1
|
Šubert M, Tykalová T, Novotný M, Dušek P, Klempíř J, Rusz J. Automated analysis of spoken language differentiates multiple system atrophy from Parkinson's disease. J Neurol 2025; 272:113. [PMID: 39812820 PMCID: PMC11735538 DOI: 10.1007/s00415-024-12828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND AND OBJECTIVES Patients with synucleinopathies such as multiple system atrophy (MSA) and Parkinson's disease (PD) frequently display speech and language abnormalities. We explore the diagnostic potential of automated linguistic analysis of natural spontaneous speech to differentiate MSA and PD. METHODS Spontaneous speech of 39 participants with MSA compared to 39 drug-naive PD and 39 healthy controls matched for age and sex was transcribed and linguistically annotated using automatic speech recognition and natural language processing. A quantitative analysis was performed using 6 lexical and syntactic and 2 acoustic features. Results were compared with human-controlled analysis to assess the robustness of the approach. Diagnostic accuracy was evaluated using sensitivity analysis. RESULTS Despite similar disease duration, linguistic abnormalities were generally more severe in MSA than in PD, leading to high diagnostic accuracy with an area under the curve of 0.81. Compared to controls, MSA showed decreased grammatical component usage, more repetitive phrases, shorter sentences, reduced sentence development, slower articulation rate, and increased duration of pauses, whereas PD had only shorter sentences, reduced sentence development, and longer pauses. Only slower articulation rate was distinctive for MSA while unchanged for PD relative to controls. The highest correlation was found between bulbar/pseudobulbar clinical score and sentence length (r = -0.49, p = 0.002). Despite the relatively high severity of dysarthria in MSA, a strong agreement between manually and automatically computed results was achieved. DISCUSSION Automated linguistic analysis may offer an objective, cost-effective, and widely applicable biomarker to differentiate synucleinopathies with similar clinical manifestations.
Collapse
Affiliation(s)
- Martin Šubert
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Praha 6, 16000, Prague, Czech Republic
| | - Tereza Tykalová
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Praha 6, 16000, Prague, Czech Republic
| | - Michal Novotný
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Praha 6, 16000, Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jiří Klempíř
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Praha 6, 16000, Prague, Czech Republic.
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
- Department of Neurology and ARTORG Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Pedersen CC, Maple-Grødem J, Lange J. A systematic review of biofluid phosphorylated α-synuclein in Parkinson's disease. Parkinsonism Relat Disord 2024:107240. [PMID: 39721932 DOI: 10.1016/j.parkreldis.2024.107240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) is a progressive neurodegenerative disease, and biomarkers are needed to enhance earlier detection and monitoring. Alpha-synuclein, phosphorylated at serine 129 (pS129-α-syn), is the predominant form of α-syn found in Lewy bodies implicating an involvement in disease pathology. This review aims to systematically evaluate the evidence for pS129-α-syn detection in human biofluid samples of PD utilizing ELISA-based protein detection methods. METHODS A systematic review was conducted following the Preferred Reported Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Electronic searches were performed in PubMed, Web of Science, and Cochrane databases from inception to November 7th, 2024, to identify studies comparing pS129-α-syn in biofluids of PD patients with controls or related neurodegenerative disease. Risk of bias was assessed for each study. RESULTS Twenty-three publications met the inclusion criteria, with pS129-α-syn detected in cerebrospinal fluid, plasma, red blood cells, serum, and saliva exosomes. Overall, pS129-α-syn levels were elevated in patients with PD compared to controls, and in some studies, correlated with disease severity. There was no consistent pattern when comparing PD patients to those with related neurodegenerative diseases. Significant variability in pS129-α-syn levels and considerable overlap between groups may limit the utility as a biomarker. CONCLUSION While pS129-α-syn for PD shows some promise as a diagnostic marker for PD, its differential diagnostic utility remains limited. Further research involving larger cohorts is required. The greatest potential for pS129-α-syn may be as part of a panel with other PD-specific markers, to enhance diagnostic accuracy and prognostic value.
Collapse
Affiliation(s)
- Camilla Christina Pedersen
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway; Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| | - Jodi Maple-Grødem
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway; Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| | - Johannes Lange
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway; Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
3
|
Tullo S, Miranda AS, Del Cid-Pellitero E, Lim MP, Gallino D, Attaran A, Patel R, Novikov V, Park M, Beraldo FH, Luo W, Shlaifer I, Durcan TM, Bussey TJ, Saksida LM, Fon EA, Prado VF, Prado MAM, Chakravarty MM. Neuroanatomical and cognitive biomarkers of alpha-synuclein propagation in a mouse model of synucleinopathy prior to onset of motor symptoms. J Neurochem 2024; 168:1546-1564. [PMID: 37804203 DOI: 10.1111/jnc.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Significant evidence suggests that misfolded alpha-synuclein (aSyn), a major component of Lewy bodies, propagates in a prion-like manner contributing to disease progression in Parkinson's disease (PD) and other synucleinopathies. In fact, timed inoculation of M83 hemizygous mice with recombinant human aSyn preformed fibrils (PFF) has shown symptomatic deficits after substantial spreading of pathogenic alpha-synuclein, as detected by markers for the phosphorylation of S129 of aSyn. However, whether accumulated toxicity impact human-relevant cognitive and structural neuroanatomical measures is not fully understood. Here we performed a single unilateral striatal PFF injection in M83 hemizygous mice, and using two assays with translational potential, ex vivo magnetic resonance imaging (MRI) and touchscreen testing, we examined the combined neuroanatomical and behavioral impact of aSyn propagation. In PFF-injected mice, we observed widespread atrophy in bilateral regions that project to or receive input from the injection site using MRI. We also identified early deficits in reversal learning prior to the emergence of motor symptoms. Our findings highlight a network of regions with related cellular correlates of pathology that follow the progression of aSyn spreading, and that affect brain areas relevant for reversal learning. Our experiments suggest that M83 hemizygous mice injected with human PFF provides a model to understand how misfolded aSyn affects human-relevant pre-clinical measures and suggest that these pre-clinical biomarkers could be used to detect early toxicity of aSyn and provide better translational measures between mice and human disease.
Collapse
Affiliation(s)
- Stephanie Tullo
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Aline S Miranda
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Departamento de Morfologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Esther Del Cid-Pellitero
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Mei Peng Lim
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Daniel Gallino
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Anoosha Attaran
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Raihaan Patel
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Vladislav Novikov
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Megan Park
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Flavio H Beraldo
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Wen Luo
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Irina Shlaifer
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy J Bussey
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Lisa M Saksida
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - M Mallar Chakravarty
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
O’Caoimh R, Foley MJ, Timmons S, Molloy DW. Screening for Cognitive Impairment in Movement Disorders: Comparison of the Montreal Cognitive Assessment and Quick Mild Cognitive Impairment Screen in Parkinson's Disease and Lewy Body Dementia. J Alzheimers Dis Rep 2024; 8:971-980. [PMID: 39114555 PMCID: PMC11305847 DOI: 10.3233/adr-230207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/04/2024] [Indexed: 08/10/2024] Open
Abstract
Background The Montreal Cognitive Assessment (MoCA) is recommended by the Movement Disorder Society for cognitive testing in movement disorders including Parkinson's disease (PD) and lewy body dementia. Few studies have compared cognitive screening instruments in these diseases, which overlap clinically. Objective To compare the MoCA and Quick Mild Cognitive Impairment (Qmci) screen in this population. Methods Patients attending memory and movement disorder clinics associated with a university hospital had the MoCA and Qmci screen performed and diagnostic accuracy compared with the area under the receiver operating characteristic curve (AUC). Duration and severity of movement disorders was assessed using the Unified PD Rating Scale (UPDRS). Results In total, 133 assessments were available, median age 74±5. Median education was 11±4 years and 65% were male. Median total UPDRS score was 37±26. Median Qmci screen was 51±27, median MoCA was 19±10. There were statistically significant differences in test scores between those with subjective symptoms but normal cognition, mild cognitive impairment (MCI) and dementia (p < 0.001). The Qmci screen had significantly greater accuracy differentiating normal cognition from MCI versus the MoCA (AUC 0.90 versus 0.72, p = 0.01). Both instruments had similar accuracy in identifying cognitive impairment and separating MCI from dementia. The median administration time for the Qmci screen and MoCA were 5.19 and 9.24 minutes (p < 0.001), respectively. Conclusions Both the MoCA and Qmci screen have good to excellent accuracy in a population with movement disorders experiencing cognitive symptoms. The Qmci screen was significantly more accurate for those with early symptoms and had a shorter administration time.
Collapse
Affiliation(s)
- Rónán O’Caoimh
- Department of Geriatric and Stroke Medicine, Mercy University Hospital, Grenville Place, Cork, Ireland
- Health Research Board Clinical Research Facility, University College Cork, Mercy University Hospital, Cork, Ireland
| | - Mary J. Foley
- Centre for Gerontology and Rehabilitation, St Finbarr’s Hospital, Cork, Ireland
| | - Suzanne Timmons
- Department of Geriatric and Stroke Medicine, Mercy University Hospital, Grenville Place, Cork, Ireland
- Centre for Gerontology and Rehabilitation, St Finbarr’s Hospital, Cork, Ireland
| | - D. William Molloy
- Department of Geriatric and Stroke Medicine, Mercy University Hospital, Grenville Place, Cork, Ireland
- Centre for Gerontology and Rehabilitation, St Finbarr’s Hospital, Cork, Ireland
| |
Collapse
|
5
|
Liampas I, Kyriakoulopoulou P, Siokas V, Tsiamaki E, Stamati P, Kefalopoulou Z, Chroni E, Dardiotis E. Apolipoprotein E Gene in α-Synucleinopathies: A Narrative Review. Int J Mol Sci 2024; 25:1795. [PMID: 38339074 PMCID: PMC10855384 DOI: 10.3390/ijms25031795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this narrative review, we delved into the intricate interplay between Apolipoprotein E (APOE) alleles (typically associated with Alzheimer's disease-AD) and alpha-synucleinopathies (aS-pathies), involving Parkinson's disease (PD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), and multiple-system atrophy (MSA). First, in-vitro, animal, and human-based data on the exacerbating effect of APOE4 on LB pathology were summarized. We found robust evidence that APOE4 carriage constitutes a risk factor for PDD-APOE2, and APOE3 may not alter the risk of developing PDD. We confirmed that APOE4 copies confer an increased hazard towards DLB, as well. Again APOE2 and APOE3 appear unrelated to the risk of conversion. Of note, in individuals with DLB APOE4, carriage appears to be intermediately prevalent between AD and PDD-PD (AD > DLB > PDD > PD). Less consistency existed when it came to PD; APOE-PD associations tended to be markedly modified by ethnicity. Finally, we failed to establish an association between the APOE gene and MSA. Phenotypic associations (age of disease onset, survival, cognitive-neuropsychiatric- motor-, and sleep-related manifestations) between APOE alleles, and each of the aforementioned conditions were also outlined. Finally, a synopsis of literature gaps was provided followed by suggestions for future research.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (P.S.); (E.D.)
| | - Panagiota Kyriakoulopoulou
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (E.T.); (Z.K.); (E.C.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (P.S.); (E.D.)
| | - Eirini Tsiamaki
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (E.T.); (Z.K.); (E.C.)
