cryopreserved peripheral blood mononuclear cells exhibited higher growth ratio and earlier cell clustering during ex-vivo cytokine-induced killer cell culture than the controlled rate freezing ones. These two groups of expanded cytokine-induced killer cells also exhibited similar effector cell subset ratio and tumoricidal activity. In general, the performance of cryopreserved peripheral blood mononuclear cells using uncontrolled rate freezing cooling method, with the commercial cryoprotective agent CellBanker 2, was equal or better than the controlled rate freezing method. Our study implied that the combined use of cryoprotective agent CellBanker 2 and uncontrolled rate freezing could be a convenient cryopreservation method for peripheral blood mononuclear cells.
Collapse
|
34
|
Kostrzewa-Nowak D, Nowak R. Differential Th Cell-Related Immune Responses in Young Physically Active Men after an Endurance Effort. J Clin Med 2020; 9:E1795. [PMID: 32526904 PMCID: PMC7356896 DOI: 10.3390/jcm9061795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022] Open
Abstract
The participation of T cell subsets in the modulation of immunity in athletes triggered by maximal effort was investigated. In total, 80 physically active young men (range 16-20 years) were divided into 5 age groups: 16, 17, 18, 19, and 20 years old. They performed efficiency tests on mechanical treadmills until exhaustion. White blood cell (WBC) and lymphocyte (LYM) counts were determined, and the type 1 (Th1), type 2 (Th2) helper T cells, T helper 17 (Th17), and T regulatory (Treg) cell distribution and plasma levels of selected cytokines were analyzed. An increase in WBC and LYM counts after the test and in Th1 and Treg cells after the test and in recovery was observed. There were no changes in Th2 cells. An increase in interleukins (IL): IL-2 and IL-8 was observed. The IL-6 level was altered in all studied groups. IL-17A and interferon gamma (IFN-γ) levels were increased in all studied groups. The mechanism of differential T cell subset activation may be related to athletes' age. The novel findings of this study are the involvement of Th17 cells in post-effort immune responses and the participation of IL-6 in post-effort and the long-term biological effect of endurance effort.
Collapse
Affiliation(s)
- Dorota Kostrzewa-Nowak
- Centre for Human Structural and Functional Research, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland;
| | | |
Collapse
|
35
|
Kostrzewa-Nowak D, Ciechanowicz A, Clark JS, Nowak R. Damage-Associated Molecular Patterns and Th-Cell-Related Cytokines Released after Progressive Effort. J Clin Med 2020; 9:jcm9030876. [PMID: 32210109 PMCID: PMC7141504 DOI: 10.3390/jcm9030876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 01/08/2023] Open
Abstract
Inflammation-induced processes commence with the activation of signalling pathways at the cellular level, which mobilize inflammatory cells and stimulate the secretion of chemokines, cytokines, and damage-associated molecular pattern molecules (DAMPs). Physical effort stimulates inflammation, contributing to muscle repair and regeneration. We have examined the impact of different protocols of progressive-effort tests on T-cell DAMP levels, extracellular cleavage products (fibronectin and hyaluronan), and Th-cell-related cytokine levels among soccer players. Thirty male soccer players with a median age of 17 (16–22) years performed different defined protocols for progressive exercise until exhaustion: (1) YO-YO intermittent recovery test level 1 (YYRL1, n = 10); (2) maximal multistage 20 m shuttle run (Beep, n = 10); and mechanical treadmill (MT, n = 10); and (3) shuttle-run test (n = 10). Blood samples were taken three times as follows: at baseline, post effort, and in recovery. Significantly higher post-effort concentrations of IL-4, IL-6, IL-10, and IFN-γ were observed in the Beep group, IL-4 in the YYRL1 group, and IL-6 and IFN-γ in the MT group as compared with the baseline values. Recovery values were significantly higher for concentrations of IL-4, IL-10, and IFN-γ in the YYRL1 group, only for IFN-γ in the Beep group, and for IL-6, IL-10, and INF-γ in the MT group as compared with the baseline values. Post-effort concentrations of DEFβ2, Hsp27, Fn, and UA in the Beep group and Hsp27 and HA in the YYRL1 group were significantly higher as compared with the baseline values. It seems the performed efficiency test protocols caused a short-term imbalance in Th1/Th2 cytokine levels without giving common molecular patterns. The rapidity of these changes was apparently related to specific physical movements and the type of running surface.
