1
|
Han X, Zhang J, Wei Z, Mei J, Long X, Zhen X, Zhang Y, Zhang Y. Treatment of Shengqingtongqiao Decoction for mild cognitive impairment of white matter lesions study protocol for a randomized, double-blind, double-dummy, parallel controlled trial. BMC Complement Med Ther 2024; 24:366. [PMID: 39394587 PMCID: PMC11470687 DOI: 10.1186/s12906-024-04654-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND White matter lesions(WML) is an important cause of mild cognitive impairment(MCI). Ginkgo biloba extracts (GBTs) are widely used to treat cognitive dysfunctions. But the treatment of MCI is still limited. Shenqingtongqiao Decoction(SQTQD), as a clinical empirical formula, has received good feedback in treating MCI of WML. However, there was a lack of solid clinical research on SQTQD in treating MCI. The purpose of this study is to evaluate the efficacy of SQTQD in the MCI patients of WML. METHODS This is a randomized, double-blind, double-dummy, parallel-controlled trial. 80 participants will be assigned to receive SQTQD granules plus GBTs mimetics or SQTQD mimetic granules plus GBTs in a 1:1 ratio. The trial will last 24 weeks, including a 12-week intervention and 12-week follow-up. The primary outcome is MoCA and AVLT. The secondary outcome is a neuropsychological battery (including MMSE, SCWT, TMT, DST, SDMT, BNT, VFT, and CDT), quality of life(BI, ADL, and FAQ scores), emotion assessment(PHQ-9, GAD-7 score) , Fazekas and ARWMCs scale, and fMRI. Researchers will record any adverse events throughout the trial. DISCUSSION This study will provide evidence to evaluate the efficacy and safety of SQTQD for MCI of WML compared with GBTs. TRIAL REGISTRATION The trial is registered at Chinese Clinical Trial Registry: Chinese Clinical Trial Registry (Number: ChiCTR2300068552).
Collapse
Affiliation(s)
- XueYi Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Gan he road, Shanghai, 200437, China
| | - JieQing Zhang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - ZiJun Wei
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Gan he road, Shanghai, 200437, China
| | - JiaNing Mei
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Gan he road, Shanghai, 200437, China
| | - Xie Long
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Gan he road, Shanghai, 200437, China
| | - XiaoMin Zhen
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Gan he road, Shanghai, 200437, China
| | - YueChan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Gan he road, Shanghai, 200437, China.
| | - YunYun Zhang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Gan he road, Shanghai, 200437, China.
| |
Collapse
|
2
|
Woodward M, Bennett DA, Rundek T, Perry G, Rudka T. The relationship between hippocampal changes in healthy aging and Alzheimer's disease: a systematic literature review. Front Aging Neurosci 2024; 16:1390574. [PMID: 39210976 PMCID: PMC11357962 DOI: 10.3389/fnagi.2024.1390574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Neurobiological changes in the hippocampus are a common consequence of aging. However, there are differences in the rate of decline and overall volume loss in people with no cognitive impairment compared to those with mild cognitive impairment (MCI) and Alzheimer's disease (AD). This systematic literature review was conducted to determine the relationship between hippocampal atrophy and changes in hippocampal volume in the non-cognitively impaired brain and those with MCI or AD. Methods This systematic review was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. The PubMed database was searched up to September 15, 2022, for longitudinal magnetic resonance imaging studies reporting hippocampal atrophy or volume change in cognitively normal aging individuals and patients with MCI and/or AD. Study selection was divided into two steps: (1) identification and retrieval of relevant studies; (2) screening the studies by (a) title/abstract and (b) full text. Two teams, each consisting of two independent reviewers, determined whether the publications met the inclusion criteria for the systematic review. An evidence table was populated with data extracted from eligible publications and inclusion in the final systematic review was confirmed. Results The systematic search identified 357 publications that were initially screened by title/abstract, of which, 115 publications were retrieved and reviewed by full text for eligibility. Seventeen publications met the eligibility criteria; however, during data extraction, two studies were determined to not meet the inclusion criteria and were excluded. The remaining 15 studies were included in the systematic review. Overall, the results of these studies demonstrated that the hippocampus and hippocampal subfields change over time, with both decreased hippocampal volume and increased rate of hippocampal atrophy observed. Hippocampal changes in AD were observed to be greater than hippocampal changes in MCI, and changes in MCI were observed to be greater than those in normal aging populations. Conclusion Published literature suggests that the rate of hippocampal decline and extent of loss is on a continuum that begins in people without cognitive impairment and continues to MCI and AD, and that differences between no cognitive impairment, MCI, and AD are quantitative rather than qualitative.
Collapse
Affiliation(s)
- Michael Woodward
- Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Tatjana Rundek
- Evelyn F. McKnight Brain Institute, Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Tomasz Rudka
- Danone Specialised Nutrition, Hoofddorp, Netherlands
| |
Collapse
|
3
|
Song J. BDNF Signaling in Vascular Dementia and Its Effects on Cerebrovascular Dysfunction, Synaptic Plasticity, and Cholinergic System Abnormality. J Lipid Atheroscler 2024; 13:122-138. [PMID: 38826183 PMCID: PMC11140249 DOI: 10.12997/jla.2024.13.2.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 06/04/2024] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia and is characterized by memory impairment, blood-brain barrier disruption, neuronal cell loss, glia activation, impaired synaptic plasticity, and cholinergic system abnormalities. To effectively prevent and treat VaD a good understanding of the mechanisms underlying its neuropathology is needed. Brain-derived neurotrophic factor (BDNF) is an important neurotrophic factor with multiple functions in the systemic circulation and the central nervous system and is known to regulate neuronal cell survival, synaptic formation, glia activation, and cognitive decline. Recent studies indicate that when compared with normal subjects, patients with VaD have low serum BDNF levels and that BDNF deficiency in the serum and cerebrospinal fluid is an important indicator of VaD. Here, we review current knowledge on the role of BDNF signaling in the pathology of VaD, such as cerebrovascular dysfunction, synaptic dysfunction, and cholinergic system impairment.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
4
|
Stipho F, Malek-Ahmadi M. Meta-Analysis of White Matter Hyperintensity Volume Differences Between APOE ε4 Carriers and Noncarriers. Alzheimer Dis Assoc Disord 2024; 38:208-212. [PMID: 38748617 PMCID: PMC11141236 DOI: 10.1097/wad.0000000000000620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/07/2024] [Indexed: 05/31/2024]
Abstract
Several studies have suggested that white matter hyperintensity volume (WMHV) is increased among apolipoprotein E (APOE) ε4 carriers while others have reported contradictory findings. Although APOE ε4 carriage is associated with greater AD pathology, it remains unclear whether cerebrovascular damage is also associated with APOE ε4 carriage. The aim of this meta-analysis was to determine whether WMHV is associated with APOE ε4 carrier status. 12 studies that were included yielded a total sample size of 16,738 adult subjects (ε4 carrier n = 4,721; ε4 noncarrier n = 12,017). There were no significant differences in WMHV between ε4 carriers and noncarriers (Hedge's g = 0.07; 95% CI (-0.01 to 0.15), P = 0.09). Subgroup analysis of community-based studies (n = 8) indicated a small effect size where ε4 carriers had greater WMHV relative to noncarriers (Hedge's g = 0.09 95% CI (0.02 to 0.16), P = 0.008). Among clinic-based studies (n = 3) there was no significant difference in WMHV by APOE ε4 carrier status (Hedge's g = -0.09, 95% CI (-0.60 to 0.41), P = 0.70). Observed APOE ε4-associated WMHV differences may be context-dependent and may also be confounded by a lack of standardization for WMHV segmentation.
Collapse
Affiliation(s)
- Faissal Stipho
- University of Arizona College of Medicine-Tucson, Tucson, AZ
| | - Michael Malek-Ahmadi
- Banner Alzheimer’s Institute, Phoenix, AZ
- University of Arizona College of Medicine-Phoenix, Dept. of Biomedical Informatics, Phoenix, AZ
| |
Collapse
|
5
|
Wang X, Peng L, Zhan S, Yin X, Huang L, Huang J, Yang J, Zhang Y, Zeng Y, Liang S. Alterations in hippocampus-centered morphological features and function of the progression from normal cognition to mild cognitive impairment. Asian J Psychiatr 2024; 93:103921. [PMID: 38237533 DOI: 10.1016/j.ajp.2024.103921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 03/08/2024]
Abstract
Mild cognitive impairment (MCI) is a significant precursor to dementia, highlighting the critical need for early identification of individuals at high risk of MCI to prevent cognitive decline. The study aimed to investigate the changes in brain structure and function before the onset of MCI. This study enrolled 19 older adults with progressive normal cognition (pNC) to MCI and 19 older adults with stable normal cognition (sNC). The gray matter (GM) volume and functional connectivity (FC) were estimated via magnetic resonance imaging during their normal cognition state 3 years prior. Additionally, spatial associations between FC maps and neurochemical profiles were examined using JuSpace. Compared to the sNC group, the pNC group showed decreased volume in the left hippocampus and left amygdala. The significantly positive correlation was observed between the GM volume of the left hippocampus and the MMSE scores after 3 years in pNC group. Besides, it showed that the pNC group had increased FC between the left hippocampus and the anterior-posterior cingulate gyrus, which was significantly correlated with the spatial distribution of dopamine D2 and noradrenaline transporter. Taken together, the study identified the abnormal brain characteristics before the onset of MCI, which might provide insight into clinical research.
Collapse
Affiliation(s)
- Xiuxiu Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lixin Peng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shiqi Zhan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaolong Yin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Li Huang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jiayang Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Junchao Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yusi Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yi Zeng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fuzhou 350001, China.
| |
Collapse
|
6
|
Holmqvist SL, Jobson K, Desalme D, Simone SM, Tassoni M, McKniff M, Yamaguchi T, Olson I, Martin N, Giovannetti T. Preliminary validation of the Virtual Kitchen Challenge as an objective and sensitive measure of everyday function associated with cerebrovascular disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12547. [PMID: 38318469 PMCID: PMC10840367 DOI: 10.1002/dad2.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
Preliminary validity of a computer-based test of everyday function (Virtual Kitchen Challenge [VKC]) was examined against brain-imaging markers of cerebrovascular disease and in contrast to conventional neuropsychological and self-report measures. Twenty community-dwelling older adults (n = 6 mild cognitive impairment) performed simulated breakfast and lunch tasks using a computer touchscreen (VKC). Automated measures (completion time, proportion time off screen, etc.) were computed during training and test conditions. White matter hyperintensity (WMH) volumes from brain magnetic resonance imaging and conventional measures of cognition and function also were obtained. VKC completion time and proportion time off screen improved significantly from training to test and were significantly associated with WMH volume (r > 0.573). VKC measures and WMH were not significantly correlated with conventional cognitive or self-report measures. The VKC holds promise as a valid measure of subtle functional difficulties in older adults that is sensitive to change and cerebrovascular pathology, highlighting its potential for clinical trials. Highlights Virtual Kitchen Challenge (VKC) scores showed significant improvement from training to test conditions.VKC scores (completion time and proportion of time off screen) were associated with a neuroimaging biomarker of brain health (white matter hyperintensities).
Collapse
Affiliation(s)
- Sophia L. Holmqvist
- Department of Psychology and NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Katie Jobson
- Department of Psychology and NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Dennis Desalme
- Department of Communication Sciences and DisordersEleanor M. Saffran Center for Cognitive NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Stephanie M. Simone
- Department of Psychology and NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Molly Tassoni
- Department of Psychology and NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Moira McKniff
- Department of Psychology and NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Takehiko Yamaguchi
- Department of Applied Information EngineeringSuwa University of ScienceNaganoJapan
| | - Ingrid Olson
- Department of Psychology and NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Nadine Martin
- Department of Communication Sciences and DisordersEleanor M. Saffran Center for Cognitive NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Tania Giovannetti
- Department of Psychology and NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Kamal F, Morrison C, Dadar M. Investigating the relationship between sleep disturbances and white matter hyperintensities in older adults on the Alzheimer's disease spectrum. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12553. [PMID: 38476639 PMCID: PMC10927930 DOI: 10.1002/dad2.12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/15/2023] [Accepted: 01/19/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION While studies report that sleep disturbance can have negative effects on brain vasculature, its impact on cerebrovascular diseases such as white matter hyperintensities (WMHs) in beta-amyloid-positive older adults remains unexplored. METHODS Sleep disturbance, WMH burden, and cognition in normal controls (NCs), and individuals with mild cognitive impairment (MCI) and Alzheimer's disease (AD), were examined at baseline and longitudinally. A total of 912 amyloid-positive participants were included (198 NC, 504 MCI, and 210 AD). RESULTS Individuals with AD reported more sleep disturbances than NC and MCI participants. Those with sleep disturbances had more WMHs than those without sleep disturbances in the AD group. Mediation analysis revealed an effect of regional WMH burden on the relationship between sleep disturbance and future cognition. DISCUSSION These results suggest that WMH burden and sleep disturbance increase from aging to AD. Sleep disturbance decreases cognition through increases in WMH burden. Improved sleep could mitigate the impact of WMH accumulation and cognitive decline.
Collapse
Affiliation(s)
- Farooq Kamal
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Douglas Mental Health University InstituteMontrealQuebecCanada
| | | | - Mahsa Dadar
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Douglas Mental Health University InstituteMontrealQuebecCanada
| |
Collapse
|
8
|
Hotz I, Deschwanden PF, Mérillat S, Jäncke L. Associations between white matter hyperintensities, lacunes, entorhinal cortex thickness, declarative memory and leisure activity in cognitively healthy older adults: A 7-year study. Neuroimage 2023; 284:120461. [PMID: 37981203 DOI: 10.1016/j.neuroimage.2023.120461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023] Open
Abstract
INTRODUCTION Cerebral small vessel disease (cSVD) is a growing epidemic that affects brain health and cognition. Therefore, a more profound understanding of the interplay between cSVD, brain atrophy, and cognition in healthy aging is of great importance. In this study, we examined the association between white matter hyperintensities (WMH) volume, number of lacunes, entorhinal cortex (EC) thickness, and declarative memory in cognitively healthy older adults over a seven-year period, controlling for possible confounding factors. Because there is no cure for cSVD to date, the neuroprotective potential of an active lifestyle has been suggested. Supporting evidence, however, is scarce. Therefore, a second objective of this study is to examine the relationship between leisure activities, cSVD, EC thickness, and declarative memory. METHODS We used a longitudinal dataset, which consisted of five measurement time points of structural MRI and psychometric cognitive ability and survey data, collected from a sample of healthy older adults (baseline N = 231, age range: 64-87 years, age M = 70.8 years), to investigate associations between cSVD MRI markers, EC thickness and verbal and figural memory performance. Further, we computed physical, social, and cognitive leisure activity scores from survey-based assessments and examined their associations with brain structure and declarative memory. To provide more accurate estimates of the trajectories and cross-domain correlations, we applied latent growth curve models controlling for potential confounders. RESULTS Less age-related thinning of the right (β = 0.92, p<.05) and left EC (β = 0.82, p<.05) was related to less declarative memory decline; and a thicker EC at baseline predicted less declarative memory loss (β = 0.54, p<.05). Higher baseline levels of physical (β = 0.24, p<.05), and social leisure activity (β = 0.27, p<.01) predicted less thinning of right EC. No relation was found between WMH or lacunes and declarative memory or between leisure activity and declarative memory. Higher education was initially related to more physical activity (β = 0.16, p<.05) and better declarative memory (β = 0.23, p<.001), which, however, declined steeper in participants with higher education (β = -.35, p<.05). Obese participants were less physically (β = -.18, p<.01) and socially active (β = -.13, p<.05) and had thinner left EC (β = -.14, p<.05) at baseline. Antihypertensive medication use (β = -.26, p<.05), and light-to-moderate alcohol consumption (β = -.40, p<.001) were associated with a smaller increase in the number of lacunes whereas a larger increase in the number of lacunes was observed in current smokers (β = 0.30, p<.05). CONCLUSIONS Our results suggest complex relationships between cSVD MRI markers (total WMH, number of lacunes, right and left EC thickness), declarative memory, and confounding factors such as antihypertensive medication, obesity, and leisure activitiy. Thus, leisure activities and having good cognitive reserve counteracting this neurodegeneration. Several confounding factors seem to contribute to the extent or progression/decline of cSVD, which needs further investigation in the future. Since there is still no cure for cSVD, modifiable confounding factors should be studied more intensively in the future to maintain or promote brain health and thus cognitive abilities in older adults.
