1
|
Jamebozorgi K, Rostami D, Pormasoumi H, Taghizadeh E, Barreto GE, Sahebkar A. Epigenetic aspects of multiple sclerosis and future therapeutic options. Int J Neurosci 2020; 131:56-64. [PMID: 32075477 DOI: 10.1080/00207454.2020.1732974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease accompanied by demyelination of neurons in the central nervous system that mostly affects young adults, especially women. This disease has two phases including relapsing-remitting form (RR-MS) by episodes of relapse and periods of clinical remission and secondary-progressive form (SP-MS), which causes more disability. The inheritance pattern of MS is not exactly identified and there is an agreement that it has a complex pattern with an interplay among environmental, genetic and epigenetic alternations. Epigenetic mechanisms that are identified for MS pathogenesis are DNA methylation, histone modification and some microRNAs' alternations. Several cellular processes including apoptosis, differentiation and evolution can be modified along with epigenetic changes. Some alternations are associated with epigenetic mechanisms in MS patients and these changes can become key points for MS therapy. Therefore, the aim of this review was to discuss epigenetic mechanisms that are associated with MS pathogenesis and future therapeutic approaches.
Collapse
Affiliation(s)
| | - Daryoush Rostami
- School of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Hosein Pormasoumi
- Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Moghbeli M. Genetic and Molecular Biology of Multiple Sclerosis Among Iranian Patients: An Overview. Cell Mol Neurobiol 2020; 40:65-85. [PMID: 31482432 DOI: 10.1007/s10571-019-00731-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is one if the common types of autoimmune disorders in developed countries. Various environmental and genetic factors are associated with initiation and progression of MS. It is believed that the life style changes can be one of the main environmental risk factors. The environmental factors are widely studied and reported, whereas minority of reports have considered the role of genetic factors in biology of MS. Although Iran is a low-risk country in the case of MS prevalence, it has been shown that there was a dramatically rising trend of MS prevalence among Iranian population during recent decades. Therefore, it is required to assess the probable MS risk factors in Iran. In the present study, we summarized all of the reported genes until now which have been associated with MS susceptibility among Iranian patients. To clarify the probable molecular biology of MS progression, we categorized these reported genes based on their cellular functions. This review paves the way of introducing a specific population-based diagnostic panel of genetic markers among the Iranian population for the first time in the world.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Cervantes-Gracia K, Husi H. Integrative analysis of Multiple Sclerosis using a systems biology approach. Sci Rep 2018; 8:5633. [PMID: 29618802 PMCID: PMC5884799 DOI: 10.1038/s41598-018-24032-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/23/2018] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammatory-demyelinating events in the central nervous system. Despite more than 40 years of MS research its aetiology remains unknown. This study aims to identify the most frequently reported and consistently regulated molecules in MS in order to generate molecular interaction networks and thereby leading to the identification of deregulated processes and pathways which could give an insight of the underlying molecular mechanisms of MS. Driven by an integrative systems biology approach, gene-expression profiling datasets were combined and stratified into "Non-treated" and "Treated" groups and additionally compared to other disease patterns. Molecular identifiers from dataset comparisons were matched to our Multiple Sclerosis database (MuScle; www.padb.org/muscle ). From 5079 statistically significant molecules, correlation analysis within groups identified a panel of 16 high-confidence genes unique to the naïve MS phenotype, whereas the "Treated" group reflected a common pattern associated with autoimmune disease. Pathway and gene-ontology clustering identified the Interferon gamma signalling pathway as the most relevant amongst all significant molecules, and viral infections as the most likely cause of all down-stream events observed. This hypothesis-free approach revealed the most significant molecular events amongst different MS phenotypes which can be used for further detailed studies.
Collapse
Affiliation(s)
| | - Holger Husi
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK.
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, Inverness, IV2 3JH, UK.
| |
Collapse
|
4
|
Le Berre L, Rousse J, Gourraud PA, Imbert-Marcille BM, Salama A, Evanno G, Semana G, Nicot A, Dugast E, Guérif P, Adjaoud C, Freour T, Brouard S, Agbalika F, Marignier R, Brassat D, Laplaud DA, Drouet E, Van Pesch V, Soulillou JP. Decrease of blood anti-α1,3 Galactose Abs levels in multiple sclerosis (MS) and clinically isolated syndrome (CIS) patients. Clin Immunol 2017; 180:128-135. [PMID: 28506921 DOI: 10.1016/j.clim.2017.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/17/2017] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
Abstract
The etiology of multiple sclerosis (MS) remains elusive. Among the possible causes, the increase of anti-Neu5Gc antibodies during EBV primo-infection of Infectious mononucleosis (IMN) may damage the integrity of the blood-brain barrier facilitating the transfer of EBV-infected B cells and anti-EBV T cell clones in the brain. We investigated the change in titers of anti-Neu5Gc and anti-α1,3 Galactose antibodies in 49 IMN, in 76 MS, and 73 clinically isolated syndrome (CIS) patients, as well as age/gender-matched healthy individuals. Anti-Gal and anti-Neu5Gc are significantly increased during IMN (p=0.02 and p<1.10-4 respectively), but not in acute CMV primo-infection. We show that, whereas there was no change in anti-Neu5Gc in MS/CIS, the two populations exhibit a significant decrease in anti-Gal (combined p=2.7.10-3), in contrast with patients with non-MS/CIS central nervous system pathologies. Since anti-Gal result from an immunization against α1,3 Gal, lacking in humans but produced in the gut, our data suggest that CIS and MS patients have an altered microbiota or an altered response to this microbiotic epitope.