Collapse
Affiliation(s)
- Dorota Kostrzewa-Nowak
- Centre for Human Structural and Functional Research, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland;
- Correspondence:
| | - Andrzej Ciechanowicz
- Department of Clinical & Molecular Biochemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.C.)
| | - Jeremy S.C. Clark
- Department of Clinical & Molecular Biochemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.C.)
| | - Robert Nowak
- Centre for Human Structural and Functional Research, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland;
| |
Collapse
|
36
|
T helper cell-related changes in peripheral blood induced by progressive effort among soccer players. PLoS One 2020; 15:e0227993. [PMID: 31990927 PMCID: PMC6986753 DOI: 10.1371/journal.pone.0227993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives The regulatory mechanisms affecting the modulation of the immune system accompanying the progressive effort to exhaustion, particularly associated with T cells, are not fully understood. We analysed the impact of two progressive effort protocols on T helper (Th) cell distribution and selected cytokines. Methods Sixty-two male soccer players with a median age of 17 (16–29) years performed different protocols for progressive exercise until exhaustion: YO-YO (YYRL1) and Beep. Blood samples for all analyses were taken three times: at baseline, post-effort, and in recovery. Results The percentage of Th1 cells increased post-effort and in recovery. The post-effort percentage of Th1 cells was higher in the Beep group compared to the YYRL1 group. Significant post-effort increase in Th17 cells was observed in both groups. The post-effort percentage of regulatory T cells (Treg) increased in the Beep group. An increased post-effort concentration of IL-2, IL-6, IL-8 and IFN-γ in both groups was observed. Post-effort TNF-α and IL-10 levels were higher than baseline in the YYRL1 group, while the post-effort IL-17A concentration was lower than baseline only in the Beep group. The recovery IL-2, IL-4, TNF-α and IFN-γ levels were higher than baseline in the YYRL1 group. The recovery IL-4, IL-6, IL-8, TNF-α and IFN-γ values were higher than baseline in the Beep group. Conclusion The molecular patterns related to cytokine secretion are not the same between different protocols for progressive effort. It seems that Treg cells are probably the key cells responsible for silencing the inflammation and enhancing anti-inflammatory pathways.
Collapse
|
37
|
Singh N, Kumar R, Chauhan SB, Engwerda C, Sundar S. Peripheral Blood Monocytes With an Antiinflammatory Phenotype Display Limited Phagocytosis and Oxidative Burst in Patients With Visceral Leishmaniasis. J Infect Dis 2019; 218:1130-1141. [PMID: 30053070 DOI: 10.1093/infdis/jiy228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/03/2018] [Indexed: 12/17/2022] Open
Abstract
Background Monocytes are important effector cells during Leishmania infection, and changes in their functions may impact development of immunity. However, functional characteristics of monocytes in patients with visceral leishmaniasis (VL) remains poorly understood. Methods Peripheral blood monocytes from patients with VL and healthy endemic controls from Muzaffarpur, India, were isolated and compared in an ex vivo setting, using cell-culture techniques, flow cytometry, and reverse transcription quantitative polymerase chain reaction analysis. Results A blood monocyte population with a gene signature comprising upregulated expression of TGM2, CTLRs, VDR, PKM, SOCS1, and CAMP1 and downregulated expression of NOS2 and HIF1A was observed in patients with VL but not in controls. Monocytes from patients with VL also had impaired expression of chemokine receptors and adhesion molecules and decreased frequencies of interleukin 1β- and interleukin 6-producing cells. Importantly, monocytes from patients with VL had a markedly reduced capacity for phagocytosis of amastigotes, p47phox and p67phox expression, and reactive oxygen species production. Conclusions Monocytes from patients with VL express antiinflammatory molecules and lack a classically activated phenotype. They have reduced expression of molecules related to activation and antiparasitic effector functions, indicating that monocytes are skewed toward an antiinflammatory phenotype. These findings provide insights into the functional status of monocytes during VL and advise that therapeutic manipulation of this important cell population may result in favorable patient outcomes.
