1
|
Mishra A, Prabha PK, Singla R, Kaur G, Sharma AR, Joshi R, Suroy B, Medhi B. Epigenetic Interface of Autism Spectrum Disorders (ASDs): Implications of Chromosome 15q11-q13 Segment. ACS Chem Neurosci 2022; 13:1684-1696. [PMID: 35635007 DOI: 10.1021/acschemneuro.2c00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASDs) are multifactorial in nature and include both genetic and environmental factors. The increasing evidence advocates an important role of epigenetics in ASD etiology. One of the most common forms of epigenetic changes observed in the case of neurodevelopmental disorders is imprinting which is tightly regulated by developmental and tissue-specific mechanisms. Interestingly, many of these disorders that demonstrate autism-like phenotypes at varying degrees have found involvement of chromosome 15q11-q13 segment. Numerous studies demonstrate occurrence of ASD in the presence of chromosomal abnormalities located mainly in Chr15q11-q13 region. Several plausible candidate genes associated with ASD are in this chromosomal segment, including gamma aminobutyric acid A (GABAA) receptor genes GABRB3, GABRA5 and GABRG3, UBE3A, ATP 10A, MKRN3, ZNF, MAGEL2, Necdin (NDN), and SNRPN. The main objective of this review is to highlight the contribution of epigenetic modulations in chromosome 15q11-q13 segment toward the genetic etiology and pathophysiology of ASD. The present review reports the abnormalities in epigenetic regulation on genes and genomic regions located on chromosome 15 in relation to either syndromic (15q11-q13 maternal duplication) or nonsyndromic forms of ASD. Furthermore, studies reviewed in this article demonstrate conditions in which epigenetic dysregulation has been found to be a pathological factor for ASD development, thereby supporting a role for epigenetics in the multifactorial etiologies of ASD. Also, on the basis of the evidence found so far, we strongly emphasize the need to develop future therapeutic strategies as well as screening procedures for ASD that target mechanisms involving genes located on the chromosomal 15q11-q13 segment.
Collapse
Affiliation(s)
- Abhishek Mishra
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Praisy K Prabha
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rubal Singla
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Gurjeet Kaur
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Amit Raj Sharma
- Dept. of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rupa Joshi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Benjamin Suroy
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bikash Medhi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
2
|
Deutsch SI, Burket JA. Psychotropic medication use for adults and older adults with intellectual disability; selective review, recommendations and future directions. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110017. [PMID: 32544599 DOI: 10.1016/j.pnpbp.2020.110017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022]
Abstract
A growing expert consensus has emerged to guide prescribing behavior and monitoring of psychotropic medications in adults and older adults with intellectual disability (ID). However, there is little empirically-derived evidence to inform physician selection of specific categories of psychotropic medication for treatment of "challenging" behaviors in this vulnerable population (such as aggression to self, others and objects; self-injurious behaviors; repetitive stereotypic behaviors; and hyperactivity). Difficulties with application of formal definitional diagnostic criteria and reliable assignment of psychiatric diagnoses to adults with ID, which is often difficult due to their poor communication skills, contribute to confusion and uncertainty surrounding medication selection. Long-term administration of antipsychotic medications are commonly prescribed for challenging behaviors in spite of their questionable long-term efficacy, leading some to suggest that their "episodic" short-term administration for imminent dangerousness to self and others or when difficult-to-find residential placements are threatened is preferred to their long-term administration. Further, literature supports engagement of interdisciplinary treatment teams to seek causes for challenging behaviors, formulate non-pharmacological psychosocial and behavioral plans for their amelioration and, if medications are initiated, convene regular medication monitoring to identify "drug-related problems". Medication monitoring is important because medication-related adverse events cause or contribute to challenging behaviors, which can sometimes be improved by dose reduction, medication discontinuation and/or elimination of polypharmacy and co-pharmacy. Importantly, medications themselves may interfere with self-reported measures of Quality of Life. The data clearly highlight the need for well-designed randomized controlled clinical trials in samples that are homogeneous with respect to severity of ID and residential setting; moreover, they should include a wider variety of clinical and safety outcome measures. Preclinical studies have suggested novel pharmacological strategies to prevent progressive worsening of adaptive function in adults with Down syndrome in particular, and improvement of cognition in adults with ID in general, irrespective of the etiopathogenesis of the ID. Translational clinical trials to address pathogenic mechanisms of ID, as well as challenging behaviors, are anticipated but raise societal issues pertaining to protection of this vulnerable population enrolling in clinical trials and prioritization of urgent therapeutic targets (e.g., amelioration of challenging behaviors versus improving or preserving intellectual functioning).