Collapse
Affiliation(s)
- Isabel Hotz
- Dynamics of Healthy Aging, University Research Priority Program (URPP), University of Zurich, Stampfenbachstrasse 73, Zurich CH-8006, Switzerland.
| | - Pascal Frédéric Deschwanden
- Dynamics of Healthy Aging, University Research Priority Program (URPP), University of Zurich, Stampfenbachstrasse 73, Zurich CH-8006, Switzerland
| | - Susan Mérillat
- Dynamics of Healthy Aging, University Research Priority Program (URPP), University of Zurich, Stampfenbachstrasse 73, Zurich CH-8006, Switzerland
| | - Lutz Jäncke
- Dynamics of Healthy Aging, University Research Priority Program (URPP), University of Zurich, Stampfenbachstrasse 73, Zurich CH-8006, Switzerland
| |
Collapse
|
9
|
Bangen KJ, Calcetas AT, Thomas KR, Wierenga C, Smith CN, Bordyug M, Brenner EK, Wing D, Chen C, Liu TT, Zlatar ZZ. Greater accelerometer-measured physical activity is associated with better cognition and cerebrovascular health in older adults. J Int Neuropsychol Soc 2023; 29:859-869. [PMID: 36789631 PMCID: PMC10425574 DOI: 10.1017/s1355617723000140] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
OBJECTIVES Physical activity (PA) may help maintain brain structure and function in aging. Since the intensity of PA needed to effect cognition and cerebrovascular health remains unknown, we examined associations between PA and cognition, regional white matter hyperintensities (WMH), and regional cerebral blood flow (CBF) in older adults. METHOD Forty-three older adults without cognitive impairment underwent magnetic resonance imaging (MRI) and comprehensive neuropsychological assessment. Waist-worn accelerometers objectively measured PA for approximately one week. RESULTS Higher time spent in moderate to vigorous PA (MVPA) was uniquely associated with better memory and executive functioning after adjusting for all light PA. Higher MVPA was also uniquely associated with lower frontal WMH volume although the finding was no longer significant after additionally adjusting for age and accelerometer wear time. MVPA was not associated with CBF. Higher time spent in all light PA was uniquely associated with higher CBF but not with cognitive performance or WMH volume. CONCLUSIONS Engaging in PA may be beneficial for cerebrovascular health, and MVPA in particular may help preserve memory and executive function in otherwise cognitively healthy older adults. There may be differential effects of engaging in lighter PA and MVPA on MRI markers of cerebrovascular health although this needs to be confirmed in future studies with larger samples. Future randomized controlled trials that increase PA are needed to elucidate cause-effect associations between PA and cerebrovascular health.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Amanda T Calcetas
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christina Wierenga
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christine N Smith
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Maria Bordyug
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Einat K Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - David Wing
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Conan Chen
- Center for Functional MRI and Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Thomas T Liu
- Center for Functional MRI and Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Zvinka Z Zlatar
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Membreno R, Thomas KR, Calcetas AT, Edwards L, Bordyug M, Showell M, Stanfill M, Brenner EK, Walker KS, Rotblatt LJ, Brickman AM, Edmonds EC, Bangen KJ. Regional White Matter Hyperintensities Relate to Specific Cognitive Abilities in Older Adults Without Dementia. Alzheimer Dis Assoc Disord 2023; 37:303-309. [PMID: 38015423 PMCID: PMC10664788 DOI: 10.1097/wad.0000000000000585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/06/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION White matter hyperintensities (WMHs) are magnetic resonance imaging markers of small vessel cerebrovascular disease that are associated with cognitive decline and clinical Alzheimer disease. Previous studies have often focused on global or total WMH; less is known about associations of regional WMHs and cognitive abilities among older adults without dementia. METHODS A total of 610 older adults with normal cognition (n=302) or mild cognitive impairment (n=308) from the Alzheimer's Disease Neuroimaging Initiative underwent neuropsychological testing and magnetic resonance imaging. Linear regression models examined associations between regional WMH volumes and cognition, adjusting for age, sex, education, apolipoprotein E ε4 allele frequency, and pulse pressure. RESULTS Among all participants, greater regional WMH volume in all lobes was associated with poorer performance on memory and speed/executive functioning. Among participants with normal cognition, greater temporal and occipital WMH volumes were associated with poorer memory, whereas no regional WMH volumes were associated with speed/executive function. DISCUSSION Results show that greater regional WMH volume relates to poorer cognitive functioning-even among those with normal cognition. Together with results from previous studies, our findings raise the possibility that WMH may be a useful therapeutic target and/or important effect modifier in treatment or prevention dementia trials.
Collapse
Affiliation(s)
| | - Kelsey R. Thomas
- Research Service, VA San Diego Healthcare System
- Department of Psychiatry, University of California San Diego
| | | | - Lauren Edwards
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA
| | - Maria Bordyug
- Department of Psychiatry, University of California San Diego
| | - Maya Showell
- Research Service, VA San Diego Healthcare System
| | | | | | | | - Lindsay J. Rotblatt
- Psychology Service, VA San Diego Healthcare System
- Department of Psychiatry, University of California San Diego
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University
- Gertrude H. Sergievsky Center, Columbia University
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Emily C. Edmonds
- Banner Alzheimer’s Institute
- Department of Psychology, University of Arizona, Tucson, AZ
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System
- Department of Psychiatry, University of California San Diego
| |
Collapse
|
11
|
Kamal F, Morrison C, Maranzano J, Zeighami Y, Dadar M. White Matter Hyperintensity Trajectories in Patients With Progressive and Stable Mild Cognitive Impairment. Neurology 2023; 101:e815-e824. [PMID: 37407262 PMCID: PMC10449435 DOI: 10.1212/wnl.0000000000207514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES White matter hyperintensities (WMH) are pathologic brain changes that are associated with increased age and cognitive decline. However, the association of WMH burden with amyloid positivity and conversion to dementia in people with mild cognitive impairment (MCI) is unclear. The aim of this study was to expand on this research by examining whether change in WMH burden over time differs in amyloid-negative (Aβ-) and amyloid-positive (Aβ+) people with MCI who either remain stable or convert to dementia. To examine this question, we compared regional WMH burden in 4 groups: Aβ+ progressor, Aβ- progressor, Aβ+ stable, and Aβ- stable. METHODS Participants with MCI from the Alzheimer Disease Neuroimaging Initiative were included if they had APOE ɛ4 status and if amyloid measures were available to determine amyloid status (i.e., Aβ+, or Aβ-). Participants with a baseline diagnosis of MCI and who had APOE ɛ4 information and amyloid measures were included. An average of 5.7 follow-up time points per participant were included, with a total of 5,054 follow-up time points with a maximum follow-up duration of 13 years. Differences in total and regional WMH burden were examined using linear mixed-effects models. RESULTS A total of 820 participants (55-90 years of age) were included in the study (Aβ+ progressor, n = 239; Aβ- progressor, n = 22; Aβ+ stable, n = 343; Aβ- stable, n = 216). People who were Aβ- stable exhibited reduced baseline WMH compared with Aβ+ progressors and people who were Aβ+ stable at all regions of interest (β belongs to 0.20-0.33, CI belongs to 0.03-0.49, p < 0.02), except deep WMH. When examining longitudinal results, compared with people who were Aβ- stable, all groups had steeper accumulation in WMH burden with Aβ+ progressors (β belongs to -0.03 to 0.06, CI belongs to -0.05 to 0.09, p < 0.01) having the largest increase (i.e., largest increase in WMH accumulation over time). DISCUSSION These results indicate that WMH accumulation contributes to conversion to dementia in older adults with MCI who are Aβ+ and Aβ-.
Collapse
Affiliation(s)
- Farooq Kamal
- From the Department of Psychiatry (F.K., Y.Z., M.D.), McGill University; Douglas Mental Health University Institute (F.K., Y.Z., M.D.); Department of Neurology and Neurosurgery (C.M., J.M.), Faculty of Medicine, and McConnell Brain Imaging Centre (C.M.), Montreal Neurological Institute, McGill University; and Department of Anatomy (J.M.), University of Quebec in Trois-Rivières, Canada.
| | - Cassandra Morrison
- From the Department of Psychiatry (F.K., Y.Z., M.D.), McGill University; Douglas Mental Health University Institute (F.K., Y.Z., M.D.); Department of Neurology and Neurosurgery (C.M., J.M.), Faculty of Medicine, and McConnell Brain Imaging Centre (C.M.), Montreal Neurological Institute, McGill University; and Department of Anatomy (J.M.), University of Quebec in Trois-Rivières, Canada
| | - Josefina Maranzano
- From the Department of Psychiatry (F.K., Y.Z., M.D.), McGill University; Douglas Mental Health University Institute (F.K., Y.Z., M.D.); Department of Neurology and Neurosurgery (C.M., J.M.), Faculty of Medicine, and McConnell Brain Imaging Centre (C.M.), Montreal Neurological Institute, McGill University; and Department of Anatomy (J.M.), University of Quebec in Trois-Rivières, Canada
| | - Yashar Zeighami
- From the Department of Psychiatry (F.K., Y.Z., M.D.), McGill University; Douglas Mental Health University Institute (F.K., Y.Z., M.D.); Department of Neurology and Neurosurgery (C.M., J.M.), Faculty of Medicine, and McConnell Brain Imaging Centre (C.M.), Montreal Neurological Institute, McGill University; and Department of Anatomy (J.M.), University of Quebec in Trois-Rivières, Canada
| | - Mahsa Dadar
- From the Department of Psychiatry (F.K., Y.Z., M.D.), McGill University; Douglas Mental Health University Institute (F.K., Y.Z., M.D.); Department of Neurology and Neurosurgery (C.M., J.M.), Faculty of Medicine, and McConnell Brain Imaging Centre (C.M.), Montreal Neurological Institute, McGill University; and Department of Anatomy (J.M.), University of Quebec in Trois-Rivières, Canada
| |
Collapse
|
12
|
Kamal F, Morrison C, Dadar M. Investigating the relationship between sleep disturbances and white matter hyperintensities in older adults on the Alzheimer's disease spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.13.23288544. [PMID: 37131746 PMCID: PMC10153314 DOI: 10.1101/2023.04.13.23288544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background While studies report that sleep disturbance can have negative effects on brain vasculature, its impact on cerebrovascular disease such as white matter hyperintensities (WMHs) in beta-amyloid positive older adults remains unexplored. Methods Linear regressions, mixed effects models, and mediation analysis examined the crosssectional and longitudinal associations between sleep disturbance, cognition, and WMH burden, and cognition in normal controls (NCs), mild cognitive impairment (MCI), and Alzheimer's disease (AD) at baseline and longitudinally. Results People with AD reported more sleep disturbance than NC and MCI. AD with sleep disturbance had more WMHs than AD without sleep disturbances. Mediation analysis revealed an effect of regional WMH burden on the relationship between sleep disturbance and future cognition. Conclusion These results suggest that WMH burden and sleep disturbance increases from aging to AD. Sleep disturbance decreases cognition through increases in WMH burden. Improved sleep could mitigate the impact of WMH accumulation and cognitive decline.
Collapse
Affiliation(s)
- Farooq Kamal
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A 1A1, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Cassandra Morrison
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Mahsa Dadar
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A 1A1, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
| |
Collapse
|
13
|
Beckett AG, McFadden MD, Warrington JP. Preeclampsia history and postpartum risk of cerebrovascular disease and cognitive impairment: Potential mechanisms. Front Physiol 2023; 14:1141002. [PMID: 37064920 PMCID: PMC10102351 DOI: 10.3389/fphys.2023.1141002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Hypertensive disorders of pregnancy such as preeclampsia, eclampsia, superimposed preeclampsia, and gestational hypertension are major causes of fetal and maternal morbidity and mortality. Women with a history of hypertensive pregnancy disorders have increased risk of stroke and cognitive impairments later in life. Moreover, women with a history of preeclampsia have increased risk of mortality from diseases including stroke, Alzheimer's disease, and cardiovascular disease. The underlying pathophysiological mechanisms are currently not fully known. Here, we present clinical, epidemiological, and preclinical studies focused on evaluating the long-term cerebrovascular and cognitive dysfunction that affect women with a history of hypertensive pregnancy disorders and discuss potential underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Ashtin G. Beckett
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Mia D. McFadden
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Junie P. Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
14
|
Kamal F, Morrison C, Maranzano J, Zeighami Y, Dadar M. Topographical differences in white matter hyperintensity burden and cognition in aging, MCI, and AD. GeroScience 2023; 45:1-16. [PMID: 36229760 PMCID: PMC9886779 DOI: 10.1007/s11357-022-00665-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/17/2022] [Indexed: 02/03/2023] Open
Abstract
White matter hyperintensities (WMHs) are pathological changes that occur with increased age and are associated with cognitive decline. Most WMH research has not examined regional differences and focuses on a whole-brain approach. This study examined regional WMHs between normal controls (NCs), people with mild cognitive impairment (MCI), and Alzheimer's disease (AD). We also examined whether WMHs were associated with cognitive decline. Participants from the Alzheimer's Disease Neuroimaging Initiative were included if they had at least one WMH measurement and cognitive scores examining global cognition, executive functioning, and memory. Only amyloid-positive MCI and AD participants were included. A total of 1573 participants with 7381 timepoints over a maximum period of 13 years were included. Linear mixed-effects models examined group differences in WMH burden and associations between WMH burden and cognition. People with MCI and AD had increased total and regional WMHs compared to NCs. An association between WMHs and cognition was observed for global cognition, executive functioning, and memory in NCs in all regions. A steeper decline (stronger association between WMH and cognition) was observed in MCI compared to NCs for all cognitive domains in all regions. A steeper decline was observed in AD compared to NCs for global cognition in only the temporal region. A strong association is observed between all cognitive domains of interest and WMH burden in healthy aging and MCI, while those with AD only had a few associations between WMH and global cognition. These findings suggest that the WMH burden is associated with changes in cognition in healthy aging and early cognitive decline.