Collapse
Affiliation(s)
- Neetu Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Department of Biochemistry, Banaras Hindu University, Varanasi, India
| | | | - Christian Engwerda
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
38
|
Rosado M, Silva R, G Bexiga M, G Jones J, Manadas B, Anjo SI. Advances in biomarker detection: Alternative approaches for blood-based biomarker detection. Adv Clin Chem 2019; 92:141-199. [PMID: 31472753 DOI: 10.1016/bs.acc.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the clinical setting, a blood sample is typically the starting point for biomarker search and discovery. Mass spectrometry (MS) is a highly sensitive and informative method for characterizing a very wide range of metabolites and proteins and is therefore a potentially powerful tool for biomarker discovery. However, the physicochemical characteristics of blood coupled with very large ranges of protein and metabolite concentrations present a significant technical obstacle for resolving and quantifying putative biomarkers by MS. Blood fractionation procedures are being developed to reduce the proteome/metabolome complexity and concentration ranges, allowing a greater diversity of analytes, including those at very low concentrations, to be quantified. In this chapter, several strategies for enriching and/or isolating specific blood components are summarized, including methods for the analysis of low and high molecular weight compounds, usually neglected in this type of assays, extracellular vesicles, and peripheral blood mononuclear cells (PBMCs). For each method, relevant practical information is presented for effective implementation.
Collapse
Affiliation(s)
- Miguel Rosado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Rafael Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Mariana G Bexiga
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
39
|
Xie Q, He H, Wu YH, Zou LJ, She XL, Xia XM, Wu XQ. Eutopic endometrium from patients with endometriosis modulates the expression of CD36 and SIRP-α in peritoneal macrophages. J Obstet Gynaecol Res 2019; 45:1045-1057. [PMID: 30843336 PMCID: PMC6593754 DOI: 10.1111/jog.13938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
Aim This study aimed to investigate the in vitro alterations of the expression of signal regulatory protein‐α (SIRP‐α) and CD36 in macrophages in the endometriosis condition. Methods The expression of SIRP‐α and CD36 was measured in peritoneal macrophages and peripheral blood mononuclear cells of endometriosis patients and control participants. The expressions of SIRP‐α and CD36 were measured in human acute monocytic leukemia (THP‐1) cell‐derived macrophages that were treated with interleukin‐6 (IL‐6)‐induced conditioned medium, eutopic versus normal endometrial homogenate, or lipopolysaccharide in the presence or absence of nuclear factor kappa‐B (NF‐κB) or transforming growth factor (TGF‐β) inhibitors, respectively. Results Peritoneal macrophages that were isolated from women with endometriosis exhibited an enhanced expression of SIRP‐α and a decreased expression of CD36 compared to control participants. Women with endometriosis had significantly higher levels of SIRP‐α and CD36 in peripheral circulating mononuclear cells than in control participants. SIRP‐α expression was significantly increased, whereas the CD36 expression was decreased in THP‐1 cell‐derived macrophages after treatment with eutopic endometrial homogenate. Intervention with IL‐6‐induced conditioned medium resulted in the downregulation of SIRP‐α but the upregulation of CD36 in THP‐1 cells. Incubation with the NF‐κBp50 inhibitor decreased the expression of CD36 and SIRP‐α in macrophages that were treated with normal endometrial homogenate, whereas the TGF‐β inhibitor enhanced the CD36 expression of THP‐1 cell‐derived macrophages treated with eutopic endometrial homogenate. Conclusion The eutopic endometrium could reduce the phagocytic ability of peritoneal macrophages in women with endometriosis through the modulation of SIRP‐α and CD36 expression. Inhibition of the TGF‐β signal pathway may be a potential therapeutic target for the treatment of endometriosis.
Collapse
Affiliation(s)
- Qi Xie
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hua He
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ya-Hong Wu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lu-Jie Zou
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Ling She
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Meng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xian-Qing Wu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
40
|
The Impact of Varying Cooling and Thawing Rates on the Quality of Cryopreserved Human Peripheral Blood T Cells. Sci Rep 2019; 9:3417. [PMID: 30833714 PMCID: PMC6399228 DOI: 10.1038/s41598-019-39957-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
For the clinical delivery of immunotherapies it is anticipated that cells will be cryopreserved and shipped to the patient where they will be thawed and administered. An established view in cellular cryopreservation is that following freezing, cells must be warmed rapidly (≤5 minutes) in order to maintain high viability. In this study we examine the interaction between the rate of cooling and rate of warming on the viability, and function of T cells formulated in a conventional DMSO based cryoprotectant and processed in conventional cryovials. The data obtained show that provided the cooling rate is -1 °C min-1 or slower, there is effectively no impact of warming rate on viable cell number within the range of warming rates examined (1.6 °C min-1 to 113 °C min-1). It is only following a rapid rate of cooling (-10 °C min-1) that a reduction in viable cell number is observed following slow rates of warming (1.6 °C min-1 and 6.2 °C min-1), but not rapid rates of warming (113 °C min-1 and 45 °C min-1). Cryomicroscopy studies revealed that this loss of viability is correlated with changes in the ice crystal structure during warming. At high cooling rates (-10 °C min-1) the ice structure appeared highly amorphous, and when subsequently thawed at slow rates (6.2 °C min-1 and below) ice recrystallization was observed during thaw suggesting mechanical disruption of the frozen cells. This data provides a fascinating insight into the crystal structure dependent behaviour during phase change of frozen cell therapies and its effect on live cell suspensions. Furthermore, it provides an operating envelope for the cryopreservation of T cells as an emerging industry defines formulation volumes and cryocontainers for immunotherapy products.
