1
|
Rafii MS, Sol O, Mobley WC, Delpretti S, Skotko BG, Burke AD, Sabbagh MN, Yuan SH, Rissman RA, Pulsifer M, Evans C, Evans AC, Beth G, Fournier N, Gray JA, dos Santos AM, Hliva V, Vukicevic M, Kosco-Vilbois M, Streffer J, Pfeifer A, Feldman HH. Safety, Tolerability, and Immunogenicity of the ACI-24 Vaccine in Adults With Down Syndrome: A Phase 1b Randomized Clinical Trial. JAMA Neurol 2022; 79:565-574. [PMID: 35532913 PMCID: PMC9086937 DOI: 10.1001/jamaneurol.2022.0983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/11/2022] [Indexed: 12/31/2022]
Abstract
Importance Individuals with Down syndrome (DS) are at high risk of developing Alzheimer disease due to an increased dose of the amyloid precursor protein gene, APP, which leads to increased levels of full-length APP and its products, including amyloid-β (Aβ). The liposome-based antiamyloid ACI-24 vaccine is intended to treat neurological disorders caused by misfolded Aβ pathological protein. However, the safety, tolerability, and immunogenicity of the ACI-24 vaccine among adults with DS have not been fully examined. Objective To assess the safety and tolerability of the ACI-24 vaccine among adults with DS as well as its ability to induce immunogenicity measured by anti-Aβ immunoglobulin G titers. Design, Setting, and Participants This multicenter double-blind placebo-controlled dose-escalation phase 1b randomized clinical trial was conducted at 3 US academic medical centers with affiliated Down syndrome clinics between March 30, 2016, and June 29, 2020. A total of 20 adults with DS were screened; of those, 16 adults were eligible to participate. Eligibility criteria included men or women aged 25 to 45 years with cytogenetic diagnosis of either trisomy 21 or complete unbalanced translocation of chromosome 21. Between April 27, 2016, and July 2, 2018, participants were randomized 3:1 into 2 dose-level cohorts (8 participants per cohort, with 6 participants receiving the ACI-24 vaccine and 2 receiving placebo) in a 96-week study. Participants received 48 weeks of treatment followed by an additional 48 weeks of safety follow-up. Interventions Participants were randomized to receive 7 subcutaneous injections of ACI-24, 300 μg or 1000 μg, or placebo. Main Outcomes and Measures Primary outcomes were measures of safety and tolerability as well as antibody titers. Results Among 16 enrolled participants, the mean (SD) age was 32.6 (4.4) years; 9 participants were women, and 7 were men. All participants were White, and 1 participant had Hispanic or Latino ethnicity. Treatment adherence was 100%. There were no cases of meningoencephalitis, death, or other serious adverse events (AEs) and no withdrawals as a result of AEs. Most treatment-emergent AEs were of mild intensity (110 of 132 events [83.3%]) and unrelated or unlikely to be related to the ACI-24 vaccine (113 of 132 events [85.6%]). No amyloid-related imaging abnormalities with edema or cerebral microhemorrhage and no evidence of central nervous system inflammation were observed on magnetic resonance imaging scans. Increases in anti-Aβ immunoglobulin G titers were observed in 4 of 12 participants (33.3%) receiving ACI-24 (2 receiving 300 μg and 2 receiving 1000 μg) compared with 0 participants receiving placebo. In addition, a greater increase was observed in plasma Aβ1-40 and Aβ1-42 levels among individuals receiving ACI-24. Conclusions and Relevance In this study, the ACI-24 vaccine was safe and well tolerated in adults with DS. Evidence of immunogenicity along with pharmacodynamic and target engagement were observed, and anti-Aβ antibody titers were not associated with any adverse findings. These results support progression to clinical trials using an optimized formulation of the ACI-24 vaccine among individuals with DS. Trial Registration ClinicalTrials.gov Identifier: NCT02738450.