Collapse
Affiliation(s)
- Farooq Kamal
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada.
| | - Cassandra Morrison
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Josefina Maranzano
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Anatomy, University of Quebec in Trois-Rivières, Trois-Rivières, QC, Canada
| | - Yashar Zeighami
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | - Mahsa Dadar
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada.
| |
Collapse
|
15
|
Morrison C, Dadar M, Manera AL, Collins DL. Racial differences in white matter hyperintensity burden in older adults. Neurobiol Aging 2023; 122:112-119. [PMID: 36543016 DOI: 10.1016/j.neurobiolaging.2022.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
White matter hyperintensities (WMHs) may be one of the earliest pathological changes in aging. Race differences in WMH burden has been conflicting. This study examined if race influences WMHs and whether these differences are influenced by vascular risk factors. Alzheimer's Disease Neuroimaging Initiative participants were included if they had a baseline MRI, diagnosis, and WMH measurements. Ninety-one Blacks and 1937 Whites were included. Using bootstrap re-sampling, 91 Whites were randomly sampled and matched to Blacks based on age, sex, education, and diagnosis 1000 times. Linear models examined the influence of race on baseline WMHs, and change of WMHs over time, with and without vascular factors. Vascular risk factors had higher prevalence in Blacks than Whites. When not including vascular factors, Blacks had greater frontal, parietal, deep, and total WMH burden compared to Whites. There were no race differences in longitudinal progression of WMH accumulation. After controlling for vascular factors, only overall longitudinal parietal WMH group differences remained significant, suggesting that vascular factors contribute to racial group differences observed in WMHs.
Collapse
Affiliation(s)
- Cassandra Morrison
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| | - Mahsa Dadar
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Ana L Manera
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Edwards L, Thomas KR, Weigand AJ, Edmonds EC, Clark AL, Walker KS, Brenner EK, Nation DA, Maillard P, Bondi MW, Bangen KJ. White Matter Hyperintensity Volume and Amyloid-PET Synergistically Impact Memory Independent of Tau-PET in Older Adults Without Dementia. J Alzheimers Dis 2023; 94:695-707. [PMID: 37302031 PMCID: PMC10357163 DOI: 10.3233/jad-221209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and cerebrovascular disease are common, co-existing pathologies in older adults. Whether the effects of cerebrovascular disease and AD biomarkers on cognition are additive or synergistic remains unclear. OBJECTIVE To examine whether white matter hyperintensity (WMH) volume moderates the independent association between each AD biomarker and cognition. METHODS In 586 older adults without dementia, linear regressions tested the interaction between amyloid-β (Aβ) positron emission tomography (PET) and WMH volume on cognition, independent of tau-PET. We also tested the interaction between tau-PET and WMH volume on cognition, independent of Aβ-PET. RESULTS Adjusting for tau-PET, the quadratic effect of WMH interacted with Aβ-PET to impact memory. There was no interaction between either the linear or quadratic effect of WMH and Aβ-PET on executive function. There was no interaction between WMH volume and tau-PET on either cognitive measure. CONCLUSION Results suggest that cerebrovascular lesions act synergistically with Aβ to affect memory, independent of tau, highlighting the importance of incorporating vascular pathology into biomarker assessment of AD.
Collapse
Affiliation(s)
- Lauren Edwards
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Kelsey R. Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J. Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Emily C. Edmonds
- Banner Alzheimer’s Institute, Tucson, AZ, USA
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Alexandra L. Clark
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | | - Einat K. Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Daniel A. Nation
- Department of Psychology, University of California Irvine, Irvine, CA, USA
| | - Pauline Maillard
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Mark W. Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
17
|
Brenner EK, Weigand AJ, Edwards L, Thomas KR, Edmonds EC, Bondi MW, Bangen KJ. Brain Derived Neurotrophic Factor Interacts with White Matter Hyperintensities to Influence Processing Speed and Hippocampal Volume in Older Adults. J Alzheimers Dis 2023; 93:141-149. [PMID: 36970903 PMCID: PMC10200154 DOI: 10.3233/jad-221178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays an important role in regulating synaptic activity and plasticity. OBJECTIVE Given that type-2 diabetes (T2DM) increases the risk of cognitive decline, and studies have suggested lower BDNF levels may be a risk factor of diabetic neurovascular complications, we sought to investigate total white matter hyperintensities (WMH) as a moderator of the effect of BDNF on hippocampal volume and cognition. METHODS Older adults without dementia from the Alzheimer's Disease Neuroimaging Initiative (N = 454 including 49 with T2DM and 405 without diabetes) underwent neuropsychological evaluation, magnetic resonance imaging to quantify hippocampal and WMH volumes, and blood draw to assess BDNF. RESULTS Adjusting for age, sex, and APOE ɛ4 carrier status, there was a significant interaction between total WMH and BDNF on bilateral hippocampal volume in the non-T2DM group (t = 2.63, p = 0.009). Examination of main effect models with a dichotomous high/low BNDF group revealed a significant main effect for low BDNF (t = -4.98, p < 0.001), such that as WMH increased, bilateral hippocampal volume decreased. There was also a significant interaction between total WMH and BDNF on processing speed in the non-T2DM group (t = 2.91, p = 0.004). There was a significant main effect for low BDNF (t = -3.55, p < 0.001) such that as WMH increased, processing speed decreased. The interactions were not significant in the T2DM group. CONCLUSION These results further elucidate the protective role that BDNF plays on cognition, as well as the cognitive effects of WMH.
Collapse
Affiliation(s)
- Einat K. Brenner
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Alexandra J. Weigand
- San Diego State University/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Lauren Edwards
- San Diego State University/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Kelsey R. Thomas
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | | | - Mark W. Bondi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J. Bangen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | | |
Collapse
|
18
|
Fellows RP, Bangen KJ, Graves LV, Delano-Wood L, Bondi MW. Pathological functional impairment: Neuropsychological correlates of the shared variance between everyday functioning and brain volumetrics. Front Aging Neurosci 2022; 14:952145. [PMID: 36620766 PMCID: PMC9816390 DOI: 10.3389/fnagi.2022.952145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Given that several non-cognitive factors can contribute to difficulties with everyday functioning, examining the extent to which cognition is associated with brain-related changes in everyday functioning is critical to accurate characterization of cognitive disorders. In this study, we examined neuropsychological correlates of the shared variance between everyday functioning and pathological indicators of cognitive aging using MRI brain volumetrics. Participants and methods Participants were 600 adults aged 55 and older without dementia [432 cognitively normal; 168 mild cognitive impairment (MCI)] from the National Alzheimer's Coordinating Center cohort who underwent neuropsychological testing, informant-rated everyday functioning, and brain MRI scanning at baseline. The shared variance between everyday functioning and brain volumetrics (i.e., hippocampal volume, white matter hyperintensity volume) was extracted using the predicted value from multiple regression. The shared variance was used as an indicator of pathological everyday functional impairment. The residual variance from the regression analysis was used to examine functional reserve. Results Larger white matter hyperintensity volumes (p = 0.002) and smaller hippocampal volumes (p < 0.001) were significantly correlated with worse informant-rated everyday functioning. Among individuals with MCI, worse performances on delayed recall (p = 0.013) and category fluency (p = 0.012) were significantly correlated with pathological functional impairment in multiple regression analysis. In the cognitively normal group, only worse auditory working memory (i.e., digit span backward; p = 0.025) significantly correlated with pathological functioning. Functional reserve was inversely related to anxiety (p < 0.001) in the MCI group and was associated with depressive symptoms (p = 0.003) and apathy (p < 0.001) in the cognitively normal group. Conclusion Subtle brain-related everyday functioning difficulties are evident in MCI and track with expected preclinical Alzheimer's disease cognitive phenotypes in this largely amnestic sample. Our findings indicate that functional changes occur early in the disease process and that interventions to target neuropsychiatric symptoms may help to bolster functional reserve in those at risk.
Collapse
Affiliation(s)
- Robert P. Fellows
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, United States,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States,*Correspondence: Robert P. Fellows, ✉
| | - Katherine J. Bangen
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States,Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Lisa V. Graves
- Department of Psychology, California State University, San Marcos, CA, United States
| | - Lisa Delano-Wood
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, United States,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Mark W. Bondi
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, United States,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
19
|
Schoemaker D, Zanon Zotin MC, Chen K, Igwe KC, Vila-Castelar C, Martinez J, Baena A, Fox-Fuller JT, Lopera F, Reiman EM, Brickman AM, Quiroz YT. White matter hyperintensities are a prominent feature of autosomal dominant Alzheimer’s disease that emerge prior to dementia. Alzheimers Res Ther 2022; 14:89. [PMID: 35768838 PMCID: PMC9245224 DOI: 10.1186/s13195-022-01030-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
To promote the development of effective therapies, there is an important need to characterize the full spectrum of neuropathological changes associated with Alzheimer’s disease. In line with this need, this study examined white matter abnormalities in individuals with early-onset autosomal dominant Alzheimer’s disease, in relation to age and symptom severity.
Methods
This is a cross-sectional analysis of data collected in members of a large kindred with a PSEN1 E280A mutation. Participants were recruited between September 2011 and July 2012 from the Colombian Alzheimer’s Prevention Initiative registry. The studied cohort comprised 50 participants aged between 20 and 55 years, including 20 cognitively unimpaired mutation carriers, 9 cognitively impaired mutation carriers, and 21 non-carriers. Participants completed an MRI, a lumbar puncture for cerebrospinal fluid collection, a florbetapir PET scan, and neurological and neuropsychological examinations. The volume of white matter hyperintensities (WMH) was compared between cognitively unimpaired carriers, cognitively impaired carriers, and non-carriers. Relationships between WMH, age, and cognitive performance were further examined in mutation carriers.
Results
The mean (SD) age of participants was 35.8 (9.6) years and 64% were women. Cardiovascular risk factors were uncommon and did not differ across groups. Cognitively impaired carriers [median, 6.37; interquartile range (IQR), 9.15] had an increased volume of WMH compared to both cognitively unimpaired carriers [median, 0.85; IQR, 0.79] and non-carriers [median, 1.07; IQR, 0.71]. In mutation carriers, the volume of WMH strongly correlated with cognition and age, with evidence for an accelerated rate of changes after the age of 43 years, 1 year earlier than the estimated median age of symptom onset. In multivariable regression models including cortical amyloid retention, superior parietal lobe cortical thickness, and cerebrospinal fluid phospho-tau, the volume of WMH was the only biomarker independently and significantly contributing to the total explained variance in cognitive performance.
Conclusions
The volume of WMH is increased among individuals with symptomatic autosomal-dominant Alzheimer’s disease, begins to increase prior to clinical symptom onset, and is an independent determinant of cognitive performance in this group. These findings suggest that WMH are a key component of autosomal-dominant Alzheimer’s disease that is closely related to the progression of clinical symptoms.
Collapse
|
20
|
Valsdóttir V, Magnúsdóttir BB, Chang M, Sigurdsson S, Gudnason V, Launer LJ, Jónsdóttir MK. Cognition and brain health among older adults in Iceland: the AGES-Reykjavik study. GeroScience 2022; 44:2785-2800. [PMID: 35978066 PMCID: PMC9768066 DOI: 10.1007/s11357-022-00642-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/05/2022] [Indexed: 01/07/2023] Open
Abstract
The paper aimed to compare how factors previously identified as predictive factors for cognitive decline and dementia related to cognitive performance on the one hand and brain health on the other. To that aim, multiple linear regression was applied to the AGES-Reykjavik study epidemiological data. Additionally, a regression analysis was performed for change in cognition over 5 years, using the same exposure factors. The study ran from 2002 to 2011, and the sample analyzed included 1707 participants between the ages of 66 and 90. The data contains MR imaging, cognitive testing, background data, and physiological measurements. Overall, we conclude that risk factors linked to dementia relate differently to cognition and brain health. Mobility, physical strength, alcohol consumption, coronary artery disease, and hypertension were associated with cognition and brain volume. Smoking, depression, diabetes, and body fat percentage were only associated with brain volume, not cognitive performance. Modifiable factors previously linked to cognitive reserve, such as educational attainment, participation in leisure activities, multilingualism and good self-reported health, were associated with cognitive function but did not relate to brain volume. These findings show that, within the same participant pool, cognitive reserve proxy variables have a relationship with cognitive performance but have no association with relative brain volume measured simultaneously.
Collapse
Affiliation(s)
- Vaka Valsdóttir
- Department of Psychology, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland
- RHLÖ – Icelandic Gerontological Research Center, Landspitali University Hospital, Reykjavik, Iceland
| | - Brynja Björk Magnúsdóttir
- Department of Psychology, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland
- Mental Health Services, Landspitali University Hospital, Reykjavik, Iceland
| | - Milan Chang
- RHLÖ – Icelandic Gerontological Research Center, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Vilmundur Gudnason
- The Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, National Institutes of Health (NIH), Bethesda, MD USA
| | - María K. Jónsdóttir
- Department of Psychology, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland
- Mental Health Services, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
21
|
Calcetas AT, Thomas KR, Edmonds EC, Holmqvist SL, Edwards L, Bordyug M, Delano-Wood L, Brickman AM, Bondi MW, Bangen KJ, For The Alzheimer's Disease Neuroimaging Initiative. Increased regional white matter hyperintensity volume in objectively-defined subtle cognitive decline and mild cognitive impairment. Neurobiol Aging 2022; 118:1-8. [PMID: 35809348 PMCID: PMC9838569 DOI: 10.1016/j.neurobiolaging.2022.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/03/2023]
Abstract
White matter hyperintensities (WMH), a marker of small vessel cerebrovascular disease, increase risk of developing mild cognitive impairment (MCI) and Alzheimer's disease (AD). Less is known about the extent and pattern of WMH in pre-MCI stages, such as among those with objectively-defined subtle cognitive decline (Obj-SCD). Five hundred and fifty-nine Alzheimer's Disease Neuroimaging Initiative participants (170 cognitively unimpaired [CU]; 83 Obj-SCD; 306 MCI) free of clinical dementia or stroke completed neuropsychological testing and MRI exams. ANCOVA models compared cognitive groups on regional WMH adjusting for age, sex, and apolipoprotein E (APOE) ɛ4 frequency. Compared with the CU group, those with Obj-SCD had greater temporal, occipital, and frontal WMH whereas those with MCI had higher WMH volume across all regions (p's < 0.01). No differences in WMH volume were observed between the Obj-SCD and MCI groups (p's > 0.05). Findings add to growing evidence of associations between Obj-SCD and imaging biomarkers, providing support for utility of these criteria to capture subtle cognitive changes that are biologically based.
Collapse
Affiliation(s)
- Amanda T Calcetas
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kelsey R Thomas
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Emily C Edmonds
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | | | - Lauren Edwards
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Maria Bordyug
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J Bangen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | | |
Collapse
|
22
|
Guo W, Shi J. White matter hyperintensities volume and cognition: A meta-analysis. Front Aging Neurosci 2022; 14:949763. [PMID: 36118701 PMCID: PMC9476945 DOI: 10.3389/fnagi.2022.949763] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cerebral small vessel disease (CSVD) is prevalent in the elderly and leads to an increased risk of cognitive impairment and dementia. The volume of white matter hyperintensities (WMHs) increases with age, which affects cognition. Objective To explore the relationship between WMH volume and cognitive decline in patients with CSVD. Methods We performed a systematic search of PubMed, Embase, and the Web of Science databases from their respective creation dates to the 5 May 2022 to identify all the clinical studies on either mild cognitive impairment (MCI) or dementia in regards to WMH volume in CSVD. Results White matter hyperintensities was associated with the risk of both the MCI and dementia, with a 35% increased risk [relative risk (RR) = 1.35; (95% CI: 1.01-1.81)] of progression from cognitively unimpaired (CU) to MCI (six studies, n = 2,278) and a 49% increased risk [RR = 1.49; (95% CI: 1.21-1.84)] of progression to dementia (six studies, n = 6,330). In a subgroup analysis, a follow-up period of over 5 years increased the risk of MCI by 40% [RR = 1.40; (95% CI: 1.07-1.82)] and dementia by 48% [RR = 1.48; (95% CI: 1.15-1.92)]. Conclusion White matter hyperintensities was found to be substantially correlated with the risk of cognitive impairment. Furthermore, cognitive decline was found to be a chronic process, such that WMH predicted the rate of cognitive decline in CSVD beyond 5 years. The cognitive decline observed in patients with WMH may, therefore, be minimized by early intervention.
