1
|
Singh S, Yao L, Shevtsova NA, Rybak IA, Dougherty KJ. Properties of rhythmogenic currents in spinal Shox2 interneurons across postnatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.612677. [PMID: 39386611 PMCID: PMC11463365 DOI: 10.1101/2024.09.26.612677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Locomotor behaviors are performed by organisms throughout life, despite developmental changes in cellular properties, neural connectivity, and biomechanics. The basic rhythmic activity in the central nervous system that underlies locomotion is thought to be generated via a complex balance between network and intrinsic cellular properties. Within mature mammalian spinal locomotor circuitry, we have yet to determine which properties of spinal interneurons (INs) are critical to rhythmogenesis and how they change during development. Here, we combined whole cell patch clamp recordings, immunohistochemistry, and RNAscope targeting lumbar Shox2 INs in mice, which are known to be involved in locomotor rhythm generation. We focused on the properties of putatively rhythmogenic ionic currents and the expression of corresponding ion channels across postnatal time points in mice. We show that subsets of Shox2 INs display voltage-sensitive conductances, in addition to respective ion channels, which may contribute to or shape rhythmic bursting. Persistent inward currents, M-type potassium currents, slow afterhyperpolarization, and T-type calcium currents are enhanced with age. In contrast, the hyperpolarization-activated and A-type potassium currents were either found with low prevalence in subsets of neonatal, juvenile, and adult Shox2 INs or did not developmentally change. We show that Shox2 INs become more electrophysiologically diverse by juvenile and adult ages, when locomotor behavior is weight-bearing. These results suggest a developmental shift in the magnitude of rhythmogenic ionic currents and the expression of corresponding ion channels that may be important for mature, weight-bearing locomotor behavior.
Collapse
|
2
|
Sumarac S, Youn J, Fearon C, Zivkovic L, Keerthi P, Flouty O, Popovic M, Hodaie M, Kalia S, Lozano A, Hutchison W, Fasano A, Milosevic L. Clinico-physiological correlates of Parkinson's disease from multi-resolution basal ganglia recordings. NPJ Parkinsons Dis 2024; 10:175. [PMID: 39261476 PMCID: PMC11391063 DOI: 10.1038/s41531-024-00773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Parkinson's disease (PD) has been associated with pathological neural activity within the basal ganglia. Herein, we analyzed resting-state single-neuron and local field potential (LFP) activities from people with PD who underwent awake deep brain stimulation surgery of the subthalamic nucleus (STN; n = 125) or globus pallidus internus (GPi; n = 44), and correlated rate-based and oscillatory features with UPDRSIII off-medication subscores. Rate-based single-neuron features did not correlate with PD symptoms. STN single-neuron and LFP low-beta (12-21 Hz) power and burst dynamics showed modest correlations with bradykinesia and rigidity severity, while STN spiketrain theta (4-8 Hz) power correlated modestly with tremor severity. GPi low- and high-beta (21-30 Hz) power and burst dynamics correlated moderately with bradykinesia and axial symptom severity. These findings suggest that elevated single-neuron and LFP oscillations may be linked to symptoms, though modest correlations imply that the pathophysiology of PD may extend beyond resting-state beta oscillations.
Collapse
Affiliation(s)
- Srdjan Sumarac
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Jinyoung Youn
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
| | - Conor Fearon
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
| | - Luka Zivkovic
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Prerana Keerthi
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Oliver Flouty
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Milos Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Mojgan Hodaie
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Suneil Kalia
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Andres Lozano
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - William Hutchison
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Alfonso Fasano
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Luka Milosevic
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- KITE, University Health Network, Toronto, ON, Canada.
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada.
| |
Collapse
|
3
|
Perez V, Duque A, Hidalgo V, Salvador A. EEG frequency bands in subjective cognitive decline: A systematic review of resting state studies. Biol Psychol 2024; 191:108823. [PMID: 38815895 DOI: 10.1016/j.biopsycho.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
As the older population continues to expand, there is a growing prevalence of individuals who experience subjective cognitive decline (SCD), characterized by self-reported failures in cognitive function and an increased risk of cognitive impairment. Recognizing that preventive interventions are typically more effective in preclinical stages, current research endeavors to focus on identifying early biological markers of SCD using resting-state electroencephalogram (rsEEG) methods. To do so, a systematic literature review covering the past 20 years was conducted following PRISMA guidelines, in order to consolidate findings on rsEEG frequency bands in individuals with SCD. Pubmed and Web of Science databases were searched for rsEEG studies of people with SCD. Quality assessments were completed using a modified Newcastle-Ottawa scale. A total of 564 articles published from December 2003 to December 2023 were reviewed, and significant aspects of these papers were analyzed to provide a general overview of the research on this technique. After removing unrelated articles, nine articles were selected for the present study. The review emphasizes patterns in frequency band activity, revealing that individuals classified as SCD exhibited increased theta power than healthy controls, but decreased than MCI. However, findings for the alpha, delta, and beta bands were inconsistent, demonstrating variability across studies and highlighting the need for further research. Although the rsEEG of frequency bands emerges as a promising early biomarker, there is a noteworthy need to establish uniform standards and consistent measurement approaches in order to ensure the reliability and comparability of the results obtained in the research.
Collapse
Affiliation(s)
- Vanesa Perez
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain; Valencian International University, Valencia, Spain
| | | | - Vanesa Hidalgo
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain; Department of Psychology and Sociology, Area of Psychobiology, University of Zaragoza, Teruel, Spain.
| | - Alicia Salvador
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain
| |
Collapse
|
4
|
da Silva Castanheira J, Wiesman AI, Hansen JY, Misic B, Baillet S. The neurophysiological brain-fingerprint of Parkinson's disease. EBioMedicine 2024; 105:105201. [PMID: 38908100 PMCID: PMC11253223 DOI: 10.1016/j.ebiom.2024.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Research in healthy young adults shows that characteristic patterns of brain activity define individual "brain-fingerprints" that are unique to each person. However, variability in these brain-fingerprints increases in individuals with neurological conditions, challenging the clinical relevance and potential impact of the approach. Our study shows that brain-fingerprints derived from neurophysiological brain activity are associated with pathophysiological and clinical traits of individual patients with Parkinson's disease (PD). METHODS We created brain-fingerprints from task-free brain activity recorded through magnetoencephalography in 79 PD patients and compared them with those from two independent samples of age-matched healthy controls (N = 424 total). We decomposed brain activity into arrhythmic and rhythmic components, defining distinct brain-fingerprints for each type from recording durations of up to 4 min and as short as 30 s. FINDINGS The arrhythmic spectral components of cortical activity in patients with Parkinson's disease are more variable over short periods, challenging the definition of a reliable brain-fingerprint. However, by isolating the rhythmic components of cortical activity, we derived brain-fingerprints that distinguished between patients and healthy controls with about 90% accuracy. The most prominent cortical features of the resulting Parkinson's brain-fingerprint are mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also demonstrate that Parkinson's symptom laterality can be decoded directly from cortical neurophysiological activity. Furthermore, our study reveals that the cortical topography of the Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's pathophysiology. INTERPRETATION The increased moment-to-moment variability of arrhythmic brain-fingerprints challenges patient differentiation and explains previously published results. We outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and symptom laterality of Parkinson's disease. Thus, the proposed definition of a rhythmic brain-fingerprint of Parkinson's disease may contribute to novel, refined approaches to patient stratification. Symmetrically, we discuss how rhythmic brain-fingerprints may contribute to the improved identification and testing of therapeutic neurostimulation targets. FUNDING Data collection and sharing for this project was provided by the Quebec Parkinson Network (QPN), the Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT-AD; release 6.0) program, the Cambridge Centre for Aging Neuroscience (Cam-CAN), and the Open MEG Archives (OMEGA). The QPN is funded by a grant from Fonds de Recherche du Québec - Santé (FRQS). PREVENT-AD was launched in 2011 as a $13.5 million, 7-year public-private partnership using funds provided by McGill University, the FRQS, an unrestricted research grant from Pfizer Canada, the Levesque Foundation, the Douglas Hospital Research Centre and Foundation, the Government of Canada, and the Canada Fund for Innovation. The Brainstorm project is supported by funding to SB from the NIH (R01-EB026299-05). Further funding to SB for this study included a Discovery grant from the Natural Sciences and Engineering Research Council of Canada of Canada (436355-13), and the CIHR Canada research Chair in Neural Dynamics of Brain Systems (CRC-2017-00311).
Collapse
Affiliation(s)
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Correa A, Ponzi A, Calderón VM, Migliore R. Pathological cell assembly dynamics in a striatal MSN network model. Front Comput Neurosci 2024; 18:1410335. [PMID: 38903730 PMCID: PMC11188713 DOI: 10.3389/fncom.2024.1410335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Under normal conditions the principal cells of the striatum, medium spiny neurons (MSNs), show structured cell assembly activity patterns which alternate sequentially over exceedingly long timescales of many minutes. It is important to understand this activity since it is characteristically disrupted in multiple pathologies, such as Parkinson's disease and dyskinesia, and thought to be caused by alterations in the MSN to MSN lateral inhibitory connections and in the strength and distribution of cortical excitation to MSNs. To understand how these long timescales arise we extended a previous network model of MSN cells to include synapses with short-term plasticity, with parameters taken from a recent detailed striatal connectome study. We first confirmed the presence of sequentially switching cell clusters using the non-linear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP). We found that the network could generate non-stationary activity patterns varying extremely slowly on the order of minutes under biologically realistic conditions. Next we used Simulation Based Inference (SBI) to train a deep net to map features of the MSN network generated cell assembly activity to MSN network parameters. We used the trained SBI model to estimate MSN network parameters from ex-vivo brain slice calcium imaging data. We found that best fit network parameters were very close to their physiologically observed values. On the other hand network parameters estimated from Parkinsonian, decorticated and dyskinetic ex-vivo slice preparations were different. Our work may provide a pipeline for diagnosis of basal ganglia pathology from spiking data as well as for the design pharmacological treatments.