Collapse
|
41
|
Higdon LE, Cain CJ, Colden MA, Maltzman JS. Optimization of single-cell plate sorting for high throughput sequencing applications. J Immunol Methods 2019; 466:17-23. [PMID: 30590019 PMCID: PMC6363834 DOI: 10.1016/j.jim.2018.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 11/22/2022]
Abstract
Single cell sequencing has recently been applied to many immunological studies. Flow cytometric index sorting isolates cells for single cell sequencing with protein level data linked to sequences. However, successful sequencing of index sorted samples requires careful optimization of several sort parameters, including nozzle size, flow rate, threshold rate, and yield calculations. In this study, considerations and optimization data for each of these variables are presented. Our analysis focused on index sorting, but the findings can be applied to any plate sorting protocol. Minimization of flow rates and use of the 70 μm nozzle improved cell yields. Improvements in total read counts after sequencing were obtained by decreasing the threshold rate, or the number of cells processed per second. In addition, this technique provided linked protein and gene expression analysis of the cytokine interferon (IFN)γ, demonstrating that on a single cell basis IFNγ+ cells tend to express IFNG mRNA, and IFNγ- cells do not. Through rigorous optimization and quality control, we have identified parameters important to plate sorting and recommend the use of the 70 μm nozzle and low flow and threshold rates for analysis of rare populations of human lymphocytes.
Collapse
Affiliation(s)
- Lauren E Higdon
- Stanford University, Department of Medicine/Nephrology, Palo Alto, CA 94304, United States
| | - Corey J Cain
- VA Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Melissa A Colden
- Stanford University, Department of Medicine/Nephrology, Palo Alto, CA 94304, United States
| | - Jonathan S Maltzman
- Stanford University, Department of Medicine/Nephrology, Palo Alto, CA 94304, United States; VA Palo Alto Health Care System, Palo Alto, CA 94304, United States.
| |
Collapse
|
42
|
Liang X, Hu X, Hu Y, Zeng W, Zeng G, Ren Y, Liu Y, Chen K, Peng H, Ding H, Liu M. Recovery and functionality of cryopreserved peripheral blood mononuclear cells using five different xeno-free cryoprotective solutions. Cryobiology 2019; 86:25-32. [DOI: 10.1016/j.cryobiol.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
|
43
|
Summerauer AM, Colombo L, Ogwang R, Berger C, Fehr J, Bürgler S. High purity high yield tandem B and T helper cell isolation for qRT-PCR analysis suitable for basically equipped laboratories. Malar J 2018; 17:395. [PMID: 30373593 PMCID: PMC6206625 DOI: 10.1186/s12936-018-2547-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022] Open
Abstract
Background Malaria is still a major health problem in sub-Saharan Africa and south-east Asia, but research on malaria in low-income countries can be a challenge due to the lack of laboratory equipment. In addition, severe malaria mainly affects very young children, which limits the amount of blood available for research purposes. Thus, there is a need for protocols that yield a maximum of information from a minimum amount of blood, which are operable in basically equipped laboratories. Results A protocol for tandem B and T helper (Th) cell isolation directly from whole blood, and a freezer-independent sample preservation method compatible with the warm and humid climate of malaria regions was established and validated. The protocol thereby circumvents the need of high-technology centrifuges and unimpeachable power supply for peripheral blood mononuclear cell isolation. Both purity and yield are excellent. Depending on the expression level of the genes of interest, between 2 and 5 ml of blood are adequate for reliable qRT-PCR results from both B and Th cells of healthy paediatric donors as well as paediatric malaria patients. Conclusion This protocol for high purity high yield B cell and Th cell isolation and sample storage for subsequent qRT-PCR analysis from a minimal amount of blood is contrivable with basic equipment and independent of continuous power supply. Thus, it is likely to be of avail for many scientists performing malaria research in rural institutes or hospitals, and thus in countries where malaria is most prevalent.