Collapse
Affiliation(s)
- Michael S. Rafii
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, San Diego
| | | | - William C. Mobley
- Department of Neuroscience, University of California, San Diego, San Diego
| | | | - Brian G. Skotko
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston
| | | | | | - Shauna H. Yuan
- Department of Neurology, University of Minnesota, Minneapolis
| | - Robert A. Rissman
- Department of Neuroscience, University of California, San Diego, San Diego
| | - Margaret Pulsifer
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston
| | - Casey Evans
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston
| | - A. Carol Evans
- Department of Neuroscience, University of California, San Diego, San Diego
| | | | | | | | | | | | | | | | | | | | - Howard H. Feldman
- Department of Neuroscience, University of California, San Diego, San Diego
- Alzheimer’s Disease Cooperative Study, University of California, San Diego, San Diego
| |
Collapse
|
2
|
Mapstone M, Gross TJ, Macciardi F, Cheema AK, Petersen M, Head E, Handen BL, Klunk WE, Christian BT, Silverman W, Lott IT, Schupf N. Metabolic correlates of prevalent mild cognitive impairment and Alzheimer's disease in adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12028. [PMID: 32258359 PMCID: PMC7131985 DOI: 10.1002/dad2.12028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Disruption of metabolic function is a recognized feature of late onset Alzheimer's disease (LOAD). We sought to determine whether similar metabolic pathways are implicated in adults with Down syndrome (DS) who have increased risk for Alzheimer's disease (AD). METHODS We examined peripheral blood from 292 participants with DS who completed baseline assessments in the Alzheimer's Biomarkers Consortium-Down Syndrome (ABC-DS) using untargeted mass spectrometry (MS). Our sample included 38 individuals who met consensus criteria for AD (DS-AD), 43 who met criteria for mild cognitive impairment (DS-MCI), and 211 who were cognitively unaffected and stable (CS). RESULTS We measured relative abundance of 8,805 features using MS and 180 putative metabolites were differentially expressed (DE) among the groups at false discovery rate-corrected q< 0.05. From the DE features, a nine-feature classifier model classified the CS and DS-AD groups with receiver operating characteristic area under the curve (ROC AUC) of 0.86 and a two-feature model classified the DS-MCI and DS-AD groups with ROC AUC of 0.88. Metabolite set enrichment analysis across the three groups suggested alterations in fatty acid and carbohydrate metabolism. DISCUSSION Our results reveal metabolic alterations in DS-AD that are similar to those seen in LOAD. The pattern of results in this cross-sectional DS cohort suggests a dynamic time course of metabolic dysregulation which evolves with clinical progression from non-demented, to MCI, to AD. Metabolomic markers may be useful for staging progression of DS-AD.
Collapse
Affiliation(s)
- Mark Mapstone
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Thomas J Gross
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Fabio Macciardi
- Department of Psychiatry and Human BehaviorUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Amrita K Cheema
- Departments of Biochemistry and Molecular & Cellular BiologyGeorgetown University Medical CenterWashingtonDCUSA
| | - Melissa Petersen
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Benjamin L Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William E Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bradley T Christian
- Departments of Medical Physics and PsychiatryWaisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Wayne Silverman
- Department of PediatricsUniversity of California‐ IrvineIrvineCaliforniaUSA
| | - Ira T Lott
- Department of PediatricsUniversity of California‐ IrvineIrvineCaliforniaUSA
| | - Nicole Schupf
- Taub Institute for Research in Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyColumbia University and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of EpidemiologyJoseph P. Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | | |
Collapse
|
3
|
Mengel D, Liu W, Glynn RJ, Selkoe DJ, Strydom A, Lai F, Rosas HD, Torres A, Patsiogiannis V, Skotko B, Walsh DM. Dynamics of plasma biomarkers in Down syndrome: the relative levels of Aβ42 decrease with age, whereas NT1 tau and NfL increase. ALZHEIMERS RESEARCH & THERAPY 2020; 12:27. [PMID: 32192521 PMCID: PMC7081580 DOI: 10.1186/s13195-020-00593-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/06/2020] [Indexed: 11/12/2022]
Abstract
Background Down syndrome (DS) is the most common genetic cause of Alzheimer’s disease (AD), but diagnosis of AD in DS is challenging due to the intellectual disability which accompanies DS. When disease-modifying agents for AD are approved, reliable biomarkers will be required to identify when and how long people with DS should undergo treatment. Three cardinal neuropathological features characterize AD, and AD in DS—Aβ amyloid plaques, tau neurofibrillary tangles, and neuronal loss. Here, we quantified plasma biomarkers of all 3 neuropathological features in a large cohort of people with DS aged from 3 months to 68 years. Our primary aims were (1) to assess changes in the selected plasma biomarkers in DS across age, and (2) to compare biomarkers measured in DS plasma versus age- and sex-matched controls. Methods Using ultra-sensitive single molecule array (Simoa) assays, we measured 3 analytes (Aβ42, NfL, and tau) in plasmas of 100 individuals with DS and 100 age- and sex-matched controls. Tau was measured using an assay (NT1) which detects forms of tau containing at least residues 6–198. The stability of the 3 analytes was established using plasma from ten healthy volunteers collected at 6 intervals over a 5-day period. Results High Aβ42 and NT1 tau and low NfL were observed in infants. Across all ages, Aβ42 levels were higher in DS than controls. Levels of Aβ42 decreased with age in both DS and controls, but this decrease was greater in DS than controls and became prominent in the third decade of life. NT1 tau fell in adolescents and young adults, but increased in older individuals with DS. NfL levels were low in infants, children, adolescents, and young adults, but thereafter increased in DS compared to controls. Conclusions High levels of Aβ42 and tau in both young controls and DS suggest these proteins are produced by normal physiological processes, whereas the changes seen in later life are consistent with emergence of pathological alterations. These plasma biomarker results are in good agreement with prior neuropathology studies and indicate that the third and fourth decades (i.e., 20 to 40 years of age) of life are pivotal periods during which AD processes manifest in DS. Application of the assays used here to longitudinal studies of individuals with DS aged 20 to 50 years of age should further validate the use of these biomarkers, and in time may allow identification and monitoring of people with DS best suited for treatment with AD therapies.