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavior Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, Virginia 23507, USA.
| | - Jessica A Burket
- Department of Molecular Biology and Chemistry, Christopher Newport University, 1 Avenue of the Arts, Newport News, Virginia 23606, USA; Program in Neuroscience, Christopher Newport University, 1 Avenue of the Arts, Newport News, Virginia 23606, USA
| |
Collapse
|
3
|
Sey NYA, Hu B, Mah W, Fauni H, McAfee JC, Rajarajan P, Brennand KJ, Akbarian S, Won H. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat Neurosci 2020; 23:583-593. [PMID: 32152537 PMCID: PMC7131892 DOI: 10.1038/s41593-020-0603-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/30/2020] [Indexed: 11/23/2022]
Abstract
Most risk variants for brain disorders identified by genome-wide association studies (GWAS) reside in non-coding genome, which makes deciphering biological mechanisms difficult. A commonly used tool, MAGMA, addresses this issue by aggregating SNP associations to nearest genes. Here, we developed a platform, Hi-C coupled MAGMA (H-MAGMA), that advances MAGMA by incorporating chromatin interaction profiles from human brain tissue across two developmental epochs and two brain cell types. By employing gene regulatory relationships in the disease-relevant tissue, H-MAGMA identifies neurobiologically-relevant target genes. We applied H-MAGMA to five psychiatric disorders and four neurodegenerative disorders to interrogate biological pathways, developmental windows, and cell types implicated for each disorder. Psychiatric disorder risk genes tended to be expressed during mid-gestation and in excitatory neurons, whereas degenerative disorder risk genes showed increasing expression over time and more diverse cell-type specificities. H-MAGMA adds to existing analytic frameworks to help identify the neurobiological consequences of brain disorder genetics.
Collapse
Affiliation(s)
- Nancy Y A Sey
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Benxia Hu
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Won Mah
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Harper Fauni
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica Caitlin McAfee
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Prashanth Rajarajan
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hyejung Won
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA. .,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Deutsch SI, Burket JA. An Evolving Therapeutic Rationale for Targeting the α 7 Nicotinic Acetylcholine Receptor in Autism Spectrum Disorder. Curr Top Behav Neurosci 2020; 45:167-208. [PMID: 32468495 DOI: 10.1007/7854_2020_136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Abnormalities of cholinergic nuclei, cholinergic projections, and cholinergic receptors, as well as abnormalities of growth factors involved in the maturation and maintenance of cholinergic neurons, have been described in postmortem brains of persons with autism spectrum disorder (ASD). Further, microdeletions of the 15q13.3 locus that encompasses CHRNA7, the gene coding the α7 nicotinic acetylcholine receptor (α7 nAChR), are associated with a spectrum of neurodevelopmental disorders, including ASD. The heterozygous 15q13.3 microdeletion syndrome suggests that diminished or impaired transduction of the acetylcholine (ACh) signal by the α7 nAChR can be a pathogenic mechanism of ASD. The α7 nAChR has a role in regulating the firing and function of parvalbumin (PV)-expressing GABAergic projections, which synchronize the oscillatory output of assemblies of pyramidal neurons onto which they project. Synchronous oscillatory output is an electrophysiological substrate for higher executive functions, such as working memory, and functional connectivity between discrete anatomic areas of the brain. The α7 nAChR regulates PV expression and works cooperatively with the co-expressed NMDA receptor in subpopulations of GABAergic interneurons in mouse models of ASD. An evolving literature supports therapeutic exploration of selectively targeted cholinergic interventions for the treatment of ASD, especially compounds that target the α7 nAChR subtype. Importantly, development and availability of high-affinity, brain-penetrable, α7 nAChR-selective agonists, partial agonists, allosteric agonists, and positive allosteric modulators (PAMs) should facilitate "proof-of-principle/concept" clinical trials. nAChRs are pentameric allosteric proteins that function as ligand-gated ion channel receptors constructed from five constituent polypeptide subunits, all of which share a common structural motif. Importantly, in addition to α7 nAChR-gated Ca2+ conductance causing membrane depolarization, there are emerging data consistent with possible metabotropic functions of this ionotropic receptor. The ability of α7-selective type II PAMs to "destabilize" the desensitized state and promote ion channel opening may afford them therapeutic advantages over orthosteric agonists. The current chapter reviews historic and recent literature supporting selective therapeutic targeting of the α7 nAChR in persons affected with ASD.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA.