Collapse
Affiliation(s)
- L Le Berre
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.
| | - J Rousse
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Xenothera, Nantes, F44000 France
| | - P-A Gourraud
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - B-M Imbert-Marcille
- EA 4271 - Immunovirologie et Polymorphisme Génétique, Centre Hospitalo-Universitaire de Nantes, Nantes, F44093, France
| | - A Salama
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Xenothera, Nantes, F44000 France
| | - G Evanno
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Xenothera, Nantes, F44000 France
| | - G Semana
- INSERM, UMR 917 - University of Rennes, Rennes, F35016 France; EFS Bretagne Rennes, F35016 France
| | - A Nicot
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - E Dugast
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - P Guérif
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - C Adjaoud
- Centre Hospitalo-Universitaire de Nantes - Ecole Sages Femmes - Hopital Mere Enfant, Nantes, F44000 France
| | - T Freour
- Laboratoire de Biologie du Développement et de la Reproduction, CHU de Nantes, Nantes, F44093 France
| | - S Brouard
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - F Agbalika
- Unit of Virology, Saint-Louis Hospital AP-HP, Université Paris-Diderot, Paris VII F75010, France
| | - R Marignier
- INSERM UMR 1028 - Centre de Recherche en Neurosciences de Lyon, Faculté de médecine - RTH Laënnec, Lyon, F69372 France
| | - D Brassat
- Department of Neurology - CHU Toulouse, Toulouse, F31300 France
| | - D-A Laplaud
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - E Drouet
- Institute of Structural Biology, University Grenoble Alpes, UMR CNRS CEA UGA 5545 CEA, CNRS 38044 Grenoble, F38042 France
| | - V Van Pesch
- Unité de Neurochimie, Institute of Neuroscience, Université catholique de Louvain, Belgium
| | - J-P Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
5
|
Farias AS, Santos LMB. How can proteomics elucidate the complexity of multiple sclerosis? Proteomics Clin Appl 2015; 9:844-7. [DOI: 10.1002/prca.201400171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/28/2015] [Accepted: 05/11/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Alessandro S. Farias
- Neuroimmunomodulation Group and Neuroimmunology Unit; Department of Genetics; Evolution and Bioagents, University of Campinas; Campinas São Paulo Brazil
| | - Leonilda M. B. Santos
- Neuroimmunomodulation Group and Neuroimmunology Unit; Department of Genetics; Evolution and Bioagents, University of Campinas; Campinas São Paulo Brazil
| |
Collapse
|
6
|
Morris JA. The genomic load of deleterious mutations: relevance to death in infancy and childhood. Front Immunol 2015; 6:105. [PMID: 25852684 PMCID: PMC4360568 DOI: 10.3389/fimmu.2015.00105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/23/2015] [Indexed: 01/19/2023] Open
Abstract
The human diploid genome has approximately 40,000 functioning conserved genes distributed within 6 billion base pairs of DNA. Most individuals carry a few heterozygous deleterious mutations and this leads to an increased risk of recessive disease in the offspring of cousin unions. Rare recessive disease is more common in the children of cousin marriages than in the general population, even though <1% of marriages in the Western World are between first cousins. But more than 90% of the children of cousin marriages do not have recessive disease and are as healthy as the rest of the population. A mathematical model based on these observations generates simultaneous equations linking the mean number of deleterious mutations in the genome of adults (M), the mean number of new deleterious mutations arising in gametogenesis and passed to the next generation (N) and the number of genes in the human diploid genome (L). The best estimates are that M is <7 and N is approximately 1. The nature of meiosis indicates that deleterious mutations in zygotes will have a Poisson distribution with a mean of M + N. There must be strong selective pressure against zygotes at the upper end of the Poisson distribution otherwise the value of M would rise with each generation. It is suggested that this selection is based on synergistic interaction of heterozygous deleterious mutations acting in large complex highly redundant and robust genetic networks. To maintain the value of M in single figures over many thousands of generations means that the zygote loss must be of the order of 30%. Most of this loss will occur soon after conception but some will occur later; during fetal development, in infancy and even in childhood. Selection means genetic death and this is caused by disease to which the deleterious mutations predispose. In view of this genome sequencing should be undertaken in all infant deaths in which the cause of death is not ascertained by standard techniques.