Collapse
Affiliation(s)
| | - Jing Shi
- The 3rd Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Ottoy J, Ozzoude M, Zukotynski K, Adamo S, Scott C, Gaudet V, Ramirez J, Swardfager W, Cogo-Moreira H, Lam B, Bhan A, Mojiri P, Kang MS, Rabin JS, Kiss A, Strother S, Bocti C, Borrie M, Chertkow H, Frayne R, Hsiung R, Laforce RJ, Noseworthy MD, Prato FS, Sahlas DJ, Smith EE, Kuo PH, Sossi V, Thiel A, Soucy JP, Tardif JC, Black SE, Goubran M. Vascular burden and cognition: Mediating roles of neurodegeneration and amyloid PET. Alzheimers Dement 2022; 19:1503-1517. [PMID: 36047604 DOI: 10.1002/alz.12750] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/06/2022]
Abstract
It remains unclear to what extent cerebrovascular burden relates to amyloid beta (Aβ) deposition, neurodegeneration, and cognitive dysfunction in mixed disease populations with small vessel disease and Alzheimer's disease (AD) pathology. In 120 subjects, we investigated the association of vascular burden (white matter hyperintensity [WMH] volumes) with cognition. Using mediation analyses, we tested the indirect effects of WMH on cognition via Aβ deposition (18 F-AV45 positron emission tomography [PET]) and neurodegeneration (cortical thickness or 18 F fluorodeoxyglucose PET) in AD signature regions. We observed that increased total WMH volume was associated with poorer performance in all tested cognitive domains, with the strongest effects observed for semantic fluency. These relationships were mediated mainly via cortical thinning, particularly of the temporal lobe, and to a lesser extent serially mediated via Aβ and cortical thinning of AD signature regions. WMH volumes differentially impacted cognition depending on lobar location and Aβ status. In summary, our study suggests mainly an amyloid-independent pathway in which vascular burden affects cognitive function via localized neurodegeneration. HIGHLIGHTS: Alzheimer's disease often co-exists with vascular pathology. We studied a unique cohort enriched for high white matter hyperintensities (WMH). High WMH related to cognitive impairment of semantic fluency and executive function. This relationship was mediated via temporo-parietal atrophy rather than metabolism. This relationship was, to lesser extent, serially mediated via amyloid beta and atrophy.
Collapse
Affiliation(s)
- Julie Ottoy
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Miracle Ozzoude
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Zukotynski
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Departments of Medicine and Radiology, McMaster University, Hamilton, Ontario, Canada.,Department of Medical Imaging, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sabrina Adamo
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Scott
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Gaudet
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Joel Ramirez
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Hugo Cogo-Moreira
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Education, ICT and Learning, Østfold University College, Halden, Norway
| | - Benjamin Lam
- Department of Medicine (Division of Neurology), University of Toronto, Toronto, Ontario, Canada
| | - Aparna Bhan
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Parisa Mojiri
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Min Su Kang
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer S Rabin
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alex Kiss
- Department of Research Design and Biostatistics, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Strother
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,The Rotman Research Institute Baycrest, University of Toronto, Toronto, Ontario, Canada
| | - Christian Bocti
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Michael Borrie
- Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Howard Chertkow
- Jewish General Hospital and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Richard Frayne
- Departments of Radiology and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Robin Hsiung
- Physics and Astronomy Department and DM Center for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Jr Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, Université Laval, Quebec City, Quebec, Canada
| | - Michael D Noseworthy
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Frank S Prato
- Lawson Health Research Institute, Western University, London, Ontario, Canada
| | | | - Eric E Smith
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Phillip H Kuo
- Department of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Vesna Sossi
- Physics and Astronomy Department and DM Center for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander Thiel
- Jewish General Hospital and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Sandra E Black
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine (Division of Neurology), University of Toronto, Toronto, Ontario, Canada.,Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Maged Goubran
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Frank B, Ally M, Tripodis Y, Puzo C, Labriolo C, Hurley L, Martin B, Palmisano J, Chan L, Steinberg E, Turk K, Budson A, O’Connor M, Au R, Qiu WQ, Goldstein L, Kukull W, Kowall N, Killiany R, Stern R, Stein T, McKee A, Mez J, Alosco M. Trajectories of Cognitive Decline in Brain Donors With Autopsy-Confirmed Alzheimer Disease and Cerebrovascular Disease. Neurology 2022; 98:e2454-e2464. [PMID: 35444054 PMCID: PMC9231841 DOI: 10.1212/wnl.0000000000200304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/16/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Cerebrovascular disease (CBVD) is frequently comorbid with autopsy-confirmed Alzheimer disease (AD), but its contribution to the clinical presentation of AD remains unclear. We leveraged the National Alzheimer's Coordinating Center (NACC) uniform and neuropathology datasets to compare the cognitive and functional trajectories of AD+/CBVD+ and AD+/CBVD- brain donors. METHODS The sample included NACC brain donors with autopsy-confirmed AD (Braak stage ≥3, Consortium to Establish a Registry for Alzheimer's Disease score ≥2) and complete Uniform Data Set (UDS) evaluations between 2005 and 2019, with the most recent UDS evaluation within 2 years of autopsy. CBVD was defined as moderate to severe arteriosclerosis or atherosclerosis. We used propensity score weighting to isolate the effects of comorbid AD and CBVD. This method improved the balance of covariates between the AD+/CBVD+ and AD+/CBVD- groups. Longitudinal mixed-effects models were assessed with robust bayesian estimation. UDS neuropsychological test and the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) scores were primary outcomes. RESULTS Of 2,423 brain donors, 1,476 were classified as AD+/CBVD+. Compared with AD+/CVBD- donors, the AD+/CBVD+ group had accelerated decline (i.e., group × time effects) on measures of processing speed (β = -0.93, 95% CI -1.35, -0.51, Bayes factor [BF] 130.75), working memory (β = 0.05, 95% CI 0.02, 0.07, BF 3.59), verbal fluency (β = 0.10, 95% CI 0.04, 0.15, BF 1.28), naming (β = 0.09, 95% CI 0.03, 0.16, BF = 0.69), and CDR-SB (β = -0.08, 95% CI -0.12, -0.05, BF 18.11). Effects ranged from weak (BFs <3.0) to strong (BFs <150). We also found worse performance in the AD+/CBVD+ group across time on naming (β = -1.04, 95% CI -1.83, -0.25, BF 2.52) and verbal fluency (β = -0.73, 95% CI -1.30, -0.15, BF 1.34) and more impaired CDR-SB scores (β = 0.45, 95% CI 0.01, 0.89, BF 0.33). DISCUSSION In brain donors with autopsy-confirmed AD, comorbid CBVD was associated with an accelerated functional and cognitive decline, particularly on neuropsychological tests of attention, psychomotor speed, and working memory. CBVD magnified effects of AD neuropathology on semantic-related neuropsychological tasks. Findings support a prominent additive and more subtle synergistic effect for comorbid CBVD neuropathology in AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michael Alosco
- From the Boston University Alzheimer's Disease Center and CTE Center (B.F., M. Ally, Y.T., C.P., C.L., B.M., J.P., L.C., E.S., K.T., A.B., M.O., R.A., W.Q.Q., L.G., N.K., R.K., R.S., T.S., A.M., J.M., M. Alosco), Boston University School of Medicine; Veteran Affairs Bedford Healthcare System (B.F., M.O., T.S., A.M.), Bedford; Department of Biostatistics (Y.T.), Boston University School of Public Health, MA; Yale School of Public Health (L.H.), New Haven, CT; Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Department of Neurology (K.T., A.B., R.A., N.K., R.S., A.M., J.M., M. Alosco), Boston University School of Medicine; Veterans Affairs Boston Healthcare System (K.T., A.B., N.K., T.S., A.M); Department of Anatomy & Neurobiology (R.A., R.K., R.S.), Boston University School of Medicine; MA; Framingham Heart Study (R.A.), National Heart, Lung, and Blood Institute, Bethesda, MD; Department of Epidemiology (R.A.), Boston University School of Public Health; Department of Psychiatry (W.Q.Q.), Boston University School of Medicine; Department of Pharmacology & Experimental Therapeutics (W.Q.Q.), Boston University School of Medicine; Department of Pathology and Laboratory Medicine (L.G.), Boston University School of Medicine; Departments of Psychiatry and Ophthalmology (L.G.), Boston University School of Medicine; Departments of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering, MA; National Alzheimer's Coordinating Center (W.K.), Department of Epidemiology, University of Washington, Seattle; Center for Biomedical Imaging (R.K.), and Boston University School of Medicine; Department of Neurosurgery (R.S.), Boston University School of Medicine, MA.
| |
Collapse
|
25
|
Celle S, Boutet C, Annweiler C, Ceresetti R, Pichot V, Barthélémy JC, Roche F. Leukoaraiosis and Gray Matter Volume Alteration in Older Adults: The PROOF Study. Front Neurosci 2022; 15:747569. [PMID: 35095388 PMCID: PMC8793339 DOI: 10.3389/fnins.2021.747569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Purpose: Leukoaraiosis, also called white matter hyperintensities (WMH), is frequently encountered in the brain of older adults. During aging, gray matter structure is also highly affected. WMH or gray matter defects are commonly associated with a higher prevalence of mild cognitive impairment. However, little is known about the relationship between WMH and gray matter. Our aim was thus to explore the relationship between leukoaraiosis severity and gray matter volume in a cohort of healthy older adults. Methods: Leukoaraiosis was rated in participants from the PROOF cohort using the Fazekas scale. Voxel-based morphometry was performed on brain scans to examine the potential link between WMH and changes of local brain volume. A neuropsychological evaluation including attentional, executive, and memory tests was also performed to explore cognition. Results: Out of 315 75-year-old subjects, 228 had punctuate foci of leukoaraiosis and 62 had begun the confluence of foci. Leukoaraiosis was associated with a decrease of gray matter in the middle temporal gyrus, in the right medial frontal gyrus, and in the left parahippocampal gyrus. It was also associated with decreased performances in memory recall, executive functioning, and depression. Conclusion: In a population of healthy older adults, leukoaraiosis was associated with gray matter defects and reduced cognitive performance. Controlling vascular risk factors and detecting early cerebrovascular disease may prevent, at least in part, dementia onset and progression.
Collapse
Affiliation(s)
- Sébastien Celle
- Clinical Physiology, Visas Center, University Hospital, Saint-Etienne, France
- INSERM, U1059, SAINBIOSE, DVH, Saint-Étienne, France
- *Correspondence: Sébastien Celle,
| | - Claire Boutet
- Department of Radiology, University Hospital, Saint Etienne, France
- EA7423 TAPE, UJM, Saint-Étienne, France
| | - Cédric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, Angers, France
- UPRES EA4638, University of Angers, Angers, France
| | - Romain Ceresetti
- Clinical Physiology, Visas Center, University Hospital, Saint-Etienne, France
- INSERM, U1059, SAINBIOSE, DVH, Saint-Étienne, France
| | - Vincent Pichot
- Clinical Physiology, Visas Center, University Hospital, Saint-Etienne, France
- INSERM, U1059, SAINBIOSE, DVH, Saint-Étienne, France
| | - Jean-Claude Barthélémy
- Clinical Physiology, Visas Center, University Hospital, Saint-Etienne, France
- INSERM, U1059, SAINBIOSE, DVH, Saint-Étienne, France
| | - Frédéric Roche
- Clinical Physiology, Visas Center, University Hospital, Saint-Etienne, France
- INSERM, U1059, SAINBIOSE, DVH, Saint-Étienne, France
| |
Collapse
|
26
|
Franz CE, Hatton SN, Elman JA, Warren T, Gillespie NA, Whitsel NA, Puckett OK, Dale AM, Eyler LT, Fennema-Notestine C, Hagler DJ, Hauger RL, McKenzie R, Neale MC, Panizzon MS, Pearce RC, Reynolds CA, Sanderson-Cimino M, Toomey R, Tu XM, Williams M, Xian H, Lyons MJ, Kremen WS. Lifestyle and the aging brain: interactive effects of modifiable lifestyle behaviors and cognitive ability in men from midlife to old age. Neurobiol Aging 2021; 108:80-89. [PMID: 34547718 PMCID: PMC8862767 DOI: 10.1016/j.neurobiolaging.2021.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/23/2021] [Accepted: 08/12/2021] [Indexed: 01/18/2023]
Abstract
We examined the influence of lifestyle on brain aging after nearly 30 years, and tested the hypothesis that young adult general cognitive ability (GCA) would moderate these effects. In the community-dwelling Vietnam Era Twin Study of Aging (VETSA), 431 largely non-Hispanic white men completed a test of GCA at mean age 20. We created a modifiable lifestyle behavior composite from data collected at mean age 40. During VETSA, MRI-based measures at mean age 68 included predicted brain age difference (PBAD), Alzheimer's disease (AD) brain signature, and abnormal white matter scores. There were significant main effects of young adult GCA and lifestyle on PBAD and the AD signature (ps ≤ 0.012), and a GCA-by-lifestyle interaction on both (ps ≤ 0.006). Regardless of GCA level, having more favorable lifestyle behaviors predicted less advanced brain age and less AD-like brain aging. Unfavorable lifestyles predicted advanced brain aging in those with lower age 20 GCA, but did not affect brain aging in those with higher age 20 GCA. Targeting early lifestyle modification may promote dementia risk reduction, especially among lower reserve individuals.
Collapse
Affiliation(s)
- Carol E Franz
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, San Diego, CA, USA.
| | - Sean N Hatton
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Jeremy A Elman
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, San Diego, CA, USA
| | - Teresa Warren
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA; QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nathan A Whitsel
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, San Diego, CA, USA
| | - Olivia K Puckett
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, San Diego, CA, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, San Diego, CA, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, San Diego, CA, USA; Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Donald J Hagler
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Richard L Hauger
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, San Diego, CA, USA; Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
| | - Ruth McKenzie
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavior Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, San Diego, CA, USA
| | - Rahul C Pearce
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, San Diego, CA, USA
| | - Chandra A Reynolds
- Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Mark Sanderson-Cimino
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
| | - Rosemary Toomey
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Xin M Tu
- Department of Family Medicine, University of California San Diego, San Diego, CA, USA
| | - McKenna Williams
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, San Diego, CA, USA; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Hong Xian
- Department of Epidemiology & Biostatistics, St. Louis University, St. Louis, MO, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Center for Behavior Genetics of Aging, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
27
|
Besser LM, Lovasi GS, Michael YL, Garg P, Hirsch JA, Siscovick D, Hurvitz P, Biggs ML, Galvin JE, Bartz TM, Longstreth WT. Associations between neighborhood greenspace and brain imaging measures in non-demented older adults: the Cardiovascular Health Study. Soc Psychiatry Psychiatr Epidemiol 2021; 56:1575-1585. [PMID: 33388800 PMCID: PMC8253869 DOI: 10.1007/s00127-020-02000-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Greater neighborhood greenspace has been associated with brain health, including better cognition and lower odds of Alzheimer's disease in older adults. We investigated associations between neighborhood greenspace and brain-based magnetic resonance imaging (MRI) measures and potential effect modification by sex or apolipoprotein E genotype (APOE), a risk factor for Alzheimer's disease. METHODS We obtained a sample of non-demented participants 65 years or older (n = 1125) from the longitudinal, population-based Cardiovascular Health Study (CHS). Greenspace data were derived from the National Land Cover Dataset. Adjusted multivariable linear regression estimated associations between neighborhood greenspace five years prior to the MRI and left and right hippocampal volume and 10-point grades of ventricular size and burden of white matter hyperintensity. Interaction terms tested effect modification by APOE genotype and sex. CHS data (1989-1999) were obtained/analyzed in 2020. RESULTS Participants were on average 79 years old [standard deviation (SD) = 4], 58% were female, and 11% were non-white race. Mean neighborhood greenspace was 38% (SD = 28%). Greater proportion of greenspace in the neighborhood five years before MRI was borderline associated with lower ventricle grade (estimate: - 0.30; 95% confidence interval: - 0.61, 0.00). We observed no associations between greenspace and the other MRI outcome measures and no evidence of effect modification by APOE genotype and sex. CONCLUSION This study suggests a possible association between greater greenspace and less ventricular enlargement, a measure reflecting global brain atrophy. If confirmed in other longitudinal cohort studies, interventions and policies to improve community greenspaces may help to maintain brain health in older age.