Collapse
Affiliation(s)
- David Mengel
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA. .,Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Robert J Glynn
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dennis J Selkoe
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Division of Psychiatry, University College London, London, UK
| | - Florence Lai
- Department of Neurology, Massachusetts General Hospital and McLean Hospital, and Harvard Medical School, Boston, MA, USA
| | - H Diana Rosas
- Department of Neurology, Massachusetts General Hospital and McLean Hospital, and Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Amy Torres
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Vasiliki Patsiogiannis
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Brian Skotko
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Du Y, Chen L, Jiao Y, Cheng Y. Cerebrospinal fluid and blood Aβ levels in Down syndrome patients with and without dementia: a meta-analysis study. Aging (Albany NY) 2019; 11:12202-12212. [PMID: 31860872 PMCID: PMC6949072 DOI: 10.18632/aging.102560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022]
Abstract
Abnormal β-amyloid (Aβ) levels were found in patients with Down syndrome (DS). However, Aβ levels in patients with DS and DS with dementia (DSD) vary considerably across studies. Therefore, we performed a systematic literature review and quantitatively summarized the clinical Aβ data on the cerebrospinal fluid (CSF) and blood of patients with DS and those with DSD using a meta-analytical technique. We performed a systematic search of the PubMed and Web of Science and identified 27 studies for inclusion in the meta-analysis. Random-effects meta-analysis indicated that the levels of blood Aβ1-40 and Aβ1-42 were significantly elevated in patients with DS compared with those in healthy control (HC) subjects. In contrast, there were no significant differences between patients with DS and those with DSD in the blood Aβ1-40 and Aβ1-42 levels. The CSF Aβ1-42 levels were significantly decreased in patients with DS compared to those in HC subjects. Further, CSF Aβ1-42 levels were significantly decreased in patients with DSD compared to those with DS, with a large effect size. Taken together, our results demonstrated that blood Aβ1-40 and Aβ1-42 levels were significantly increased in patients with DS while CSF Aβ1-42, but not Aβ1-40 levels were significantly decreased in patients with DS.
Collapse
Affiliation(s)
- Yang Du
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Lei Chen
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yuguo Jiao
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
5
|
Petersen ME, O’Bryant S. Blood-based biomarkers for Down syndrome and Alzheimer's disease: A systematic review. Dev Neurobiol 2019; 79:699-710. [PMID: 31389185 PMCID: PMC8284928 DOI: 10.1002/dneu.22714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Down syndrome (DS) occurs due to triplication of chromosome 21. Individuals with DS face an elevated risk for development of Alzheimer's disease (AD) due to increased amyloid beta (Aβ) resulting from the over-expression of the amyloid precursor protein found on chromosome 21. Diagnosis of AD among individuals with DS poses particular challenges resulting in an increased focus on alternative diagnostic methods such as blood-based biomarkers. The aim of this review was to evaluate the current state of the literature of blood-based biomarkers found in individuals with DS and particularly among those also diagnosed with AD or in prodromal stages (mild cognitive impairment [MCI]). A systematic review was conducted utilizing a comprehensive search strategy. Twenty-four references were identified, of those, 22 fulfilled inclusion criteria were selected for further analysis with restriction to only plasma-based biomarkers. Studies found Aβ to be consistently higher among individuals with DS; however, the link between Aβ peptides (Aβ1-42 and Aβ1-40) and AD among DS was inconsistent. Inflammatory-based proteins were more reliably found to be elevated leading to preliminary work focused on an algorithmic approach with predominantly inflammatory-based proteins to detect AD and MCI as well as predict risk of incidence among DS. Separate work has also shown remarkable diagnostic accuracy with the use of a single protein (NfL) as compared to combined proteomic profiles. This review serves to outline the current state of the literature and highlights the potential plasma-based biomarkers for use in detecting AD and MCI among this at-risk population.