Collapse
|
7
|
Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. N Biotechnol 2015; 32:212-28. [DOI: 10.1016/j.nbt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 05/01/2014] [Accepted: 05/01/2014] [Indexed: 02/06/2023]
|
8
|
Variants of CYP27B1 are associated with both multiple sclerosis and neuromyelitis optica patients in Han Chinese population. Gene 2014; 557:236-9. [PMID: 25542806 DOI: 10.1016/j.gene.2014.12.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/23/2014] [Accepted: 12/21/2014] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) and neuromyelitis optica (NMO) are chronic demyelinating diseases of the central nervous system (CNS). Recently, variants of vitamin D metabolizing genes, including rs12368653, rs10876994, rs118204009 and rs703842 in CYP27B1, and rs2248359 in CYP24A1 have been identified to be associated with the pathogenicity of MS in Caucasian populations. However, these results have not been replicated in Han Chinese population. Here we investigated the association of these variants with MS and NMO susceptibility in 149 MS patients, 110 NMO patients and 294 healthy controls using MassARRAY system and Sanger sequencing. We found that the frequencies of the A allele of rs703842 were higher in MS patients than controls (p=0.032), and statistical differences were observed in the genotypes of both rs703842 (p=0.013) and rs10876994 (p=0.001) between NMO patients and controls. In addition, we found difference in the genotype of rs12368653 between MS patients and controls (p=0.008). However, no difference was found in rs2248359 among these three groups. The reported rare mutation p.R389H (rs118204009) was not found in our study. In conclusion, our study suggested that variants of CYP27B1 were associated with both MS and NMO patients in Han Chinese population.
Collapse
|
9
|
Farias AS, Pradella F, Schmitt A, Santos LMB, Martins-de-Souza D. Ten years of proteomics in multiple sclerosis. Proteomics 2014; 14:467-80. [PMID: 24339438 DOI: 10.1002/pmic.201300268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis, which is the most common cause of chronic neurological disability in young adults, is an inflammatory, demyelinating, and neurodegenerative disease of the CNS, which leads to the formation of multiple foci of demyelinated lesions in the white matter. The diagnosis is based currently on magnetic resonance image and evidence of dissemination in time and space. However, this could be facilitated if biomarkers were available to rule out other disorders with similar symptoms as well as to avoid cerebrospinal fluid analysis, which requires an invasive collection. Additionally, the molecular mechanisms of the disease are not completely elucidated, especially those related to the neurodegenerative aspects of the disease. The identification of biomarker candidates and molecular mechanisms of multiple sclerosis may be approached by proteomics. In the last 10 years, proteomic techniques have been applied in different biological samples (CNS tissue, cerebrospinal fluid, and blood) from multiple sclerosis patients and in its experimental model. In this review, we summarize these data, presenting their value to the current knowledge of the disease mechanisms, as well as their importance in identifying biomarkers or treatment targets.
Collapse
Affiliation(s)
- Alessandro S Farias
- Neuroimmunomodulation Group, Department of Genetics, Evolution and Bioagents, University of Campinas (UNICAMP) - Campinas, São Paulo, Brazil; Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas (UNICAMP) - Campinas, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
10
|
The analysis of correlation between IL-1B gene expression and genotyping in multiple sclerosis patients. J Neurol Sci 2014; 343:41-5. [DOI: 10.1016/j.jns.2014.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 01/26/2023]
|
11
|
Bamm VV, Harauz G. Hemoglobin as a source of iron overload in multiple sclerosis: does multiple sclerosis share risk factors with vascular disorders? Cell Mol Life Sci 2014; 71:1789-98. [PMID: 24504127 PMCID: PMC11113400 DOI: 10.1007/s00018-014-1570-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/12/2022]
Abstract
Although iron is known to be essential for the normal development and health of the central nervous system, abnormal iron deposits are found in and around multiple sclerosis (MS) lesions that themselves are closely associated with the cerebral vasculature. However, the origin of this excess iron is unknown, and it is not clear whether this is one of the primary causative events in the pathogenesis of MS, or simply another consequence of the long-lasting inflammatory conditions. Here, applying a systems biology approach, we propose an additional way for understanding the neurodegenerative component of the disease caused by chronic subclinical extravasation of hemoglobin, in combination with multiple other factors including, but not limited to, dysfunction of different cellular protective mechanisms against extracellular hemoglobin reactivity and oxidative stress. Moreover, such considerations could also shed light on and explain the higher susceptibility of MS patients to a wide range of cardiovascular disorders.
Collapse
Affiliation(s)
- Vladimir V. Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
12
|
The role of TPA I/D and PAI-1 4G/5G polymorphisms in multiple sclerosis. DISEASE MARKERS 2014; 2014:362708. [PMID: 24825926 PMCID: PMC4009184 DOI: 10.1155/2014/362708] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/31/2014] [Indexed: 01/05/2023]
Abstract
Background. Previous studies have shown impaired fibrinolysis in multiple sclerosis (MS) and implicated extracellular proteolytic enzymes as important factors in demyelinating neuroinflammatory disorders. Tissue-type plasminogen activator (t-PA) and its inhibitor (PAI-1) are key molecules in both fibrinolysis and extracellular proteolysis. In the present study, an association of the TPA Alu I/D and PAI-1 4G/5G polymorphisms with MS was analyzed within the Genomic Network for Multiple Sclerosis (GENoMS). Methods. The GENoMS includes four populations (Croatian, Slovenian, Serbian, and Bosnian and Herzegovinian) sharing the same geographic location and a similar ethnic background. A total of 885 patients and 656 ethnically matched healthy blood donors with no history of MS in their families were genotyped using PCR-RFLP. Results. TPA DD homozygosity was protective (OR = 0.79, 95% CI 0.63–0.99, P = 0.037) and PAI 5G5G was a risk factor for MS (OR = 1.30, 95% CI 1.01–1.66, P = 0.038). A significant effect of the genotype/carrier combination was detected in 5G5G/I carriers (OR = 1.39 95% CI 1.06–1.82, P = 0.017). Conclusions. We found a significantly harmful effect of the combination of the PAI-1 5G/5G genotype and TPA I allele on MS susceptibility, which indicates the importance of gene-gene interactions in complex diseases such as MS.