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (P.S.); (E.D.)
| | - Zinovia Kefalopoulou
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (E.T.); (Z.K.); (E.C.)
| | - Elisabeth Chroni
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (E.T.); (Z.K.); (E.C.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (P.S.); (E.D.)
| |
Collapse
|
6
|
Stankovic I, Fanciulli A, Sidoroff V, Wenning GK. A Review on the Clinical Diagnosis of Multiple System Atrophy. CEREBELLUM (LONDON, ENGLAND) 2023; 22:825-839. [PMID: 35986227 PMCID: PMC10485100 DOI: 10.1007/s12311-022-01453-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Multiple system atrophy (MSA) is a rare, adult-onset, progressive neurodegenerative disorder with major diagnostic challenges. Aiming for a better diagnostic accuracy particularly at early disease stages, novel Movement Disorder Society criteria for the diagnosis of MSA (MDS MSA criteria) have been recently developed. They introduce a neuropathologically established MSA category and three levels of clinical diagnostic certainty including clinically established MSA, clinically probable MSA, and the research category of possible prodromal MSA. The diagnosis of clinically established and clinically probable MSA is based on the presence of cardiovascular or urological autonomic failure, parkinsonism (poorly L-Dopa-responsive for the diagnosis of clinically established MSA), and cerebellar syndrome. These core clinical features need to be associated with supportive motor and non-motor features (MSA red flags) and absence of any exclusion criteria. Characteristic brain MRI markers are required for a diagnosis of clinically established MSA. A research category of possible prodromal MSA is devised to capture patients manifesting with autonomic failure or REM sleep behavior disorder and only mild motor signs at the earliest disease stage. There is a number of promising laboratory markers for MSA that may help increase the overall clinical diagnostic accuracy. In this review, we will discuss the core and supportive clinical features for a diagnosis of MSA in light of the new MDS MSA criteria, which laboratory tools may assist in the clinical diagnosis and which major differential diagnostic challenges should be borne in mind.
Collapse
Affiliation(s)
- Iva Stankovic
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Jellinger KA. Mild cognitive impairment in multiple system atrophy: a brain network disorder. J Neural Transm (Vienna) 2023; 130:1231-1240. [PMID: 37581647 DOI: 10.1007/s00702-023-02682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Cognitive impairment (CI), previously considered as a non-supporting feature of multiple system atrophy (MSA), according to the second consensus criteria, is not uncommon in this neurodegenerative disorder that is clinically characterized by a variable combination of autonomic failure, levodopa-unresponsive parkinsonism, motor and cerebellar signs. Mild cognitive impairment (MCI), a risk factor for dementia, has been reported in up to 44% of MSA patients, with predominant impairment of executive functions/attention, visuospatial and verbal deficits, and a variety of non-cognitive and neuropsychiatric symptoms. Despite changing concept of CI in this synucleinopathy, the underlying pathophysiological mechanisms remain controversial. Recent neuroimaging studies revealed volume reduction in the left temporal gyrus, and in the dopaminergic nucleus accumbens, while other morphometric studies did not find any gray matter atrophy, in particular in the frontal cortex. Functional analyses detected decreased functional connectivity in the left parietal lobe, bilateral cuneus, left precuneus, limbic structures, and cerebello-cerebral circuit, suggesting that structural and functional changes in the subcortical limbic structures and disrupted cerebello-cerebral networks may be associated with early cognitive decline in MSA. Whereas moderate to severe CI in MSA in addition to prefrontal-striatal degeneration is frequently associated with cortical Alzheimer and Lewy co-pathologies, neuropathological studies of the MCI stage of MSA are unfortunately not available. In view of the limited structural and functional findings in MSA cases with MCI, further neuroimaging and neuropathological studies are warranted in order to better elucidate its pathophysiological mechanisms and to develop validated biomarkers as basis for early diagnosis and future adequate treatment modalities in order to prevent progression of this debilitating disorder.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
8
|
Lai TT, Gericke B, Feja M, Conoscenti M, Zelikowsky M, Richter F. Anxiety in synucleinopathies: neuronal circuitry, underlying pathomechanisms and current therapeutic strategies. NPJ Parkinsons Dis 2023; 9:97. [PMID: 37349373 DOI: 10.1038/s41531-023-00547-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Synucleinopathies are neurodegenerative disorders characterized by alpha-synuclein (αSyn) accumulation in neurons or glial cells, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). αSyn-related pathology plays a critical role in the pathogenesis of synucleinopathies leading to the progressive loss of neuronal populations in specific brain regions and the development of motor and non-motor symptoms. Anxiety is among the most frequent non-motor symptoms in patients with PD, but it remains underrecognized and undertreated, which significantly reduces the quality of life for patients. Anxiety is defined as a neuropsychiatric complication with characteristics such as nervousness, loss of concentration, and sweating due to the anticipation of impending danger. In patients with PD, neuropathology in the amygdala, a central region in the anxiety and fear circuitry, may contribute to the high prevalence of anxiety. Studies in animal models reported αSyn pathology in the amygdala together with alteration of anxiety or fear learning response. Therefore, understanding the progression, extent, and specifics of pathology in the anxiety and fear circuitry in synucleinopathies will suggest novel approaches to the diagnosis and treatment of neuropsychiatric symptoms. Here, we provide an overview of studies that address neuropsychiatric symptoms in synucleinopathies. We offer insights into anxiety and fear circuitry in animal models and the current implications for therapeutic intervention. In summary, it is apparent that anxiety is not a bystander symptom in these disorders but reflects early pathogenic mechanisms in the cortico-limbic system which may even contribute as a driver to disease progression.
Collapse
Affiliation(s)
- Thuy Thi Lai
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | | | | | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
9
|
Shi Z, Zhang J, Zhao P, Li X, Liu S, Wu H, Jia P, Ji Y. Characteristics of Mild Cognitive Impairment and Associated Factors in MSA Patients. Brain Sci 2023; 13:brainsci13040582. [PMID: 37190547 DOI: 10.3390/brainsci13040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Mild cognitive impairment (MCI) in multiple-system atrophy (MSA) patients is common but remains poorly characterized, and the related factors are unclear. This retrospective study included 200 consecutive patients with a clinical diagnosis of possible or probable MSA, 102 MSA patients with MCI (MSA-MCI), and 98 MSA patients with normal cognition (MSA-NC). Cognitive profiles were compared between MSA-MCI and MSA-NC patients using the MoCA. In addition, demographic as well as major motor and nonmotor symptom differences were compared between MSA-MCI and MSA-NC patients. The median MMSE score was 26 points. Overall, MSA-MCI was observed in 51% of patients, with predominant impairment in visuospatial, executive, and attention functions compared with MSA-NC patients. MSA-MCI patients were older (p = 0.015) and had a later onset age (p = 0.024) and a higher frequency of hypertension, motor onset, and MSA with the predominant parkinsonism (MSA-P) phenotype than MSA-NC patients. The positive rate of orthostatic hypotension (OH) in MSA-MCI patients was significantly decreased and depression/anxiety was significantly increased compared with MSA-NC patients (p = 0.004). Multivariate logistic analysis showed that motor onset was independently associated with MCI in MSA patients. MSA-MCI patients had impairment in visuospatial, executive, and attention functions. More prominent memory impairment was observed in MSA-P than in MSA-C patients. Motor onset was independently associated with MCI in MSA patients. MCI was commonly presented in MSA with more prominent memory impairment in MSA-P. Future follow-up studies are warranted to identify more factors that influence cognitive impairment in MSA.
Collapse
|
10
|
Goh YY, Saunders E, Pavey S, Rushton E, Quinn N, Houlden H, Chelban V. Multiple system atrophy. Pract Neurol 2023; 23:208-221. [PMID: 36927875 DOI: 10.1136/pn-2020-002797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
This is a practical guide to diagnosing and managing multiple system atrophy (MSA). We explain the newly published Movement Disorders Society Consensus Diagnostic Criteria, which include new 'Clinically Established MSA' and 'Possible Prodromal MSA' categories, hopefully reducing time to diagnosis. We then highlight the key clinical features of MSA to aid diagnosis. We include a list of MSA mimics with suggested methods of differentiation from MSA. Lastly, we discuss practical symptom management in people living with MSA, including balancing side effects, with the ultimate aim of improving quality of life.
Collapse
Affiliation(s)
- Yee Yen Goh
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | | | | | - Niall Quinn
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Henry Houlden
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Viorica Chelban
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK .,Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, Chisinau, Moldova
| |
Collapse
|
11
|
Jellinger KA. Pathomechanisms of depression in multiple system atrophy. J Neural Transm (Vienna) 2023; 130:1-6. [PMID: 36348076 DOI: 10.1007/s00702-022-02560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Multiple system atrophy (MSA) is a rapidly progressing neurodegenerative disorder of uncertain etiology that is characterized by various combinations of Parkinsonism, autonomic, cerebellar and motor dysfunctions, with poor prognosis. Little is known about modifiable factors, such as depression, that has negative effects on quality of life in MSA. Depression, with an estimated prevalence of about 43%, is among the most common neuropsychiatric disorders in MSA similar to other atypical Parkinsonian disorders, the frequency of which is associated with increased disease progression, disease severity and autonomic dysfunctions. Depression in MSA, like in Parkinson disease, has been related to a variety of pathogenic mechanisms associated with the underlying neurodegenerative process, such as involvement of serotonergic neuron groups in the brainstem, prefrontal cortical dysfunctions, and altered functional fronto-temporal-thalamic connectivities with disturbances of mood related and other essential resting-state brain networks. The pathophysiology and pathogenesis of depression in MSA, as in other degenerative movement disorders, are complex and deserve further elucidation as a basis for adequate treatment to improve the quality of life in this fatal disease.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
12
|
The Cognitive Profile of Atypical Parkinsonism: A Meta-Analysis. Neuropsychol Rev 2022; 33:514-543. [PMID: 35960471 DOI: 10.1007/s11065-022-09551-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 07/04/2022] [Indexed: 10/15/2022]
Abstract
Atypical Parkinsonism (AP) syndromes are characterized by a wide spectrum of non-motor symptoms including prominent attentional and executive deficits. However, the cognitive profile of AP and its differences and similarities with that of Parkinson's Disease (PD) are still a matter of debate. The present meta-analysis aimed at identifying patterns of cognitive impairment in AP by comparing global cognitive functioning, memory, executive functions, visuospatial abilities, language, non-verbal reasoning, and processing speed test performances of patients with AP relative to healthy controls and patients with PD. All investigated cognitive domains showed a substantial impairment in patients with AP compared to healthy controls. When AP syndromes were considered separately, their cognitive functioning was distributed along a continuum from Multiple Systemic Atrophy at one extreme, with the least impaired cognitive profile (similar to that observed in PD) to Progressive Supranuclear Palsy, with the greatest decline in global cognitive and executive functioning (similar to Corticobasal Syndrome). These findings indicate that widespread cognitive impairment could represent an important clinical indicator to distinguish AP from other movement disorders.