Collapse
Affiliation(s)
- Astrid Correa
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Vladimir M. Calderón
- Department of Developmental Neurobiology and Neurophysiology, Neurobiology Institute, National Autonomous University of Mexico, Querétaro, Mexico
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
6
|
Wiesman AI, da Silva Castanheira J, Fon EA, Baillet S. Alterations of Cortical Structure and Neurophysiology in Parkinson's Disease Are Aligned with Neurochemical Systems. Ann Neurol 2024; 95:802-816. [PMID: 38146745 PMCID: PMC11023768 DOI: 10.1002/ana.26871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) affects the structural integrity and neurophysiological signaling of the cortex. These alterations are related to the motor and cognitive symptoms of the disease. How these changes are related to the neurochemical systems of the cortex is unknown. METHODS We used T1-weighted magnetic resonance imaging (MRI) and magnetoencephalography (MEG) to measure cortical thickness and task-free neurophysiological activity in patients with idiopathic PD (nMEG = 79, nMRI = 65) and matched healthy controls (nMEG = 65, nMRI = 37). Using linear mixed-effects models, we examined the topographical alignment of cortical structural and neurophysiological alterations in PD with cortical atlases of 19 neurotransmitter receptor and transporter densities. RESULTS We found that neurophysiological alterations in PD occur primarily in brain regions rich in acetylcholinergic, serotonergic, and glutamatergic systems, with protective implications for cognitive and psychiatric symptoms. In contrast, cortical thinning occurs preferentially in regions rich in noradrenergic systems, and the strength of this alignment relates to motor deficits. INTERPRETATION This study shows that the spatial organization of neurophysiological and structural alterations in PD is relevant for nonmotor and motor impairments. The data also advance the identification of the neurochemical systems implicated. The approach uses novel nested atlas modeling methodology that is transferrable to research in other neurological and neuropsychiatric diseases and syndromes. ANN NEUROL 2024;95:802-816.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Edward A. Fon
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | |
Collapse
|
7
|
Davidson B, Milosevic L, Kondrataviciute L, Kalia LV, Kalia SK. Neuroscience fundamentals relevant to neuromodulation: Neurobiology of deep brain stimulation in Parkinson's disease. Neurotherapeutics 2024; 21:e00348. [PMID: 38579455 PMCID: PMC11000190 DOI: 10.1016/j.neurot.2024.e00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Deep Brain Stimulation (DBS) has become a pivotal therapeutic approach for Parkinson's Disease (PD) and various neuropsychiatric conditions, impacting over 200,000 patients. Despite its widespread application, the intricate mechanisms behind DBS remain a subject of ongoing investigation. This article provides an overview of the current knowledge surrounding the local, circuit, and neurobiochemical effects of DBS, focusing on the subthalamic nucleus (STN) as a key target in PD management. The local effects of DBS, once thought to mimic a reversible lesion, now reveal a more nuanced interplay with myelinated axons, neurotransmitter release, and the surrounding microenvironment. Circuit effects illuminate the modulation of oscillatory activities within the basal ganglia and emphasize communication between the STN and the primary motor cortex. Neurobiochemical effects, encompassing changes in dopamine levels and epigenetic modifications, add further complexity to the DBS landscape. Finally, within the context of understanding the mechanisms of DBS in PD, the article highlights the controversial question of whether DBS exerts disease-modifying effects in PD. While preclinical evidence suggests neuroprotective potential, clinical trials such as EARLYSTIM face challenges in assessing long-term disease modification due to enrollment timing and methodology limitations. The discussion underscores the need for robust biomarkers and large-scale prospective trials to conclusively determine DBS's potential as a disease-modifying therapy in PD.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada.
| | - Luka Milosevic
- KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Laura Kondrataviciute
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Lorraine V Kalia
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada; KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada
| |
Collapse
|
8
|
Zhang HY, Hou TT, Jin ZH, Zhang T, Wang YH, Cheng ZH, Liu YH, Fang JP, Yan HJ, Zhen Y, An X, Du J, Chen KK, Li ZZ, Li Q, Wen QP, Fang BY. Transcranial alternating current stimulation improves quality of life in Parkinson's disease: study protocol for a randomized, double-blind, controlled trial. Trials 2024; 25:200. [PMID: 38509589 PMCID: PMC10953283 DOI: 10.1186/s13063-024-08045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The neural cells in the brains of patients with Parkinson's disease (PWP) display aberrant synchronized oscillatory activity within the beta frequency range. Additionally, enhanced gamma oscillations may serve as a compensatory mechanism for motor inhibition mediated by beta activity and also reinstate plasticity in the primary motor cortex affected by Parkinson's disease. Transcranial alternating current stimulation (tACS) can synchronize endogenous oscillations with exogenous rhythms, thereby modulating cortical activity. The objective of this study is to investigate whether the addition of tACS to multidisciplinary intensive rehabilitation treatment (MIRT) can improve symptoms of PWP so as to enhance the quality of life in individuals with Parkinson's disease based on the central-peripheral-central theory. METHODS The present study was a randomized, double-blind trial that enrolled 60 individuals with Parkinson's disease aged between 45 and 70 years, who had Hoehn-Yahr scale scores ranging from 1 to 3. Participants were randomly assigned in a 1:1 ratio to either the tACS + MIRT group or the sham-tACS + MIRT group. The trial consisted of a two-week double-blind treatment period followed by a 24-week follow-up period, resulting in a total duration of twenty-six weeks. The primary outcome measured the change in PDQ-39 scores from baseline (T0) to 4 weeks (T2), 12 weeks (T3), and 24 weeks (T4) after completion of the intervention. The secondary outcome assessed changes in MDS-UPDRS III scores at T0, the end of intervention (T1), T2, T3, and T4. Additional clinical assessments and mechanistic studies were conducted as tertiary outcomes. DISCUSSION The objective of this study is to demonstrate that tACS can enhance overall functionality and improve quality of life in PWP, based on the framework of MIRT. Additionally, it seeks to establish a potential correlation between these therapeutic effects and neuroplasticity alterations in relevant brain regions. The efficacy of tACS will be assessed during the follow-up period in order to optimize neuroplasticity and enhance its potential impact on rehabilitation efficiency for PWP. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2300071969. Registered on 30 May 2023.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Ting-Ting Hou
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Zhao-Hui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Tian Zhang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Yi-Heng Wang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Zi-Hao Cheng
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
- Capital Medical University, Beijing, China
| | - Yong-Hong Liu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Jin-Ping Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Hong-Jiao Yan
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Yi Zhen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Xia An
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Jia Du
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Ke-Ke Chen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Zhen-Zhen Li
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Qing Li
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Qi-Ping Wen
- Radiology Department, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China
| | - Bo-Yan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Badachu, Xixiazhuang, Shijingshan District, Bejing, 100144, China.
| |
Collapse
|
9
|
Spooner RK, Hizli BJ, Bahners BH, Schnitzler A, Florin E. Modulation of DBS-induced cortical responses and movement by the directionality and magnitude of current administered. NPJ Parkinsons Dis 2024; 10:53. [PMID: 38459031 PMCID: PMC10923868 DOI: 10.1038/s41531-024-00663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
Subthalamic deep brain stimulation (STN-DBS) is an effective therapy for alleviating motor symptoms in people with Parkinson's disease (PwP), although some may not receive optimal clinical benefits. One potential mechanism of STN-DBS involves antidromic activation of the hyperdirect pathway (HDP), thus suppressing cortical beta synchrony to improve motor function, albeit the precise mechanisms underlying optimal DBS parameters are not well understood. To address this, 18 PwP with STN-DBS completed a 2 Hz monopolar stimulation of the left STN during MEG. MEG data were imaged in the time-frequency domain using minimum norm estimation. Peak vertex time series data were extracted to interrogate the directional specificity and magnitude of DBS current on evoked and induced cortical responses and accelerometer metrics of finger tapping using linear mixed-effects models and mediation analyses. We observed increases in evoked responses (HDP ~ 3-10 ms) and synchronization of beta oscillatory power (14-30 Hz, 10-100 ms) following DBS pulse onset in the primary sensorimotor cortex (SM1), supplementary motor area (SMA) and middle frontal gyrus (MFG) ipsilateral to the site of stimulation. DBS parameters significantly modulated neural and behavioral outcomes, with clinically effective contacts eliciting significant increases in medium-latency evoked responses, reductions in induced SM1 beta power, and better movement profiles compared to suboptimal contacts, often regardless of the magnitude of current applied. Finally, HDP-related improvements in motor function were mediated by the degree of SM1 beta suppression in a setting-dependent manner. Together, these data suggest that DBS-evoked brain-behavior dynamics are influenced by the level of beta power in key hubs of the basal ganglia-cortical loop, and this effect is exacerbated by the clinical efficacy of DBS parameters. Such data provides novel mechanistic and clinical insight, which may prove useful for characterizing DBS programming strategies to optimize motor symptom improvement in the future.
Collapse
Affiliation(s)
- Rachel K Spooner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| | - Baccara J Hizli
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Bahne H Bahners
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
10
|
Oswal A, Abdi‐Sargezeh B, Sharma A, Özkurt TE, Taulu S, Sarangmat N, Green AL, Litvak V. Spatiotemporal signal space separation for regions of interest: Application for extracting neuromagnetic responses evoked by deep brain stimulation. Hum Brain Mapp 2024; 45:e26602. [PMID: 38339906 PMCID: PMC10826894 DOI: 10.1002/hbm.26602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/18/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
Magnetoencephalography (MEG) recordings are often contaminated by interference that can exceed the amplitude of physiological brain activity by several orders of magnitude. Furthermore, the activity of interference sources may spatially extend (known as source leakage) into the activity of brain signals of interest, resulting in source estimation inaccuracies. This problem is particularly apparent when using MEG to interrogate the effects of brain stimulation on large-scale cortical networks. In this technical report, we develop a novel denoising approach for suppressing the leakage of interference source activity into the activity representing a brain region of interest. This approach leverages spatial and temporal domain projectors for signal arising from prespecified anatomical regions of interest. We apply this denoising approach to reconstruct simulated evoked response topographies to deep brain stimulation (DBS) in a phantom recording. We highlight the advantages of our approach compared to the benchmark-spatiotemporal signal space separation-and show that it can more accurately reveal brain stimulation-evoked response topographies. Finally, we apply our method to MEG recordings from a single patient with Parkinson's disease, to reveal early cortical-evoked responses to DBS of the subthalamic nucleus.
Collapse
Affiliation(s)
- Ashwini Oswal
- MRC Brain Network Dynamics UnitUniversity of OxfordOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- The Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
- Department of NeurologyJohn Radcliffe HospitalOxfordUK
| | - Bahman Abdi‐Sargezeh
- MRC Brain Network Dynamics UnitUniversity of OxfordOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Abhinav Sharma
- MRC Brain Network Dynamics UnitUniversity of OxfordOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Tolga Esat Özkurt
- Graduate School of InformaticsMiddle East Technical UniversityAnkaraTurkey
| | - Samu Taulu
- Department of PhysicsUniversity of WashingtonSeattleWashingtonUSA
- Institute for Learning and Brain SciencesUniversity of WashingtonSeattleWashingtonUSA
| | | | - Alexander L. Green
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Vladimir Litvak
- The Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
| |
Collapse
|
11
|
Bi Z. Cognition of Time and Thinking Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:171-195. [PMID: 38918352 DOI: 10.1007/978-3-031-60183-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A common research protocol in cognitive neuroscience is to train subjects to perform deliberately designed experiments while recording brain activity, with the aim of understanding the brain mechanisms underlying cognition. However, how the results of this protocol of research can be applied in technology is seldom discussed. Here, I review the studies on time processing of the brain as examples of this research protocol, as well as two main application areas of neuroscience (neuroengineering and brain-inspired artificial intelligence). Time processing is a fundamental dimension of cognition, and time is also an indispensable dimension of any real-world signal to be processed in technology. Therefore, one may expect that the studies of time processing in cognition profoundly influence brain-related technology. Surprisingly, I found that the results from cognitive studies on timing processing are hardly helpful in solving practical problems. This awkward situation may be due to the lack of generalizability of the results of cognitive studies, which are under well-controlled laboratory conditions, to real-life situations. This lack of generalizability may be rooted in the fundamental unknowability of the world (including cognition). Overall, this paper questions and criticizes the usefulness and prospect of the abovementioned research protocol of cognitive neuroscience. I then give three suggestions for future research. First, to improve the generalizability of research, it is better to study brain activity under real-life conditions instead of in well-controlled laboratory experiments. Second, to overcome the unknowability of the world, we can engineer an easily accessible surrogate of the object under investigation, so that we can predict the behavior of the object under investigation by experimenting on the surrogate. Third, the paper calls for technology-oriented research, with the aim of technology creation instead of knowledge discovery.
Collapse
Affiliation(s)
- Zedong Bi
- Lingang Laboratory, Shanghai, China.
- Institute for Future, Qingdao University, Qingdao, China.