Collapse
|
13
|
Küçükali Cİ, Kürtüncü M, Çoban A, Çebi M, Tüzün E. Epigenetics of multiple sclerosis: an updated review. Neuromolecular Med 2014; 17:83-96. [PMID: 24652042 DOI: 10.1007/s12017-014-8298-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/13/2014] [Indexed: 01/24/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease characterized with autoimmune response against myelin proteins and progressive axonal loss. The heterogeneity of the clinical course and low concordance rates in monozygotic twins have indicated the involvement of complex heritable and environmental factors in MS pathogenesis. MS is more often transmitted to the next generation by mothers than fathers suggesting an epigenetic influence. One of the possible reasons of this parent-of-origin effect might be the human leukocyte antigen-DRB1*15 allele, which is the major risk factor for MS and regulated by epigenetic mechanisms such as DNA methylation and histone deacetylation. Moreover, major environmental risk factors for MS, vitamin D deficiency, smoking and Ebstein-Barr virus are all known to exert epigenetic changes. In the last few decades, compelling evidence implicating the role of epigenetics in MS has accumulated. Increased or decreased acetylation, methylation and citrullination of genes regulating the expression of inflammation and myelination factors appear to be particularly involved in the epigenetics of MS. Although much less is known about epigenetic factors causing neurodegeneration, epigenetic mechanisms regulating axonal loss, apoptosis and mitochondrial dysfunction in MS are in the process of identification. Additionally, expression levels of several microRNAs (miRNAs) (e.g., miR-155 and miR-326) are increased in MS brains and potential mechanisms by which these factors might influence MS pathogenesis have been described. Certain miRNAs may also be potentially used as diagnostic biomarkers in MS. Several reagents, especially histone deacetylase inhibitors have been shown to ameliorate the symptoms of experimental allergic encephalomyelitis. Ongoing efforts in this field are expected to result in characterization of epigenetic factors that can be used in prediction of treatment responsive MS patients, diagnostic screening panels and treatment methods with specific mechanism of action.
Collapse
Affiliation(s)
- Cem İsmail Küçükali
- Department of Neuroscience, Institute for Experimental Medicine (DETAE), Istanbul University, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
14
|
Irizar H, Muñoz-Culla M, Sepúlveda L, Sáenz-Cuesta M, Prada Á, Castillo-Triviño T, Zamora-López G, de Munain AL, Olascoaga J, Otaegui D. Transcriptomic profile reveals gender-specific molecular mechanisms driving multiple sclerosis progression. PLoS One 2014; 9:e90482. [PMID: 24587374 PMCID: PMC3938749 DOI: 10.1371/journal.pone.0090482] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 01/31/2014] [Indexed: 12/21/2022] Open
Abstract
Background Although the most common clinical presentation of multiple sclerosis (MS) is the so called Relapsing-Remitting MS (RRMS), the molecular mechanisms responsible for its progression are currently unknown. To tackle this problem, a whole-genome gene expression analysis has been performed on RRMS patients. Results The comparative analysis of the Affymetrix Human Gene 1.0 ST microarray data from peripheral blood leucocytes obtained from 25 patients in remission and relapse and 25 healthy subjects has revealed 174 genes altered in both remission and relapse, a high proportion of them showing what we have called “mirror pattern”: they are upregulated in remission and downregulated in relapse or vice versa. The coexpression analysis of these genes has shown that they are organized in three female-specific and one male-specific modules. Conclusions The interpretation of the modules of the coexpression network suggests that Epstein-Barr virus (EBV) reactivation of B cells happens in MS relapses; however, qPCR expression data of the viral genes supports that hypothesis only in female patients, reinforcing the notion that different molecular processes drive disease progression in females and males. Besides, we propose that the “primed” state showed by neutrophils in women is an endogenous control mechanism triggered to keep EBV reactivation under control through vitamin B12 physiology. Finally, our results also point towards an important sex-specific role of non-coding RNA in MS.