Collapse
|
13
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
14
|
Jecmenica-Lukic M, Petrovic IN, Pekmezovic T, Tomic A, Stankovic I, Svetel M, Kostic VS. The Profile and Evolution of Neuropsychiatric Symptoms in Multiple System Atrophy: Self- and Caregiver Report. J Neuropsychiatry Clin Neurosci 2022; 33:124-131. [PMID: 33261525 DOI: 10.1176/appi.neuropsych.20030057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Recent research shows that patients with multiple system atrophy (MSA) have significant cognitive and neuropsychiatric comorbidities that can color the clinical presentation of the disease and affect their quality of life. The aims of this study were to determine the neuropsychiatric profile in a cohort of patients with the parkinsonian type of MSA (MSA-P) and their dynamic changes over a 1-year follow-up period and to compare rates of neuropsychiatric symptoms (NPSs) reported by caregivers and the patients themselves. METHODS Forty-seven patients were assessed at baseline; of these, 25 were assessed again after 1 year. NPS assessment tools included the Neuropsychiatric Inventory (NPI), the Beck Depression Inventory, the Hamilton Depression Rating Scale, the Hamilton Anxiety Rating Scale, and the Apathy Evaluation Scale. RESULTS The prevalence of NPSs in patients with MSA-P was very high, with depression, sleep disturbances, apathy, and anxiety being the most frequently occurring features. The evolution of NPSs was found to be independent of motor, autonomic, and cognitive symptoms. None of the scales measuring NPSs, including the NPI, were capable of detecting changes over the 1-year follow-up period. Although the overall prevalence of depression, apathy, and anxiety obtained from caregivers and the patients themselves was similar, reports from these two sources cannot be considered interchangeable. CONCLUSIONS The progression of neuropsychiatric symptoms was not a subject of rapid change in MSA-P, in contrast to the observed motor, autonomic, and cognitive deterioration. These findings suggest the need to investigate the utility of available instruments in capturing the evolution of NPSs in MSA over time.
Collapse
Affiliation(s)
- Milica Jecmenica-Lukic
- Clinic of Neurology, School of Medicine, University of Belgrade, Serbia (Jecmenica-Lukic, Petrovic, Pekmezovic, Tomic, Stankovic, Svetel, Kostic); and Institute of Epidemiology, School of Medicine, University of Belgrade, Serbia (Pekmezovic)
| | - Igor N Petrovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Serbia (Jecmenica-Lukic, Petrovic, Pekmezovic, Tomic, Stankovic, Svetel, Kostic); and Institute of Epidemiology, School of Medicine, University of Belgrade, Serbia (Pekmezovic)
| | - Tatjana Pekmezovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Serbia (Jecmenica-Lukic, Petrovic, Pekmezovic, Tomic, Stankovic, Svetel, Kostic); and Institute of Epidemiology, School of Medicine, University of Belgrade, Serbia (Pekmezovic)
| | - Aleksandra Tomic
- Clinic of Neurology, School of Medicine, University of Belgrade, Serbia (Jecmenica-Lukic, Petrovic, Pekmezovic, Tomic, Stankovic, Svetel, Kostic); and Institute of Epidemiology, School of Medicine, University of Belgrade, Serbia (Pekmezovic)
| | - Iva Stankovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Serbia (Jecmenica-Lukic, Petrovic, Pekmezovic, Tomic, Stankovic, Svetel, Kostic); and Institute of Epidemiology, School of Medicine, University of Belgrade, Serbia (Pekmezovic)
| | - Marina Svetel
- Clinic of Neurology, School of Medicine, University of Belgrade, Serbia (Jecmenica-Lukic, Petrovic, Pekmezovic, Tomic, Stankovic, Svetel, Kostic); and Institute of Epidemiology, School of Medicine, University of Belgrade, Serbia (Pekmezovic)
| | - Vladimir S Kostic
- Clinic of Neurology, School of Medicine, University of Belgrade, Serbia (Jecmenica-Lukic, Petrovic, Pekmezovic, Tomic, Stankovic, Svetel, Kostic); and Institute of Epidemiology, School of Medicine, University of Belgrade, Serbia (Pekmezovic)
| |
Collapse
|
15
|
Jellinger KA. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 2022; 10:599. [PMID: 35327402 PMCID: PMC8945102 DOI: 10.3390/biomedicines10030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressing neurodegenerative disease of uncertain etiology, clinically characterized by various combinations of Levodopa unresponsive parkinsonism, cerebellar, autonomic and motor dysfunctions. The morphological hallmark of this α-synucleinopathy is the deposition of aberrant α-synuclein in both glia, mainly oligodendroglia (glial cytoplasmic inclusions /GCIs/) and neurons, associated with glioneuronal degeneration of the striatonigral, olivopontocerebellar and many other neuronal systems. Typical phenotypes are MSA with predominant parkinsonism (MSA-P) and a cerebellar variant (MSA-C) with olivocerebellar atrophy. However, MSA can present with a wider range of clinical and pathological features than previously thought. In addition to rare combined or "mixed" MSA, there is a broad spectrum of atypical MSA variants, such as those with a different age at onset and disease duration, "minimal change" or prodromal forms, MSA variants with Lewy body disease or severe hippocampal pathology, rare forms with an unusual tau pathology or spinal myoclonus, an increasing number of MSA cases with cognitive impairment/dementia, rare familial forms, and questionable conjugal MSA. These variants that do not fit into the current classification of MSA are a major challenge for the diagnosis of this unique proteinopathy. Although the clinical diagnostic accuracy and differential diagnosis of MSA have improved by using combined biomarkers, its distinction from clinically similar extrapyramidal disorders with other pathologies and etiologies may be difficult. These aspects should be taken into consideration when revising the current diagnostic criteria. This appears important given that disease-modifying treatment strategies for this hitherto incurable disorder are under investigation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
16
|
Magdy R, Hussein M. Cognitive, Psychiatric, and Motor Symptoms-Based Algorithmic Approach to Differentiate Among Various Types of Dementia Syndromes. J Nerv Ment Dis 2022; 210:129-135. [PMID: 35080518 DOI: 10.1097/nmd.0000000000001428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT It may be difficult to distinguish among the various dementia syndromes due to the overlap in many common clinical features across the dementias. Accurate diagnosis of dementia type is increasingly important in an era when promising disease-modifying agents can be marketed soon. In this review, we outline a clinical algorithmic approach particularly tailored to the major forms of dementia in the clinic and refined from our accumulated experience of these patients. We first present an algorithmic approach for patients presenting with predominant deficits in episodic memory, executive function, language, visuospatial, and apraxia. We then consider types of dementia that mainly cause behavioral and psychiatric changes. Finally, we illustrate clinical pearls regarding motor deficits as key associations of each syndrome.
Collapse
Affiliation(s)
- Rehab Magdy
- Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo
| | | |
Collapse
|
17
|
Preci G, Zekja I, Kruja J, Abazaj E. Depression and Dementia in Elderly People. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Dementia itself is not a disease, but a constellation of symptoms caused by diseases and disorders that affect the brain. Dementia and depression are mental health problems commonly encountered in neuropsychiatric practice in the elderly.
AIM: The aims study was to evaluate the prevalence of depression in elderly people with dementia and to see the association between them.
METHODS: This is a retrospective cohort study associating dementia with depression among the population from 50 until to more than 85 years old in Shkodra City in Albania. Practically, the figure of 187 patients with dementia was selected using the cluster sampling method. Patients were considered to have depression when one or more ICD codes for depression were recorded as primary or secondary diagnosis. Multilogistic regression odds ratio (OR) was used to identify factors predicting severity of depression.
RESULTS: A total figure of 187 patients with dementia were enrolled into the study for a period of 4 years. Approximately, the minimum age was 50 and maximum 89 years old with average 75 ± 8.1 std. The prevalence of depression among those patients with dementia resulted 44.9% (84/187). Almost 61% of patients had moderate depression and 28% of patients had severe depression. According to studies, male with dementia was the most predominant sex compared to female with percentage 60.4% and 39.6%, respectively. On the other hand, depression was being found more predominant to female patients with dementia, not to forget that female was 2.9 (OR) time in risk to develop depression compared to male 95% CI (1.6–5.4) p = 0.0005. We did not find a strong association between the late-life depressions than in depression in middle-aged adults.
CONCLUSION: Depression in older adults is a serious concern, especially in dementia population, which often is underdiagnosed being masked by cognitive impairments. According to the case in question, the findings highlight a high prevalence of depression within the dementia patients. After numerous medical researches, we found a strong association between depression and gender, lifestyle, type, or residence with the dementia patients. As stated, the better knowledges in the interactions between the depression and dementia from the part of medical staff will likely contribute to the timely prevention, identification, and treatment of depression in the elderly and will influence on their quality of life.
Collapse
|
18
|
Lv Q, Pan Y, Chen X, Wei J, Wang W, Zhang H, Wan J, Li S, Zhuang Y, Yang B, Ma D, Ren D, Zhao Z. Depression in multiple system atrophy: Views on pathological, clinical and imaging aspects. Front Psychiatry 2022; 13:980371. [PMID: 36159911 PMCID: PMC9492977 DOI: 10.3389/fpsyt.2022.980371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023] Open
Abstract
Multiple system atrophy (MSA) is a common atypical parkinsonism, characterized by a varying combination of autonomic, cerebellar, and pyramidal systems. It has been noticed that the patients with MSA can be accompanied by some neuropsychiatric disorders, in particular depression. However, there is limited understanding of MSA-related depression. To bridge existing gaps, we summarized research progress on this topic and provided a new perspective regarding pathological, clinical, and imaging aspects. Firstly, we synthesized corresponding studies in order to investigate the relationship between depression and MSA from a pathological perspective. And then, from a clinical perspective, we focused on the prevalence of depression in MS patients and the comparison with other populations. Furthermore, the associations between depression and some clinical characteristics, such as life quality and gender, have been reported. The available neuroimaging studies were too sparse to draw conclusions about the radiological aspect of depression in MSA patients but we still described them in the presence of paper. Finally, we discussed some limitations and shortcomings existing in the included studies, which call for more high-quality basic research and clinical research in this field.