Collapse
Affiliation(s)
- Melissa E. Petersen
- University of Texas MD Anderson Cancer Center, Department of Neuro-Oncology, Houston, Texas USA
| | - Sid O’Bryant
- University of North Texas Health Science Center, Department of Pharmacology & Neuroscience, Fort Worth, Texas, USA,Address correspondence to: Sid E. O’Bryant, Ph.D., University of North Texas Health Science Center, Institute for Translational Research3500 Camp Bowie Blvd, Fort Worth, TX 76107. Phone: (817) 735-2963; Fax: (817) 735-0611;
| |
Collapse
|
6
|
de França Bram JM, Talib LL, Joaquim HPG, Carvalho CL, Gattaz WF, Forlenza OV. Alzheimer’s Disease-related Biomarkers in Aging Adults with Down Syndrome: Systematic Review. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2019. [DOI: 10.2174/1573400515666190122152855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background:
Down syndrome (DS) is associated with a high prevalence of cognitive
impairment and dementia in middle age and older adults. Given the presence of common neuropathological
findings and similar pathogenic mechanisms, dementia in DS is regarded as a form of
genetically determined, early-onset AD. The clinical characterization of cognitive decline in persons
with DS is a difficult task, due to the presence intellectual disability and pre-existing cognitive impairment.
Subtle changes that occur at early stages of the dementing process may not be perceived
clinically, given that most cognitive screening tests are not sensitive enough to detect them. Therefore,
biological markers will provide support to the diagnosis of DS-related cognitive impairment
and dementia, particularly at early stages of this process.
Objective:
To perform a systematic review of the literature on AD-related biomarkers in DS.
Method:
We searched PubMed, Web of Science and Cochrane Library for scientific papers published
between 2008 and 2018 using as primary mesh terms ‘Down’, ‘Alzheimer’, ‘biomarker’.
Results:
79 studies were retrieved, and 39 were considered eligible for inclusion in the systematic
review: 14 post-mortem studies, 10 neuroimaging, 4 addressing cerebrospinal fluid biomarkers, and
11 on peripheral markers.
Conclusion:
There is consistent growth in the number of publication in this field over the past years.
Studies in DS-related dementia tend to incorporate many of the diagnostic technologies that have
been more extensively studied and validated in AD. In many instances, the study of CNS and peripheral
biomarkers reinforces the presence of AD pathology in DS.
Collapse
Affiliation(s)
- Jessyka Maria de França Bram
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leda Leme Talib
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Helena Passarelli Giroud Joaquim
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cláudia Lopes Carvalho
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Wagner Farid Gattaz
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Orestes Vicente Forlenza
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Startin CM, Ashton NJ, Hamburg S, Hithersay R, Wiseman FK, Mok KY, Hardy J, Lleó A, Lovestone S, Parnetti L, Zetterberg H, Hye A, Strydom A. Plasma biomarkers for amyloid, tau, and cytokines in Down syndrome and sporadic Alzheimer's disease. Alzheimers Res Ther 2019; 11:26. [PMID: 30902060 PMCID: PMC6429702 DOI: 10.1186/s13195-019-0477-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Down syndrome (DS), caused by chromosome 21 trisomy, is associated with an ultra-high risk of dementia due to Alzheimer's disease (AD), driven by amyloid precursor protein (APP) gene triplication. Understanding relevant molecular differences between those with DS, those with sporadic AD (sAD) without DS, and controls will aid in understanding AD development in DS. We explored group differences in plasma concentrations of amyloid-β peptides and tau (as their accumulation is a characteristic feature of AD) and cytokines (as the inflammatory response has been implicated in AD development, and immune dysfunction is common in DS). METHODS We used ultrasensitive assays to compare plasma concentrations of the amyloid-β peptides Aβ40 and Aβ42, total tau (t-tau), and the cytokines IL1β, IL10, IL6, and TNFα between adults with DS (n = 31), adults with sAD (n = 27), and controls age-matched to the group with DS (n = 27), and explored relationships between molecular concentrations and with age within each group. In the group with DS, we also explored relationships with neurofilament light (NfL) concentration, due to its potential use as a biomarker for AD in DS. RESULTS Aβ40, Aβ42, and IL1β concentrations were higher in DS, with a higher Aβ42/Aβ40 ratio in controls. The group with DS showed moderate positive associations between concentrations of t-tau and both Aβ42 and IL1β. Only NfL concentration in the group with DS showed a significant positive association with age. CONCLUSIONS Concentrations of Aβ40 and Aβ42 were much higher in adults with DS than in other groups, reflecting APP gene triplication, while no difference in the Aβ42/Aβ40 ratio between those with DS and sAD may indicate similar processing and deposition of Aβ40 and Aβ42 in these groups. Higher concentrations of IL1β in DS may reflect an increased vulnerability to infections and/or an increased prevalence of autoimmune disorders, while the positive association between IL1β and t-tau in DS may indicate IL1β is associated with neurodegeneration. Finally, NfL concentration may be the most suitable biomarker for dementia progression in DS. The identification of such a biomarker is important to improve the detection of dementia and monitor its progression, and for designing clinical intervention studies.