- School of Automation, Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
Conti M, Guerra A, Pierantozzi M, Bovenzi R, D'Onofrio V, Simonetta C, Cerroni R, Liguori C, Placidi F, Mercuri NB, Di Giuliano F, Schirinzi T, Stefani A. Band-Specific Altered Cortical Connectivity in Early Parkinson's Disease and its Clinical Correlates. Mov Disord 2023; 38:2197-2208. [PMID: 37860930 DOI: 10.1002/mds.29615] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Functional connectivity (FC) has shown promising results in assessing the pathophysiology and identifying early biomarkers of neurodegenerative disorders, such as Parkinson's disease (PD). OBJECTIVES In this study, we aimed to assess possible resting-state FC abnormalities in early-stage PD patients using high-density electroencephalography (EEG) and to detect their clinical relationship with motor and non-motor PD symptoms. METHODS We enrolled 26 early-stage levodopa naïve PD patients and a group of 20 healthy controls (HC). Data were recorded with 64-channels EEG system and a source-reconstruction method was used to identify brain-region activity. FC was calculated using the weighted phase-lag index in θ, α, and β bands. Additionally, we quantified the unbalancing between β and lower frequencies through a novel index (β-functional ratio [FR]). Statistical analysis was conducted using a network-based statistical approach. RESULTS PD patients showed hypoconnected networks in θ and α band, involving prefrontal-limbic-temporal and frontoparietal areas, respectively, and a hyperconnected network in the β frequency band, involving sensorimotor-frontal areas. The θ FC network was negatively related to Non-Motor Symptoms Scale scores and α FC to the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale part III gait subscore, whereas β FC and β-FR network were positively linked to the bradykinesia subscore. Changes in θ FC and β-FR showed substantial reliability and high accuracy, precision, sensitivity, and specificity in discriminating PD and HC. CONCLUSIONS Frequency-specific FC changes in PD likely reflect the dysfunction of distinct cortical networks, which occur from the early stage of the disease. These abnormalities are involved in the pathophysiology of specific motor and non-motor PD symptoms, including gait, bradykinesia, mood, and cognition. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Matteo Conti
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, Padua, Italy
| | - Mariangela Pierantozzi
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Roberta Bovenzi
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Valentina D'Onofrio
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, Padua, Italy
| | - Clara Simonetta
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Rocco Cerroni
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Fabio Placidi
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Di Giuliano
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Tommaso Schirinzi
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Stefani
- Parkinson Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
13
|
da Silva Castanheira J, Wiesman AI, Hansen JY, Misic B, Baillet S. The neurophysiological brain-fingerprint of Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.03.23285441. [PMID: 36798232 PMCID: PMC9934726 DOI: 10.1101/2023.02.03.23285441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In this study, we investigate the clinical potential of brain-fingerprints derived from electrophysiological brain activity for diagnostics and progression monitoring of Parkinson's disease (PD). We obtained brain-fingerprints from PD patients and age-matched healthy controls using short, task-free magnetoencephalographic recordings. The rhythmic components of the individual brain-fingerprint distinguished between patients and healthy participants with approximately 90% accuracy. The most prominent cortical features of the Parkinson's brain-fingerprint mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also show that Parkinson's disease stages can be decoded directly from cortical neurophysiological activity. Additionally, our study reveals that the cortical topography of the Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's pathophysiology. We further demonstrate that the arrhythmic components of cortical activity are more variable over short periods of time in patients with Parkinson's disease than in healthy controls, making individual differentiation between patients based on these features more challenging and explaining previous negative published results. Overall, we outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and clinical staging of Parkinson's disease. For this reason, the proposed definition of a rhythmic brain-fingerprint of Parkinson's disease may contribute to novel, refined approaches to patient stratification and to the improved identification and testing of therapeutic neurostimulation targets.
Collapse
Affiliation(s)
| | - Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Justine Y. Hansen
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | | | | |
Collapse
|
14
|
Wiesman AI, da Silva Castanheira J, Degroot C, Fon EA, Baillet S, Network QP. Adverse and compensatory neurophysiological slowing in Parkinson's disease. Prog Neurobiol 2023; 231:102538. [PMID: 37832713 PMCID: PMC10872886 DOI: 10.1016/j.pneurobio.2023.102538] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Patients with Parkinson's disease (PD) exhibit multifaceted changes in neurophysiological brain activity, hypothesized to represent a global cortical slowing effect. Using task-free magnetoencephalography and extensive clinical assessments, we found that neurophysiological slowing in PD is differentially associated with motor and non-motor symptoms along a sagittal gradient over the cortical anatomy. In superior parietal regions, neurophysiological slowing reflects an adverse effect and scales with cognitive and motor impairments, while across the inferior frontal cortex, neurophysiological slowing is compatible with a compensatory role. This adverse-to-compensatory gradient is sensitive to individual clinical profiles, such as drug regimens and laterality of symptoms; it is also aligned with the topography of neurotransmitter and transporter systems relevant to PD. We conclude that neurophysiological slowing in patients with PD signals both deleterious and protective mechanisms of the disease, from posterior to anterior regions across the cortex, respectively, with functional and clinical relevance to motor and cognitive symptoms.
Collapse
Affiliation(s)
- Alex I Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | | | - Clotilde Degroot
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Edward A Fon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Quebec Parkinson Network
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
15
|
Novikov NI, Brazhnik ES, Kitchigina VF. Pathological Correlates of Cognitive Decline in Parkinson's Disease: From Molecules to Neural Networks. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1890-1904. [PMID: 38105206 DOI: 10.1134/s0006297923110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the death of dopaminergic neurons in the substantia nigra and appearance of protein aggregates (Lewy bodies) consisting predominantly of α-synuclein in neurons. PD is currently recognized as a multisystem disorder characterized by severe motor impairments and various non-motor symptoms. Cognitive decline is one of the most common and worrisome non-motor symptoms. Moderate cognitive impairments (CI) are diagnosed already at the early stages of PD, usually transform into dementia. The main types of CI in PD include executive dysfunction, attention and memory decline, visuospatial impairments, and verbal deficits. According to the published data, the following mechanisms play an essential role demonstrates a crucial importance in the decline of the motor and cognitive functions in PD: (1) changes in the conformational structure of transsynaptic proteins and protein aggregation in presynapses; (2) synaptic transmission impairment; (3) neuroinflammation (pathological activation of the neuroglia); (4) mitochondrial dysfunction and oxidative stress; (5) metabolic disorders (hypometabolism of glucose, dysfunction of glycolipid metabolism; and (6) functional rearrangement of neuronal networks. These changes can lead to the death of dopaminergic cells in the substantia nigra and affect the functioning of other neurotransmitter systems, thus disturbing neuronal networks involved in the transmission of information related to the regulation of motor activity and cognitive functions. Identification of factors causing detrimental changes in PD and methods for their elimination will help in the development of new approaches to the therapy of PD. The goal of this review was to analyze pathological processes that take place in the brain and underlie the onset of cognitive disorders in PD, as well as to describe the impairments of cognitive functions in this disease.
Collapse
Affiliation(s)
- Nikolai I Novikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Elena S Brazhnik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Valentina F Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
16
|
Rouzitalab A, Boulay CB, Sachs AJ. Volitional control of beta activities in Parkinson's disease patients. Brain Res 2023; 1814:148394. [PMID: 37156320 DOI: 10.1016/j.brainres.2023.148394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Patients diagnosed with Parkinson's disease (PD) have difficulty initiating and executing movements due to an acquired imbalance of the basal ganglia thalamocortical circuit secondary to loss of dopaminergic input into the striatum. The unbalanced circuit is hyper-synchronized, presenting as larger and longer bursts of beta-band (13-30 Hz) oscillations in the subthalamic nucleus (STN). As a first step toward a novel PD therapy that aims to improve symptoms through beta desynchronization, we sought to determine if individuals with PD could acquire volitional control of STN beta power in a neurofeedback task. We found a significant difference in STN beta power between task conditions, and relevant brain signal features could be detected and decoded in real time. This demonstration of volitional control of STN beta motivates development of a neurofeedback therapy to modulate PD symptom severity.
Collapse
Affiliation(s)
- Alireza Rouzitalab
- School of Electrical Engineering and Computer Science, University of Ottawa, K1N 6N5 Ottawa, ON, Canada; The Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | | | - Adam J Sachs
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada; The University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada; Division of Neurosurgery, Department of Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
17
|
Hnazaee MF, Litvak V. Investigating cortico-striatal beta oscillations in Parkinson's disease cognitive decline. Brain 2023; 146:3571-3573. [PMID: 37579064 PMCID: PMC10473556 DOI: 10.1093/brain/awad273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023] Open
Abstract
This scientific commentary refers to ‘Corticostriatal beta oscillation changes associated with cognitive function in Parkinson’s disease’ by Paulo et al. (https://doi.org/10.1093/brain/awad206).
Collapse
Affiliation(s)
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
18
|
Chen L, Daniels S, Dvorak R, Chu HY. Reduced thalamic excitation to motor cortical pyramidal tract neurons in parkinsonism. SCIENCE ADVANCES 2023; 9:eadg3038. [PMID: 37611096 PMCID: PMC10446482 DOI: 10.1126/sciadv.adg3038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Degeneration of midbrain dopaminergic (DA) neurons alters the connectivity and functionality of the basal ganglia-thalamocortical circuits in Parkinson's disease (PD). Particularly, the aberrant outputs of the primary motor cortex (M1) contribute to parkinsonian motor deficits. However, cortical adaptations at cellular and synaptic levels in parkinsonism remain poorly understood. Using multidisciplinary approaches, we found that DA degeneration induces cell subtype- and input-specific reduction of thalamic excitation to M1 pyramidal tract (PT) neurons. At molecular level, we identified that N-methyl-d-aspartate (NMDA) receptors play a key role in mediating the reduced thalamocortical excitation to PT neurons. At circuit level, we showed that the reduced thalamocortical transmission in parkinsonian mice can be rescued by chemogenetically suppressing basal ganglia outputs. Together, our data suggest that cell subtype- and synapse-specific adaptations in M1 contribute to altered cortical outputs in parkinsonism and are important aspects of PD pathophysiology.