Collapse
Affiliation(s)
- Haritz Irizar
- Multiple Sclerosis Unit, Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
- Spanish Multiple Sclerosis Net (REEM), Barcelona, Spain
| | - Maider Muñoz-Culla
- Multiple Sclerosis Unit, Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
- Spanish Multiple Sclerosis Net (REEM), Barcelona, Spain
| | - Lucia Sepúlveda
- Multiple Sclerosis Unit, Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Matías Sáenz-Cuesta
- Multiple Sclerosis Unit, Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
- Spanish Multiple Sclerosis Net (REEM), Barcelona, Spain
| | - Álvaro Prada
- Spanish Multiple Sclerosis Net (REEM), Barcelona, Spain
- Hospital Universitario Donostia, Immunology Department, Donostia-San Sebastian, Spain
| | - Tamara Castillo-Triviño
- Multiple Sclerosis Unit, Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
- Spanish Multiple Sclerosis Net (REEM), Barcelona, Spain
| | - Gorka Zamora-López
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Brain and Cognition, Universistat Pompeu Fabra, Barcelona, Spain
| | - Adolfo López de Munain
- Hospital Universitario Donostia, Neurology Department, Donostia-San Sebastian, Spain
- Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Javier Olascoaga
- Multiple Sclerosis Unit, Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
- Spanish Multiple Sclerosis Net (REEM), Barcelona, Spain
- Hospital Universitario Donostia, Neurology Department, Donostia-San Sebastian, Spain
| | - David Otaegui
- Multiple Sclerosis Unit, Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
- Spanish Multiple Sclerosis Net (REEM), Barcelona, Spain
- * E-mail:
| |
Collapse
|
15
|
Al Tahan AM, Alsharoqi I, Bohlega SA, Dahdaleh M, Daif A, Deleu D, Esmat K, Giampaolo D, Freedman MS, Gwilt M, Hosny H, Inshasi JS, Aljumah M, Khalifa A, Pakdaman H, Szólics M, Yamout BI, Sahraian MA, Zakaria MF. Characteristics of multiple sclerosis in the Middle East with special reference to the applicability of international guidelines to the region. Int J Neurosci 2013; 124:635-41. [DOI: 10.3109/00207454.2013.865620] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Litwak SA, Payne NL, Campanale N, Ozturk E, Lee JY, Petratos S, Siatskas C, Bakhuraysah M, Bernard CCA. Nogo-receptor 1 deficiency has no influence on immune cell repertoire or function during experimental autoimmune encephalomyelitis. PLoS One 2013; 8:e82101. [PMID: 24339996 PMCID: PMC3855334 DOI: 10.1371/journal.pone.0082101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 10/30/2013] [Indexed: 12/03/2022] Open
Abstract
The potential role of Nogo-66 Receptor 1 (NgR1) on immune cell phenotypes and their activation during neuroinflammatory diseases such as multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), is unclear. To further understand the function of this receptor on haematopoietically-derived cells, phenotypic and functional analyses were performed using NgR1-deficient (ngr1-/-) animals. Flow cytometry-based phenotypic analyses performed on blood, spleen, thymus, lymph nodes, bone marrow and central nervous-system (CNS)-infiltrating blood cells revealed no immunological defects in naïve ngr1-/- animals versus wild-type littermate (WTLM) controls. EAE was induced by either recombinant myelin oligodendrocyte glycoprotein (rMOG), a model in which B cells are considered to contribute pathogenically, or by MOG35–55 peptide, a B cell-independent model. We have demonstrated that in ngr1-/- mice injected with MOG35–55, a significant reduction in the severity of EAE correlated with reduced axonal damage present in the spinal cord when compared to their WTLM controls. However, despite a reduction in axonal damage observed in the CNS of ngr1-/- mice at the chronic stage of disease, no clinical differences could be attributed to a specific genotype when rMOG was used as the encephalitogen. Following MOG35–55-induction of EAE, we could not derive any major changes to the immune cell populations analyzed between ngr1-/- and WTLM mice. Collectively, these data demonstrate that NgR1 has little if any effects on the repertoire of immune cells, their activation and trafficking to the CNS.
Collapse
Affiliation(s)
- Sara A. Litwak
- Multiple Sclerosis Research Group, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Natalie L. Payne
- Multiple Sclerosis Research Group, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Naomi Campanale
- Multiple Sclerosis Research Group, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Ezgi Ozturk
- Multiple Sclerosis Research Group, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Jae Young Lee
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Steven Petratos
- Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Christopher Siatskas
- Multiple Sclerosis Research Group, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Maha Bakhuraysah
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Claude C. A. Bernard
- Multiple Sclerosis Research Group, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
17
|
What psychiatric genetics has taught us about the nature of psychiatric illness and what is left to learn. Mol Psychiatry 2013; 18:1058-66. [PMID: 23628988 DOI: 10.1038/mp.2013.50] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 02/19/2013] [Accepted: 03/18/2013] [Indexed: 12/17/2022]
Abstract
Psychiatric genetics has taught us a great deal about the nature of psychiatric disorders. Traditional family, twin and adoption studies have demonstrated the substantial role of genetic factors in their etiology, clarified the role of genetic factors in comorbidity, elucidated development pathways, and documented the importance of gene-environment correlation and interaction. We have also received some hard lessons when we were unable to detect replicable genes of large effect size and found that our much-valued candidate genes did not live up to their expected promise. With more mature molecular and statistical methods, we are entering now a different era. Statistical analyses of aggregate molecular signals are validating earlier heritability estimates. Replicated findings from genome-wide association studies are beginning to emerge, as are discoveries of large-effect size rare genomic variants. The number of such findings is likely to soon grow dramatically. The most pressing question facing the field is what biological picture these results will reveal. I articulate four possible scenarios that reflect (i) no, (ii) minimal, (iii) moderate and (iv) high biological coherence in the replicated molecular variant findings, which are soon likely to emerge. I discuss the factors that will likely influence these patterns, including the problems of etiological heterogeneity and multiple realizability. These findings could provide critical insights into the underlying biology of our psychiatric syndromes and potentially permit us to perceive, 'through a glass darkly,' the levels of the mind-brain system that are disordered.