Collapse
Affiliation(s)
- Carla M. Startin
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Division of Psychiatry, University College London, London, UK
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| | - Nicholas J. Ashton
- Maurice Wohl Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, Biomedical Research Unit for Dementia at South London, and Maudsley NHS Foundation, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sarah Hamburg
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Division of Psychiatry, University College London, London, UK
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| | - Rosalyn Hithersay
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Division of Psychiatry, University College London, London, UK
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| | - Frances K. Wiseman
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Kin Y. Mok
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, SAR People’s Republic of China
| | - John Hardy
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, Institute of Neurology, University College London, London, UK
| | - Alberto Lleó
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Lucilla Parnetti
- Centre for Memory Disturbances, Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
| | - Abdul Hye
- Maurice Wohl Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, Biomedical Research Unit for Dementia at South London, and Maudsley NHS Foundation, London, UK
| | - André Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Division of Psychiatry, University College London, London, UK
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| |
Collapse
|
8
|
Multifunctional liposomes interact with Abeta in human biological fluids: Therapeutic implications for Alzheimer's disease. Neurochem Int 2017; 108:60-65. [DOI: 10.1016/j.neuint.2017.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 12/16/2022]
|
9
|
Söllvander S, Ekholm-Pettersson F, Brundin RM, Westman G, Kilander L, Paulie S, Lannfelt L, Sehlin D. Increased Number of Plasma B Cells Producing Autoantibodies Against Aβ42 Protofibrils in Alzheimer's Disease. J Alzheimers Dis 2016; 48:63-72. [PMID: 26401929 PMCID: PMC4923756 DOI: 10.3233/jad-150236] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Alzheimer's disease (AD)-related peptide amyloid-β (Aβ) has a propensity to aggregate into various assemblies including toxic soluble Aβ protofibrils. Several studies have reported the existence of anti-Aβ antibodies in humans. However, it is still debated whether levels of anti-Aβ antibodies are altered in AD patients compared to healthy individuals. Formation of immune complexes with plasma Aβ makes it difficult to reliably measure the concentration of circulating anti-Aβ antibodies with certain immunoassays, potentially leading to an underestimation. Here we have investigated anti-Aβ antibody production on a cellular level by measuring the amount of anti-Aβ antibody producing cells instead of the plasma level of anti-Aβ antibodies. To our knowledge, this is the first time the anti-Aβ antibody response in plasma has been compared in AD patients and age-matched healthy individuals using the enzyme-linked immunospot (ELISpot) technique. Both AD patients and healthy individuals had low levels of B cells producing antibodies binding Aβ40 monomers, whereas the number of cells producing antibodies toward Aβ42 protofibrils was higher overall and significantly higher in AD compared to healthy controls. This study shows, by an alternative and reliable method, that there is a specific immune response to the toxic Aβ protofibrils, which is significantly increased in AD patients.
Collapse
Affiliation(s)
- Sofia Söllvander
- Department of Public Health & Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Frida Ekholm-Pettersson
- Department of Public Health & Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Rose-Marie Brundin
- Department of Public Health & Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Gabriel Westman
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health & Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Lars Lannfelt
- Department of Public Health & Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health & Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Conti E, Nacinovich R, Bomba M, Raggi ME, Neri F, Ferrarese C, Tremolizzo L. Beta-amyloid plasma levels in adolescents with anorexia nervosa of the restrictive type. Neuropsychobiology 2016; 71:154-7. [PMID: 25998413 DOI: 10.1159/000381399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/04/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Reduced plasma leptin and elevated homocysteine (Hcy) are known to lead to increased β-amyloid (Aβ) production, besides being hallmarks of anorexia nervosa (AN) of the restrictive type. AN subjects display several neuropsychiatric manifestations, which may entail Aβ-mediated altered synaptic functions. The aim of this study consisted in assessing Aβ plasma levels in AN patients. METHODS A total of 24 adolescent female AN outpatients were recruited together with 12 age-comparable healthy controls. For each subject we assessed Aβ40 and leptin plasma levels, as well as APOE genotype. Hcy plasma levels were also determined in AN patients who underwent clinical characterization, including the Eating Disorder Inventory-3 (EDI-3), the Children's Depression Inventory (CDI) and the estimation of the speed of BMI loss (DPI, disease progression index). RESULTS Plasma Aβ40 levels were similar between patients and controls, while a marked reduction was observed for leptin (∼80%) in AN patients. Aβ40 plasma levels failed to correlate with leptin, while a linear correlation was present with Hcy (r = 0.50, p < 0.03). Examined clinical features were not related with Aβ40 plasma levels, with the only exception of the DPI (r = 0.47, p < 0.03). CONCLUSION This exploratory study does not support a significant role for altered Aβ production in AN-associated dysfunctions. Further studies are required to clarify whether exceptions to this conclusion can be drawn for those patients expressing significantly elevated Hcy plasma levels or for those progressing more rapidly.