Collapse
Affiliation(s)
- Qiuyi Lv
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Pan
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Xing Chen
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jingpei Wei
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hua Zhang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jifeng Wan
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Shiqiang Li
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhuang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Baolin Yang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Dayong Ma
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Dawei Ren
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Zijun Zhao
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Cuoco S, Picillo M, Carotenuto I, Erro R, Catricalà E, Cappa S, Pellecchia MT, Barone P. The language profile in multiple system atrophy: an exploratory study. J Neural Transm (Vienna) 2021; 128:1195-1203. [PMID: 34216238 PMCID: PMC8322009 DOI: 10.1007/s00702-021-02372-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The evidence about the language performance profile of multiple system atrophy (MSA) is limited, but its definition may lead to a more comprehensive characterization of the disorder and contribute to clarify the involvement of the basal ganglia in language abilities. OBJECTIVE The objectives of the study were: (1) to evaluate the reliability of the Screening for Aphasia in NeuroDegeneration (SAND) in MSA patients; (2) compare the linguistic profiles among MSA and Parkinson's disease (PD) patients and healthy controls (HC), and (3) assess relationships between language impairment and cognitive status and MSA motor subtypes. METHODS AND RESULTS Forty patients with a diagnosis of MSA, 22 HC and 17 patients with PD were enrolled in the present study. By excluding the writing task that showed a poor acceptability, we showed that the MSA-tailored SAND Global Score is an acceptable, consistent and reliable tool to screen language disturbances in MSA. MSA patients performed worse than HC, but not than PD, in MSA-tailored SAND Global Score, repetition, reading and semantic association tasks. We did not find significant differences between MSA phenotypes. MSA patients with mild cognitive impairment-multiple domain presented worse language performances as compared to MSA patients with normal cognition and mild cognitive impairment-single domain. CONCLUSION The MSA-tailored SAND Global Score is a consistent and reliable tool to screen language disturbances in MSA. Language disturbances characterize MSA patients irrespective of disease phenotype, and parallel the decline of global cognitive functions.
Collapse
Affiliation(s)
- Sofia Cuoco
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - Marina Picillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - Immacolata Carotenuto
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - Roberto Erro
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | | | - Stefano Cappa
- University School for Advanced Studies IUSS Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Maria Teresa Pellecchia
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy.
| | - Paolo Barone
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| |
Collapse
|
20
|
Howard E, Irwin DJ, Rascovsky K, Nevler N, Shellikeri S, Tropea TF, Spindler M, Deik A, Chen-Plotkin A, Siderowf A, Dahodwala N, Weintraub D, Shaw LM, Trojanowski JQ, Vaishnavi SN, Wolk DA, Mechanic-Hamilton D, Morley JF, Duda JE, Grossman M, Cousins KAQ. Cognitive Profile and Markers of Alzheimer Disease-Type Pathology in Patients With Lewy Body Dementias. Neurology 2021; 96:e1855-e1864. [PMID: 33593865 PMCID: PMC8105963 DOI: 10.1212/wnl.0000000000011699] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To determine whether patients with Lewy body dementia (LBD) with likely Alzheimer disease (AD)-type copathology are more impaired on confrontation naming than those without likely AD-type copathology. METHODS We selected 57 patients with LBD (dementia with Lewy bodies [DLB], n = 38; Parkinson disease dementia [PDD], n = 19) with available AD CSF biomarkers and neuropsychological data. CSF β-amyloid1-42 (Aβ42), phosphorylated-tau (p-tau), and total-tau (t-tau) concentrations were measured. We used an autopsy-validated CSF cut point (t-tau:Aβ42 ratio > 0.3, n = 43), or autopsy data when available (n = 14), to categorize patients as having LBD with (LBD + AD, n = 26) and without (LBD - AD, n = 31) likely AD-type copathology. Analysis of covariance tested between-group comparisons across biologically defined groups (LBD + AD, LBD - AD) and clinical phenotypes (DLB, PDD) on confrontation naming (30-item Boston Naming Test [BNT]), executive abilities (letter fluency [LF], reverse digit span [RDS]), and global cognition (Mini-Mental State Examination [MMSE]), with adjustment for age at dementia onset, time from dementia onset to test date, and time from CSF to test date. Spearman correlation related cognitive performance to CSF analytes. RESULTS Patients with LBD + AD performed worse on BNT than patients with LBD - AD (F = 4.80, p = 0.03); both groups performed similarly on LF, RDS, and MMSE (all p > 0.1). Clinically defined PDD and DLB groups did not differ in performance on any of these measures (all p > 0.05). A correlation across all patients showed that BNT score was negatively associated with CSF t-tau (ρ = -0.28, p < 0.05) and p-tau (ρ = -0.26, p = 0.05) but not Aβ42 (p > 0.1). CONCLUSION Markers of AD-type copathology are implicated in impaired language performance in LBD. Biologically based classification of LBD may be advantageous over clinically defined syndromes to elucidate clinical heterogeneity.
Collapse
Affiliation(s)
- Erica Howard
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - David J Irwin
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Katya Rascovsky
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Naomi Nevler
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Sanjana Shellikeri
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Thomas F Tropea
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Meredith Spindler
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Andres Deik
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Alice Chen-Plotkin
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Andrew Siderowf
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Nabila Dahodwala
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Daniel Weintraub
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Leslie M Shaw
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - John Q Trojanowski
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Sanjeev N Vaishnavi
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - David A Wolk
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Dawn Mechanic-Hamilton
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - James F Morley
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - John E Duda
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Murray Grossman
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA
| | - Katheryn A Q Cousins
- From the Department of Neurology (E.H., D.J.I., K.R., N.N., S.S., T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W., S.N.V., D.A.W., D.M.-H., J.F.M., J.E.D., M.G., K.A.Q.C.), Frontotemporal Degeneration Center (E.H., D.J.I., K.R., N.N., S.S., M.G., K.A.Q.C.), Parkinson's Disease and Movement Disorders Center (T.F.T., M.S., A.D., A.C.-P., A.S., N.D., D.W.), Digital Neuropathology Laboratory (D.J.I.), Alzheimer's Disease Center (J.Q.T., S.N.V., D.A.W., D.M.-H.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), and Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T., D.A.W.), Perelman School of Medicine at the University of Pennsylvania; and Michael J. Crescenz VA Medical Center (D.W., J.F.M., J.E.D.), Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA.
| |
Collapse
|
21
|
Stankovic I, Fanciulli A, Kostic VS, Krismer F, Meissner WG, Palma JA, Panicker JN, Seppi K, Wenning GK. Laboratory-Supported Multiple System Atrophy beyond Autonomic Function Testing and Imaging: A Systematic Review by the MoDiMSA Study Group. Mov Disord Clin Pract 2021; 8:322-340. [PMID: 33816659 DOI: 10.1002/mdc3.13158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Neuroimaging has been used to support a diagnosis of possible multiple system atrophy (MSA). Only blood pressure changes upon standing are included in the second consensus criteria but other autonomic function tests (AFT) are also useful to diagnose widespread and progressive autonomic failure typical of MSA. Additional diagnostic tools are of interest to improve accuracy of MSA diagnosis. Objectives To assess the utility of diagnostic tools beyond brain imaging and AFT in enhancing a laboratory-supported diagnosis of MSA to support the upcoming revision of the consensus criteria. Methods The International Parkinson and Movement Disorders Society MSA Study Group (MoDiMSA) performed a systematic review of original papers on biomarkers, sleep studies, genetic, neuroendocrine, neurophysiological, neuropsychological and other tests including olfactory testing and acute levodopa challenge test published before August 2019. Results Evaluation of history of levodopa responsiveness and olfaction is useful in patients in whom MSA-parkinsonian subtype is suspected. Neuropsychological testing is useful to exclude dementia at time of diagnosis. Applicability of sphincter EMG is limited. When MSA-cerebellar subtype is suspected, a screening for the common causes of adult-onset progressive ataxia is useful, including spinocerebellar ataxias in selected patients. Diagnosing stridor and REM sleep behavior disorder is useful in both MSA subtypes. However, none of these tools are validated in large longitudinal cohorts of postmortem confirmed MSA cases. Conclusions Despite limited evidence, additional laboratory work-up of patients with possible MSA beyond imaging and AFT should be considered to optimize the clinical diagnostic accuracy.
Collapse
Affiliation(s)
- Iva Stankovic
- Neurology Clinic, Clinical Center of Serbia, School of Medicine University of Belgrade Belgrade Serbia
| | | | - Vladimir S Kostic
- Neurology Clinic, Clinical Center of Serbia, School of Medicine University of Belgrade Belgrade Serbia
| | - Florian Krismer
- Department of Neurology Medical University of Innsbruck Innsbruck Austria
| | - Wassilios G Meissner
- Department of Neurology for Neurodegenerative Diseases, French Reference Center for MSA University Hospital Bordeaux Bordeaux France.,Institute of Neurodegenerative Diseases, University Bordeaux, CNRS, UMR 5293 Bordeaux France.,Department of Medicine University of Otago Christchurch New Zealand.,New Zealand Brain Research Institute Christchurch New Zealand
| | - Jose Alberto Palma
- Department of Neurology, Dysautonomia Center, Langone Medical Center New York University School of Medicine New York New York USA
| | - Jalesh N Panicker
- UCL Institute of Neurology London United Kingdom.,Department of Uro-Neurology The National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Klaus Seppi
- Department of Neurology Medical University of Innsbruck Innsbruck Austria
| | - Gregor K Wenning
- Department of Neurology Medical University of Innsbruck Innsbruck Austria
| | | |
Collapse
|
22
|
A study on the characteristics of cognitive function in patients with multiple system atrophy in China. Sci Rep 2021; 11:4995. [PMID: 33654145 PMCID: PMC7925668 DOI: 10.1038/s41598-021-84393-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Nonmotor symptoms in patients with multiple system atrophy (MSA) have received an increasing amount of attention in recent years, but no research on MSA patients' cognitive characteristics has been conducted in China. To evaluate the cognitive function of MSA patients in China. Using a case–control study design, 256 MSA patients and 64 controls were evaluated by the Montreal cognitive assessment (MoCA) scale to characterize their cognitive function. Like the controls, 60.5% of the patients with MSA had cognitive impairment, but the characteristics of cognitive impairment between the two groups were different. The cognitive impairment in MSA patients was prominent in the cognitive domains of visuospatial/executive functions, naming, attention, and orientation; particularly, the visuospatial/executive functions were the most significantly impaired, while impairment in language function was mainly seen in the controls. Besides, impairments in visuospatial/executive functions, attention, language, and orientation were more prominent in MSA-P (MSA with predominant Parkinsonism) patients than in MSA-C (MSA with predominant cerebellar ataxia). The cognitive impairments were more severe in patients with probable MSA than in patients with possible MSA. In addition, the results showed that the level of cognitive function was negatively correlated with the severity of MSA. This study, which characterized the cognitive function of MSA patients with the largest sample size known so far in China, found that patients with MSA do have cognitive impairment and display specific characteristics. Therefore, the cognitive impairment of MSA should be paid more attention. The study has been registered in the Chinese Clinical Trial Registry (ChiCTR) (Registration No: ChiCTR1900022462).