Collapse
|
18
|
Therapeutic advances in pediatric multiple sclerosis. J Pediatr 2013; 163:631-7. [PMID: 23726542 DOI: 10.1016/j.jpeds.2013.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 03/05/2013] [Accepted: 04/11/2013] [Indexed: 11/23/2022]
|
19
|
Pravica V, Markovic M, Cupic M, Savic E, Popadic D, Drulovic J, Mostarica-Stojkovic M. Multiple sclerosis: individualized disease susceptibility and therapy response. Biomark Med 2013; 7:59-71. [PMID: 23387485 DOI: 10.2217/bmm.12.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease in which diverse genetic, pathological and clinical backgrounds lead to variable therapy response. Accordingly, MS care should be tailored to address disease traits unique to each person. At the core of personalized management is the emergence of new knowledge, enabling optimized treatment and disease-modifying therapies. This overview analyzes the promise of genetic and nongenetic biomarkers in advancing decision-making algorithms to assist diagnosis or in predicting the disease course and therapy response in any given MS patient.
Collapse
Affiliation(s)
- Vera Pravica
- Institute of Microbiology & Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Buono RJ. Genome wide association studies (GWAS) and common forms of human epilepsy. Epilepsy Behav 2013; 28 Suppl 1:S63-5. [PMID: 23756483 PMCID: PMC3682226 DOI: 10.1016/j.yebeh.2012.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 11/25/2022]
Abstract
Several GWAS focused on common forms of epilepsy are underway. Currently, only one locus has been published that reached genome wide statistical significance. Two other loci that also reach genome wide statistical significance have been reported as preliminary data and are awaiting publication. Several additional loci identified in these studies fall just short of statistical significance, and it is hoped that future large scale meta-analyses will confirm these early findings and identify new loci that influence common forms of human epilepsy. Next generation DNA sequencing (NGS) studies are also underway and in the future will identify rare DNA variations of large effect that also contribute to the final epilepsy phenotypes under study. Finally, these studies have the potential to identify biomarkers of antiepileptic drug (AED) response as epilepsy patient GWAS and NGS data are stratified based on AED efficacy and tolerability.
Collapse
|
21
|
Multiple sclerosis genetics is dead. Mult Scler Relat Disord 2013; 2:156-61. [DOI: 10.1016/j.msard.2012.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 11/24/2022]
|
22
|
Alcalde-Cabero E, Almazán-Isla J, García-Merino A, de Sá J, de Pedro-Cuesta J. Incidence of multiple sclerosis among European Economic Area populations, 1985-2009: the framework for monitoring. BMC Neurol 2013; 13:58. [PMID: 23758972 PMCID: PMC3686603 DOI: 10.1186/1471-2377-13-58] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/04/2013] [Indexed: 11/15/2022] Open
Abstract
Background A debate surrounding multiple sclerosis epidemiology has centred on time-related incidence increases and the need of monitoring. The purpose of this study is to reassess multiple sclerosis incidence in the European Economic Area. Methods We conducted a systematic review of literature from 1965 onwards and integrated elements of original research, including requested or completed data by surveys authors and specific analyses. Results The review of 5323 documents yielded ten studies for age- and sex-specific analyses, and 21 studies for time-trend analysis of single data sets. After 1985, the incidence of multiple sclerosis ranged from 1.12 to 6.96 per 100,000 population, was higher in females, tripled with latitude, and doubled with study midpoint year. The north registered increasing trends from the 1960s and 1970s, with a historic drop in the Faroe Islands, and fairly stable data in the period 1980-2000; incidence rose in Italian and French populations in the period 1970-2000, in Evros (Greece) in the 1980s, and in the French West Indies in around 2000. Conclusions We conclude that the increase in multiple sclerosis incidence is only apparent, and that it is not specific to women. Monitoring of multiple sclerosis incidence might be appropriate for the European Economic Area.
Collapse
Affiliation(s)
- Enrique Alcalde-Cabero
- National Centre for Epidemiology, Carlos III Institute of Health, and Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Av Monforte de Lemos 5, Madrid 28029, Spain
| | | | | | | | | |
Collapse
|
23
|
Van Haren K, Tomooka BH, Kidd BA, Banwell B, Bar-Or A, Chitnis T, Tenembaum SN, Pohl D, Rostasy K, Dale RC, O'Connor KC, Hafler DA, Steinman L, Robinson WH. Serum autoantibodies to myelin peptides distinguish acute disseminated encephalomyelitis from relapsing-remitting multiple sclerosis. Mult Scler 2013; 19:1726-33. [PMID: 23612879 DOI: 10.1177/1352458513485653] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Acute disseminated encephalomyelitis (ADEM) and relapsing-remitting multiple sclerosis (RRMS) share overlapping clinical, radiologic and laboratory features at onset. Because autoantibodies may contribute to the pathogenesis of both diseases, we sought to identify autoantibody biomarkers that are capable of distinguishing them. METHODS We used custom antigen arrays to profile anti-myelin-peptide autoantibodies in sera derived from individuals with pediatric ADEM (n = 15), pediatric multiple sclerosis (Ped MS; n = 11) and adult MS (n = 15). Using isotype-specific secondary antibodies, we profiled both IgG and IgM reactivities. We used Statistical Analysis of Microarrays software to confirm the differences in autoantibody reactivity profiles between ADEM and MS samples. We used Prediction Analysis of Microarrays software to generate and validate prediction algorithms, based on the autoantibody reactivity profiles. RESULTS ADEM was characterized by IgG autoantibodies targeting epitopes derived from myelin basic protein, proteolipid protein, myelin-associated oligodendrocyte basic glycoprotein, and alpha-B-crystallin. In contrast, MS was characterized by IgM autoantibodies targeting myelin basic protein, proteolipid protein, myelin-associated oligodendrocyte basic glycoprotein and oligodendrocyte-specific protein. We generated and validated prediction algorithms that distinguish ADEM serum (sensitivity 62-86%; specificity 56-79%) from MS serum (sensitivity 40-87%; specificity 62-86%) on the basis of combined IgG and IgM anti-myelin autoantibody reactivity to a small number of myelin peptides. CONCLUSIONS Combined profiles of serum IgG and IgM autoantibodies identified myelin antigens that may be useful for distinguishing MS from ADEM. Further studies are required to establish clinical utility. Further biological assays are required to delineate the pathogenic potential of these antibodies.