Collapse
Affiliation(s)
- Elisa Conti
- Neurology Unit, Milan Center for Neuroscience (Neuro-MI), University of Milano-Bicocca, Monza, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
DiFrancesco JC, Longoni M, Piazza F. Anti-Aβ Autoantibodies in Amyloid Related Imaging Abnormalities (ARIA): Candidate Biomarker for Immunotherapy in Alzheimer's Disease and Cerebral Amyloid Angiopathy. Front Neurol 2015; 6:207. [PMID: 26441825 PMCID: PMC4585101 DOI: 10.3389/fneur.2015.00207] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/08/2015] [Indexed: 11/13/2022] Open
Abstract
Amyloid-related imaging abnormalities (ARIA) represent the major severe side effect of amyloid-beta (Aβ) immunotherapy for Alzheimer’s disease (AD). Early biomarkers of ARIA represent an important challenge to ensure safe and beneficial effects of immunotherapies, given that different promising clinical trials in prodromal and subjects at risk for AD are underway. The recent demonstration that cerebrospinal fluid (CSF) anti-Aβ autoantibodies play a key role in the development of the ARIA-like events characterizing cerebral amyloid angiopathy-related inflammation generated great interest in the field of immunotherapy. Herein, we critically review the growing body of evidence supporting the monitoring of CSF anti-Aβ autoantibody as a promising candidate biomarker for ARIA in clinical trials.
Collapse
Affiliation(s)
- Jacopo C DiFrancesco
- School of Medicine, Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca , Monza , Italy ; The Inflammatory Cerebral Amyloid Angiopathy and Alzheimer's Disease βiomarkers (iCAβ) International Network , Monza , Italy
| | - Martina Longoni
- School of Medicine, Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca , Monza , Italy ; The Inflammatory Cerebral Amyloid Angiopathy and Alzheimer's Disease βiomarkers (iCAβ) International Network , Monza , Italy
| | - Fabrizio Piazza
- School of Medicine, Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca , Monza , Italy ; The Inflammatory Cerebral Amyloid Angiopathy and Alzheimer's Disease βiomarkers (iCAβ) International Network , Monza , Italy ; The iCAβ-ITALY Study Group of the Italian Society for the Study of Dementia (SINdem) , Monza , Italy
| |
Collapse
|
12
|
Schupf N, Lee A, Park N, Dang LH, Pang D, Yale A, Oh DKT, Krinsky-McHale SJ, Jenkins EC, Luchsinger JA, Zigman WB, Silverman W, Tycko B, Kisselev S, Clark L, Lee JH. Candidate genes for Alzheimer's disease are associated with individual differences in plasma levels of beta amyloid peptides in adults with Down syndrome. Neurobiol Aging 2015; 36:2907.e1-10. [PMID: 26166206 DOI: 10.1016/j.neurobiolaging.2015.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 06/08/2015] [Accepted: 06/14/2015] [Indexed: 01/08/2023]
Abstract
We examined the contribution of candidates genes for Alzheimer's disease (AD) to individual differences in levels of beta amyloid peptides in adults with Down syndrom, a population at high risk for AD. Participants were 254 non-demented adults with Down syndrome, 30-78 years of age. Genomic deoxyribonucleic acid was genotyped using an Illumina GoldenGate custom array. We used linear regression to examine differences in levels of Aβ peptides associated with the number of risk alleles, adjusting for age, sex, level of intellectual disability, race and/or ethnicity, and the presence of the APOE ε4 allele. For Aβ42 levels, the strongest gene-wise association was found for a single nucleotide polymorphism (SNP) on CAHLM1; for Aβ40 levels, the strongest gene-wise associations were found for SNPs in IDE and SOD1, while the strongest gene-wise associations with levels of the Aβ42/Aβ40 ratio were found for SNPs in SORCS1. Broadly classified, variants in these genes may influence amyloid precursor protein processing (CALHM1, IDE), vesicular trafficking (SORCS1), and response to oxidative stress (SOD1).
Collapse
Affiliation(s)
- Nicole Schupf
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; G.H. Sergievsky Center, New York, NY, USA; Department of Epidemiology, Columbia University Medical Center, New York, NY, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA.