Collapse
|
23
|
Juneja A, Anand K, Chandra M, Deshpande S, Dhamija R, Kathuria P, Mahajan R. Neuropsychiatric Symptoms and Caregiver Burden in Parkinson's Disease. Ann Indian Acad Neurol 2021; 23:656-660. [PMID: 33623267 PMCID: PMC7887493 DOI: 10.4103/aian.aian_91_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
Objective: Parkinson’s disease (PD) is a neurodegenerative disorder. It has a significant impact on the quality of life of patients and their caregivers. The present study aims to study the phenomena of neuropsychiatric symptoms and their association with caregiver burden in PD. Methods: The study was conducted in 100 patients of Parkinson’s disease and their primary caregivers. The patients of PD were diagnosed on the basis of UK Brain Bank criteria; severity/staging of Parkinson’s disease was done by Movement Disorder Society - Unified Parkinson’s disease rating scale (MDS-UPDRS-III). Patients who fulfilled inclusion and exclusion criteria were recruited for the study. The neuropsychiatric evaluation was based on Neuropsychiatric Inventory-Questionnaire (NPI-Q). Caregiver burden was assessed with the Zarit Caregiver Burden Inventory (ZCBI). Results: Mean age of PD patients was 61.48 ± 6.71 years, majority of them were males (68%). Mean total NPI score of patients was 44.46 ± 5.38. Mean age of caregivers was 52.26 ± 6.80 years, majority of them were females (72%) and spouse (76%) in relation to the patient. Caregiver burden was significantly related to age of the patient, duration of illness, severity of illness, and total NPI score. Conclusion: Neuropsychiatric symptoms significantly contribute to the caregiver burden in Parkinson’s disease.
Collapse
Affiliation(s)
| | - Kuljeet Anand
- Department of Neurology, Dr. RML Hospital, Delhi, India
| | - Mina Chandra
- Department of Psychiatry, Dr. RML Hospital, Delhi, India
| | | | - Rajinder Dhamija
- Department of Neurology, LHMC and Sucheta Kriplani Hospital, Delhi, India
| | - Parul Kathuria
- Department of Psychiatry, Dr. RML Hospital, Delhi, India
| | - Rahul Mahajan
- Department of Neurology, Dr. RML Hospital, Delhi, India
| |
Collapse
|
24
|
Wu AG, Zhou XG, Qiao G, Yu L, Tang Y, Yan L, Qiu WQ, Pan R, Yu CL, Law BYK, Qin DL, Wu JM. Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases. Ageing Res Rev 2021; 65:101202. [PMID: 33161129 DOI: 10.1016/j.arr.2020.101202] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is considered as a detrimental factor in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), etc. Nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3), the most well-studied inflammasome, is abundantly expressed in microglia and has gained considerable attention. Misfolded proteins are characterized as the common hallmarks of neurodegenerative diseases due to not only their induced neuronal toxicity but also their effects in over-activating microglia and the NLRP3 inflammasome. The activated NLRP3 inflammasome aggravates the pathology and accelerates the progression of neurodegenerative diseases. Emerging evidence indicates that microglial autophagy plays an important role in the maintenance of brain homeostasis and the negative regulation of NLRP3 inflammasome-mediated neuroinflammation. The excessive activation of NLRP3 inflammasome impairs microglial autophagy and further aggravates the pathogenesis of neurodegenerative diseases. In this review article, we summarize and discuss the NLRP3 inflammasome and its specific inhibitors in microglia. The crucial role of microglial autophagy and its inducers in the removal of misfolded proteins, the clearance of damaged mitochondria and reactive oxygen species (ROS), and the degradation of the NLRP3 inflammasome or its components in neurodegenerative diseases are summarized. Understanding the underlying mechanisms behind the sex differences in NLRP3 inflammasome-mediated neurodegenerative diseases will help researchers to develop more targeted therapies and increase our diagnostic and prognostic abilities. In addition, the superiority of the combined use of microglial autophagy inducers with the specific inhibitors of the NLRP3 inflammasome in the inhibition of NLRP3 inflammasome-mediated neuroinflammation requires further preclinical and clinical validations in the future.
Collapse
|
25
|
Mood and emotional disorders associated with parkinsonism, Huntington disease, and other movement disorders. HANDBOOK OF CLINICAL NEUROLOGY 2021; 183:175-196. [PMID: 34389117 DOI: 10.1016/b978-0-12-822290-4.00015-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This chapter provides a review of mood, emotional disorders, and emotion processing deficits associated with diseases that cause movement disorders, including Parkinson's disease, Lewy body dementia, multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, frontotemporal dementia with parkinsonism, Huntington's disease, essential tremor, dystonia, and tardive dyskinesia. For each disorder, a clinical description of the common signs and symptoms, disease progression, and epidemiology is provided. Then the mood and emotional disorders associated with each of these diseases are described and discussed in terms of clinical presentation, incidence, prevalence, and alterations in quality of life. Alterations of emotion communication, such as affective speech prosody and facial emotional expression, associated with these disorders are also discussed. In addition, if applicable, deficits in gestural and lexical/verbal emotion are reviewed. Throughout the chapter, the relationships among mood and emotional disorders, alterations of emotional experiences, social communication, and quality of life, as well as treatment, are emphasized.
Collapse
|
26
|
Sambati L, Calandra-Buonaura G, Giannini G, Cani I, Provini F, Poda R, Oppi F, Stanzani Maserati M, Cortelli P. Cognitive Profile and Its Evolution in a Cohort of Multiple System Atrophy Patients. Front Neurol 2020; 11:537360. [PMID: 33329297 PMCID: PMC7719742 DOI: 10.3389/fneur.2020.537360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/26/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction: Cognitive decline is not a characteristic feature of multiple system atrophy (MSA), but recent evidence suggests cognitive impairment as an integral part of the disease. We aim to describe the cognitive profile and its progression in a cohort of patients with MSA. Methods: We retrospectively selected patients referred to our department with a clinical diagnosis of MSA who were evaluated at least once a year during the course of the disease and underwent a comprehensive neuropsychological evaluation. Results: At the first evaluation (T0), 37 out of 60 patients (62%) were cognitively impaired, mainly (76%) in attention and executive functioning. Thirteen patients were impaired in one cognitive domain and 24 in more than one cognitive domain. Six out of the 24 had dementia. Twenty patients underwent a follow-up evaluation (T1) after a mean of 16.6 ± 9.3 months from the first evaluation (T0). Eight out of 20 patients were cognitively normal at both T0 and T1. Seven out of 12 patients presented with stable cognitive impairment at T1, while cognitive decline progressed in five patients. Patients with progression in cognitive decline performed significantly worse at T0 than cognitively stable patients. Education was significantly different between patients with and without cognitive impairment. No other differences in demographic and clinical variables and autonomic or sleep disturbances were found. Patients with dementia were older at disease onset and at T0 and had lower education and disease duration at T0 compared to those in other groups. Conclusions: In patients with MSA, we observed three different cognitive profiles: normal cognition, stable selective attention-executive deficits, and progressive cognitive deficits evolving to dementia. The detection of cognitive impairment in patients with suspected MSA suggests the need for comprehensive and longitudinal neuropsychological evaluation.
Collapse
Affiliation(s)
- Luisa Sambati
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Università di Bologna, Bologna, Italy
| | - Giovanna Calandra-Buonaura
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Università di Bologna, Bologna, Italy
| | - Giulia Giannini
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Università di Bologna, Bologna, Italy
| | - Ilaria Cani
- Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Università di Bologna, Bologna, Italy
| | - Federica Provini
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Università di Bologna, Bologna, Italy
| | - Roberto Poda
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Federico Oppi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Pietro Cortelli
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Università di Bologna, Bologna, Italy
| |
Collapse
|
27
|
Rafael FD, Isidro VM, Héctor-Gabriel AM, Abraham PO, Yolanda CU, Tania RG, Rosa-Isela GG, Lorena PC, Socorro HM. Berry Supplementation and Their Beneficial Effects on Some Central Nervous System Disorders. BEHAVIORAL PHARMACOLOGY - FROM BASIC TO CLINICAL RESEARCH 2020. [DOI: 10.5772/intechopen.90428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Chelban V, Catereniuc D, Aftene D, Gasnas A, Vichayanrat E, Iodice V, Groppa S, Houlden H. An update on MSA: premotor and non-motor features open a window of opportunities for early diagnosis and intervention. J Neurol 2020; 267:2754-2770. [PMID: 32436100 PMCID: PMC7419367 DOI: 10.1007/s00415-020-09881-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/27/2023]
Abstract
In this review, we describe the wide clinical spectrum of features that can be seen in multiple system atrophy (MSA) with a focus on the premotor phase and the non-motor symptoms providing an up-to-date overview of the current understanding in this fast-growing field. First, we highlight the non-motor features at disease onset when MSA can be indistinguishable from pure autonomic failure or other chronic neurodegenerative conditions. We describe the progression of clinical features to aid the diagnosis of MSA early in the disease course. We go on to describe the levels of diagnostic certainty and we discuss MSA subtypes that do not fit into the current diagnostic criteria, highlighting the complexity of the disease as well as the need for revised diagnostic tools. Second, we describe the pathology, clinical description, and investigations of cardiovascular autonomic failure, urogenital and sexual dysfunction, orthostatic hypotension, and respiratory and REM-sleep behavior disorders, which may precede the motor presentation by months or years. Their presence at presentation, even in the absence of ataxia and parkinsonism, should be regarded as highly suggestive of the premotor phase of MSA. Finally, we discuss how the recognition of the broader spectrum of clinical features of MSA and especially the non-motor features at disease onset represent a window of opportunity for disease-modifying interventions.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova.