Collapse
Affiliation(s)
- Andrea Maria Summerauer
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lorenzo Colombo
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Rodney Ogwang
- Makerere University, College of Health Sciences, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum Site, Uganda
| | - Christoph Berger
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jan Fehr
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Public Health, Epidemiology Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Simone Bürgler
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
44
|
Paskal W, Paskal AM, Dębski T, Gryziak M, Jaworowski J. Aspects of Modern Biobank Activity - Comprehensive Review. Pathol Oncol Res 2018; 24:771-785. [PMID: 29728978 PMCID: PMC6132819 DOI: 10.1007/s12253-018-0418-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/27/2018] [Indexed: 12/13/2022]
Abstract
Biobanks play an increasing role in contemporary research projects. These units meet all requirements to regard them as a one of the most innovative and up-to-date in the field of biomedical research. They enable conducting wide-scale research by the professional collection of biological specimens and correlated clinical data. Pathology units may be perceived roots of biobanking. The review aims at describing the concept of biobanks, their model of function and scientific potential. It comprises the division of biobanks, sample preservation methods and IT solutions as well as guidelines and recommendations for management of a vast number of biological samples and clinical data. Therefore, appropriate standard operating procedures and protocols are outlined. Constant individualization of diagnostic process and treatment procedures creates the niche for translational units. Thus, the role of biobanks in personalized medicine was also specified. The exceptionality of biobanks poses some new ethical-legal issues which have various solutions, in each legal system, amongst the world. Finally, distribution and activity of European biobanks are mentioned.
Collapse
Affiliation(s)
- Wiktor Paskal
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, ul. Banacha 1B, 02-097, Warsaw, Poland.
- Plastic Surgery Department, Centre of Postgraduate Medical Education, Warsaw, Poland.
- The Department of Applied Pharmacy, Medical University of Warsaw, Warsaw, Poland.
| | - Adriana M Paskal
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, ul. Banacha 1B, 02-097, Warsaw, Poland
| | - Tomasz Dębski
- Plastic Surgery Department, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Maciej Gryziak
- The Department of Applied Pharmacy, Medical University of Warsaw, Warsaw, Poland
- Maria Sklodowska-Curie Institute of Oncology, Warsaw, Poland
| | - Janusz Jaworowski
- The Department of Applied Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
45
|
Jia Y, Xu H, Li Y, Wei C, Guo R, Wang F, Wu Y, Liu J, Jia J, Yan J, Qi X, Li Y, Gao X. A Modified Ficoll-Paque Gradient Method for Isolating Mononuclear Cells from the Peripheral and Umbilical Cord Blood of Humans for Biobanks and Clinical Laboratories. Biopreserv Biobank 2017; 16:82-91. [PMID: 29232525 DOI: 10.1089/bio.2017.0082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although the Ficoll-Paque method is classically used to isolate peripheral blood mononuclear cells (PBMCs), modifications in this method are required for a more rapid and economic output for biobanks and clinical laboratories, particularly in developing countries. In this study, we addressed this issue by modifying the Ficoll-Paque method for the isolation of PBMCs or mononuclear cells from the peripheral and the umbilical cord blood of healthy and diseased (infected, anemic, and chronic obstructive pulmonary disease) adult individuals. In the modified method, we initiated the cell isolation process from the buffy coat layer, which appears in the interface between the plasma and sediments after centrifugation, instead of using the whole blood as described in the classic method. Although the PBMC yield by the modified method was about 12% less than in the classic method, the number of PBMCs isolated by the modified method was more than one million, which is enough for different research/diagnostic purposes, such as multi-omics detection. Assessment of cell viability and purity by hematology analyzer and trypan blue showed no significant difference between the viability and purity of the PBMCs isolated by these two methods in almost all groups, except samples from the infected and cord blood groups, where lower PBMC purity with higher granulocyte contamination were observed. In addition, at delayed processing time points, all parameters for the two methods were decreased in a time-dependent manner, especially at 8, 12, or 24 hours after the sample collection. In summary, the performance of PBMC isolation by the classic and modified methods mainly relies on the PBMC ratio in original samples. The modified method could be preferred for PBMC isolation because of its time and cost savings, especially for the biobanks and clinical laboratories in developing countries.