| | - Annie Lee
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Naeun Park
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Lam-Ha Dang
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Deborah Pang
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Alexander Yale
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - David Kyung-Taek Oh
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Sharon J Krinsky-McHale
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Edmund C Jenkins
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - José A Luchsinger
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Warren B Zigman
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wayne Silverman
- Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin Tycko
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Sergey Kisselev
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Lorraine Clark
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Joseph H Lee
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; G.H. Sergievsky Center, New York, NY, USA; Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Piazza F, Greenberg SM, Savoiardo M, Gardinetti M, Chiapparini L, Raicher I, Nitrini R, Sakaguchi H, Brioschi M, Billo G, Colombo A, Lanzani F, Piscosquito G, Carriero MR, Giaccone G, Tagliavini F, Ferrarese C, DiFrancesco JC. Anti-amyloid β autoantibodies in cerebral amyloid angiopathy-related inflammation: Implications for amyloid-modifying therapies. Ann Neurol 2013; 73:449-58. [DOI: 10.1002/ana.23857] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Fabrizio Piazza
- Department of Neuroscience and Biomedical Technologies; University of Milano-Bicocca; Monza; Italy
| | - Steven M. Greenberg
- Hemorrhagic Stroke Research Program, Department of Neurology; Massachusetts General Hospital, Harvard Medical School; Boston; MA
| | - Mario Savoiardo
- Department of Neuroradiology; IRCCS Foundation Neurological Institute Carlo Besta,; Milan; Italy
| | - Margherita Gardinetti
- Department of Neuroscience and Biomedical Technologies; University of Milano-Bicocca; Monza; Italy
| | - Luisa Chiapparini
- Department of Neuroradiology; IRCCS Foundation Neurological Institute Carlo Besta,; Milan; Italy
| | - Irina Raicher
- Department of Neurology; University of São Paulo School of Medicine; São Paulo; Brazil
| | - Ricardo Nitrini
- Department of Neurology; University of São Paulo School of Medicine; São Paulo; Brazil
| | - Hideya Sakaguchi
- Department of Neurology; Graduate School of Medical Sciences, Kumamoto University; Kumamoto; Japan
| | - Monica Brioschi
- Department of Neurosciences; Niguarda Ca' Granda Hospital; Milan; Italy
| | - Giuseppe Billo
- Department of Neurology; St. Bortolo Hospital; Vicenza; Italy
| | | | | | - Giuseppe Piscosquito
- Department of Cerebrovascular Diseases; IRCCS Foundation Neurological Institute Carlo Besta,; Milan; Italy
| | - Maria Rita Carriero
- Department of Cerebrovascular Diseases; IRCCS Foundation Neurological Institute Carlo Besta,; Milan; Italy
| | - Giorgio Giaccone
- Department of Neurodegenerative Diseases and Division of Neuropathology-Neurology; IRCCS Foundation Neurological Institute Carlo Besta,; Milan; Italy
| | - Fabrizio Tagliavini
- Department of Neurodegenerative Diseases and Division of Neuropathology-Neurology; IRCCS Foundation Neurological Institute Carlo Besta,; Milan; Italy
| | - Carlo Ferrarese
- Department of Neuroscience and Biomedical Technologies; University of Milano-Bicocca; Monza; Italy
| | - Jacopo C. DiFrancesco
- Department of Neuroscience and Biomedical Technologies; University of Milano-Bicocca; Monza; Italy
| |
Collapse
|
14
|
Weksler ME, Szabo P, Relkin NR, Reidenberg MM, Weksler BB, Coppus AM. Alzheimer's disease and Down's syndrome: Treating two paths to dementia. Autoimmun Rev 2013. [DOI: 10.1016/j.autrev.2012.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
What's hAPPening at synapses? The role of amyloid β-protein precursor and β-amyloid in neurological disorders. Mol Psychiatry 2013; 18:425-34. [PMID: 22925831 DOI: 10.1038/mp.2012.122] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Accumulating evidence suggests that dysregulated levels of amyloid β-protein precursor (APP) and its catabolites contribute to the impaired synaptic plasticity and seizure incidence observed in several neurological disorders, including Alzheimer's disease, fragile X syndrome, Down's syndrome, autism, epilepsy and Parkinson's disease as well as in brain injury. This review article summarizes what is known regarding the synaptic synthesis, processing and function of APP and amyloid-beta (Aβ), as well as discusses how these proteins could contribute to the altered synaptic plasticity and pathology of the aforementioned disorders. In addition, APP and its proteolytic fragments are emerging as biomarkers for neurological health, and pharmacological interventions that modulate their levels, such as secretase inhibitors, passive immunotherapy against Aβ and mGluR5 antagonists, are reviewed.
Collapse
|
16
|
Lütjohann D, Meichsner S, Pettersson H. Lipids in Alzheimer’s disease and their potential for therapy. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.11.74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Head E, Doran E, Nistor M, Hill M, Schmitt FA, Haier RJ, Lott IT. Plasma amyloid-β as a function of age, level of intellectual disability, and presence of dementia in Down syndrome. J Alzheimers Dis 2011; 23:399-409. [PMID: 21116050 DOI: 10.3233/jad-2010-101335] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Adults with Down syndrome (DS) are at risk for developing Alzheimer's disease (AD). While plasma amyloid-β (Aβ) is known to be elevated in DS, its relationship to cognitive functioning is unknown. To assess this relationship, samples from two groups of subjects were used. In the first group, nondemented adults with DS were compared to: 1) a group of young and old individuals without DS and 2) to a group of patients with AD. Compared to these controls, there were significantly higher levels of plasma Aβ in nondemented adults with DS while AD patients showed lower levels of plasma Aβ. A larger second group included demented and nondemented adults with DS, in order to test the hypothesis that plasma Aβ may vary as a function of dementia and Apolipoprotein E (ApoE) genotype. Plasma Aβ levels alone did not dissociate DS adults with and without dementia. However, in demented adults with DS, ApoE4 was associated with higher Aβ40 but not Aβ42. After controlling for level of intellectual disability (mild, moderate, severe) and the presence or absence of dementia, there was an improved prediction of neuropsychological scores by plasma Aβ. In summary, plasma Aβ can help predict cognitive function in adults with DS independently of the presence or absence of dementia.