Collapse
Affiliation(s)
- Liqiang Chen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Samuel Daniels
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
| | - Rachel Dvorak
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
| | - Hong-Yuan Chu
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
19
|
Kocsis B, Pittman-Polletta B. Neuropsychiatric consequences of COVID-19 related olfactory dysfunction: could non-olfactory cortical-bound inputs from damaged olfactory bulb also contribute to cognitive impairment? Front Neurosci 2023; 17:1164042. [PMID: 37425004 PMCID: PMC10323442 DOI: 10.3389/fnins.2023.1164042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Bernat Kocsis
- Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | |
Collapse
|
20
|
Belova E, Semenova U, Gamaleya A, Tomskiy A, Sedov A. Excessive α-β Oscillations Mark Enlarged Motor Sign Severity and Parkinson's Disease Duration. Mov Disord 2023; 38:1027-1035. [PMID: 37025075 DOI: 10.1002/mds.29393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND β Oscillations in the subthalamic nucleus (STN) have been proven to contribute to Parkinson's disease (PD), but the exact borders of β subbands vary substantially across the studies, and information regarding heterogeneity of β rhythmic activity is still limited. Recently, α oscillations in the basal ganglia have also become the focus of PD research. OBJECTIVES The aim was to study rhythmic oscillations in the STN in PD patients to identify different subbands with stable oscillatory peaks within a broad α-β range and to establish their associations with motor symptoms. METHODS Local field potentials inside the STN were recorded during deep brain stimulation (DBS) surgeries. After calculating power spectra and extracting an aperiodic component, oscillatory peaks in the 8- to 35-Hz range with amplitude exceeding 90th percentile were clustered into three bands. Peak parameters were estimated for two lower subbands. Clinical features were compared in patients with and without oscillation peaks in the lowest α-β subband. RESULTS We isolated α-β (8-15 Hz), β (15-25 Hz), and β-γ (25-35 Hz) subbands within the 8- to 35-Hz spectral range using oscillatory parameters and Ward's hierarchical clustering. Additional α-β oscillatory peaks were found in about half of patients with β peaks; they were located more ventrally compared to β. We have found a significant increase in disease duration, bradykinesia, and rigidity scores in the group with additional α-β peaks. CONCLUSIONS Increased α-β oscillations may emerge as additional phenomena complementing β oscillations; they may mark disease progression in PD and affect DBS stimulation setup. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elena Belova
- Laboratory of Human Cell Neurophysiology, N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russia
- Scientific Advisory Department, Federal State Autonomous Institution, "N. N. Burdenko National Medical Research Center of Neurosurgery", Moscow, Russia
| | - Ulia Semenova
- Laboratory of Human Cell Neurophysiology, N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russia
- Scientific Advisory Department, Federal State Autonomous Institution, "N. N. Burdenko National Medical Research Center of Neurosurgery", Moscow, Russia
| | - Anna Gamaleya
- Group of Functional Neurosurgery, Federal State Autonomous Institution, "N. N. Burdenko National Medical Research Center of Neurosurgery", Moscow, Russia
| | - Alexey Tomskiy
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alexey Sedov
- Scientific Advisory Department, Federal State Autonomous Institution, "N. N. Burdenko National Medical Research Center of Neurosurgery", Moscow, Russia
| |
Collapse
|
21
|
Yeh CH, Zhang C, Shi W, Lo MT, Tinkhauser G, Oswal A. Cross-Frequency Coupling and Intelligent Neuromodulation. CYBORG AND BIONIC SYSTEMS 2023; 4:0034. [PMID: 37266026 PMCID: PMC10231647 DOI: 10.34133/cbsystems.0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. Evidence from both patient and healthy participant studies suggests that CFC plays an essential role in neuronal computation, interregional interaction, and disease pathophysiology. The present review discusses methodological advances and challenges in the computation of CFC with particular emphasis on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further methodological improvements are required to facilitate practical and correct use in cyborg and bionic systems in the field.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Chuting Zhang
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Wenbin Shi
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering,
National Central University, Taoyuan, Taiwan
| | - Gerd Tinkhauser
- Department of Neurology,
Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ashwini Oswal
- MRC Brain Network Dynamics Unit,
University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Zhang R, Nie Y, Dai W, Wang S, Geng X. Balance between pallidal neural oscillations correlated with dystonic activity and severity. Neurobiol Dis 2023:106178. [PMID: 37268239 DOI: 10.1016/j.nbd.2023.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/14/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The balance between neural oscillations provides valuable insights into the organisation of neural oscillations related to brain states, which may play important roles in dystonia. We aim to investigate the relationship of the balance in the globus pallidus internus (GPi) with the dystonic severity under different muscular contraction conditions. METHODS Twenty-one patients with dystonia were recruited. All of them underwent bilateral GPi implantation, and local field potentials (LFPs) from the GPi were recorded via simultaneous surface electromyography. The power spectral ratio between neural oscillations was computed as the measure of neural balance. This ratio was calculated under high and low dystonic muscular contraction conditions, and its correlation with the dystonic severity was assessed using clinical scores. RESULTS The power spectral of the pallidal LFPs peaked in the theta and alpha bands. Within participant comparison showed that the power spectral of the theta oscillations significantly increased during high muscle contraction compared with that during low contraction. The power spectral ratios between the theta and alpha, theta and low beta, and theta and high gamma oscillations were significantly higher during high contraction than during low contraction. The total score and motor score were associated with the power spectral ratio between the low and high beta oscillations, which was correlated with the dystonic severity both during high and low contractions. The power spectral ratios between the low beta and low gamma and between the low beta and high gamma oscillations showed a significantly positive correlation with the total score during both high and low contractions; a correlation with the motor scale score was found only during high contraction. Meanwhile, the power spectral ratio between the theta and alpha oscillations during low contraction showed a significantly negative correlation with the total score. The power spectral ratios between the alpha and high beta, alpha and low gamma, and alpha and high gamma oscillations were significantly correlated with the dystonic severity only during low contraction. CONCLUSION The balance between neural oscillations, as quantified by the power ratio between specific frequency bands, differed between the high and low muscular contraction conditions and was correlated with the dystonic severity. The balance between the low and high beta oscillations was correlated with the dystonic severity during both conditions, making this parameter a new possible biomarker for closed-loop deep brain stimulation in patients with dystonia.
Collapse
Affiliation(s)
- Ruili Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wen Dai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China; Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, China; Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China.
| |
Collapse
|
23
|
Giannini G, Baldelli L, Leogrande G, Cani I, Mantovani P, Lopane G, Cortelli P, Calandra-Buonaura G, Conti A. Case report: Bilateral double beta peak activity is influenced by stimulation, levodopa concentrations, and motor tasks, in a Parkinson's disease patient on chronic deep brain stimulation. Front Neurol 2023; 14:1163811. [PMID: 37273691 PMCID: PMC10232856 DOI: 10.3389/fneur.2023.1163811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Subthalamic (STN) local field potentials (LFPs) in the beta band are considered potential biomarkers for closed-loop deep brain stimulation (DBS) in Parkinson's disease (PD). The beta band is further dissected into low-and high-frequency components with somewhat different functions, although their concomitance and association in the single patient is far to be defined. We present a 56-year-old male PD patient undergoing DBS showing a double-beta peak activity on both sides. The aim of the study was to investigate how low-and high-beta peaks were influenced by plasma levodopa (L-dopa) levels, stimulation, and motor performances. Methods A systematic evaluation of raw LFPs, plasma L-dopa levels, and motor tasks was performed in the following four conditions: OFF medications/ON stimulation, OFF medications/OFF stimulation, ON medications/OFF stimulation, and ON medications/ON stimulation. Results The analysis of the LFP spectra suggests the following results: (1) the high-beta peak was suppressed by stimulation, while the low-beta peak showed a partial and not consistent response to stimulation; (2) the high-beta peak is also influenced by plasma L-dopa concentration, showing a progressive amplitude increment concordant with plasma L-dopa levels, while the low-beta peak shows a different behavir; and (3) motor performances seem to impact beta peaks behavior. Conclusion This single exploratory case study illustrates a complex behavior of low-and high-beta peaks in a PD patient, in response to stimulation, L-dopa plasma levels, and motor performances. Our results suggest the importance to investigate patient-specific individual LFP patterns in view of upcoming closed-loop stimulation.
Collapse
Affiliation(s)
- Giulia Giannini
- UOC Clinica Neurologica Rete Metropolitana NEUROMET, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Luca Baldelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Gaetano Leogrande
- Medtronic EMEA Corporate Technology and Innovation, Maastricht, Netherlands
| | - Ilaria Cani
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Paolo Mantovani
- Unit of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giovanna Lopane
- Unit of Rehabilitation Medicine, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pietro Cortelli
- UOC Clinica Neurologica Rete Metropolitana NEUROMET, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giovanna Calandra-Buonaura
- UOC Clinica Neurologica Rete Metropolitana NEUROMET, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Alfredo Conti
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Unit of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
24
|
Guerra A, Colella D, Cannavacciuolo A, Giangrosso M, Paparella G, Fabbrini G, Berardelli A, Bologna M. Short-term plasticity of the motor cortex compensates for bradykinesia in Parkinson's disease. Neurobiol Dis 2023; 182:106137. [PMID: 37120094 DOI: 10.1016/j.nbd.2023.106137] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
Patients with Parkinson's disease (PD) show impaired short-term potentiation (STP) mechanisms in the primary motor cortex (M1). However, the role played by this neurophysiological abnormality in bradykinesia pathophysiology is unknown. In this study, we used a multimodal neuromodulation approach to test whether defective STP contributes to bradykinesia. We evaluated STP by measuring motor-evoked potential facilitation during 5 Hz-repetitive transcranial magnetic stimulation (rTMS) and assessed repetitive finger tapping movements through kinematic techniques. Also, we used transcranial alternating current stimulation (tACS) to drive M1 oscillations and experimentally modulate bradykinesia. STP was assessed during tACS delivered at beta (β) and gamma (γ) frequency, and during sham-tACS. Data were compared to those recorded in a group of healthy subjects. In PD, we found that STP was impaired during sham- and γ-tACS, while it was restored during β-tACS. Importantly, the degree of STP impairment was associated with the severity of movement slowness and amplitude reduction. Moreover, β-tACS-related improvements in STP were linked to changes in movement slowness and intracortical GABA-A-ergic inhibition during stimulation, as assessed by short-interval intracortical inhibition (SICI). Patients with prominent STP amelioration had greater SICI reduction (cortical disinhibition) and less slowness worsening during β-tACS. Dopaminergic medications did not modify β-tACS effects. These data demonstrate that abnormal STP processes are involved in bradykinesia pathophysiology and return to normal levels when β oscillations increase. STP changes are likely mediated by modifications in GABA-A-ergic intracortical circuits and may represent a compensatory mechanism against β-induced bradykinesia in PD.
Collapse
Affiliation(s)
- Andrea Guerra
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Donato Colella
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | | | | | | | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
25
|
Wiesman AI, Donhauser PW, Degroot C, Diab S, Kousaie S, Fon EA, Klein D, Baillet S. Aberrant neurophysiological signaling associated with speech impairments in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:61. [PMID: 37059749 PMCID: PMC10104849 DOI: 10.1038/s41531-023-00495-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/16/2023] [Indexed: 04/16/2023] Open
Abstract
Difficulty producing intelligible speech is a debilitating symptom of Parkinson's disease (PD). Yet, both the robust evaluation of speech impairments and the identification of the affected brain systems are challenging. Using task-free magnetoencephalography, we examine the spectral and spatial definitions of the functional neuropathology underlying reduced speech quality in patients with PD using a new approach to characterize speech impairments and a novel brain-imaging marker. We found that the interactive scoring of speech impairments in PD (N = 59) is reliable across non-expert raters, and better related to the hallmark motor and cognitive impairments of PD than automatically-extracted acoustical features. By relating these speech impairment ratings to neurophysiological deviations from healthy adults (N = 65), we show that articulation impairments in patients with PD are associated with aberrant activity in the left inferior frontal cortex, and that functional connectivity of this region with somatomotor cortices mediates the influence of cognitive decline on speech deficits.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Peter W Donhauser
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | - Clotilde Degroot
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Sabrina Diab
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
| | - Shanna Kousaie
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Denise Klein
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
- Center for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada.