Collapse
Affiliation(s)
- Lilah M Besser
- Institute for Human Health and Disease Intervention, Department of Urban and Regional Planning, Florida Atlantic University, 777 Glades Rd, SO-44, Room 284H, Boca Raton, FL, 33431, USA.
| | - Gina S Lovasi
- Urban Health Collaborative and Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
| | - Yvonne L Michael
- Department of Epidemiology and Biostatistics, Dornslife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
| | - Parveen Garg
- Division of Cardiology, Keck School of Medicine, University of Southern California, 1510 San Pablo Street Suite #322, Los Angeles, CA, 90033, USA
| | - Jana A Hirsch
- Urban Health Collaborative and Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
| | - David Siscovick
- Division of Research, Evaluation, and Policy, The New York Academy of Medicine, New York, NY, 10029, USA
| | - Phil Hurvitz
- Center for Studies in Demography and Ecology and Urban Form Lab, University of Washington, Seattle, WA, 98195, USA
| | - Mary L Biggs
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, 98195, USA
| | - James E Galvin
- Comprehensive Center for Brain Health, Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - W T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, 98195-9775, USA
| |
Collapse
|
28
|
Wong R, Luo Y, Mok VCT, Shi L. Advances in computerized MRI‐based biomarkers in Alzheimer’s disease. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The use of neuroimaging examinations is crucial in Alzheimer’s disease (AD), in both research and clinical settings. Over the years, magnetic resonance imaging (MRI)–based computer‐aided diagnosis has been shown to be helpful for early screening and predicting cognitive decline. Meanwhile, an increasing number of studies have adopted machine learning for the classification of AD, with promising results. In this review article, we focus on computerized MRI‐based biomarkers of AD by reviewing representative studies that used computerized techniques to identify AD patients and predict cognitive progression. We categorized these studies based on the following applications: (1) identifying AD from normal control; (2) identifying AD from other dementia types, including vascular dementia, dementia with Lewy bodies, and frontotemporal dementia; and (3) predicting conversion from NC to mild cognitive impairment (MCI) and from MCI to AD. This systematic review could act as a state‐of‐the‐art overview of this emerging field as well as a basis for designing future studies.
Collapse
Affiliation(s)
- Raymond Wong
- BrainNow Research Institute, Shenzhen 518081, Guangdong, China
| | - Yishan Luo
- BrainNow Research Institute, Shenzhen 518081, Guangdong, China
| | - Vincent Chung-tong Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen 518081, Guangdong, China
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
29
|
Bangen KJ, Thomas KR, Sanchez DL, Edmonds EC, Weigand AJ, Delano-Wood L, Bondi MW. Entorhinal Perfusion Predicts Future Memory Decline, Neurodegeneration, and White Matter Hyperintensity Progression in Older Adults. J Alzheimers Dis 2021; 81:1711-1725. [PMID: 33967041 DOI: 10.3233/jad-201474] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Altered cerebral blood flow (CBF) has been linked to increased risk for Alzheimer's disease (AD). However, whether altered CBF contributes to AD risk by accelerating cognitive decline remains unclear. It also remains unclear whether reductions in CBF accelerate neurodegeneration and development of small vessel cerebrovascular disease. OBJECTIVE To examine associations between CBF and trajectories of memory performance, regional brain atrophy, and global white matter hyperintensity (WMH) volume. METHOD 147 Alzheimer's Disease Neuroimaging Initiative participants free of dementia underwent arterial spin labeling (ASL) magnetic resonance imaging (MRI) to measure CBF and serial neuropsychological and structural MRI examinations. Linear mixed effects models examined 5-year rate of change in memory and 4-year rate of change in regional brain atrophy and global WMH volumes as a function of baseline regional CBF. Entorhinal and hippocampal CBF were examined in separate models. RESULTS Adjusting for demographic characteristics, pulse pressure, apolipoprotein E ɛ4 positivity, cerebrospinal fluid p-tau/Aβ ratio, and neuronal metabolism (i.e., fluorodeoxyglucose standardized uptake value ratio), lower baseline entorhinal CBF predicted faster rates of decline in memory as well as faster entorhinal thinning and WMH progression. Hippocampal CBF did not predict cognitive or brain structure trajectories. CONCLUSION Findings highlight the importance of early cerebrovascular dysfunction in AD risk and suggest that entorhinal CBF as measured by noninvasive ASL MRI is a useful biomarker predictive of future cognitive decline and of risk of both.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Danielle L Sanchez
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J Weigand
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | | |
Collapse
|
30
|
Cogswell PM, Weigand SD, Wiste HJ, Gunter JL, Graff-Radford J, Jones DT, Schwarz CG, Senjem ML, Knopman DS, Petersen RC, Jack CR. CSF dynamics as a predictor of cognitive progression. Neuroimage 2021; 232:117899. [PMID: 33631332 PMCID: PMC8237937 DOI: 10.1016/j.neuroimage.2021.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/17/2021] [Indexed: 11/25/2022] Open
Abstract
Disproportionately enlarged subarachnoid-space hydrocephalus (DESH), characterized by tight high convexity CSF spaces, ventriculomegaly, and enlarged Sylvian fissures, is thought to be an indirect marker of a CSF dynamics disorder. The clinical significance of DESH with regard to cognitive decline in a community setting is not yet well defined. The goal of this work is to determine if DESH is associated with cognitive decline. Participants in the population-based Mayo Clinic Study of Aging (MCSA) who met the following criteria were included: age ≥ 65 years, 3T MRI, and diagnosis of cognitively unimpaired or mild cognitive impairment at enrollment as well as at least one follow-up visit with cognitive testing. A support vector machine based method to detect the DESH imaging features on T1-weighted MRI was used to calculate a "DESH score", with positive scores indicating a more DESH-like imaging pattern. For the participants who were cognitively unimpaired at enrollment, a Cox proportional hazards model was fit with time defined as years from enrollment to first diagnosis of mild cognitive impairment or dementia, or as years to last known cognitively unimpaired diagnosis for those who did not progress. Linear mixed effects models were fit among all participants to estimate annual change in cognitive z scores for each domain (memory, attention, language, and visuospatial) and a global z score. For all models, covariates included age, sex, education, APOE genotype, cortical thickness, white matter hyperintensity volume, and total intracranial volume. The hazard of progression to cognitive impairment was an estimated 12% greater for a DESH score of +1 versus -1 (HR 1.12, 95% CI 0.97-1.31, p = 0.11). Global and attention cognition declined 0.015 (95% CI 0.005-0.025) and 0.016 (95% CI 0.005-0.028) z/year more, respectively, for a DESH score of +1 vs -1 (p = 0.01 and p = 0.02), with similar, though not statistically significant DESH effects in the other cognitive domains. Imaging features of disordered CSF dynamics are an independent predictor of subsequent cognitive decline in the MCSA, among other well-known factors including age, cortical thickness, and APOE status. Therefore, since DESH contributes to cognitive decline and is present in the general population, identifying individuals with DESH features may be important clinically as well as for selection in clinical trials.
Collapse
Affiliation(s)
- Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Heather J Wiste
- Department of Health Sciences Research, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Jeffrey L Gunter
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Information Technology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Information Technology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Ronald C Petersen
- Department of Health Sciences Research, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
31
|
Thomas KR, Osuna JR, Weigand AJ, Edmonds EC, Clark AL, Holmqvist S, Cota IH, Wierenga CE, Bondi MW, Bangen KJ. Regional hyperperfusion in older adults with objectively-defined subtle cognitive decline. J Cereb Blood Flow Metab 2021; 41:1001-1012. [PMID: 32615887 PMCID: PMC8054731 DOI: 10.1177/0271678x20935171] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/21/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022]
Abstract
Although cerebral blood flow (CBF) alterations are associated with Alzheimer's disease (AD), CBF patterns across prodromal stages of AD remain unclear. Therefore, we investigated patterns of regional CBF in 162 Alzheimer's Disease Neuroimaging Initiative participants characterized as cognitively unimpaired (CU; n = 80), objectively-defined subtle cognitive decline (Obj-SCD; n = 31), or mild cognitive impairment (MCI; n = 51). Arterial spin labeling MRI quantified regional CBF in a priori regions of interest: hippocampus, inferior temporal gyrus, inferior parietal lobe, medial orbitofrontal cortex, and rostral middle frontal gyrus. Obj-SCD participants had increased hippocampal and inferior parietal CBF relative to CU and MCI participants and increased inferior temporal CBF relative to MCI participants. CU and MCI groups did not differ in hippocampal or inferior parietal CBF, but CU participants had increased inferior temporal CBF relative to MCI participants. There were no CBF group differences in the two frontal regions. Thus, we found an inverted-U pattern of CBF signal across prodromal AD stages in regions susceptible to early AD pathology. Hippocampal and inferior parietal hyperperfusion in Obj-SCD may reflect early neurovascular dysregulation, whereby higher CBF is needed to maintain cognitive functioning relative to MCI participants, yet is also reflective of early cognitive inefficiencies that distinguish Obj-SCD from CU participants.
Collapse
Affiliation(s)
- Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Jessica R Osuna
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J Weigand
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra L Clark
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Sophia Holmqvist
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Isabel H Cota
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Christina E Wierenga
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
32
|
Li Y, Cong L, Hou T, Chang L, Zhang C, Tang S, Han X, Wang Y, Wang X, Kalpouzos G, Du Y, Qiu C. Characterizing Global and Regional Brain Structures in Amnestic Mild Cognitive Impairment Among Rural Residents: A Population-Based Study. J Alzheimers Dis 2021; 80:1429-1438. [PMID: 33682713 DOI: 10.3233/jad-201372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Structural brain magnetic resonance imaging (MRI) scans may provide reliable neuroimaging markers for defining amnestic mild cognitive impairment (aMCI). Objective: We sought to characterize global and regional brain structures of aMCI among rural-dwelling older adults with limited education in China. Methods: This population-based study included 180 participants (aged≥65 years, 42 with aMCI and 138 normal controls) in the Shandong Yanggu Study of Aging and Dementia during 2014–2016. We defined aMCI following the Petersen’s criteria. Global and regional brain volumes were automatically segmented on MRI scans and compared using a region-of-interest approach. Data were analyzed using general linear regression models. Results: Multi-adjusted β-coefficient (95% confidence interval) of brain volumes (cm3) associated with aMCI was –12.07 (–21.49, –2.64) for global grey matter (GM), –18.31 (–28.45, –8.17) for global white matter (WM), 28.17 (12.83, 44.07) for cerebrospinal fluid (CSF), and 2.20 (0.24, 4.16) for white matter hyperintensities (WMH). Furthermore, aMCI was significantly associated with lower GM volumes in bilateral superior temporal gyri, thalamus and right cuneus, and lower WM volumes in lateral areas extending from the frontal to the parietal, temporal, and occipital lobes, as well as right hippocampus (p < 0.05). Conclusion: Brain structure of older adults with aMCI is characterized by reduced global GM and WM volumes, enlarged CSF volume, increased WMH burden, reduced GM volumes in bilateral superior temporal gyri, thalamus, and right cuneus, and widespread reductions of lateral WM volumes.
Collapse
Affiliation(s)
- Yuanjing Li
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Liguo Chang
- Liaocheng Third People’s Hospital, Liaocheng, Shandong, P. R. China
| | - Chuanchen Zhang
- Department of Medical Imaging, Liaocheng People’s Hospital and Department of Medical Imaging, Liaocheng Brain Hospital, Liaocheng, Shandong, P. R. China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Xiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Grégoria Kalpouzos
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| |
Collapse
|
33
|
Bangen KJ, Delano-Wood L, Deoni SCL, Clark AL, Evangelista ND, Hoffman SN, Sorg SF, Holmqvist S, Osuna J, Weigand AJ, Jak AJ, Bondi MW, Lamar M. Decreased myelin content of the fornix predicts poorer memory performance beyond vascular risk, hippocampal volume, and fractional anisotropy in nondemented older adults. Brain Imaging Behav 2021; 15:2563-2571. [PMID: 33638111 PMCID: PMC8500888 DOI: 10.1007/s11682-021-00458-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
Alterations to cerebral white matter tracts have been associated with cognitive decline in aging and Alzheimer's disease (AD). In particular, the fornix has been implicated as especially vulnerable given that it represents the primary outflow tract of the hippocampus. Despite this, little work has focused on the fornix using a potential early marker of white matter degeneration-myelin water fraction (MWF; an in vivo marker of myelin content). Therefore, we sought to (1) clarify associations between MWF in the fornix and memory functioning, and (2) examine whether fornix MWF relates to memory performance above and beyond hippocampal volume and conventional imaging measures of white matter that may not be as specific to alterations in myelin content. Forty nondemented older adults (mean age = 72.9 years) underwent an MRI exam and neuropsychological assessment. Multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) was used to quantify fornix MWF and diffusion tensor imaging (DTI) was used to measure fornix fractional anisotropy (FA). Adjusting for age, sex, education, and vascular risk factors, linear regression models revealed that, lower fornix MWF was significantly associated with poorer memory functioning (β = 0.405, p = .007) across our sample of older adults. Notably, fornix MWF remained a significant predictor of memory functioning (β = 0.380, p = .015) even after adjusting for fornix DTI FA and hippocampal volume (in addition to the above covariates). Given the observed associations between myelin and memory in older adults without dementia, MWF may be a useful early marker of dementia risk.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA. .,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, Mail Code 151B, La Jolla, CA, 92093-9151, USA.