Collapse
Affiliation(s)
- Keith Van Haren
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
OBJECTIVE Suicidal ideation and behavior have been associated with a variety of neurological illnesses. Studies are ongoing in combat veterans and other groups to examine possible mechanisms and pathways that account for such associations. METHOD This article provides a review of the literature on suicide ideation and suicidal behavior in patients with neurological illnesses including publications on veteran's health and military medicine. Studies of suicide attempts and deaths in people with neurological illnesses are also reviewed. RESULTS The studies summarized in this review indicate that there are important linkages between suicidal ideation and behavior and neurological conditions, including epilepsy, multiple sclerosis, and amyotrophic lateral sclerosis. CONCLUSION Additional studies are needed to further clarify why suicide ideation and suicidal behavior are associated with neurological diseases, in order to improve quality of life, alleviate patient distress, and prevent nonfatal and fatal suicide attempts in veteran and non-veteran populations.
Collapse
Affiliation(s)
- Steven S Coughlin
- Post-Deployment Health Epidemiology Program, Office of Public Health, Department of Veterans Affairs, Washington, DC, USA
| | - Leo Sher
- James J. Peters Veterans’ Affairs Medical Center, New York, USA
- Mount Sinai School of Medicine, New York, USA
| |
Collapse
|
25
|
Apperson ML, Tian Y, Stamova B, Ander BP, Jickling GC, Agius MA, Sharp FR. Genome wide differences of gene expression associated with HLA-DRB1 genotype in multiple sclerosis: a pilot study. J Neuroimmunol 2013; 257:90-6. [PMID: 23477965 DOI: 10.1016/j.jneuroim.2013.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 01/21/2023]
Abstract
Using two microarray platforms, we identify HLA-DRB5 as the most highly expressed gene in MS compared to healthy subjects. As expected, HLA-DRB5 expression was associated with the HLA-DRB1*1501 MS susceptibility allele. Besides HLA-DRB5, there were 1219 differentially expressed exons (p<0.01, |fold change (FC)|>1.2) that differed between HLA-DRB1*1501 Positive multiple sclerosis subjects (MSP) compared to HLA-DRB1*1501 negative multiple sclerosis subjects (MSN). Analysis of the regulated genes revealed significantly different immune signaling pathways including IL-4 and IL-17 in these two MS genotypes. Different risk alleles appear to be associated with different patterns of gene expression that may reflect differences in pathophysiology of these two MS subtypes. These preliminary data will need to be confirmed in future studies.
Collapse
Affiliation(s)
- Michelle L Apperson
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Soulillou JP. Missing links in multiple sclerosis etiology. A working connecting hypothesis. Med Hypotheses 2013; 80:509-16. [PMID: 23466062 DOI: 10.1016/j.mehy.2013.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/29/2013] [Indexed: 12/15/2022]
Abstract
The etiology of multiple sclerosis is still elusive despite an extended patchwork of mechanistic events has been accumulated. In this article, are tentatively identified from scattered literature sources new factors that may link well known characteristic of MS such as the central alteration of BBR selectivity, its association with EBV status and its biased distribution of the globe more comprehensively. The hypothesis proposes that the concomitant important rise in some heterophilic antibodies (anti Neu5Gc) which activate BBB endothelial cells and in the frequency of anti EBV committed T cells and of memory B infected cells with EBV contemporary to EBV infection play a major role in MS etiology. In addition, the hypothesis proposes new possible explanations for the elevated risk of MS in specific geographical area.