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
| |
Collapse
|
26
|
Wiesman AI, da Silva Castanheira J, Fon EA, Baillet S. Structural and neurophysiological alterations in Parkinson's disease are aligned with cortical neurochemical systems. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.04.23288137. [PMID: 37066346 PMCID: PMC10104211 DOI: 10.1101/2023.04.04.23288137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Parkinson's disease (PD) affects cortical structures and neurophysiology. How these deviations from normative variants relate to the neurochemical systems of the cortex in a manner corresponding to motor and cognitive symptoms is unknown. We measured cortical thickness and spectral neurophysiological alterations from structural magnetic resonance imaging and task-free magnetoencephalography in patients with idiopathic PD (NMEG = 79; NMRI = 65), contrasted with similar data from matched healthy controls (NMEG = 65; NMRI = 37). Using linear mixed-effects models and cortical atlases of 19 neurochemical systems, we found that the structural and neurophysiological alterations of PD align with several receptor and transporter systems (acetylcholine, serotonin, glutamate, and noradrenaline) albeit with different implications for motor and non-motor symptoms. Some neurophysiological alignments are protective of cognitive functions: the alignment of broadband power increases with acetylcholinergic systems is related to better attention function. However, neurochemical alignment with structural and other neurophysiological alterations is associated with motor and psychiatric impairments, respectively. Collectively, the present data advance understanding of the association between the nature of neurophysiological and structural cortical alterations in PD and the symptoms that are characteristic of the disease. They also demonstrate the value of a new nested atlas modeling approach to advance research on neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Edward A. Fon
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | |
Collapse
|
27
|
Madadi Asl M, Valizadeh A, Tass PA. Decoupling of interacting neuronal populations by time-shifted stimulation through spike-timing-dependent plasticity. PLoS Comput Biol 2023; 19:e1010853. [PMID: 36724144 PMCID: PMC9891531 DOI: 10.1371/journal.pcbi.1010853] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023] Open
Abstract
The synaptic organization of the brain is constantly modified by activity-dependent synaptic plasticity. In several neurological disorders, abnormal neuronal activity and pathological synaptic connectivity may significantly impair normal brain function. Reorganization of neuronal circuits by therapeutic stimulation has the potential to restore normal brain dynamics. Increasing evidence suggests that the temporal stimulation pattern crucially determines the long-lasting therapeutic effects of stimulation. Here, we tested whether a specific pattern of brain stimulation can enable the suppression of pathologically strong inter-population synaptic connectivity through spike-timing-dependent plasticity (STDP). More specifically, we tested how introducing a time shift between stimuli delivered to two interacting populations of neurons can effectively decouple them. To that end, we first used a tractable model, i.e., two bidirectionally coupled leaky integrate-and-fire (LIF) neurons, to theoretically analyze the optimal range of stimulation frequency and time shift for decoupling. We then extended our results to two reciprocally connected neuronal populations (modules) where inter-population delayed connections were modified by STDP. As predicted by the theoretical results, appropriately time-shifted stimulation causes a decoupling of the two-module system through STDP, i.e., by unlearning pathologically strong synaptic interactions between the two populations. Based on the overall topology of the connections, the decoupling of the two modules, in turn, causes a desynchronization of the populations that outlasts the cessation of stimulation. Decoupling effects of the time-shifted stimulation can be realized by time-shifted burst stimulation as well as time-shifted continuous simulation. Our results provide insight into the further optimization of a variety of multichannel stimulation protocols aiming at a therapeutic reshaping of diseased brain networks.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Peter A. Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
28
|
Guerra A, Tinkhauser G, Benussi A, Bocci T. Editorial: Recording and modulating neural activity in neurodegenerative diseases: Pathophysiological and therapeutic implications. Front Hum Neurosci 2023; 17:1138382. [PMID: 36761934 PMCID: PMC9903078 DOI: 10.3389/fnhum.2023.1138382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Affiliation(s)
- Andrea Guerra
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy,IRCCS Neuromed, Pozzilli, Isernia, Italy,*Correspondence: Andrea Guerra ✉
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy,Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Tommaso Bocci
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo E Carlo” and Department of Health Sciences, University of Milan, Milan, Italy,“Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
29
|
Combined EEG and immersive virtual reality unveil dopaminergic modulation of error monitoring in Parkinson's Disease. NPJ Parkinsons Dis 2023; 9:3. [PMID: 36639384 PMCID: PMC9839679 DOI: 10.1038/s41531-022-00441-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Detecting errors in your own and others' actions is associated with discrepancies between intended and expected outcomes. The processing of salient events is associated with dopamine release, the balance of which is altered in Parkinson's disease (PD). Errors in observed actions trigger various electrocortical indices (e.g. mid-frontal theta, error-related delta, and error positivity [oPe]). However, the impact of dopamine depletion to observed errors in the same individual remains unclear. Healthy controls (HCs) and PD patients observed ecological reach-to-grasp-a-glass actions performed by a virtual arm from a first-person perspective. PD patients were tested under their dopaminergic medication (on-condition) and after dopaminergic withdrawal (off-condition). Analyses of oPe, delta, and theta-power increases indicate that while the formers were elicited after incorrect vs. correct actions in all groups, the latter were observed in on-condition but altered in off-condition PD. Therefore, different EEG error signatures may index the activity of distinct mechanisms, and error-related theta power is selectively modulated by dopamine depletion. Our findings may facilitate discovering dopamine-related biomarkers for error-monitoring dysfunctions that may have crucial theoretical and clinical implications.
Collapse
|
30
|
Verma AK, Yu Y, Acosta-Lenis SF, Havel T, Sanabria DE, Molnar GF, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Parkinsonian daytime sleep-wake classification using deep brain stimulation lead recordings. Neurobiol Dis 2023; 176:105963. [PMID: 36521781 PMCID: PMC9869648 DOI: 10.1016/j.nbd.2022.105963] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Excessive daytime sleepiness is a recognized non-motor symptom that adversely impacts the quality of life of people with Parkinson's disease (PD), yet effective treatment options remain limited. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for PD motor signs. Reliable daytime sleep-wake classification using local field potentials (LFPs) recorded from DBS leads implanted in STN can inform the development of closed-loop DBS approaches for prompt detection and disruption of sleep-related neural oscillations. We performed STN DBS lead recordings in three nonhuman primates rendered parkinsonian by administrating neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Reference sleep-wake states were determined on a second-by-second basis by video monitoring of eyes (eyes-open, wake and eyes-closed, sleep). The spectral power in delta (1-4 Hz), theta (4-8 Hz), low-beta (8-20 Hz), high-beta (20-35 Hz), gamma (35-90 Hz), and high-frequency (200-400 Hz) bands were extracted from each wake and sleep epochs for training (70% data) and testing (30% data) a support vector machines classifier for each subject independently. The spectral features yielded reasonable daytime sleep-wake classification (sensitivity: 90.68 ± 1.28; specificity: 88.16 ± 1.08; accuracy: 89.42 ± 0.68; positive predictive value; 88.70 ± 0.89, n = 3). Our findings support the plausibility of monitoring daytime sleep-wake states using DBS lead recordings. These results could have future clinical implications in informing the development of closed-loop DBS approaches for automatic detection and disruption of sleep-related neural oscillations in people with PD to promote wakefulness.
Collapse
Affiliation(s)
- Ajay K Verma
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Sergio F Acosta-Lenis
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Tyler Havel
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | | | - Gregory F Molnar
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Michael J Howell
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Luke A Johnson
- Department of Neurology, University of Minnesota, Minneapolis, United States of America.
| |
Collapse
|
31
|
Calvano A, Timmermann L, Loehrer PA, Oehrn CR, Weber I. Binaural acoustic stimulation in patients with Parkinson's disease. Front Neurol 2023; 14:1167006. [PMID: 37213909 PMCID: PMC10196363 DOI: 10.3389/fneur.2023.1167006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023] Open
Abstract
Acoustic stimulation can improve motor symptoms in Parkinson's disease (PD) and might therefore represent a potential non-invasive treatment option. Scalp electroencephalography studies in healthy subjects indicate that specifically binaural beat stimulation (BBS) in the gamma frequency range is associated with synchronized cortical oscillations at 40 Hertz (Hz). Several studies suggest that oscillations in the gamma-frequency range (>30 Hz) serve a prokinetic function in PD. In this double-blind, randomized study, 25 PD patients were recruited. The study was conducted with (ON) and without dopaminergic medication (OFF). Each drug condition consisted of two phases (no stimulation and acoustic stimulation). The acoustic stimulation phase was divided into two blocks including BBS and conventional acoustic stimulation (CAS) as a control condition. For BBS, a modulated frequency of 35 Hz was used (left: 320 Hz; right: 355 Hz) and for CAS 340 Hz on both sides. We assessed effects on motor performance using Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and two validated commercially available portable devices (Kinesia ONE™ and Kinesia 360™) measuring motor symptoms such as dyskinesia, bradykinesia, and tremor. Repeated measures ANOVA revealed that BBS improved resting tremor on the side of the more affected limb in the OFF condition, as measured by wearables (F(2,48) = 3.61, p = 0.035). However, BBS did not exert a general positive effect on motor symptoms as assessed via MDS-UPDRS (F(2,48) = 1.00, p = 0.327). For CAS, we did not observe an improvement in specific symptoms but rather an overall beneficial effect on motor performance (MDS-UPDRS total score OFF medication: F(2,48) = 4.17, p = 0.021; wearable scores: F(2,48) = 2.46, p = 0.097). In this study, we found an improvement of resting tremor when applying BBS in the gamma frequency band OFF medication. Moreover, the positive effects of CAS underline the general positive potential for improvement of motor function by acoustically supported therapeutic approaches. However, more studies are needed to fully characterize the clinical relevance of BBS and to further optimize its ameliorating effects.
Collapse
Affiliation(s)
- Alexander Calvano
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- *Correspondence: Alexander Calvano,
| | - Lars Timmermann
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Philipp Alexander Loehrer
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Carina Renate Oehrn
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Immo Weber
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
32
|
Guerra A, D'Onofrio V, Asci F, Ferreri F, Fabbrini G, Berardelli A, Bologna M. Assessing the interaction between L-dopa and γ-transcranial alternating current stimulation effects on primary motor cortex plasticity in Parkinson's disease. Eur J Neurosci 2023; 57:201-212. [PMID: 36382537 PMCID: PMC10100043 DOI: 10.1111/ejn.15867] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
L-dopa variably influences transcranial magnetic stimulation (TMS) parameters of motor cortex (M1) excitability and plasticity in Parkinson's disease (PD). In patients OFF dopaminergic medication, impaired M1 plasticity and defective GABA-A-ergic inhibition can be restored by boosting gamma (γ) oscillations via transcranial alternating current stimulation (tACS) during intermittent theta-burst stimulation (iTBS). However, it is unknown whether L-dopa modifies the beneficial effects of iTBS-γ-tACS on M1 in PD. In this study, a PD patients group underwent combined iTBS-γ-tACS and iTBS-sham-tACS, each performed both OFF and ON dopaminergic therapy (four sessions in total). Motor evoked potentials (MEPs) elicited by single TMS pulses and short-interval intracortical inhibition (SICI) were assessed before and after iTBS-tACS. We also evaluated possible SICI changes during γ-tACS delivered alone in OFF and ON conditions. The amplitude of MEP elicited by single TMS pulses and the degree of SICI inhibition significantly increased after iTBS-γ-tACS. The amount of change produced by iTBS-γ-tACS was similar in patients OFF and ON therapy. Finally, γ-tACS (delivered alone) modulated SICI during stimulation and this effect did not depend on the dopaminergic condition of patients. In conclusion, boosting cortical γ oscillatory activity via tACS during iTBS improved M1 plasticity and enhanced GABA-A-ergic transmission in PD patients to the same extent regardless of dopaminergic state. These results suggest a lack of interaction between L-dopa and γ-tACS effects at the M1 level. The possible neural substrate underlying iTBS-γ tACS effects, that is, γ-resonant GABA-A-ergic interneurons activity, may explain our findings.
Collapse
Affiliation(s)
| | - Valentina D'Onofrio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Unit of Neurology, Unit of Clinical Neurophysiology and Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | | | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology and Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy.,Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
33
|
Honma M, Sasaki F, Kamo H, Nuermaimaiti M, Kujirai H, Atsumi T, Umemura A, Iwamuro H, Shimo Y, Oyama G, Hattori N, Terao Y. Role of the subthalamic nucleus in perceiving and estimating the passage of time. Front Aging Neurosci 2023; 15:1090052. [PMID: 36936495 PMCID: PMC10017994 DOI: 10.3389/fnagi.2023.1090052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 03/06/2023] Open
Abstract
Sense of time (temporal sense) is believed to be processed by various brain regions in a complex manner, among which the basal ganglia, including the striatum and subthalamic nucleus (STN), play central roles. However, the precise mechanism for processing sense of time has not been clarified. To examine the role of the STN in temporal processing of the sense of time by directly manipulating STN function by switching a deep brain stimulation (DBS) device On/Off in 28 patients with Parkinson's disease undergoing STN-DBS therapy. The test session was performed approximately 20 min after switching the DBS device from On to Off or from Off to On. Temporal sense processing was assessed in three different tasks (time reproduction, time production, and bisection). In the three temporal cognitive tasks, switching STN-DBS to Off caused shorter durations to be produced compared with the switching to the On condition in the time production task. In contrast, no effect of STN-DBS was observed in the time bisection or time reproduction tasks. These findings suggest that the STN is involved in the representation process of time duration and that the role of the STN in the sense of time may be limited to the exteriorization of memories formed by experience.