Collapse
Affiliation(s)
- Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
S100B and APP promote a gliocentric shift and impaired neurogenesis in Down syndrome neural progenitors. PLoS One 2011; 6:e22126. [PMID: 21779383 PMCID: PMC3133657 DOI: 10.1371/journal.pone.0022126] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/15/2011] [Indexed: 12/20/2022] Open
Abstract
Down syndrome (DS) is a developmental disorder associated with mental retardation (MR) and early onset Alzheimer's disease (AD). These CNS phenotypes are attributed to ongoing neuronal degeneration due to constitutive overexpression of chromosome 21 (HSA21) genes. We have previously shown that HSA21 associated S100B contributes to oxidative stress and apoptosis in DS human neural progenitors (HNPs). Here we show that DS HNPs isolated from fetal frontal cortex demonstrate not only disturbances in redox states within the mitochondria and increased levels of progenitor cell death but also transition to more gliocentric progenitor phenotypes with a consequent reduction in neuronogenesis. HSA21 associated S100B and amyloid precursor protein (APP) levels are simultaneously increased within DS HNPs, their secretions are synergistically enhanced in a paracrine fashion, and overexpressions of these proteins disrupt mitochondrial membrane potentials and redox states. HNPs show greater susceptibility to these proteins as compared to neurons, leading to cell death. Ongoing inflammation through APP and S100B overexpression further promotes a gliocentric HNPs phenotype. Thus, the loss in neuronal numbers seen in DS is not merely due to increased HNPs cell death and neurodegeneration, but also a fundamental gliocentric shift in the progenitor pool that impairs neuronal production.
Collapse
|
19
|
Ray B, Long JM, Sokol DK, Lahiri DK. Increased secreted amyloid precursor protein-α (sAPPα) in severe autism: proposal of a specific, anabolic pathway and putative biomarker. PLoS One 2011; 6:e20405. [PMID: 21731612 PMCID: PMC3120811 DOI: 10.1371/journal.pone.0020405] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 04/23/2011] [Indexed: 12/11/2022] Open
Abstract
Autism is a neurodevelopmental disorder characterized by deficits in verbal communication, social interactions, and the presence of repetitive, stereotyped and compulsive behaviors. Excessive early brain growth is found commonly in some patients and may contribute to disease phenotype. Reports of increased levels of brain-derived neurotrophic factor (BDNF) and other neurotrophic-like factors in autistic neonates suggest that enhanced anabolic activity in CNS mediates this overgrowth effect. We have shown previously that in a subset of patients with severe autism and aggression, plasma levels of the secreted amyloid-β (Aβ) precursor protein-alpha form (sAPPα) were significantly elevated relative to controls and patients with mild-to-moderate autism. Here we further tested the hypothesis that levels of sAPPα and sAPPβ (proteolytic cleavage products of APP by α- and β-secretase, respectively) are deranged in autism and may contribute to an anabolic environment leading to brain overgrowth. We measured plasma levels of sAPPα, sAPPβ, Aβ peptides and BDNF by corresponding ELISA in a well characterized set of subjects. We included for analysis 18 control, 6 mild-to-moderate, and 15 severely autistic patient plasma samples. We have observed that sAPPα levels are increased and BDNF levels decreased in the plasma of patients with severe autism as compared to controls. Further, we show that Aβ1-40, Aβ1-42, and sAPPβ levels are significantly decreased in the plasma of patients with severe autism. These findings do not extend to patients with mild-to-moderate autism, providing a biochemical correlate of phenotypic severity. Taken together, this study provides evidence that sAPPα levels are generally elevated in severe autism and suggests that these patients may have aberrant non-amyloidogenic processing of APP.
Collapse
Affiliation(s)
- Balmiki Ray
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Justin M. Long
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Deborah K. Sokol
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Debomoy K. Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
20
|
Cholinesterase inhibitor use is associated with increased plasma levels of anti-Abeta 1–42 antibodies in Alzheimer's disease patients. Neurosci Lett 2010; 486:193-6. [DOI: 10.1016/j.neulet.2010.09.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 11/16/2022]
|