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, Mail Code 151B, La Jolla, CA, 92093-9151, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Sean C L Deoni
- Department of Pediatrics, Brown University, Providence, RI, USA
| | - Alexandra L Clark
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, Mail Code 151B, La Jolla, CA, 92093-9151, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Samantha N Hoffman
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA
| | - Scott F Sorg
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, Mail Code 151B, La Jolla, CA, 92093-9151, USA
| | - Sophia Holmqvist
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jessica Osuna
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, Mail Code 151B, La Jolla, CA, 92093-9151, USA
| | - Alexandra J Weigand
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Amy J Jak
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, Mail Code 151B, La Jolla, CA, 92093-9151, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, Mail Code 151B, La Jolla, CA, 92093-9151, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Melissa Lamar
- Rush Alzheimer's Disease Center, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
34
|
Boutzoukas EM, O'Shea A, Albizu A, Evangelista ND, Hausman HK, Kraft JN, Van Etten EJ, Bharadwaj PK, Smith SG, Song H, Porges EC, Hishaw A, DeKosky ST, Wu SS, Marsiske M, Alexander GE, Cohen R, Woods AJ. Frontal White Matter Hyperintensities and Executive Functioning Performance in Older Adults. Front Aging Neurosci 2021; 13:672535. [PMID: 34262445 PMCID: PMC8273864 DOI: 10.3389/fnagi.2021.672535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 11/27/2022] Open
Abstract
Frontal lobe structures decline faster than most other brain regions in older adults. Age-related change in the frontal lobe is associated with poorer executive function (e.g., working memory, switching/set-shifting, and inhibitory control). The effects and presence of frontal lobe white matter hyperintensities (WMH) on executive function in normal aging is relatively unknown. The current study assessed relationships between region-specific frontal WMH load and cognitive performance in healthy older adults using three executive function tasks from the NIH Toolbox (NIHTB) Cognition Battery. A cohort of 279 healthy older adults ages 65-88 completed NIHTB and 3T T1-weighted and FLAIR MRI. Lesion Segmentation Toolbox quantified WMH volume and generated lesion probability maps. Individual lesion maps were registered to the Desikan-Killiany atlas in FreeSurfer 6.0 to define regions of interest (ROI). Independent linear regressions assessed relationships between executive function performance and region-specific WMH in frontal lobe ROIs. All models included age, sex, education, estimated total intracranial volume, multi-site scanner differences, and cardiovascular disease risk using Framingham criteria as covariates. Poorer set-shifting performance was associated with greater WMH load in three frontal ROIs including bilateral superior frontal (left β = -0.18, FDR-p = 0.02; right β = -0.20, FDR-p = 0.01) and right medial orbitofrontal (β = -0.17, FDR-p = 0.02). Poorer inhibitory performance associated with higher WMH load in one frontal ROI, the right superior frontal (right β = -0.21, FDR-p = 0.01). There were no significant associations between working memory and WMH in frontal ROIs. Our study demonstrates that location and pattern of frontal WMH may be important to assess when examining age-related differences in cognitive functions involving switching/set-shifting and inhibition. On the other hand, working memory performance was not related to presence of frontal WMH in this sample. These data suggest that WMH may contribute selectively to age-related declines in executive function. Findings emerged beyond predictors known to be associated with WMH presence, including age and cardiovascular disease risk. The spread of WMH within the frontal lobes may play a key role in the neuropsychological profile of cognitive aging. Further research should explore whether early intervention on modifiable vascular factors or cognitive interventions targeted for executive abilities may help mitigate the effect of frontal WMH on executive function.
Collapse
Affiliation(s)
- Emanuel M. Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Nicole D. Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Hanna K. Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Jessica N. Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Emily J. Van Etten
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Pradyumna K. Bharadwaj
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Samantha G. Smith
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Hyun Song
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Eric C. Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Alex Hishaw
- Department Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Steven T. DeKosky
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Samuel S. Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Gene E. Alexander
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, United States
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Adam J. Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- *Correspondence: Adam J. Woods
| |
Collapse
|
35
|
Wright CB, DeRosa JT, Moon MP, Strobino K, DeCarli C, Cheung YK, Assuras S, Levin B, Stern Y, Sun X, Rundek T, Elkind MS, Sacco RL. Race/Ethnic Disparities in Mild Cognitive Impairment and Dementia: The Northern Manhattan Study. J Alzheimers Dis 2021; 80:1129-1138. [PMID: 33646162 PMCID: PMC8150441 DOI: 10.3233/jad-201370] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Variability in dementia rates across racial and ethnic groups has been estimated at 60%. Studies suggest disparities in Caribbean Hispanic and Black populations, but community-based data are limited. OBJECTIVE Estimate the prevalence of mild cognitive impairment (MCI) and dementia in the racially and ethnically diverse community-based Northern Manhattan Study cohort and examine sociodemographic, vascular risk factor, and brain imaging correlates. METHODS Cases of MCI and dementia were adjudicated by a team of neuropsychologists and neurologists and prevalence was estimated across race/ethnic groups. Ordinal proportional odds models were used to estimate race/ethnic differences in the prevalence of MCI or dementia adjusting for sociodemographic variables (model 1), model 1 plus potentially modifiable vascular risk factors (model 2), and model 1 plus structural imaging markers of brain integrity (model 3). RESULTS There were 989 participants with cognitive outcome determinations (mean age 69±9 years; 68% Hispanic, 16% Black, 14% White; 62% women; mean (±SD) follow-up five (±0.6) years). Hispanic and Black participants had greater likelihood of MCI (20%) and dementia (5%) than White participants accounting for age and education differences. Hispanic participants had greater odds of MCI or dementia than both White and Black participants adjusting for sociodemographic variables, vascular risk factors, and brain imaging factors. White matter hyperintensity burden was significantly associated with greater odds of MCI or dementia (OR = 1.3, 1.1 to 1.6), but there was no significant interaction by race/ethnicity. CONCLUSION In this diverse community-based cohort, cross-sectional data revealed significant race/ethnic disparities in the prevalence of MCI and dementia. Longer follow-up and incidence data are needed to further clarify these relationships.
Collapse
Affiliation(s)
- Clinton B. Wright
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Janet T. DeRosa
- Department of Neurology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Michelle P. Moon
- Department of Neurology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Kevin Strobino
- Department of Neurology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Charles DeCarli
- Department of Neurology, University of California at Davis, Davis, CA, USA
| | - Ying Kuen Cheung
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Stephanie Assuras
- Department of Neurology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Bonnie Levin
- Evelyn F McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yaakov Stern
- Department of Neurology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xiaoyan Sun
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tatjana Rundek
- Evelyn F McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mitchell S.V. Elkind
- Department of Neurology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ralph L. Sacco
- Evelyn F McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
36
|
Dadar M, Camicioli R, Duchesne S, Collins DL. The temporal relationships between white matter hyperintensities, neurodegeneration, amyloid beta, and cognition. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2020; 12:e12091. [PMID: 33083512 PMCID: PMC7552231 DOI: 10.1002/dad2.12091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 02/03/2023]
Abstract
Introduction Cognitive decline in Alzheimer's disease is associated with amyloid beta (Aβ) accumulation, neurodegeneration, and cerebral small vessel disease, but the temporal relationships among these factors is not well established. Methods Data included white matter hyperintensity (WMH) load, gray matter (GM) atrophy and Alzheimer's Disease Assessment Scale‐Cognitive‐Plus (ADAS13) scores for 720 participants and cerebrospinal fluid amyloid (Aβ1–42) for 461 participants from the Alzheimer's Disease Neuroimaging Initiative. Linear regressions were used to assess the relationships among baseline WMH, GM, and Aβ1–42 to changes in WMH, GM, Aβ1–42, and cognition at 1‐year follow‐up. Results Baseline WMHs and Aβ1–42 predicted WMH increase and GM atrophy. Baseline WMHs and Aβ1–42 predicted worsening cognition. Only baseline Aβ1–42 predicted change in Aβ1–42. Discussion Baseline WMHs lead to greater future GM atrophy and cognitive decline, suggesting that WM damage precedes neurodegeneration and cognitive decline. Baseline Aβ1–42 predicted WMH increase, suggesting a potential role of amyloid in WM damage.
Collapse
Affiliation(s)
- Mahsa Dadar
- CERVO Brain Research Center Centre intégré universitaire santé et services sociaux de la Capitale Nationale Québec Quebec Canada
| | - Richard Camicioli
- Department of Medicine, Division of Neurology University of Alberta Edmonton Alberta Canada
| | - Simon Duchesne
- CERVO Brain Research Center Centre intégré universitaire santé et services sociaux de la Capitale Nationale Québec Quebec Canada.,Department of Radiology and Nuclear Medicine, Faculty of Medicine Université Laval Québec City Quebec Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute McGill University Montreal Quebec Canada.,Department of Neurology and Neurosurgery, Faculty of Medicine McGill University Montreal Quebec Canada.,Department of Biomedical Engineering, Faculty of Medicine McGill University Montreal Quebec Canada
| | | |
Collapse
|
37
|
Common Brain Structural Alterations Associated with Cardiovascular Disease Risk Factors and Alzheimer's Dementia: Future Directions and Implications. Neuropsychol Rev 2020; 30:546-557. [PMID: 33011894 DOI: 10.1007/s11065-020-09460-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
Recent reports suggest declines in the age-specific risk of Alzheimer's dementia in higher income Western countries. At the same time, investigators believe that worldwide trends of increasing mid-life modifiable risk factors [e.g., cardiovascular disease (CVD) risk factors] coupled with the growth of the world's oldest age groups may nonetheless lead to an increase in Alzheimer's dementia. Thus, understanding the overlap in neuroanatomical profiles associated with CVD risk factors and AD may offer more relevant targets for investigating ways to reduce the growing dementia epidemic than current targets specific to isolated AD-related neuropathology. We hypothesized that a core group of common brain structural alterations exist between CVD risk factors and Alzheimer's dementia. Two co-authors conducted independent literature reviews in PubMed using search terms for CVD risk factor burden (separate searches for 'cardiovascular disease risk factors', 'hypertension', and 'Type 2 diabetes') and 'aging' or 'Alzheimer's dementia' with either 'grey matter volumes' or 'white matter'. Of studies that reported regionally localized results, we found support for our hypothesis, determining 23 regions commonly associated with both CVD risk factors and Alzheimer's dementia. Within this context, we outline future directions for research as well as larger cerebrovascular implications for these commonalities. Overall, this review supports previous as well as more recent calls for the consideration that both vascular and neurodegenerative factors contribute to the pathogenesis of dementia.
Collapse
|
38
|
Rabin JS, Neal TE, Nierle HE, Sikkes SAM, Buckley RF, Amariglio RE, Papp KV, Rentz DM, Schultz AP, Johnson KA, Sperling RA, Hedden T. Multiple markers contribute to risk of progression from normal to mild cognitive impairment. NEUROIMAGE-CLINICAL 2020; 28:102400. [PMID: 32919366 PMCID: PMC7491146 DOI: 10.1016/j.nicl.2020.102400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To identify a parsimonious set of markers that optimally predicts subsequent clinical progression from normal to mild cognitive impairment (MCI). METHODS 250 clinically normal adults (mean age = 73.6 years, SD = 6.0) from the Harvard Aging Brain Study were assessed at baseline on a wide set of markers, including magnetic resonance imaging markers of gray matter thickness and volume, white matter lesions, fractional anisotropy, resting state functional connectivity, positron emission tomography markers of glucose metabolism and β-amyloid (Aβ) burden, and a measure of vascular risk. Participants were also tested annually on a battery of clinical and cognitive tests (median follow-up = 5.0 years, SD = 1.66). We applied least absolute shrinkage and selection operator (LASSO) Cox models to determine the minimum set of non-redundant markers that predicts subsequent clinical progression from normal to MCI, adjusting for age, sex, and education. RESULTS 23 participants (9.2%) progressed to MCI over the study period (mean years of follow-up to diagnosis = 3.96, SD = 1.89). Progression was predicted by several brain markers, including reduced entorhinal thickness (hazard ratio, HR = 1.73), greater Aβ burden (HR = 1.58), lower default network connectivity (HR = 1.42), and smaller hippocampal volume (HR = 1.30). When cognitive test scores were added to the model, the aforementioned neuroimaging markers remained significant and lower striatum volume as well as lower scores on baseline memory and processing speed tests additionally contributed to progression. CONCLUSION Among a large set of brain, vascular and cognitive markers, a subset of markers independently predicted progression from normal to MCI. These markers may enhance risk stratification by identifying clinically normal individuals who are most likely to develop clinical symptoms and would likely benefit most from therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer S Rabin
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Taylor E Neal
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hannah E Nierle
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sietske A M Sikkes
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, The Netherlands; Department of Epidemiology and Biostatistics, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; Florey Institutes of Neuroscience and Mental Health, Melbourne and Melbourne School of Psychological Science, University of Melbourne, Melbourne, Australia; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rebecca E Amariglio
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kathryn V Papp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Keith A Johnson
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA 02144, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Trey Hedden
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
39
|
Franz CE, Hatton SN, Hauger RL, Kredlow MA, Dale AM, Eyler L, McEvoy LK, Fennema-Notestine C, Hagler D, Jacobson KC, McKenzie RE, Panizzon MS, Gustavson DE, Xian H, Toomey R, Beck A, Stevens S, Tu X, Lyons MJ, Kremen WS. Posttraumatic stress symptom persistence across 24 years: association with brain structures. Brain Imaging Behav 2020; 14:1208-1220. [PMID: 30830577 PMCID: PMC6722032 DOI: 10.1007/s11682-019-00059-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Posttraumatic stress disorder (PTSD) is known to persist, eliciting early medical co-morbidity, and accelerated aging. Although PTSD diagnosis has been found to be associated with smaller volume in multiple brain regions, posttraumatic stress (PTS) symptoms and their associations with brain morphometry are rarely assessed over long periods of time. We predicted that persistent PTS symptoms across ~24 years would be inversely associated with hippocampal, amygdala, anterior cingulate volumes, and hippocampal occupancy (HOC = hippocampal volume/[hippocampal volume + inferior lateral ventricle volume]) in late middle age. Exploratory analyses examined prefrontal regions. We assessed PTS symptoms in 247 men at average ages 38 (time 1) and 62 (time 2). All were trauma-exposed prior to time 1. Brain volumes were assessed at time 2 using 3 T structural magnetic resonance imaging. Symptoms were correlated over time (r = 0.46 p < .0001). Higher PTS symptoms averaged over time and symptoms at time 1 were both associated with lower hippocampal, amygdala, rostral middle frontal gyrus (MFG), and medial orbitofrontal cortex (OFC) volumes, and a lower HOC ratio at time 2. Increased PTS symptomatology from time 1 to time 2 was associated with smaller hippocampal volume. Results for hippocampal, rostral MFG and medial OFC remained significant after omitting individuals above the threshold for PTSD diagnosis. Even at sub-diagnostic threshold levels, PTS symptoms were present decades after trauma exposure in parallel with highly correlated structural deficits in brain regions regulating stress responsivity and adaptation.
Collapse
Affiliation(s)
- Carol E Franz
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Sean N Hatton
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard L Hauger
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, 92093, USA
| | - M Alexandra Kredlow
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lisa Eyler
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
| | - Linda K McEvoy
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Donald Hagler
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kristen C Jacobson
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Ruth E McKenzie
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Matthew S Panizzon
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel E Gustavson
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hong Xian
- Department of Epidemiology and Biostatistics, St Louis University, St Louis, MO, 60134, USA
| | - Rosemary Toomey
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Asad Beck
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA
| | - Samantha Stevens
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xin Tu
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - William S Kremen
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, 92093, USA
| |
Collapse
|
40
|
Anand SS, Friedrich MG, Desai D, Schulze KM, Awadalla P, Busseuil D, Dummer TJ, Jacquemont S, Dick A, Kelton D, Kirpalani A, Lear SA, Leipsic J, Noseworthy MD, Parker L, Parraga G, Poirier P, Robson P, Tardif JC, Teo K, Vena J, Yusuf S, Moody AR, Black SE, Smith EE. Reduced Cognitive Assessment Scores Among Individuals With Magnetic Resonance Imaging–Detected Vascular Brain Injury. Stroke 2020; 51:1158-1165. [DOI: 10.1161/strokeaha.119.028179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background and Purpose—
Little is known about the association between covert vascular brain injury and cognitive impairment in middle-aged populations. We investigated if scores on a cognitive screen were lower in individuals with higher cardiovascular risk, and those with covert vascular brain injury.