Collapse
Affiliation(s)
- Motoyasu Honma
- Department of Medical Physiology, Kyorin University of School of Medicine, Tokyo, Japan
- *Correspondence: Motoyasu Honma,
| | - Fuyuko Sasaki
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hikaru Kamo
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Hitoshi Kujirai
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takeshi Atsumi
- Department of Medical Physiology, Kyorin University of School of Medicine, Tokyo, Japan
| | - Atsushi Umemura
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirokazu Iwamuro
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Genko Oyama
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University of School of Medicine, Tokyo, Japan
- Yasuo Terao,
| |
Collapse
|
34
|
Association between Beta Oscillations from Subthalamic Nucleus and Quantitative Susceptibility Mapping in Deep Gray Matter Structures in Parkinson's Disease. Brain Sci 2023; 13:brainsci13010081. [PMID: 36672062 PMCID: PMC9857066 DOI: 10.3390/brainsci13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This study aimed to investigate the association between beta oscillations and brain iron deposition. Beta oscillations were filtered from the microelectrode recordings of local field potentials (LFP) in the subthalamic nucleus (STN), and the ratio of the power spectral density of beta oscillations (PSDXb) to that of the LFP signals was calculated. Iron deposition in the deep gray matter (DGM) structures was indirectly assessed using quantitative susceptibility mapping (QSM). The Unified Parkinson's Disease Rating Scale (UPDRS), part III, was used to assess the severity of symptoms. Spearman correlation coefficients were applied to assess the associations of PSDXb with QSM values in the DGM structures and the severity of symptoms. PSDXb showed a significant positive correlation with the average QSM values in DGM structures, including caudate and substantia nigra (SN) (p = 0.008 and 0.044). Similarly, the PSDXb showed significant negative correlations with the severity of symptoms, including axial symptoms and the gait in the medicine-off state (p = 0.006 for both). The abnormal iron metabolism in the SN and striatum pathways may be one of the underlying mechanisms for the occurrence of abnormal beta oscillations in the STN, and beta oscillations may serve as important pathophysiological biomarkers of PD.
Collapse
|
35
|
FSTL1-knockdown improves neural oscillation via decreasing neuronal-inflammation regulating apoptosis in Aβ 1-42 induced AD model mice. Exp Neurol 2023; 359:114231. [PMID: 36162512 DOI: 10.1016/j.expneurol.2022.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 12/30/2022]
Abstract
Follistatin like protein 1 (FSTL1) is a famous growth regulatory protein. FSTL1 has been noticed in many diseases, including heart and lung ischemia, cerebral ischemia, glioma, schizophrenia, and Autism. The role of FSTL1 has been declared in the genetics and development of the central nervous system. Therefore, we designed this study to investigate the function and the role of FSTL1 in Alzheimer's disease. Firstly, we noticed upregulated expression level of FSTL1 among four to six-month-old 5XFAD AD mice. Accordingly, we hypothesized that FSTL1-Knockdown improved AD model mice's cognitive function and recover from Alzheimer's disease. Thus, AD model mice were made by single intracerebroventricular injections of Aβ1-42 peptides in FSTL1+/- and CON mice. Next, our results concluded that FSTL1-knockdown effectively improved cognitive functions. FSTL1-knockdown enhanced the pattern of neural oscillations, and synaptic plasticity in Aβ1-42 treated FSTL1-Knockdown mice compared to Aβ1-42 induced AD model mice. Next, FSTL1-Knockdown inhibited the activation of microglia and binding of TLR-4 with microglia. Further, inactivated microglia stopped the formation of MyD88. Thus, our data revealed that FSTL1-Knockdown is slowing down the caspase/BAX/Bcl-2/TLR-4 regulating apoptosis pathway, and the expression of inflammatory cytokines in the hippocampus of Aβ1-42 inserted FSTL1-Knockdown mice. Overall, all these data illuminate the clinical significance role of down-regulated FSTL1. FSTL1-Knockdown reduced the amyloid-beta by affecting microglia, neural-inflammation and apoptosis in AD-like model mice. Finally, down regulation of FSTL1 improved synaptic plasticity, neural oscillations, and cognitive behaviours in the Aβ1-42 induced AD model mice.
Collapse
|
36
|
Loss of the Synuclein Family Members Differentially Affects Baseline- and Apomorphine-Associated EEG Determinants in Single-, Double- and Triple-Knockout Mice. Biomedicines 2022; 10:biomedicines10123128. [PMID: 36551884 PMCID: PMC9775760 DOI: 10.3390/biomedicines10123128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Synucleins comprise a family of small proteins highly expressed in the nervous system of vertebrates and involved in various intraneuronal processes. The malfunction of alpha-synuclein is one of the key events in pathogenesis of Parkinson disease and certain other neurodegenerative diseases, and there is a growing body of evidence that malfunction of other two synucleins might be involved in pathological processes in the nervous system. The modulation of various presynaptic mechanisms of neurotransmission is an important function of synucleins, and therefore, it is feasible that their deficiency might affect global electrical activity detected of the brain. However, the effects of the loss of synucleins on the frequency spectra of electroencephalograms (EEGs) have not been systematically studied so far. In the current study, we assessed changes in such spectra in single-, double- and triple-knockout mice lacking alpha-, beta- and gamma-synucleins in all possible combinations. EEGs were recorded from the motor cortex, the putamen, the ventral tegmental area and the substantia nigra of 78 3-month-old male mice from seven knockout groups maintained on the C57BL/6J genetic background, and 10 wild-type C57BL/6J mice for 30 min before and for 60 min after the systemic injection of a DA receptor agonist, apomorphine (APO). We found that almost any variant of synuclein deficiency causes multiple changes in both basal and APO-induced EEG oscillation profiles. Therefore, it is not the absence of any particular synuclein but rather a disbalance of synucleins that causes widespread changes in EEG spectral profiles.
Collapse
|
37
|
Ratas I, Pyragas K. Interplay of different synchronization modes and synaptic plasticity in a system of class I neurons. Sci Rep 2022; 12:19631. [PMID: 36385488 PMCID: PMC9668974 DOI: 10.1038/s41598-022-24001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
We analyze the effect of spike-timing-dependent plasticity (STDP) on a system of pulse-coupled class I neurons. Our research begins with a system of two mutually connected quadratic integrate-and-fire (QIF) neurons, which are canonical representatives of class I neurons. Along with various asymptotic modes previously observed in other neuronal models with plastic synapses, we found a stable synchronous mode characterized by unidirectional link from a slower neuron to a faster neuron. In this frequency-locked mode, the faster neuron emits multiple spikes per cycle of the slower neuron. We analytically obtain the Arnold tongues for this mode without STDP and with STDP. We also consider larger plastic networks of QIF neurons and show that the detected mode can manifest itself in such a way that slow neurons become pacemakers. As a result, slow and fast neurons can form large synchronous clusters that generate low-frequency oscillations. We demonstrate the generality of the results obtained with two connected QIF neurons using Wang-Buzsáki and Morris-Lecar biophysically plausible class I neuron models.
Collapse
Affiliation(s)
- Irmantas Ratas
- Center for Physical Sciences and Technology, 10257, Vilnius, Lithuania.
| | - Kestutis Pyragas
- Center for Physical Sciences and Technology, 10257, Vilnius, Lithuania
| |
Collapse
|
38
|
Chen XJ, Kwak Y. Contribution of the sensorimotor beta oscillations and the cortico-basal ganglia-thalamic circuitry during value-based decision making: A simultaneous EEG-fMRI investigation. Neuroimage 2022; 257:119300. [PMID: 35568351 DOI: 10.1016/j.neuroimage.2022.119300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
In decision neuroscience, the motor system has primarily been considered to be involved in executing choice actions. However, a competing perspective suggests its engagement in the evaluation of options, traditionally considered to be performed by the brain's valuation system. Here, we investigate the role of the motor system in value-based decision making by determining the neural circuitries associated with the sensorimotor beta oscillations previously identified to encode decision options. In a simultaneous EEG-fMRI study, participants evaluated reward and risk associated with a forthcoming action. A significant sensorimotor beta desynchronization was identified prior to and independent of response. The level of beta desynchronization showed evidence of encoding the reward levels. This beta desynchronization covaried, on a trial-by-trial level, with BOLD activity in the cortico-basal ganglia-thalamic circuitry. In contrast, there was only a weak covariation within the valuation network, despite significant modulation of its BOLD activity by reward levels. These results suggest that the way in which decision variables are processed differs in the valuation network and in the cortico-basal ganglia-thalamic circuitry. We propose that sensorimotor beta oscillations indicate incentive motivational drive towards a choice action computed from the decision variables even prior to making a response, and it arises from the cortico-basal ganglia-thalamic circuitry.
Collapse
Affiliation(s)
- Xing-Jie Chen
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Youngbin Kwak
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
39
|
Miyawaki EK. Review: Subjective Time Perception, Dopamine Signaling, and Parkinsonian Slowness. Front Neurol 2022; 13:927160. [PMID: 35899266 PMCID: PMC9311331 DOI: 10.3389/fneur.2022.927160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
The association between idiopathic Parkinson's disease, a paradigmatic dopamine-deficiency syndrome, and problems in the estimation of time has been studied experimentally for decades. I review that literature, which raises a question about whether and if dopamine deficiency relates not only to the motor slowness that is an objective and cardinal parkinsonian sign, but also to a compromised neural substrate for time perception. Why does a clinically (motorically) significant deficiency in dopamine play a role in the subjective perception of time's passage? After a discussion of a classical conception of basal ganglionic control of movement under the influence of dopamine, I describe recent work in healthy mice using optogenetics; the methodology visualizes dopaminergic neuronal firing in very short time intervals, then allows for correlation with motor behaviors in trained tasks. Moment-to-moment neuronal activity is both highly dynamic and variable, as assessed by photometry of genetically defined dopaminergic neurons. I use those animal data as context to review a large experimental experience in humans, spanning decades, that has examined subjective time perception mainly in Parkinson's disease, but also in other movement disorders. Although the human data are mixed in their findings, I argue that loss of dynamic variability in dopaminergic neuronal activity over very short intervals may be a fundamental sensory aspect in the pathophysiology of parkinsonism. An important implication is that therapeutic response in Parkinson's disease needs to be understood in terms of short-term alterations in dynamic neuronal firing, as has already been examined in novel ways—for example, in the study of real-time changes in neuronal network oscillations across very short time intervals. A finer analysis of a treatment's network effects might aid in any effort to augment clinical response to either medications or functional neurosurgical interventions in Parkinson's disease.