| | - Daniela Catereniuc
- Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
- Department of Neurology, Epileptology and Internal Diseases, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
- Department of Neurology nr. 2, Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
| | - Daniela Aftene
- Department of Neurology, Epileptology and Internal Diseases, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
- Department of Neurology nr. 2, Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
| | - Alexandru Gasnas
- Department of Neurology, Epileptology and Internal Diseases, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
- Department of Neurology nr. 2, Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
- Cerebrovascular Diseases and Epilepsy Laboratory, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
| | - Ekawat Vichayanrat
- Autonomic Unit, National Hospital for Neurology and Neurosurgery, UCL NHS Trust, London, WC1N 3BG, UK
| | - Valeria Iodice
- Autonomic Unit, National Hospital for Neurology and Neurosurgery, UCL NHS Trust, London, WC1N 3BG, UK
| | - Stanislav Groppa
- Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
- Department of Neurology, Epileptology and Internal Diseases, Institute of Emergency Medicine, 1, Toma Ciorba Street, 2004, Chişinău, Republic of Moldova
- Department of Neurology nr. 2, Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, 2004, Chişinău, Republic of Moldova
| | - Henry Houlden
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
29
|
Early autonomic and cognitive dysfunction in PD, DLB and MSA: blurring the boundaries between α-synucleinopathies. J Neurol 2020; 267:3444-3456. [PMID: 32594302 PMCID: PMC7320652 DOI: 10.1007/s00415-020-09985-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
Abstract
Differential diagnosis between Parkinson's disease, dementia with Lewy bodies and multiple system atrophy can be difficult, especially because in early phase they might present with overlapping clinical features. Notably, orthostatic hypotension and cognitive dysfunction are common nonmotor aspects of parkinsonian syndromes and can be both present from the earliest stages of all α-synucleinopathies, indicating a common neurobiological basis in their strong relationship. In view of the increasing awareness about the prevalence of mild cognitive dysfunction in multiple system atrophy, the relevance of autonomic dysfunction in demented parkinsonian patients, the critical role of non-motor symptoms in clustering Parkinson's disease patients and the shift to studying patients in the prodromal phase, we will discuss some intrinsic limitations of current clinical diagnostic criteria, even when applied by movement disorder specialists. In particular, we will focus on the early coexistence of autonomic and cognitive dysfunction in the setting of overt or latent parkinsonism as pitfalls in the differential diagnosis of α-synucleinopathies. As early and accurate diagnosis remains of outmost importance for counselling of patients and timely enrolment into disease-modifying clinical trials, a continuous effort of research community is ongoing to further improve the clinical diagnostic accuracy of α-synucleinopathies.
Collapse
|
30
|
Costabile T, Pane C, Aurisicchio L, Salvati A, Lieto M, Peluso S, Reia A, De Lucia N, De Rosa A, Filla A, De Michele G, Saccà F. Application of the p9NORM correction method to timed neuropsychological tests in Parkinson's disease and multiple system atrophy. Neurol Sci 2020; 41:3633-3641. [PMID: 32462388 DOI: 10.1007/s10072-020-04478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Timed neuropsychological tests do not take into account physical impairment during scoring procedures. Dysarthria and upper limb impairment can be easily measured with the PATA rate test (PRT) and the nine-hole pegboard test (9HPT). We recently validated a normalization method for timed neuropsychological tests using the PRT and 9HPT (p9NORM). We now validate the p9NORM in Parkinson's disease (Yarnall et al. Neurology 82(4):308-316; 2014) and multiple system atrophy (MSA). METHODS We enrolled twenty-six patients with PD, eighteen patients with MSA, and fifteen healthy controls (HC). p9NORM was applied to patients with abnormal PRT and/or 9HPT. All subjects were tested with a comprehensive neuropsychological battery. RESULTS No differences emerged in demographics across groups: (PD: mean age ± SD 66 ± 8; education 9 ± 4 years; MSA: age 60 ± 8; education 10 ± 4 years; HC: age 61 ± 12; education 9 ± 4 years). In MSA patients, the scores on the trail making test (TMT-A p = 0.003; TMT-B p = 0.018), attentional matrices (AM; p = 0.042), and symbol digit modalities test (SDMT p = 0.027) significantly differed following application of p9NORM. In PD patients, the TMT-A (p < 0.001), TMT-B (p = 0.001), and AM (p = 0.001) differed after correction. PD and MSA showed cognitive impairment relative to HC performance. When comparing MSA with PD, the SDMT, AM, and fluencies were similar. TMT-A and -B raw scores were different between groups (p = 0.006; p = 0.034), but these differences lost significance after p9NORM corrections (p = 0.100; p = 0.186). CONCLUSIONS We confirm that the p9NORM can be successfully used in both PD and MSA patients, as it mitigates the impact of disability on timed tests, resulting in a more accurate analysis of cognitive domains.
Collapse
Affiliation(s)
- Teresa Costabile
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Napoli, NA, Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Napoli, NA, Italy.
| | - Luisa Aurisicchio
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Napoli, NA, Italy
| | - Adriana Salvati
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Napoli, NA, Italy
| | - Maria Lieto
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Napoli, NA, Italy
| | - Silvio Peluso
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Napoli, NA, Italy
| | - Antonio Reia
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Napoli, NA, Italy
| | - Natascia De Lucia
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Napoli, NA, Italy
| | - Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Napoli, NA, Italy
| | - Alessandro Filla
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Napoli, NA, Italy
| | - Giuseppe De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Napoli, NA, Italy
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Napoli, NA, Italy
| |
Collapse
|
31
|
Das S, Zhang Z, Ang LC. Clinicopathological overlap of neurodegenerative diseases: A comprehensive review. J Clin Neurosci 2020; 78:30-33. [PMID: 32354648 DOI: 10.1016/j.jocn.2020.04.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Clinical and neuropathological overlap of two or more neurodegenerative diseases (ND) is not an uncommon occurrence yet is still underdiagnosed in clinical neurological and neuropathological. The authors present a clinicopathological overview of the current understanding of overlapping ND's with the hope that this review will encourage further studies that are required to investigate the effect of such overlaps on clinical presentations and how often clinical presentations raise the suspicion of multiple ND's. The authors suggest that as more patients with overlapping ND's come to light, traditional classification system of ND's may need to be modified.
Collapse
Affiliation(s)
- Sumit Das
- Department of Laboratory Medicine and Pathology (Neuropathology), University of Alberta Hospital, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
| | - Zach Zhang
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Lee Cyn Ang
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| |
Collapse
|
32
|
Eschlböck S, Delazer M, Krismer F, Bodner T, Fanciulli A, Heim B, Heras Garvin A, Kaindlstorfer C, Karner E, Mair K, Rabensteiner C, Raccagni C, Seppi K, Poewe W, Wenning GK. Cognition in multiple system atrophy: a single-center cohort study. Ann Clin Transl Neurol 2020; 7:219-228. [PMID: 32031752 PMCID: PMC7034507 DOI: 10.1002/acn3.50987] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Cognitive impairment in multiple system atrophy (MSA) is common, but remain poorly characterized. We evaluated cognitive and behavioral features in MSA patients and assessed between-group differences for MSA subtypes and the effect of orthostatic hypotension (OH) on cognition. METHODS This retrospective study included 54 patients with clinical diagnosis of possible and probable MSA referred to the Department of Neurology at Medical University of Innsbruck between 2000 and 2018. Neurological work-up included comprehensive neuropsychological testing including Consortium to Establish a Registry for Alzheimer's Disease (CERAD-plus) test battery, Frontal Assessment Battery (FAB), digit span test (DST), clock drawing task (CLOX1), and Hospital Anxiety and Depression Scale (HADS-D). RESULTS The mean MMSE score was 27.6 points. Overall, slight to moderate cognitive impairment was noted in up to 40% of patients, with predominant impairment of executive function and verbal memory. Patients with the cerebellar variant performed significantly worse than patients with the parkinsonian type (P < 0.05) in a screening of executive functions (FAB) and in phonemic verbal fluency. Depression and anxiety scores were elevated in 28% and 22% of MSA patients, respectively. Cognitive profile, depression, and anxiety levels were comparable between patients with and without OH. INTERPRETATION Cognitive deficits are relatively frequent in MSA and primarily affect executive functions and verbal memory. Future comparative studies including Parkinson dementia, Lewy body disease, and MSA cases with and without OH are required to elucidate disease-specific cognitive profiles in these synucleinopathies and to examine the influence of cardiovascular autonomic dysfunction on cognitive function in MSA.
Collapse
Affiliation(s)
- Sabine Eschlböck
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Margarete Delazer
- Division of Neuropsychology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Bodner
- Division of Neuropsychology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonio Heras Garvin
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Elfriede Karner
- Division of Neuropsychology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katherina Mair
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Cecilia Raccagni
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Kawabata K, Hara K, Watanabe H, Bagarinao E, Ogura A, Masuda M, Yokoi T, Kato T, Ohdake R, Ito M, Katsuno M, Sobue G. Alterations in Cognition-Related Cerebello-Cerebral Networks in Multiple System Atrophy. THE CEREBELLUM 2020; 18:770-780. [PMID: 31069705 DOI: 10.1007/s12311-019-01031-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We aimed to elucidate the effect of cerebellar degeneration in relation to cognition in multiple system atrophy (MSA). Thirty-two patients diagnosed with probable MSA and 32 age- and gender-matched healthy controls (HCs) were enrolled. We conducted voxel-based morphometry (VBM) for anatomical images and independent component analysis (ICA), dual-regression analysis, and seed-based analysis for functional images with voxel-wise gray matter correction. In the MSA group, a widespread cerebellar volume loss was observed. ICA and dual-regression analysis showed lower functional connectivity (FC) in the left executive control and salience networks in regions located in the cerebellum. Seed-based analysis using the identified cerebellar regions as seeds showed extensive disruptions in cerebello-cerebral networks. Global cognitive scores correlated with the FC values between the right lobules VI/crus I and the medial prefrontal/anterior cingulate cortices and between the same region and the amygdala/parahippocampal gyrus. Our study indicates that cerebellar degeneration in MSA causes segregation of cerebellar-cerebral networks. Furthermore, the cognitive deficits in MSA may be driven by decreased cerebello-prefrontal and cerebello-amygdaloid functional connections.
Collapse
Affiliation(s)
- Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takamasa Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Mizuki Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan. .,Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW This article provides a discussion on the current state of knowledge of chronic traumatic encephalopathy (CTE), with an emphasis on clinical features and emerging biomarkers of the condition. RECENT FINDINGS The results of several large brain bank case series among subjects with a history of contact sports or repetitive head trauma have indicated that a high frequency of CTE may exist in this population. However, the true prevalence of CTE among individuals with a history of head trauma remains unknown, given that individuals who experienced cognitive, behavioral, and mood symptoms during life are more likely to have their brains donated for autopsy at death and epidemiologic studies of the condition are lacking. Neuropathologic consensus criteria have been published. Research-based clinical criteria have been proposed and are beginning to be applied, but the definitive diagnosis of CTE in a living patient remains impossible without effective biomarkers for the condition, which is an active area of study. SUMMARY The field of CTE research is rapidly growing and parallels many of the advances seen for other neurodegenerative conditions, such as Alzheimer disease decades ago.