Methods—
Seven thousand five hundred forty-seven adults, aged 35 to 69 years, free of cardiovascular disease underwent a cognitive assessment using the Digital Symbol Substitution test and Montreal Cognitive Assessment, and magnetic resonance imaging (MRI) to detect covert vascular brain injury (high white matter hyperintensities, lacunar, and nonlacunar brain infarctions). Cardiovascular risk factors were quantified using the INTERHEART (A Global Study of Risk Factors for Acute Myocardial Infarction) risk score. Multivariable mixed models tested for independent determinants of reduced cognitive scores. The population attributable risk of risk factors and MRI vascular brain injury on low cognitive scores was calculated.
Results—
The mean age of participants was 58 (SD, 9) years; 55% were women. Montreal Cognitive Assessment and Digital Symbol Substitution test scores decreased significantly with increasing age (
P
<0.0001), INTERHEART risk score (
P
<0.0001), and among individuals with high white matter hyperintensities, nonlacunar brain infarction, and individuals with 3+ silent brain infarctions. Adjusted for age, sex, education, ethnicity covariates, Digital Symbol Substitution test was significantly lowered by 1.0 (95% CI, −1.3 to −0.7) point per 5-point cardiovascular risk score increase, 1.9 (95% CI, −3.2 to −0.6) per high white matter hyperintensities, 3.5 (95% CI, −6.4 to −0.7) per nonlacunar stroke, and 6.8 (95% CI, −11.5 to −2.2) when 3+ silent brain infarctions were present. No postsecondary education accounted for 15% (95% CI, 12–17), moderate and high levels of cardiovascular risk factors accounted for 19% (95% CI, 8–30), and MRI vascular brain injury accounted for 10% (95% CI, −3 to 22) of low test scores.
Conclusions—
Among a middle-aged community-dwelling population, scores on a cognitive screen were lower in individuals with higher cardiovascular risk factors or MRI vascular brain injury. Much of the population attributable risk of low cognitive scores can be attributed to lower educational attainment, higher cardiovascular risk factors, and MRI vascular brain injury.
Collapse
Affiliation(s)
- Sonia S. Anand
- From the Department of Medicine, McMaster University, Hamilton, Ontario, Canada (S.S.A., K.M.S., K.T., S.Y.)
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada (S.S.A., K.T., S.Y.)
- Population Health Research Institute, Hamilton Health Sciences, Ontario, Canada (S.S.A., D.D., K.M.S, K.T., S.Y.)
| | - Matthias G. Friedrich
- Department of Medicine and Diagnostic Radiology, McGill University, Montreal, Quebec, Canada (M.G.F.)
| | - Dipika Desai
- Population Health Research Institute, Hamilton Health Sciences, Ontario, Canada (S.S.A., D.D., K.M.S, K.T., S.Y.)
| | - Karleen M. Schulze
- From the Department of Medicine, McMaster University, Hamilton, Ontario, Canada (S.S.A., K.M.S., K.T., S.Y.)
- Population Health Research Institute, Hamilton Health Sciences, Ontario, Canada (S.S.A., D.D., K.M.S, K.T., S.Y.)
| | - Philip Awadalla
- Department of Electrical and Computer Engineering, School of Biomedical Engineering, Department of Molecular Genetics, Ontario Institute for Cancer Research, University of Toronto, Canada (P.A.)
| | - David Busseuil
- Research Centre, Montreal Heart Institute, Université de Montréal, Quebec, Canada (D.B., J.-C.T)
| | - Trevor J.B. Dummer
- School of Population and Public Health, University of British Columbia, and BC Cancer Agency, Vancouver, Canada (T.J.B.D.)
| | - Sébastien Jacquemont
- Department of Medicine and Pediatrics, Université de Montréal, CHU Sainte Justine, Quebec, Canada (S.J.)
| | - Alexander Dick
- Division of Cardiology, University of Ottawa Heart Institute, University of Ottawa, Ontario, Canada (A.D.)
| | - David Kelton
- Diagnostic Imaging, Brampton Civic Hospital, William Osler Health System, Brampton, Ontario, Canada (D.K.)
| | - Anish Kirpalani
- Department of Medical Imaging, St. Michael’s Hospital, University of Toronto, Ontario, Canada (A.K.)
| | - Scott A. Lear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada (S.A.L.)
| | - Jonathan Leipsic
- Department of Radiology, University of British Columbia, St. Paul’s Hospital, Vancouver, British Columbia, Canada (J.L.)
| | - Michael D. Noseworthy
- Department of Electrical and Computer Engineering, School of Biomedical Engineering, McMaster University, and Diagnostic Imaging, St. Joseph’s Health Care, Hamilton, Ontario, Canada (M.D.N.)
| | - Louise Parker
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada (L.P.)
| | - Grace Parraga
- Department of Medical Biophysics, and Robarts Research Institute, Western University, London, Ontario, Canada (G.P.)
| | - Paul Poirier
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Canada (P.P.)
| | - Paula Robson
- Cancer Research and Analytics, Cancer Control Alberta, Alberta Health Services, Edmonton, Canada (P.R.)
| | - Jean-Claude Tardif
- Research Centre, Montreal Heart Institute, Université de Montréal, Quebec, Canada (D.B., J.-C.T)
| | - Koon Teo
- From the Department of Medicine, McMaster University, Hamilton, Ontario, Canada (S.S.A., K.M.S., K.T., S.Y.)
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada (S.S.A., K.T., S.Y.)
- Population Health Research Institute, Hamilton Health Sciences, Ontario, Canada (S.S.A., D.D., K.M.S, K.T., S.Y.)
| | - Jennifer Vena
- Cancer Research and Analytics, Cancer Control Alberta, Alberta Health Services, Richmond Road Diagnostic and Treatment Centre, Calgary, Canada (J.V.)
| | - Salim Yusuf
- From the Department of Medicine, McMaster University, Hamilton, Ontario, Canada (S.S.A., K.M.S., K.T., S.Y.)
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada (S.S.A., K.T., S.Y.)
- Population Health Research Institute, Hamilton Health Sciences, Ontario, Canada (S.S.A., D.D., K.M.S, K.T., S.Y.)
| | - Alan R. Moody
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada (A.R.M.)
| | - Sandra E. Black
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada (A.R.M.)
- Department of Medicine (Neurology) and Hurvitz Brain Sciences Research Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada (S.E.B.)
| | - Eric E. Smith
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Alberta, Canada (E.E.S.)
| | | |
Collapse
|
41
|
Pelcher I, Puzo C, Tripodis Y, Aparicio HJ, Steinberg EG, Phelps A, Martin B, Palmisano JN, Vassey E, Lindbergh C, McKee AC, Stein TD, Killiany RJ, Au R, Kowall NW, Stern RA, Mez J, Alosco ML. Revised Framingham Stroke Risk Profile: Association with Cognitive Status and MRI-Derived Volumetric Measures. J Alzheimers Dis 2020; 78:1393-1408. [PMID: 33164933 PMCID: PMC7887636 DOI: 10.3233/jad-200803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The Framingham Stroke Risk Profile (FSRP) was created in 1991 to estimate 10-year risk of stroke. It was revised in 2017 (rFSRP) to reflect the modern data on vascular risk factors and stroke risk. OBJECTIVE This study examined the association between the rFSRP and cognitive and brain aging outcomes among participants from the National Alzheimer's Coordinating Center (NACC) Uniform Data Set (UDS). METHODS Cross-sectional rFSRP was computed at baseline for 19,309 participants (mean age = 72.84, SD = 8.48) from the NACC-UDS [9,697 (50.2%) normal cognition, 4,705 (24.4%) MCI, 4,907 (25.4%) dementia]. Multivariable linear, logistic, or ordinal regressions examined the association between the rFSRP and diagnostic status, neuropsychological test performance, CDR® Sum of Boxes, as well as total brain volume (TBV), hippocampal volume (HCV), and log-transformed white matter hyperintensities (WMH) for an MRI subset (n = 1,196). Models controlled for age, sex, education, racial identity, APOEɛ4 status, and estimated intracranial volume for MRI models. RESULTS The mean rFSRP probability was 10.42% (min = 0.50%, max = 95.71%). Higher rFSRP scores corresponded to greater CDR Sum of Boxes (β= 0.02, p = 0.028) and worse performance on: Trail Making Test A (β= 0.05, p < 0.001) and B (β= 0.057, p < 0.001), and Digit Symbol (β= -0.058, p < 0.001). Higher rFSRP scores were associated with increased odds for a greater volume of log-transformed WMH (OR = 1.02 per quartile, p = 0.015). No associations were observed for diagnosis, episodic memory or language test scores, HCV, or TBV. CONCLUSION These results support the rFSRP as a useful metric to facilitate clinical research on the associations between cerebrovascular disease and cognitive and brain aging.
Collapse
Affiliation(s)
- Isabelle Pelcher
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
| | - Christian Puzo
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Hugo J. Aparicio
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs
- Framingham Heart Study, National Heart, Lung, and Blood
| | - Eric G. Steinberg
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
| | - Alyssa Phelps
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA
| | - Joseph N. Palmisano
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA
| | - Elizabeth Vassey
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
| | - Cutter Lindbergh
- Department of Neurology, University of California, San Francisco
| | - Ann C. McKee
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs
- Departments of Pathology and Laboratory Medicine, Boston University School of Medicine
- Department of Veterans Affairs Medical Center, Bedford, MA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs
- Framingham Heart Study, National Heart, Lung, and Blood
- Departments of Pathology and Laboratory Medicine, Boston University School of Medicine
- Department of Veterans Affairs Medical Center, Bedford, MA
| | - Ronald J. Killiany
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- Department of Anatomy & Neurobiology, Boston University School of Medicine
| | - Rhoda Au
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- Framingham Heart Study, National Heart, Lung, and Blood
- Department of Anatomy & Neurobiology, Boston University School of Medicine
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Neil W. Kowall
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs
| | - Robert A. Stern
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- Department of Anatomy & Neurobiology, Boston University School of Medicine
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
42
|
Soldan A, Pettigrew C, Zhu Y, Wang MC, Moghekar A, Gottesman RF, Singh B, Martinez O, Fletcher E, DeCarli C, Albert M. White matter hyperintensities and CSF Alzheimer disease biomarkers in preclinical Alzheimer disease. Neurology 2019; 94:e950-e960. [PMID: 31888969 DOI: 10.1212/wnl.0000000000008864] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Recent studies suggest that white matter hyperintensities (WMH) on MRI, which primarily reflect small vessel cerebrovascular disease, may play a role in the evolution of Alzheimer disease (AD). In a longitudinal study, we investigated whether WMH promote the progression of AD pathology, or alter the association between AD pathology and risk of progression from normal cognition to mild cognitive impairment (MCI). METHODS Two sets of analyses were conducted. The relationship between whole brain WMH load, based on fluid-attenuated inversion recovery MRI, obtained in initially cognitively normal participants (n = 274) and time to onset of symptoms of MCI (n = 60) was examined using Cox regression models. In a subset of the participants with both MRI and CSF data (n = 204), the interaction of WMH load and CSF AD biomarkers was also evaluated. RESULTS Baseline WMH load interacted with CSF total tau (t-tau) with respect to symptom onset, but not with CSF β-amyloid 1-42 or phosphorylated tau (p-tau) 181. WMH volume was associated with time to symptom onset of MCI among individuals with low t-tau (hazard ratio [HR] 1.35, confidence interval [CI] 1.06-1.73, p = 0.013), but not those with high t-tau (HR 0.86, CI 0.56-1.32, p = 0.47). The rate of change in the CSF biomarkers over time was not associated with the rate of change in WMH volumes. CONCLUSION These results suggest that WMH primarily affect the risk of progression when CSF measures of neurodegeneration or neuronal injury (as reflected by t-tau) are low. However, CSF biomarkers of amyloid and p-tau and WMH appear to have largely independent and nonsynergistic effects on the risk of progression to MCI.
Collapse
Affiliation(s)
- Anja Soldan
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis.
| | - Corinne Pettigrew
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Yuxin Zhu
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Mei-Cheng Wang
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Abhay Moghekar
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Rebecca F Gottesman
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Baljeet Singh
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Oliver Martinez
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Evan Fletcher
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Charles DeCarli
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Marilyn Albert
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | | |
Collapse
|
43
|
Azeem F, Durrani R, Zerna C, Smith EE. Silent brain infarctions and cognition decline: systematic review and meta-analysis. J Neurol 2019; 267:502-512. [PMID: 31691021 DOI: 10.1007/s00415-019-09534-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Silent brain infarction (SBI) may be associated with cognitive decline in the general population. We systematically reviewed prior literature on: (1) SBI and cognition cross-sectionally; (2) baseline SBI and future cognitive decline and risk for cognitive disorders including dementia, and (3) incident SBI and the emergence of cognitive decline or cognitive disorders. METHODS The MEDLINE and EMBASE databases were searched for relevant studies. Data were independently extracted by two reviewers. Quality was assessed using the Newcastle Ottawa Scale. Data were pooled using a random effects model when more than two comparable estimates were found. RESULTS Thirty relevant studies were identified: 17 had a cross-sectional design, 10 evaluated the association of baseline SBI with future cognitive decline, and 5 evaluated the association of incident SBI with cognitive decline. Most cross-sectional studies reported lower cognitive performance in persons with SBI. The pooled risk for incident dementia in persons with SBI was 1.48 (95% CI 1.12-1.97), but there was significant heterogeneity (p = 0.009); removing one outlier eliminated the heterogeneity (p = 0.53), giving a lower but still significant estimate (hazard ratio 1.27, 95% CI 1.06-1.51). The pooled risk for incident MCI was not increased in persons with SBI (hazard ratio 0.83, 95% CI 0.40 to 1.72), but there was significant heterogeneity (p < 0.001). The appearance of new SBI was associated with steeper rate of cognitive decline and the appearance of dementia. CONCLUSIONS SBI are associated with worse cognition and increased risk for dementia. More standardization of cognitive assessment methods would facilitate future cross-study comparisons.