Collapse
Affiliation(s)
- Edison K. Miyawaki
- Department of Neurology, Mass General Brigham, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Edison K. Miyawaki
| |
Collapse
|
40
|
Fim Neto A, de Luccas JB, Bianqueti BL, da Silva LR, Almeida TP, Takahata AK, Teixeira MJ, Figueiredo EG, Nasuto SJ, Rocha MSG, Soriano DC, Godinho F. Subthalamic low beta bursts differ in Parkinson's disease phenotypes. Clin Neurophysiol 2022; 140:45-58. [PMID: 35728405 DOI: 10.1016/j.clinph.2022.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Parkinson's disease (PD) patients may be categorized into tremor-dominant (TD) and postural-instability and gait disorder (PIGD) motor phenotypes, but the dynamical aspects of subthalamic nucleus local field potentials (STN-LFP) and the neural correlates of this phenotypical classification remain unclear. METHODS 35 STN-LFP (20 PIGD and 15 TD) were investigated through continuous wavelet transform and machine-learning-based methods. The beta oscillation - the main band associated with motor impairment in PD - dynamics was characterized through beta burst parameters across phenotypes and burst intervals under specific proposed criteria for optimal burst threshold definition. RESULTS Low-frequency (13-22 Hz) beta burst probability was the best predictor for PD phenotypes (75% accuracy). PIGD patients presented higher average burst duration (p = 0.018), while TD patients exhibited higher burst probability (p = 0.014). Categorization into shorter and longer than 400 ms bursts led to significant interaction between burst length categories and the phenotypes (p < 0.050) as revealed by mixed-effects models. Long burst durations and short bursts probability positively correlated, respectively, with rigidity-bradykinesia (p = 0.029) and tremor (p = 0.038) scores. CONCLUSIONS Subthalamic low-frequency beta bursts differed between TD and PIGD phenotypes and correlated with motor symptoms. SIGNIFICANCE These findings improve the PD phenotypes' electrophysiological characterization and may define new criteria for adaptive deep brain stimulation.
Collapse
Affiliation(s)
- Arnaldo Fim Neto
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, São Bernardo do Campo, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil; Department of Cosmic Rays and Chronology, Institute of Physics, University of Campinas, Campinas, Brazil.
| | - Julia Baldi de Luccas
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, São Bernardo do Campo, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Bruno Leonardo Bianqueti
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, São Bernardo do Campo, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Luiz Ricardo da Silva
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Tiago Paggi Almeida
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - André Kazuo Takahata
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, São Bernardo do Campo, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | | | | | | | | | - Diogo Coutinho Soriano
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, São Bernardo do Campo, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Fabio Godinho
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, São Bernardo do Campo, Brazil; Department of Functional Neurosurgery, Santa Marcelina Hospital, São Paulo, São Paulo, Brazil; Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, Medical School, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Duprez J, Tabbal J, Hassan M, Modolo J, Kabbara A, Mheich A, Drapier S, Vérin M, Sauleau P, Wendling F, Benquet P, Houvenaghel JF. Spatio-temporal dynamics of large-scale electrophysiological networks during cognitive action control in healthy controls and Parkinson's disease patients. Neuroimage 2022; 258:119331. [PMID: 35660459 DOI: 10.1016/j.neuroimage.2022.119331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022] Open
Abstract
Among the cognitive symptoms that are associated with Parkinson's disease (PD), alterations in cognitive action control (CAC) are commonly reported in patients. CAC enables the suppression of an automatic action, in favor of a goal-directed one. The implementation of CAC is time-resolved and arguably associated with dynamic changes in functional brain networks. However, the electrophysiological functional networks involved, their dynamic changes, and how these changes are affected by PD, still remain unknown. In this study, to address this gap of knowledge, 10 PD patients and 10 healthy controls (HC) underwent a Simon task while high-density electroencephalography (HD-EEG) was recorded. Source-level dynamic connectivity matrices were estimated using the phase-locking value in the beta (12-25 Hz) and gamma (30-45 Hz) frequency bands. Temporal independent component analyses were used as a dimension reduction tool to isolate the task-related brain network states. Typical microstate metrics were quantified to investigate the presence of these states at the subject-level. Our results first confirmed that PD patients experienced difficulties in inhibiting automatic responses during the task. At the group-level, we found three functional network states in the beta band that involved fronto-temporal, temporo-cingulate and fronto-frontal connections with typical CAC-related prefrontal and cingulate nodes (e.g., inferior frontal cortex). The presence of these networks did not differ between PD patients and HC when analyzing microstates metrics, and no robust correlations with behavior were found. In the gamma band, five networks were found, including one fronto-temporal network that was identical to the one found in the beta band. These networks also included CAC-related nodes previously identified in different neuroimaging modalities. Similarly to the beta networks, no subject-level differences were found between PD patients and HC. Interestingly, in both frequency bands, the dominant network at the subject-level was never the one that was the most durably modulated by the task. Altogether, this study identified the dynamic functional brain networks observed during CAC, but did not highlight PD-related changes in these networks that might explain behavioral changes. Although other new methods might be needed to investigate the presence of task-related networks at the subject-level, this study still highlights that task-based dynamic functional connectivity is a promising approach in understanding the cognitive dysfunctions observed in PD and beyond.
Collapse
Key Words
- Cognitive control
- DIFFIT, Difference in data fitting
- DLPFC, Dorso-lateral prefrontal cortex
- EEG, Electroencephalography
- FC, Functional connectivity
- Functional connectivity
- HC, Healthy controls
- HD-EEG, High-density EEG
- ICA, Independent component analysis
- IFC, Inferior frontal cortex
- MEG, Magnetoencephalography
- Networks, Dynamics
- PD, Parkinson's disease
- PLV, Phase locking value
- Parkinson's disease Abbreviations CAC, Cognitive action control
- ROIS, Regions of interest
- RT, Reaction time
- Simon task
- dBNS, Dynamic brain network state
- dFC, Dynamic functional connectivity
- fMRI, Functional magnetic resonance imaging
- high density EEG
- pre-SMA, Pre-supplementary motor area
- tICA, Temporal ICA
Collapse
Affiliation(s)
- Joan Duprez
- Univ Rennes, LTSI - U1099, F-35000 Rennes, France
| | - Judie Tabbal
- Univ Rennes, LTSI - U1099, F-35000 Rennes, France; Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Mahmoud Hassan
- MINDig, F-35000 Rennes, France; School of Engineering, Reykjavik University, Iceland
| | | | | | | | - Sophie Drapier
- CIC INSERM 1414, Rennes, France; Neurology Department, Pontchaillou Hospital, Rennes University Hospital, France
| | - Marc Vérin
- Neurology Department, Pontchaillou Hospital, Rennes University Hospital, France; Behavioral and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, France
| | - Paul Sauleau
- Behavioral and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, France; Neurophysiology department, Rennes University Hospital, France
| | | | | | - Jean-François Houvenaghel
- Neurology Department, Pontchaillou Hospital, Rennes University Hospital, France; Behavioral and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, France
| |
Collapse
|
42
|
Pozzi NG, Palmisano C, Reich MM, Capetian P, Pacchetti C, Volkmann J, Isaias IU. Troubleshooting Gait Disturbances in Parkinson's Disease With Deep Brain Stimulation. Front Hum Neurosci 2022; 16:806513. [PMID: 35652005 PMCID: PMC9148971 DOI: 10.3389/fnhum.2022.806513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus or the globus pallidus is an established treatment for Parkinson's disease (PD) that yields a marked and lasting improvement of motor symptoms. Yet, DBS benefit on gait disturbances in PD is still debated and can be a source of dissatisfaction and poor quality of life. Gait disturbances in PD encompass a variety of clinical manifestations and rely on different pathophysiological bases. While gait disturbances arising years after DBS surgery can be related to disease progression, early impairment of gait may be secondary to treatable causes and benefits from DBS reprogramming. In this review, we tackle the issue of gait disturbances in PD patients with DBS by discussing their neurophysiological basis, providing a detailed clinical characterization, and proposing a pragmatic programming approach to support their management.
Collapse
Affiliation(s)
- Nicoló G. Pozzi
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Martin M. Reich
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Philip Capetian
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Claudio Pacchetti
- Parkinson’s Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ioannis U. Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- Parkinson Institute Milan, ASST Gaetano Pini-CTO, Milan, Italy
| |
Collapse
|
43
|
Guerra A, Bologna M. Low-Intensity Transcranial Ultrasound Stimulation: Mechanisms of Action and Rationale for Future Applications in Movement Disorders. Brain Sci 2022; 12:brainsci12050611. [PMID: 35624998 PMCID: PMC9139935 DOI: 10.3390/brainsci12050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is a novel non-invasive brain stimulation technique that uses acoustic energy to induce changes in neuronal activity. However, although low-intensity TUS is a promising neuromodulation tool, it has been poorly studied as compared to other methods, i.e., transcranial magnetic and electrical stimulation. In this article, we first focus on experimental studies in animals and humans aimed at explaining its mechanisms of action. We then highlight possible applications of TUS in movement disorders, particularly in patients with parkinsonism, dystonia, and tremor. Finally, we highlight the knowledge gaps and possible limitations that currently limit potential TUS applications in movement disorders. Clarifying the potential role of TUS in movement disorders may further promote studies with therapeutic perspectives in this field.
Collapse
Affiliation(s)
| | - Matteo Bologna
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
44
|
Oswal A. Towards therapeutic non-invasive electrical modulation of brain circuits in Parkinson's disease. Brain 2022; 145:11-13. [PMID: 35353890 DOI: 10.1093/brain/awab458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/14/2022] Open
Abstract
This scientific commentary refers to ‘Driving motor cortex oscillations modulates bradykinesia in Parkinson’s disease’ by Guerra et al. (doi: 10.1093/brain/awab257).
Collapse
Affiliation(s)
- Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
45
|
Wagner JR, Schaper M, Hamel W, Westphal M, Gerloff C, Engel AK, Moll CKE, Gulberti A, Pötter-Nerger M. Combined Subthalamic and Nigral Stimulation Modulates Temporal Gait Coordination and Cortical Gait-Network Activity in Parkinson's Disease. Front Hum Neurosci 2022; 16:812954. [PMID: 35295883 PMCID: PMC8919031 DOI: 10.3389/fnhum.2022.812954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 01/10/2023] Open
Abstract
Background Freezing of gait (FoG) is a disabling burden for Parkinson's disease (PD) patients with poor response to conventional therapies. Combined deep brain stimulation of the subthalamic nucleus and substantia nigra (STN+SN DBS) moved into focus as a potential therapeutic option to treat the parkinsonian gait disorder and refractory FoG. The mechanisms of action of DBS within the cortical-subcortical-basal ganglia network on gait, particularly at the cortical level, remain unclear. Methods Twelve patients with idiopathic PD and chronically-implanted DBS electrodes were assessed on their regular dopaminergic medication in a standardized stepping in place paradigm. Patients executed the task with DBS switched off (STIM OFF), conventional STN DBS and combined STN+SN DBS and were compared to healthy matched controls. Simultaneous high-density EEG and kinematic measurements were recorded during resting-state, effective stepping, and freezing episodes. Results Clinically, STN+SN DBS was superior to conventional STN DBS in improving temporal stepping variability of the more affected leg. During resting-state and effective stepping, the cortical activity of PD patients in STIM OFF was characterized by excessive over-synchronization in the theta (4-8 Hz), alpha (9-13 Hz), and high-beta (21-30 Hz) band compared to healthy controls. Both active DBS settings similarly decreased resting-state alpha power and reduced pathologically enhanced high-beta activity during resting-state and effective stepping compared to STIM OFF. Freezing episodes during STN DBS and STN+SN DBS showed spectrally and spatially distinct cortical activity patterns when compared to effective stepping. During STN DBS, FoG was associated with an increase in cortical alpha and low-beta activity over central cortical areas, while with STN+SN DBS, an increase in high-beta was prominent over more frontal areas. Conclusions STN+SN DBS improved temporal aspects of parkinsonian gait impairment compared to conventional STN DBS and differentially affected cortical oscillatory patterns during regular locomotion and freezing suggesting a potential modulatory effect on dysfunctional cortical-subcortical communication in PD.