Collapse
|
35
|
Santangelo G, Cuoco S, Picillo M, Erro R, Squillante M, Volpe G, Cozzolino A, Cicarelli G, Barone P, Pellecchia MT. Evolution of neuropsychological profile in motor subtypes of multiple system atrophy. Parkinsonism Relat Disord 2020; 70:67-73. [DOI: 10.1016/j.parkreldis.2019.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 10/30/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|
36
|
Zhang L, Cao B, Zou Y, Wei QQ, Ou R, Zhao B, Yang J, Wu Y, Shang H. Frontal lobe function, behavioral changes and quality of life in patients with multiple system atrophy. Restor Neurol Neurosci 2019; 37:11-19. [PMID: 30741706 DOI: 10.3233/rnn-180862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cognitive impairment is an important and common symptom in patients with multiple system atrophy (MSA). OBJECTIVE The objective of the study was to explore the potential relationships among frontal lobe function, behavioral changes and quality of life (QoL) in patients with MSA. METHODS A total of 203 MSA patients were enrolled and evaluated using the Frontal Assessment Battery (FAB), the Frontal Behavioral Inventory (FBI) and the Parkinson's disease Questionnaire-39 item version (PDQ-39). Seventy-eight age-, sex-, and education-matched healthy controls were recruited to complete the FAB. RESULTS Among MSA patients, those with frontal lobe dysfunction were older (P = 0.005), had older age of onset (P = 0.002), lower educational level (P < 0.001), higher scores in the PDQ-39 domains of mobility (P = 0.042), ADL (P = 0.020), cognition (P < 0.001) and communication compared to those with normal frontal lobe function. The most common frontal behavioral changes were logopenia followed by apathy and inflexibility. The severity of frontal behavioral changes was associated with MSA subtype (P = 0.015), disease severity (Unified Multiple System Atrophy Rating Scale-I (UMSARS-I), UMSARS-II, UMSARS-IV, and total UMSARS scores) (P < 0.001), orthostatic hypotension (P = 0.022), severity of depressive symptoms and total score on the PDQ-39 (P < 0.001). Binary logistic regression showed that the determinants of poor QoL in patients with MSA were disease severity (UMSARS-I and total UMSARS scores) (P < 0.05), depression (P = 0.013) and total FBI score (P = 0.003). CONCLUSIONS Frontal behavioral changes were potential determinants of poor QoL in MSA, in addition to the disease severity and depressive symptoms. Early discovery and management of frontal behavioral changes in addition to motor and depressive symptoms will help to improve the QoL of MSA patients.
Collapse
Affiliation(s)
- LingYu Zhang
- Department of Neurology and National Clinical Research Center for Geriatrics (West China Hospital), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cao
- Department of Neurology and National Clinical Research Center for Geriatrics (West China Hospital), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yutong Zou
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qian-Qian Wei
- Department of Neurology and National Clinical Research Center for Geriatrics (West China Hospital), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - RuWei Ou
- Department of Neurology and National Clinical Research Center for Geriatrics (West China Hospital), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi Zhao
- Department of Neurology and National Clinical Research Center for Geriatrics (West China Hospital), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology and National Clinical Research Center for Geriatrics (West China Hospital), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Wu
- Department of Neurology and National Clinical Research Center for Geriatrics (West China Hospital), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - HuiFang Shang
- Department of Neurology and National Clinical Research Center for Geriatrics (West China Hospital), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Gallucci M, Dell’Acqua C, Boccaletto F, Fenoglio C, Galimberti D, Di Battista ME. Overlap Between Frontotemporal Dementia and Dementia with Lewy Bodies: A Treviso Dementia (TREDEM) Registry Case Report. J Alzheimers Dis 2019; 69:839-847. [DOI: 10.3233/jad-181298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maurizio Gallucci
- Cognitive Impairment Center, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Carola Dell’Acqua
- Cognitive Impairment Center, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Franco Boccaletto
- Nuclear Medicine Unit, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | | | - Daniela Galimberti
- University of Milan, Dino Ferrari Center, Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Policlinico, Neurodegenerative Disease Unit, Milan, Italy
| | | |
Collapse
|
38
|
Hansen D, Ling H, Lashley T, Holton JL, Warner TT. Review: Clinical, neuropathological and genetic features of Lewy body dementias. Neuropathol Appl Neurobiol 2019; 45:635-654. [PMID: 30977926 DOI: 10.1111/nan.12554] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
Abstract
Lewy body dementias are the second most common neurodegenerative dementias after Alzheimer's disease and include dementia with Lewy bodies and Parkinson's disease dementia. They share similar clinical and neuropathological features but differ in the time of dementia and parkinsonism onset. Although Lewy bodies are their main pathological hallmark, several studies have shown the emerging importance of Alzheimer's disease pathology. Clinical amyloid-β imaging using Pittsburgh Compound B (PiB) supports neuropathological studies which found that amyloid-β pathology is more common in dementia with Lewy bodies than in Parkinson's disease dementia. Nevertheless, other co-occurring pathologies, such as cerebral amyloid angiopathy, TDP-43 pathology and synaptic pathology may also influence the development of neurodegeneration and dementia. Recent genetic studies demonstrated an important role of APOE genotype and other genes such as GBA and SNCA which seem to be involved in the pathophysiology of Lewy body dementias. The aim of this article is to review the main clinical, neuropathological and genetic aspects of dementia with Lewy bodies and Parkinson's disease dementia. This is particularly relevant as future management for these two conditions may differ.
Collapse
Affiliation(s)
- D Hansen
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - H Ling
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - J L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
39
|
Fabbrini G, Fabbrini A, Suppa A. Progressive supranuclear palsy, multiple system atrophy and corticobasal degeneration. ACTA ACUST UNITED AC 2019; 165:155-177. [DOI: 10.1016/b978-0-444-64012-3.00009-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Jester DJ, Hyer K, Molinari V, Andel R, Rozek E. Age-dependent determinants of antipsychotic use among newly admitted residents of skilled nursing facilities: A population-based study. Int J Geriatr Psychiatry 2018; 33:1370-1382. [PMID: 29984493 DOI: 10.1002/gps.4934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/31/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To assess factors related to antipsychotic (AP) use in skilled nursing facilities for newly admitted residents aged 18 to 49, 50 to 64, 65 to 84, and 85 years or older. METHODS Retrospective, population-level, Minimum Data Set (MDS) 2.0 data from the United States during the year of 2009 were used. Over 1 million residents were included. Fourteen clinically relevant variables were identified through a literature search. Antipsychotic use was defined as APs dispensed daily for the prior 7 days. Logistic regression was used to identify clinically relevant variables, which were then ranked based on magnitude of their association with APs. RESULTS Bipolar disorder and schizophrenia were consistently related to AP use across age groups. For older age groups, off-label indications such as cognitive impairment, dementia, behavioral symptoms, and physical restraint use were more closely related to AP use, while delusions and hallucinations decreased in strength. Higher proportions of APs were found in all diseases and symptoms in nonelderly adults, with the exception of physical restraint use. Concurrent physical restraint and AP use was highest for older adults aged 65 to 84 at 36%. CONCLUSIONS Correlates of AP use varied by age, with stronger associations between on-label conditions and AP use among younger adults and off-label conditions among older adults. Several less conventional determinants, namely, Parkinson disease, traumatic brain injury, and the use of physical restraints were identified to increase the likelihood of AP use. This study highlights the importance of monitoring for adverse effects for residents of all ages.
Collapse
Affiliation(s)
- Dylan J Jester
- Florida Policy Exchange Center on Aging, School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Kathryn Hyer
- Florida Policy Exchange Center on Aging, School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Victor Molinari
- Florida Policy Exchange Center on Aging, School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Ross Andel
- Florida Policy Exchange Center on Aging, School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Ellen Rozek
- Department of Psychology, University of Wisconsin - La Crosse, La Crosse, WI, USA
| |
Collapse
|
41
|
Bougea A, Stefanis L, Paraskevas GP, Emmanouilidou E, Efthymiopoulou E, Vekrelis K, Kapaki E. Neuropsychiatric symptoms and α-Synuclein profile of patients with Parkinson’s disease dementia, dementia with Lewy bodies and Alzheimer’s disease. J Neurol 2018; 265:2295-2301. [DOI: 10.1007/s00415-018-8992-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
|
42
|
Joling M, Vriend C, van der Zande JJ, Lemstra AW, van den Heuvel OA, Booij J, Berendse HW. Lower 123I-FP-CIT binding to the striatal dopamine transporter, but not to the extrastriatal serotonin transporter, in Parkinson's disease compared with dementia with Lewy bodies. NEUROIMAGE-CLINICAL 2018; 19:130-136. [PMID: 30035010 PMCID: PMC6051942 DOI: 10.1016/j.nicl.2018.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/23/2018] [Accepted: 04/05/2018] [Indexed: 11/30/2022]
Abstract
In this retrospective cross-sectional study we compared 123I‑N‑ω‑fluoropropyl‑2β‑carbomethoxy‑3β‑(4‑iodophenyl)nortropane (123I-FP-CIT) binding to the striatal dopamine and the extrastriatal serotonin transporter (DAT and SERT, respectively) between Parkinson's disease (PD) and dementia with Lewy bodies (DLB) to gain more insight in the pathophysiology of the two diseases. We compared 123I-FP-CIT single photon emission computed tomography scans of, age-, gender matched patients with cognitive decline in same range of severity with PD (n = 53) or DLB (n = 53) using a regions of interest (ROIs) approach. We derived ROIs anatomically from individual magnetic resonance imaging brain scans. To corroborate the ROI findings, we performed additional whole-brain voxel-based analyses. In both ROI and voxel-based analyses, 123I-FP-CIT binding in PD patients was significantly lower in the bilateral posterior putamen than in DLB patients (left: F(1,103) = 18.363, P < 0.001, ω2 = 0.14; right: F(1,103) = 20.434, P < 0.001, ω2 = 0.15) (Pcorr < 0.033). Caudate/putamen ratios were also significantly lower in DLB than in PD (U(105) = 724.0, P < 0.001). Extrastriatal SERT binding showed no difference between PD and DLB. These results suggest similar involvement of serotonergic structures in the degenerative process in PD and DLB. This study is the first to extensively compare extrastriatal 123I-FP-CIT binding in PD and DLB. 123I-FP-CIT binding is lower in the posterior putamen of PD than DLB patients. There is no difference in extrastriatal 123I-FP-CIT binding between PD and DLB.