Collapse
Affiliation(s)
- Feeha Azeem
- Neurology, Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Romella Durrani
- Neurology, Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Charlotte Zerna
- Neurology, Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada.,Calgary Stroke Program, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Eric E Smith
- Neurology, Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada. .,Hotchkiss Brain Institute, Calgary, AB, Canada. .,Calgary Stroke Program, Calgary, AB, Canada. .,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
44
|
de la Torre JC, Olmo AD, Valles S. Can mild cognitive impairment be stabilized by showering brain mitochondria with laser photons? Neuropharmacology 2019; 171:107841. [PMID: 31704275 DOI: 10.1016/j.neuropharm.2019.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 11/17/2022]
Abstract
There is now substantial evidence that cerebral blood flow (CBF) declines with age. From age 20 to 60, CBF is estimated to dip about 16% and continues to drop at a rate of 0.4%/year. This CBF dip will slowly reduce oxygen/glucose delivery to brain thus lowering ATP energy production needed by brain cells to perform normal activities. Reduced ATP production from mitochondrial loss or damage in the wear-and-tear of aging worsens when vascular risk factors (VRF) to Alzheimer's disease develop that can accelerate both age-decline CBF and mitochondrial deficiency to a level where mild cognitive impairment (MCI) develops. To date, no pharmacological or any other treatment has been successful in reversing, stabilizing or delaying MCI. For the first time in medical interventions, a non-pharmacological, non-invasive, well-tolerated, easy to perform, free of significant side effects and cost-effective treatment may achieve what virtually all AD treatments in the past have been unable to accomplish. This intervention uses transcranial infrared brain stimulation (TIBS), a form of photobiomodulation (PBM). PBM is a bioenergetic non-ionizing, therapeutic approach using low level light emission from laser or light emitting diodes. PBM has been used in a number of neurological conditions including Parkinson's disease, depression, traumatic brain injury, and stroke with diverse reported benefits. This brief review examines the impact of reduced energy supply stemming from chronic brain hypoperfusion in the aging brain. In this context, the use of TIBS is planned in a randomized, placebo-controlled study of MCI patients to be done at our University Clinic. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Jack C de la Torre
- Department of Psychology, University of Texas at Austin, Austin, TX, 78712, USA; Department of Physiology, University of Valencia, Valencia, 46010, Spain.
| | - Antonio Del Olmo
- Neurology Section, Hospital Universitario Dr. Peset, Valencia, 46017, Spain
| | - Soraya Valles
- Department of Physiology, University of Valencia, Valencia, 46010, Spain
| |
Collapse
|
45
|
Bangen KJ, Thomas KR, Weigand AJ, Sanchez DL, Delano-Wood L, Edmonds EC, Carmichael OT, Schwarz CG, Brickman AM, Bondi MW. Pattern of regional white matter hyperintensity volume in mild cognitive impairment subtypes and associations with decline in daily functioning. Neurobiol Aging 2019; 86:134-142. [PMID: 31791658 DOI: 10.1016/j.neurobiolaging.2019.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/04/2019] [Accepted: 10/26/2019] [Indexed: 01/18/2023]
Abstract
White matter hyperintensities (WMHs), a marker of small-vessel cerebrovascular disease, increase risk for mild cognitive impairment (MCI). Less is known about whether regional WMHs distinguish MCI subtypes and predict decline in everyday functioning. About 618 Alzheimer's Disease Neuroimaging Initiative participants (301 cognitively normal [CN]; 232 amnestic MCI [aMCI]; 85 nonamnestic MCI [naMCI]) underwent neuropsychological testing, MRI, and assessment of everyday functioning. aMCI participants showed greater temporal (p = 0.002) and occipital WMHs (p = 0.030) relative to CN whereas naMCI participants had greater frontal (p = 0.045), temporal (p = 0.003), parietal (p = 0.018), and occipital (p < 0.001) WMH compared with CN. Relative to those with aMCI, individuals with naMCI showed greater occipital WMH (p = 0.013). Greater WMH in temporal (p = 0.001) and occipital regions (p = 0.006) was associated with faster decline in everyday functioning across the sample. Temporal lobe WMHs were disproportionately associated with accelerated functional decline among naMCI (p = 0.045). Regional WMH volumes vary across cognitive groups and predict functional decline. Cerebrovascular markers may help identify individuals at risk for decline and distinguish subtypes of cognitive impairment.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, CA, USA.
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, CA, USA
| | - Alexandra J Weigand
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Danielle L Sanchez
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, CA, USA; Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, CA, USA
| | | | | | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, CA, USA; Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | | |
Collapse
|
46
|
de la Torre J. The Vascular Hypothesis of Alzheimer's Disease: A Key to Preclinical Prediction of Dementia Using Neuroimaging. J Alzheimers Dis 2019; 63:35-52. [PMID: 29614675 DOI: 10.3233/jad-180004] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The vascular hypothesis of Alzheimer's disease (VHAD) was proposed 24 years ago from observations made in our laboratory using aging rats subjected to chronic brain hypoperfusion. In recent years, VHAD has become a mother-lode to numerous neuroimaging studies targeting cerebral hemodynamic changes, particularly brain hypoperfusion in elderly patients at risk of developing Alzheimer's disease (AD). There is a growing consensus among neuroradiologists that brain hypoperfusion is likely involved in the pathogenesis of AD and that disturbed cerebral blood flow (CBF) can serve as a key biomarker for predicting conversion of mild cognitive impairment to AD. The use of cerebral hypoperfusion as a preclinical predictor of AD is becoming decisive in stratifying low and high risk patients that may develop cognitive decline and for assessing the effectiveness of therapeutic interventions. There is currently an international research drive from neuroimaging groups to seek new perspectives that can broaden our understanding of AD and improve lifestyle. Diverse neuroimaging methods are currently being used to monitor normal and dyscognitive brain activity. Some techniques are very powerful and can detect, diagnose, quantify, prognose, and predict cognitive decline before AD onset, even from a healthy cognitive state. Multimodal imaging offers new insights in the treatment and prevention of cognitive decline during advanced aging and better understanding of the functional and structural organization of the human brain. This review discusses the impact the VHAD and CBF are having on the neuroimaging technology that can usher practical strategies to help prevent AD.
Collapse
Affiliation(s)
- Jack de la Torre
- Department of Psychology, University of Texas, Austin, Austin, TX, USA
| |
Collapse
|
47
|
Puzo C, Labriola C, Sugarman MA, Tripodis Y, Martin B, Palmisano JN, Steinberg EG, Stein TD, Kowall NW, McKee AC, Mez J, Killiany RJ, Stern RA, Alosco ML. Independent effects of white matter hyperintensities on cognitive, neuropsychiatric, and functional decline: a longitudinal investigation using the National Alzheimer's Coordinating Center Uniform Data Set. Alzheimers Res Ther 2019; 11:64. [PMID: 31351489 PMCID: PMC6661103 DOI: 10.1186/s13195-019-0521-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/14/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Longitudinal investigations are needed to improve understanding of the contributions of cerebral small vessel disease to the clinical manifestation of Alzheimer's disease, particularly in the early disease stages. This study leveraged the National Alzheimer's Coordinating Center Uniform Data Set to longitudinally examine the association between white matter hyperintensities and neuropsychological, neuropsychiatric, and functional decline among participants with normal cognition. METHODS The sample included 465 participants from the National Alzheimer's Coordinating Center Uniform Data Set who had quantitated volume of white matter hyperintensities from fluid-attenuated inversion recovery MRI, had normal cognition at the time of their MRI, and were administered the National Alzheimer's Coordinating Center Uniform Data Set neuropsychological test battery within 1 year of study evaluation and had at least two post-MRI time points of clinical data. Neuropsychiatric status was assessed by the Geriatric Depression Scale-15 and Neuropsychiatric Inventory-Questionnaire. Clinical Dementia Rating Sum of Boxes defined functional status. For participants subsequently diagnosed with mild cognitive impairment (MCI) or dementia, their impairment must have been attributed to Alzheimer's disease (AD) to evaluate the relationships between WMH and the clinical presentation of AD. RESULTS Of the 465 participants, 56 converted to MCI or AD dementia (average follow-up = 5 years). Among the 465 participants, generalized estimating equations controlling for age, sex, race, education, APOE ε4, and total brain and hippocampal volume showed that higher baseline log-white matter hyperintensities predicted accelerated decline on the following neuropsychological tests in rank order of effect size: Trails B (p < 0.01), Digit Symbol Coding (p < 0.01), Logical Memory Immediate Recall (p = 0.02), Trail Making A (p < 0.01), and Semantic Fluency (p < 0.01). White matter hyperintensities predicted increases in Clinical Dementia Rating Sum of Boxes (p < 0.01) and Geriatric Depression Scale-15 scores (p = 0.01). Effect sizes were comparable to total brain and hippocampal volume. White matter hyperintensities did not predict diagnostic conversion. All effects also remained after including individuals with non-AD suspected etiologies for those who converted to MCI or dementia. CONCLUSIONS In this baseline cognitively normal sample, greater white matter hyperintensities were associated with accelerated cognitive, neuropsychiatric, and functional decline independent of traditional risk factors and MRI biomarkers for Alzheimer's disease.
Collapse
Affiliation(s)
- Christian Puzo
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
| | - Caroline Labriola
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
| | - Michael A Sugarman
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Eric G Steinberg
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Ronald J Killiany
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA
- Center for Biomedical Imaging, Boston University School of Medicine, Boston, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Departments of Neurosurgery and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
48
|
Brown EE, Rashidi-Ranjbar N, Caravaggio F, Gerretsen P, Pollock BG, Mulsant BH, Rajji TK, Fischer CE, Flint A, Mah L, Herrmann N, Bowie CR, Voineskos AN, Graff-Guerrero A. Brain Amyloid PET Tracer Delivery is Related to White Matter Integrity in Patients with Mild Cognitive Impairment. J Neuroimaging 2019; 29:721-729. [PMID: 31270885 DOI: 10.1111/jon.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Amyloid deposition, tau neurofibrillary tangles, and cerebrovascular dysfunction are important pathophysiologic features in Alzheimer's disease. Pittsburgh compound B ([11 C]-PIB) is a positron emission tomography (PET) radiotracer used to quantify amyloid deposition in vivo. In addition, certain models of [11 C]-PIB delivery reflect cerebral blood flow rather than amyloid plaques. As cerebral blood flow and perfusion deficits are associated with white matter pathology, we hypothesized that [11 C]-PIB delivery in white matter regions may reflect white matter integrity. METHODS We obtained [11 C]-PIB-PET scans and quantified white matter hyperintensities and global fractional anisotropy on magnetic resonance images as biomarkers of white matter pathology in 34 older participants with mild cognitive impairment with or without a history of major depressive disorder. We analyzed the [11 C]-PIB time-activity curve data with models associated with cerebral blood flow: the early maximum standard uptake value and the relative delivery parameter R1. We used a global white matter region of interest. RESULTS Both of the partial-volume corrected PET parameters were correlated with white matter hyperintensities and fractional anisotropy. CONCLUSION Future studies are warranted to explore whether [11 C]-PIB PET is a "triple biomarker" that may provide information about amyloid deposition, cerebral blood flow, and white matter pathology.
Collapse
Affiliation(s)
- Eric E Brown
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Neda Rashidi-Ranjbar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Corinne E Fischer
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Research, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Alastair Flint
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
| | - Linda Mah
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Christopher R Bowie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Queen's University, Kingston, Ontario, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | -
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Jiménez-Balado J, Riba-Llena I, Abril O, Garde E, Penalba A, Ostos E, Maisterra O, Montaner J, Noviembre M, Mundet X, Ventura O, Pizarro J, Delgado P. Cognitive Impact of Cerebral Small Vessel Disease Changes in Patients With Hypertension. Hypertension 2019; 73:342-349. [DOI: 10.1161/hypertensionaha.118.12090] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Joan Jiménez-Balado
- From the Neurovascular Research Lab, Vall Hebron Research Institute (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., O.V., J.P., P.D.)
- Universitat Autònoma de Barcelona, Spain (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., X.M., O.V., J.P., P.D.)
| | - Iolanda Riba-Llena
- From the Neurovascular Research Lab, Vall Hebron Research Institute (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., O.V., J.P., P.D.)
- Universitat Autònoma de Barcelona, Spain (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., X.M., O.V., J.P., P.D.)
| | - Oscar Abril
- From the Neurovascular Research Lab, Vall Hebron Research Institute (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., O.V., J.P., P.D.)
- Universitat Autònoma de Barcelona, Spain (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., X.M., O.V., J.P., P.D.)
| | - Edurne Garde
- From the Neurovascular Research Lab, Vall Hebron Research Institute (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., O.V., J.P., P.D.)
- Universitat Autònoma de Barcelona, Spain (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., X.M., O.V., J.P., P.D.)
| | - Anna Penalba
- From the Neurovascular Research Lab, Vall Hebron Research Institute (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., O.V., J.P., P.D.)
- Universitat Autònoma de Barcelona, Spain (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., X.M., O.V., J.P., P.D.)
| | - Elena Ostos
- From the Neurovascular Research Lab, Vall Hebron Research Institute (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., O.V., J.P., P.D.)
- Universitat Autònoma de Barcelona, Spain (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., X.M., O.V., J.P., P.D.)
| | - Olga Maisterra
- From the Neurovascular Research Lab, Vall Hebron Research Institute (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., O.V., J.P., P.D.)
- Universitat Autònoma de Barcelona, Spain (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., X.M., O.V., J.P., P.D.)
| | - Joan Montaner
- From the Neurovascular Research Lab, Vall Hebron Research Institute (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., O.V., J.P., P.D.)
- Universitat Autònoma de Barcelona, Spain (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., X.M., O.V., J.P., P.D.)
| | - Maria Noviembre
- From the Neurovascular Research Lab, Vall Hebron Research Institute (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., O.V., J.P., P.D.)
- Universitat Autònoma de Barcelona, Spain (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., X.M., O.V., J.P., P.D.)
| | - Xavier Mundet
- Primary Healthcare University Research Institute IDIAP Jordi Gol (X.M.)
- Universitat Autònoma de Barcelona, Spain (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., X.M., O.V., J.P., P.D.)
| | - Oriol Ventura
- From the Neurovascular Research Lab, Vall Hebron Research Institute (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., O.V., J.P., P.D.)
- Universitat Autònoma de Barcelona, Spain (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., X.M., O.V., J.P., P.D.)
| | - Jesus Pizarro
- From the Neurovascular Research Lab, Vall Hebron Research Institute (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., O.V., J.P., P.D.)
- Universitat Autònoma de Barcelona, Spain (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., X.M., O.V., J.P., P.D.)
| | - Pilar Delgado
- From the Neurovascular Research Lab, Vall Hebron Research Institute (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., O.V., J.P., P.D.)
- Universitat Autònoma de Barcelona, Spain (J.J.-B., I.R.-L., O.A., E.G., A.P., E.O., O.M., J.M., M.N., X.M., O.V., J.P., P.D.)
| |
Collapse
|
50
|
White matter in different regions evolves differently during progression to dementia. Neurobiol Aging 2018; 76:71-79. [PMID: 30703628 DOI: 10.1016/j.neurobiolaging.2018.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/18/2023]
Abstract
White matter hyperintensities (WMHs) are common in individuals with mild cognitive impairment (MCI) and Alzheimer's disease. Patients with MCI with high WMH volumes are known to have an increased chance of conversion to Alzheimer's disease compared with those without WMHs. In this article, we assess the differences between patients with MCI that remain stable (N = 413) and those that progress to dementia (N = 178) in terms of WMH volume (as a surrogate of amount of tissue damage) and T1-weighted (T1w) image hypointensity (as a surrogate of severity of tissue damage) in periventricular, deep, and juxtacortical brain regions. Together, lesion volume and T1w hypointensity are used as a surrogate of vascular disease burden. Our results show a significantly greater increase of all regional WMH volumes in the MCI population that converts to dementia (p < 0.001). T1w hypointensity for the juxtacortical WMHs was significantly lower in the converter group (p < 0.0001) and was not affected by age. Conversely, T1w hypointensity in other regions showed a significant decrease with age (p < 0.0001). Within the converters, Time2Conversion was associated with both WMH volume and T1w hypointensity (p < 0.0001), and conversion to dementia was significantly associated with decreased intensity (and not volume) of periventricular and juxtacortical WMHs (p < 0.001). These changes differ according to the WM region, suggesting that different mechanisms affect the juxtacortical area in comparison to deep and periventricular regions in the process of conversion to dementia.
Collapse
|