Collapse
Affiliation(s)
- Jonas R. Wagner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Schaper
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian K. E. Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Gulberti
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
46
|
Jiang X, Liang P, Wang K, Jia J, Wang X. Serotonin 1A receptor agonist modulation of motor deficits and cortical oscillations by NMDA receptor interaction in parkinsonian rats. Neuropharmacology 2022; 203:108881. [PMID: 34785162 DOI: 10.1016/j.neuropharm.2021.108881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Although serotonin 1A (5-HT1A) receptor agonists are widely used as the additive compound to reduce l-dopa-induced dyskinesia in Parkinson's disease (PD), few studies focused on the effect and mechanism of 5-HT1A receptor agonist on the motor symptoms of PD. Unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats were used and implantation of electrodes was performed in the motor cortex of these rats. So the effect of 5-HT1A receptor agonist 8-OH-DPAT on motor behaviors and oscillatory activities were evaluated. In addition, 8-OH-DPAT combined with D2 receptor antagonist raclopride, NMDA receptor antagonist MK-801, or its agonist d-cycloserine (DCS) were co-administrated. 8-OH-DPAT administration significantly improved spontaneous locomotor activity and asymmetric forepaw function in 6-OHDA-lesioned rats. Meanwhile, 8-OH-DPAT identified selective modulation of the abnormal high beta oscillations (25-40 Hz) in the motor cortex of 6-OHDA-lesioned rats, without inducing pathological finely tuned gamma around 80 Hz. Different from 8-OH-DPAT, l-dopa treatment produced a prolonged improvement on motor performances and differential regulation of high beta and gamma oscillations. However, dopamine D2 receptor antagonist had no influence on the 8-OH-DPAT-mediated-motor behaviors and beta oscillations in 6-OHDA-lesioned rats. In contrast, subthreshold NMDA receptor antagonist MK-801 obviously elevated the 8-OH-DPAT-mediated-motor behaviors, while NMDA receptor agonist DCS partially impaired the 8-OH-DPAT-mediated symptoms in 6-OHDA-lesioned rats. This study suggests that 5-HT1A receptor agonist 8-OH-DPAT improves motor activity and modulates the oscillations in the motor cortex of parkinsonian rats. Different from l-dopa, 8-OH-DPAT administration ameliorates motor symptoms of PD through glutamatergic rather than the dopaminergic pathway.
Collapse
Affiliation(s)
- Xinxin Jiang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Peirong Liang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Ke Wang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Jun Jia
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| | - Xiaomin Wang
- Departments of Neurobiology and Physiology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
47
|
Dopamine depletion selectively disrupts interactions between striatal neuron subtypes and LFP oscillations. Cell Rep 2022; 38:110265. [PMID: 35045299 PMCID: PMC8820590 DOI: 10.1016/j.celrep.2021.110265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Dopamine degeneration in Parkinson’s disease (PD) dysregulates the striatal neural network and causes motor deficits. However, it is unclear how altered striatal circuits relate to dopamine-acetylcholine chemical imbalance and abnormal local field potential (LFP) oscillations observed in PD. We perform a multimodal analysis of the dorsal striatum using cell-type-specific calcium imaging and LFP recording. We reveal that dopamine depletion selectively enhances LFP beta oscillations during impaired locomotion, supporting beta oscillations as a biomarker for PD. We further demonstrate that dynamic cholinergic interneuron activity during locomotion remains unaltered, even though cholinergic tone is implicated in PD. Instead, dysfunctional striatal output arises from elevated coordination within striatal output neurons, which is accompanied by reduced locomotor encoding of parvalbumin interneurons and transient pathological LFP high-gamma oscillations. These results identify a pathological striatal circuit state following dopamine depletion where distinct striatal neuron subtypes are selectively coordinated with LFP oscillations during locomotion. Zemel et al. demonstrate that dopamine loss disrupts striatal neural network and enhances local field potential beta oscillations during impaired locomotion. Specifically, striatal projecting neuron activation is abnormally coordinated and accompanied by pathological high-gamma oscillations. While parvalbumin interneurons reduce locomotor encoding, cholinergic interneurons strengthen their interactions with projecting neurons.
Collapse
|
48
|
Velasco S, Branco L, Abosch A, Ince NF. The Entropy of Adaptively Segmented Beta Oscillations Predict Motor Improvement in Patients with Parkinsons Disease. IEEE Trans Biomed Eng 2022; 69:2333-2341. [PMID: 35025735 DOI: 10.1109/tbme.2022.3142716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Beta bursts of local fields potentials (LFPs) recorded from subthalamic nucleus (STN) have been recently proposed as a new temporal feature for patients with Parkinsons disease (PD). We introduce a new technique for the adaptive time-domain segmentation of STN-LFP recordings such that the constructed time segments are proportional to the duration of stationary beta activity. We investigated whether the spectral entropy of the adaptively captured beta oscillations can describe the improvement in motor signs following dopaminergic medication. METHODS STN-LFP recordings from externalized chronic deep brain stimulation (DBS) leads were obtained in 9 PD patients. During this monitoring, each patient underwent 3 medication intake cycles where short acting agents (L-DOPA equivalent dose) were administered. We analyzed 2-minute resting state LFP data in each OFF and L-DOPA-induced ON medication states and constructed time domain segmentation of LFP signal in which the length segmentations are adapted to time-varying nature of the oscillatory activity. RESULTS Adaptively constructed segments were noted to be significantly longer in OFF- and shorter in ON-state (p<0.001). Interestingly, in the OFF state, the peak frequency of long beta bursts (>375ms) was in the low range (12-23Hz) of the beta spectrum, whereas shorter beta bursts (<375ms) were widespread in the 13-30Hz band. Measured clinical improvement was highly correlated with the difference in the spectral entropy of beta bursts between OFF and ON states (r=-0.83, p<0.01). CONCLUSION AND SIGNIFICANCE Our findings suggest that beta oscillations can be adaptively segmented without the use of a predetermined amplitude threshold, thereby allowing for objective quantification of burst itself. Compared to the shorter ones, longer oscillations with duration 375ms were highly correlated with the clinical improvement, supporting a pathological role for them. Overall, these findings coupled with our adaptive approach could enable the quantitative use of temporal dynamics of beta activity in assessing severity of PD and improvements in motor features.
Collapse
|
49
|
Hassin-Baer S, Cohen OS, Israeli-Korn S, Yahalom G, Benizri S, Sand D, Issachar G, Geva AB, Shani-Hershkovich R, Peremen Z. Identification of an early-stage Parkinson's disease neuromarker using event-related potentials, brain network analytics and machine-learning. PLoS One 2022; 17:e0261947. [PMID: 34995285 PMCID: PMC8741046 DOI: 10.1371/journal.pone.0261947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The purpose of this study is to explore the possibility of developing a biomarker that can discriminate early-stage Parkinson's disease from healthy brain function using electroencephalography (EEG) event-related potentials (ERPs) in combination with Brain Network Analytics (BNA) technology and machine learning (ML) algorithms. BACKGROUND Currently, diagnosis of PD depends mainly on motor signs and symptoms. However, there is need for biomarkers that detect PD at an earlier stage to allow intervention and monitoring of potential disease-modifying therapies. Cognitive impairment may appear before motor symptoms, and it tends to worsen with disease progression. While ERPs obtained during cognitive tasks performance represent processing stages of cognitive brain functions, they have not yet been established as sensitive or specific markers for early-stage PD. METHODS Nineteen PD patients (disease duration of ≤2 years) and 30 healthy controls (HC) underwent EEG recording while performing visual Go/No-Go and auditory Oddball cognitive tasks. ERPs were analyzed by the BNA technology, and a ML algorithm identified a combination of features that distinguish early PD from HC. We used a logistic regression classifier with a 10-fold cross-validation. RESULTS The ML algorithm identified a neuromarker comprising 15 BNA features that discriminated early PD patients from HC. The area-under-the-curve of the receiver-operating characteristic curve was 0.79. Sensitivity and specificity were 0.74 and 0.73, respectively. The five most important features could be classified into three cognitive functions: early sensory processing (P50 amplitude, N100 latency), filtering of information (P200 amplitude and topographic similarity), and response-locked activity (P-200 topographic similarity preceding the motor response in the visual Go/No-Go task). CONCLUSIONS This pilot study found that BNA can identify patients with early PD using an advanced analysis of ERPs. These results need to be validated in a larger PD patient sample and assessed for people with premotor phase of PD.
Collapse
Affiliation(s)
- Sharon Hassin-Baer
- Movement Disorders Institute and Department of Neurology, Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Oren S. Cohen
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Neurology, Assaf Harofeh Medical Center, Zerifin, Israel
| | - Simon Israeli-Korn
- Movement Disorders Institute and Department of Neurology, Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gilad Yahalom
- Department of Neurology and Movement Disorders Clinic, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Sandra Benizri
- Movement Disorders Unit, Functional Neurosurgery Center, Assuta Ramat Ha Hayal Hospital, Tel Aviv, Israel
| | - Daniel Sand
- elminda Ltd., Herzliya, Israel
- Faculty of Medicine, Department of Medical Neurobiology, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | | | - Amir B. Geva
- elminda Ltd., Herzliya, Israel
- Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
50
|
Abdul Nabi Ali A, Alam M, Klein SC, Behmann N, Krauss JK, Doll T, Blume H, Schwabe K. Predictive accuracy of CNN for cortical oscillatory activity in an acute rat model of parkinsonism. Neural Netw 2021; 146:334-340. [PMID: 34923220 DOI: 10.1016/j.neunet.2021.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/08/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
In neurological and neuropsychiatric disorders neuronal oscillatory activity between basal ganglia and cortical circuits are altered, which may be useful as biomarker for adaptive deep brain stimulation. We investigated whether changes in the spectral power of oscillatory activity in the motor cortex (MCtx) and the sensorimotor cortex (SMCtx) of rats after injection of the dopamine (DA) receptor antagonist haloperidol (HALO) would be similar to those observed in Parkinson disease. Thereafter, we tested whether a convolutional neural network (CNN) model would identify brain signal alterations in this acute model of parkinsonism. A sixteen channel surface micro-electrocorticogram (ECoG) recording array was placed under the dura above the MCtx and SMCtx areas of one hemisphere under general anaesthesia in rats. Seven days after surgery, micro ECoG was recorded in individual free moving rats in three conditions: (1) basal activity, (2) after injection of HALO (0.5 mg/kg), and (3) with additional injection of apomorphine (APO) (1 mg/kg). Furthermore, a CNN-based classification consisting of 23,530 parameters was applied on the raw data. HALO injection decreased oscillatory theta band activity (4-8 Hz) and enhanced beta (12-30 Hz) and gamma (30-100 Hz) in MCtx and SMCtx, which was compensated after APO injection (P ¡ 0.001). Evaluation of classification performance of the CNN model provided accuracy of 92%, sensitivity of 90% and specificity of 93% on one-dimensional signals. The CNN proposed model requires a minimum of sensory hardware and may be integrated into future research on therapeutic devices for Parkinson disease, such as adaptive closed loop stimulation, thus contributing to more efficient way of treatment.
Collapse
Affiliation(s)
- Ali Abdul Nabi Ali
- Institute of Microelectronic Systems, Architectures and Systems, Leibniz University Hannover, Hannover, D-30167, Lower Saxony, Germany
| | - Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Hannover, D-30625, Lower Saxony, Germany.
| | - Simon C Klein
- Institute of Microelectronic Systems, Architectures and Systems, Leibniz University Hannover, Hannover, D-30167, Lower Saxony, Germany
| | - Nicolai Behmann
- Institute of Microelectronic Systems, Architectures and Systems, Leibniz University Hannover, Hannover, D-30167, Lower Saxony, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, D-30625, Lower Saxony, Germany
| | - Theodor Doll
- Biomaterial Engineering, Hannover Medical School and Translational Medical Engineering Fraunhofer ITEM, Hannover, D-30625, Lower Saxony, Germany
| | - Holger Blume
- Institute of Microelectronic Systems, Architectures and Systems, Leibniz University Hannover, Hannover, D-30167, Lower Saxony, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Hannover, D-30625, Lower Saxony, Germany
| |
Collapse
|