Collapse
Affiliation(s)
- Merijn Joling
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.
| | - Chris Vriend
- Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Jessica J van der Zande
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands; Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands; Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Henk W Berendse
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Erskine D, Ding J, Thomas AJ, Kaganovich A, Khundakar AA, Hanson PS, Taylor JP, McKeith IG, Attems J, Cookson MR, Morris CM. Molecular changes in the absence of severe pathology in the pulvinar in dementia with Lewy bodies. Mov Disord 2018; 33:982-991. [PMID: 29570843 DOI: 10.1002/mds.27333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dementia with Lewy bodies is characterized by transient clinical features, including fluctuating cognition and visual hallucinations, implicating dysfunction of cerebral hub regions, such as the pulvinar nuclei of the thalamus. However, the pulvinar is typically only mildly affected by Lewy body pathology in dementia with Lewy bodies, suggesting additional factors may account for its proposed dysfunction. METHODS We conducted a comprehensive analysis of postmortem pulvinar tissue using whole-transcriptome RNA sequencing, protein expression analysis, and histological evaluation. RESULTS We identified 321 transcripts as significantly different between dementia with Lewy bodies cases and neurologically normal controls, with gene ontology pathway analysis suggesting the enrichment of transcripts related to synapses and positive regulation of immune functioning. At the protein level, proteins related to synaptic efficiency were decreased, and general synaptic markers remained intact. Analysis of glial subpopulations revealed astrogliosis without activated microglia, which was associated with synaptic changes but not neurodegenerative pathology. DISCUSSION These results indicate that the pulvinar, a region with relatively low Lewy body pathological burden, manifests changes at the molecular level that differ from previous reports in a more severely affected region. We speculate that these alterations result from neurodegenerative changes in regions connected to the pulvinar and likely contribute to a variety of cognitive changes resulting from decreased cortical synchrony in dementia with Lewy bodies. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Daniel Erskine
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan J Thomas
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Alice Kaganovich
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda, Maryland, USA
| | - Ahmad A Khundakar
- School of Science, Engineering and Design, Teesside University, Middlesbrough, UK
| | - Peter S Hanson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Ian G McKeith
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher M Morris
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Laboratory of Neurogenetics, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
44
|
Justice NJ. The relationship between stress and Alzheimer's disease. Neurobiol Stress 2018; 8:127-133. [PMID: 29888308 PMCID: PMC5991350 DOI: 10.1016/j.ynstr.2018.04.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 12/04/2022] Open
Abstract
Stress is critically involved in the development and progression of disease. From the stress of undergoing treatments to facing your own mortality, the physiological processes that stress drives have a serious detrimental effect on the ability to heal, cope and maintain a positive quality of life. This is becoming increasingly clear in the case of neurodegenerative diseases. Neurodegenerative diseases involve the devastating loss of cognitive and motor function which is stressful in itself, but can also disrupt neural circuits that mediate stress responses. Disrupting these circuits produces aberrant emotional and aggressive behavior that causes long-term care to be especially difficult. In addition, added stress drives progression of the disease and can exacerbate symptoms. In this review, I describe how neural and endocrine pathways activated by stress interact with ongoing neurodegenerative disease from both a clinical and experimental perspective.
Collapse
Affiliation(s)
- Nicholas J. Justice
- Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, 77030, USA
| |
Collapse
|
45
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|
46
|
Jellinger KA. Dementia with Lewy bodies and Parkinson's disease-dementia: current concepts and controversies. J Neural Transm (Vienna) 2017; 125:615-650. [PMID: 29222591 DOI: 10.1007/s00702-017-1821-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's disease-dementia (PDD), although sharing many clinical, neurochemical and morphological features, according to DSM-5, are two entities of major neurocognitive disorders with Lewy bodies of unknown etiology. Despite considerable clinical overlap, their diagnosis is based on an arbitrary distinction between the time of onset of motor and cognitive symptoms: dementia often preceding parkinsonism in DLB and onset of cognitive impairment after onset of motor symptoms in PDD. Both are characterized morphologically by widespread cortical and subcortical α-synuclein/Lewy body plus β-amyloid and tau pathologies. Based on recent publications, including the fourth consensus report of the DLB Consortium, a critical overview is given. The clinical features of DLB and PDD include cognitive impairment, parkinsonism, visual hallucinations, and fluctuating attention. Intravitam PET and post-mortem studies revealed more pronounced cortical atrophy, elevated cortical and limbic Lewy pathologies (with APOE ε4), apart from higher prevalence of Alzheimer pathology in DLB than PDD. These changes may account for earlier onset and greater severity of cognitive defects in DLB, while multitracer PET studies showed no differences in cholinergic and dopaminergic deficits. DLB and PDD sharing genetic, neurochemical, and morphologic factors are likely to represent two subtypes of an α-synuclein-associated disease spectrum (Lewy body diseases), beginning with incidental Lewy body disease-PD-nondemented-PDD-DLB (no parkinsonism)-DLB with Alzheimer's disease (DLB-AD) at the most severe end, although DLB does not begin with PD/PDD and does not always progress to DLB-AD, while others consider them as the same disease. Both DLB and PDD show heterogeneous pathology and neurochemistry, suggesting that they share important common underlying molecular pathogenesis with AD and other proteinopathies. Cognitive impairment is not only induced by α-synuclein-caused neurodegeneration but by multiple regional pathological scores. Recent animal models and human post-mortem studies have provided important insights into the pathophysiology of DLB/PDD showing some differences, e.g., different spreading patterns of α-synuclein pathology, but the basic pathogenic mechanisms leading to the heterogeneity between both disorders deserve further elucidation. In view of the controversies about the nosology and pathogenesis of both syndromes, there remains a pressing need to differentiate them more clearly and to understand the processes leading these synucleinopathies to cause one disorder or the other. Clinical management of both disorders includes cholinesterase inhibitors, other pharmacologic and nonpharmacologic strategies, but these have only a mild symptomatic effect. Currently, no disease-modifying therapies are available.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
47
|
Gerstenecker A. The Neuropsychology (Broadly Conceived) of Multiple System Atrophy, Progressive Supranuclear Palsy, and Corticobasal Degeneration. Arch Clin Neuropsychol 2017; 32:861-875. [DOI: 10.1093/arclin/acx093] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/30/2017] [Indexed: 11/14/2022] Open
|
48
|
Statistically Derived Subtypes and Associations with Cerebrospinal Fluid and Genetic Biomarkers in Mild Cognitive Impairment: A Latent Profile Analysis. J Int Neuropsychol Soc 2017; 23:564-576. [PMID: 28578726 PMCID: PMC5551901 DOI: 10.1017/s135561771700039x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Research demonstrates heterogeneous neuropsychological profiles among individuals with mild cognitive impairment (MCI). However, few studies have included visuoconstructional ability or used latent mixture modeling to statistically identify MCI subtypes. Therefore, we examined whether unique neuropsychological MCI profiles could be ascertained using latent profile analysis (LPA), and subsequently investigated cerebrospinal fluid (CSF) biomarkers, genotype, and longitudinal clinical outcomes between the empirically derived classes. METHODS A total of 806 participants diagnosed by means of the Alzheimer's Disease Neuroimaging Initiative (ADNI) MCI criteria received a comprehensive neuropsychological battery assessing visuoconstructional ability, language, attention/executive function, and episodic memory. Test scores were adjusted for demographic characteristics using standardized regression coefficients based on "robust" normal control performance (n=260). Calculated Z-scores were subsequently used in the LPA, and CSF-derived biomarkers, genotype, and longitudinal clinical outcome were evaluated between the LPA-derived MCI classes. RESULTS Statistical fit indices suggested a 3-class model was the optimal LPA solution. The three-class LPA consisted of a mixed impairment MCI class (n=106), an amnestic MCI class (n=455), and an LPA-derived normal class (n=245). Additionally, the amnestic and mixed classes were more likely to be apolipoprotein e4+ and have worse Alzheimer's disease CSF biomarkers than LPA-derived normal subjects. CONCLUSIONS Our study supports significant heterogeneity in MCI neuropsychological profiles using LPA and extends prior work (Edmonds et al., 2015) by demonstrating a lower rate of progression in the approximately one-third of ADNI MCI individuals who may represent "false-positive" diagnoses. Our results underscore the importance of using sensitive, actuarial methods for diagnosing MCI, as current diagnostic methods may be over-inclusive. (JINS, 2017, 23, 564-576).
Collapse
|
49
|
Bhatia KP, Stamelou M. Nonmotor Features in Atypical Parkinsonism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 134:1285-1301. [PMID: 28805573 DOI: 10.1016/bs.irn.2017.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Atypical parkinsonism (AP) comprises mainly multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), which are distinct pathological entities, presenting with a wide phenotypic spectrum. The classic syndromes are now called MSA-parkinsonism (MSA-P), MSA-cerebellar type (MSA-C), Richardson's syndrome, and corticobasal syndrome. Nonmotor features in AP have been recognized almost since the initial description of these disorders; however, research has been limited. Autonomic dysfunction is the most prominent nonmotor feature of MSA, but also gastrointestinal symptoms, sleep dysfunction, and pain, can be a feature. In PSP and CBD, the most prominent nonmotor symptoms comprise those deriving from the cognitive/neuropsychiatric domain. Apart from assisting the clinician in the differential diagnosis with Parkinson's disease, nonmotor features in AP have a big impact on quality of life and prognosis of AP and their treatment poses a major challenge for clinicians.
Collapse
Affiliation(s)
| | - Maria Stamelou
- HYGEIA Hospital, Athens, Greece; Neurology Clinic, Philipps University Marburg, Marburg, Germany; University of Athens, Athens, Greece.
| |
Collapse
|
50
|
Chiu PY, Wang CW, Tsai CT, Li SH, Lin CL, Lai TJ. Depression in dementia with Lewy bodies: A comparison with Alzheimer's disease. PLoS One 2017; 12:e0179399. [PMID: 28617831 PMCID: PMC5472293 DOI: 10.1371/journal.pone.0179399] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 05/30/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Depression is highly associated with dementia, and this study will compare the frequencies, severity, and symptoms of depression between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). METHODS Frequency of depression was determined according to the DSM-IV criteria for major depression or the National Institute of Mental Health criteria for depression in AD (NIMH-dAD). Severity of depression were assessed using the Hamilton Depression Rating Scale, the Cornell Scale for Depression in Dementia, and the depression subscale in Neuropsychiatric Inventory. The rates of depressive symptoms were compared between AD and DLB. RESULTS A total of 312 patients were investigated (AD/DLB = 241/71). The frequency of major depression was significantly higher (p = 0.017) in DLB (19.7%) than in AD (8.7%). The higher frequency of depression in DLB was not reproduced by using the NIMH-dAD criteria (DLB: AD = 43.7%: 33.2%; p = 0.105). The severity of depression was higher in DLB than in AD according to the Hamilton Depression Rating Scale (p < 0.001) and the Cornell Scale for Depression in Dementia (p < 0.001). Among depressive symptoms, pervasive anhedonia had the highest odds ratio in DLB compared with AD. CONCLUSION This is the first study using the NIMH-dAD criteria to investigate the frequency of depression in DLB. Our study shows that co-morbid major depression is more frequent in DLB than in AD. Pervasive anhedonia had the greatest value for the differential diagnosis of depression between DLB and AD.
Collapse
Affiliation(s)
- Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chein-Wei Wang
- Department of Neurology, Taichung Lin-Shin Hospital, Taichung, Taiwan
| | - Chun-Tang Tsai
- Department of Guidance and Counseling, National Changhua University of Education, Changhua, Taiwan
| | - Shin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Te-Jen Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: ,
| |
Collapse
|