Collapse
|
27
|
Cardona SM, Garcia JA, Cardona AE. The fine balance of chemokines during disease: trafficking, inflammation, and homeostasis. Methods Mol Biol 2013; 1013:1-16. [PMID: 23625489 PMCID: PMC3980472 DOI: 10.1007/978-1-62703-426-5_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The action of chemokines (or "chemotactic cytokines") is recognized as an integral part of inflammatory and regulatory processes. Leukocyte mobilization during physiological conditions, trafficking of various cell types during pathological conditions, cell activation, and angiogenesis are among the target functions exerted by chemokines upon signaling via their specific receptors. Current research is focused in analyzing changes in chemokine/chemokine receptor patterns during various diseases with the aim to modulate pathological trafficking of cells, or to attract particular cell types to specific tissues. This review focuses on defining the role(s) of certain chemokine ligands and receptors in inflammatory neurological conditions such as multiple sclerosis. In addition, the role(s) of chemokines in neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease is also described, as well as the contribution of chemokines to the pathogenesis of cancer, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Sandra M Cardona
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | | | | |
Collapse
|
28
|
Harbo HF, Mero IL. From genes to characteristics of multiple sclerosis. Acta Neurol Scand 2012:76-83. [PMID: 23278661 DOI: 10.1111/ane.12027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2012] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating heterogeneous disease of the central nervous system, probably caused by an interaction of common genetic and environmental factors. Much progress has been made through the last few years in genetic studies of MS, and a growing list of genetic risk factors is now available. Biobanking and large collaborations have been prerequisites for this research, and detailed genetic and molecular characterizations are underway, with hopes for to translating new knowledge about MS pathogenesis and characteristics of the disease to personalized, better treatment options for each patient with MS.
Collapse
Affiliation(s)
- H F Harbo
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | | |
Collapse
|
29
|
Tipirneni A, Weinstock-Guttman B, Ramanathan M, Abdelrahman N, Hussein S, Hagemeier J, Durfee J, Teter BE, Hojnacki D, Dwyer MG, Zivadinov R. MRI characteristics of familial and sporadic multiple sclerosis patients. Mult Scler 2012; 19:1145-52. [PMID: 23232600 DOI: 10.1177/1352458512469697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the MRI characteristics in a large cohort of multiple sclerosis (MS) patients with and without a family history of MS. METHODS Enrolled in this prospective study were 758 consecutive MS patients (mean age 46.2 ± 10.1 years, disease duration 13.6 ± 9.2 years and EDSS 3.4 ± 2.1), of whom 477 had relapsing-remitting, 222 secondary-progressive, and 30 primary-progressive disease courses and 29 had clinically isolated syndrome. One hundred and ninety-six patients (25.9%) had a positive family history of MS. Patients were assessed using measurements of lesions, brain atrophy, magnetization transfer ratio (MTR) and diffusion-weighted imaging. RESULTS The familial MS group had greater T1-lesion volume (p=0.009) and a trend for lower MTR of T1-lesion volume (p=0.047) than the sporadic MS group. No clinical differences were found between familial versus sporadic group, or by a degree of affected relative subgroups. CONCLUSIONS While familial MS was associated with more severe T1-lesion volume and its MTR characteristics, there were no clinical status differences between familial and sporadic MS patients. Therefore, a better understanding of the genetic and/or epigenetic influences causing these differences can advance the understanding and management of MS.
Collapse
Affiliation(s)
- Anita Tipirneni
- Buffalo Neuroimaging Analysis Center, State University of New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Flores J, González S, Morales X, Yescas P, Ochoa A, Corona T. Absence of Multiple Sclerosis and Demyelinating Diseases among Lacandonians, a Pure Amerindian Ethnic Group in Mexico. Mult Scler Int 2012; 2012:292631. [PMID: 22973516 PMCID: PMC3437645 DOI: 10.1155/2012/292631] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/20/2012] [Accepted: 07/22/2012] [Indexed: 11/18/2022] Open
Abstract
Multiple Sclerosis (MS) is a highly polymorphic disease characterized by different neurologic signs and symptoms. In MS, racial and genetic factors may play an important role in the geographic distribution of this disease. Studies have reported the presence of several protective alleles against the development of autoimmune disorders. In the case of MS, however, they help define MS as a complex disease, and confirm the importance of environmental agents as an independent variable not associated with ethnicity. We carried out an on-site epidemiological study to confirm the absence of MS or NMO among Lacandonians, a pure Amerindian ethnic group in Mexico. We administered a structured interview to 5,372 Lacandonians to assess by family background any clinical data consistent with the presence of a prior demyelinating event. Every participating subject underwent a comprehensive neurological examination by a group of three members of the research team with experience in the diagnosis and treatment of demyelinating disorders to detect clinical signs compatible with a demyelinating disease. We did not find any clinical signs compatible with multiple sclerosis among study participants.
Collapse
Affiliation(s)
- Jose Flores
- Neurodegenerative Diseases Laboratory, The National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877 Col. La Fama. Del. Tlalpan, CP 14269, Mexico City 14000, DF, Mexico
| | - Silvia González
- Neurodegenerative Diseases Laboratory, The National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877 Col. La Fama. Del. Tlalpan, CP 14269, Mexico City 14000, DF, Mexico
| | - Ximena Morales
- Neurodegenerative Diseases Laboratory, The National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877 Col. La Fama. Del. Tlalpan, CP 14269, Mexico City 14000, DF, Mexico
| | - Petra Yescas
- Genetics Laboratory, The National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877 Col. La Fama. Del. Tlalpan, CP 14269, Mexico City, DF, Mexico
| | - Adriana Ochoa
- Genetics Laboratory, The National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877 Col. La Fama. Del. Tlalpan, CP 14269, Mexico City, DF, Mexico
| | - Teresa Corona
- Neurodegenerative Diseases Laboratory, The National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877 Col. La Fama. Del. Tlalpan, CP 14269, Mexico City 14000, DF, Mexico
| |
Collapse
|