Collapse
Affiliation(s)
- Yanjuan Jia
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Hui Xu
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Yonghong Li
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Chaojun Wei
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Rui Guo
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Fang Wang
- 2 The Clinical Laboratory Centre, Gansu Provincial Hospital , Lanzhou, China
| | - Yu Wu
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Jing Liu
- 2 The Clinical Laboratory Centre, Gansu Provincial Hospital , Lanzhou, China
| | - Jing Jia
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Junwen Yan
- 2 The Clinical Laboratory Centre, Gansu Provincial Hospital , Lanzhou, China
| | - Xiaoming Qi
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Yuanting Li
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Xiaoling Gao
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| |
Collapse
|
46
|
Higdon LE, Trofe-Clark J, Liu S, Margulies KB, Sahoo MK, Blumberg E, Pinsky BA, Maltzman JS. Cytomegalovirus-Responsive CD8 + T Cells Expand After Solid Organ Transplantation in the Absence of CMV Disease. Am J Transplant 2017; 17:2045-2054. [PMID: 28199780 PMCID: PMC5519416 DOI: 10.1111/ajt.14227] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/18/2017] [Accepted: 02/06/2017] [Indexed: 01/25/2023]
Abstract
Cytomegalovirus (CMV) is a major cause of morbidity and mortality in solid organ transplant recipients. Approximately 60% of adults are CMV seropositive, indicating previous exposure. Following resolution of the primary infection, CMV remains in a latent state. Reactivation is controlled by memory T cells in healthy individuals; transplant recipients have reduced memory T cell function due to chronic immunosuppressive therapies. In this study, CD8+ T cell responses to CMV polypeptides immediate-early-1 and pp65 were analyzed in 16 CMV-seropositive kidney and heart transplant recipients longitudinally pretransplantation and posttransplantation. All patients received standard of care maintenance immunosuppression, antiviral prophylaxis, and CMV viral load monitoring, with approximately half receiving T cell-depleting induction therapy. The frequency of CMV-responsive CD8+ T cells, defined by the production of effector molecules in response to CMV peptides, increased during the course of 1 year posttransplantation. The increase commenced after the completion of antiviral prophylaxis, and these T cells tended to be terminally differentiated effector cells. Based on this small cohort, these data suggest that even in the absence of disease, antigenic exposure may continually shape the CMV-responsive T cell population posttransplantation.
Collapse
Affiliation(s)
- L E Higdon
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - J Trofe-Clark
- Department of Pharmacy Services, Hospital of the University of Pennsylvania, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Renal Division, Philadelphia, PA
| | - S Liu
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - K B Margulies
- Perelman School of Medicine, University of Pennsylvania, Cardiovascular Institute, Philadelphia, PA
| | - M K Sahoo
- Stanford University, School of Medicine, Department of Pathology, Stanford, CA
| | - E Blumberg
- Perelman School of Medicine, University of Pennsylvania, Infectious Diseases Division, Philadelphia, PA
| | - B A Pinsky
- Stanford University, School of Medicine, Department of Pathology, Stanford, CA
- Stanford University, School of Medicine, Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford, CA
| | - J S Maltzman
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
- VA Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
47
|
|
48
|
First Publication of Standardized Immune Monitoring Methods From the Virtual Global Transplantation Laboratory Initiative. Transplant Direct 2016; 2:e100. [PMID: 27795992 PMCID: PMC5068198 DOI: 10.1097/txd.0000000000000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 12/03/2022] Open
|
49
|
Virtual Global Transplant Laboratory Standard Operating Protocol for Donor Alloantigen-specific Interferon-gamma ELISPOT Assay. Transplant Direct 2016; 2:e111. [PMID: 27826604 PMCID: PMC5096438 DOI: 10.1097/txd.0000000000000621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022] Open
Abstract
The quantification of frequency of IFN-γ–producing T cells responding to donor alloantigen using the IFN-γ enzyme linked immunosorbent spot (ELISPOT) holds potential for pretransplant and posttransplant immunological risk stratification. The effectiveness of this assay, and the ability to compare results generated by different studies, is dependent on the utilization of a standardized operating procedure (SOP). Key factors in assay standardization include the identification of primary and secondary antibody pairs, and the reading of the ELISPOT plate with a standardized automated algorithm. Here, we describe in detail, an SOP that should provide low coefficient of variation results. For multicenter trials, it is recommended that groups perform the ELISPOT assays locally but use a centralized ELISPOT reading facility, as this has been shown to be beneficial in reducing coefficient of variation between laboratories even when the SOP is strictly adhered to.
Collapse
|