| | - Jessica A Burket
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA, USA
| |
Collapse
|
5
|
Kunchulia M, Kotaria N, Pilz K, Kotorashvili A, Herzog MH. Associations between genetic variations and global motion perception. Exp Brain Res 2019; 237:2729-2734. [DOI: 10.1007/s00221-019-05627-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 08/13/2019] [Indexed: 02/04/2023]
|
6
|
Felix RA, Chavez VA, Novicio DM, Morley BJ, Portfors CV. Nicotinic acetylcholine receptor subunit α 7-knockout mice exhibit degraded auditory temporal processing. J Neurophysiol 2019; 122:451-465. [PMID: 31116647 DOI: 10.1152/jn.00170.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The CHRNA7 gene that encodes the α7-subunit of the nicotinic acetylcholine receptor (α7-nAChR) has been associated with some autism spectrum disorders and other neurodevelopmental conditions characterized, in part, by auditory and language impairment. These conditions may include auditory processing disorders that represent impaired timing of neural activity, often accompanied by problems understanding speech. Here, we measure timing properties of sound-evoked activity via the auditory brainstem response (ABR) of α7-nAChR knockout mice of both sexes and wild-type colony controls. We find a significant timing delay in evoked ABR signals that represents midbrain activity in knockouts. We also examine spike-timing properties of neurons in the inferior colliculus, a midbrain nucleus that exhibits high levels of α7-nAChR during development. We find delays of evoked responses along with degraded spiking precision in knockout animals. We find similar timing deficits in responses of neurons in the superior paraolivary nucleus and ventral nucleus of the lateral lemniscus, which are brainstem nuclei thought to shape temporal precision in the midbrain. In addition, we find that other measures of temporal acuity including forward masking and gap detection are impaired for knockout animals. We conclude that altered temporal processing at the level of the brainstem in α7-nAChR-deficient mice may contribute to degraded spike timing in the midbrain, which may underlie the observed timing delay in the ABR signals. Our findings are consistent with a role for the α7-nAChR in types of neurodevelopmental and auditory processing disorders and we identify potential neural targets for intervention.NEW & NOTEWORTHY Disrupted signaling via the α7-nicotinic acetylcholine receptor (α7-nAChR) is associated with neurodevelopmental disorders that include impaired auditory processing. The underlying causes of dysfunction are not known but a common feature is abnormal timing of neural activity. We examined temporal processing of α7-nAChR knockout mice and wild-type controls. We found degraded spike timing of neurons in knockout animals, which manifests at the level of the auditory brainstem and midbrain.
Collapse
Affiliation(s)
- Richard A Felix
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| | - Vicente A Chavez
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| | - Dyana M Novicio
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| | | | - Christine V Portfors
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| |
Collapse
|
7
|
Daghsni M, Rima M, Fajloun Z, Ronjat M, Brusés JL, M'rad R, De Waard M. Autism throughout genetics: Perusal of the implication of ion channels. Brain Behav 2018; 8:e00978. [PMID: 29934975 PMCID: PMC6085908 DOI: 10.1002/brb3.978] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/01/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) comprises a group of neurodevelopmental psychiatric disorders characterized by deficits in social interactions, interpersonal communication, repetitive and stereotyped behaviors and may be associated with intellectual disabilities. The description of ASD as a synaptopathology highlights the importance of the synapse and the implication of ion channels in the etiology of these disorders. METHODS A narrative and critical review of the relevant papers from 1982 to 2017 known by the authors was conducted. RESULTS Genome-wide linkages, association studies, and genetic analyses of patients with ASD have led to the identification of several candidate genes and mutations linked to ASD. Many of the candidate genes encode for proteins involved in neuronal development and regulation of synaptic function including ion channels and actors implicated in synapse formation. The involvement of ion channels in ASD is of great interest as they represent attractive therapeutic targets. In agreement with this view, recent findings have shown that drugs modulating ion channel function are effective for the treatment of certain types of patients with ASD. CONCLUSION This review describes the genetic aspects of ASD with a focus on genes encoding ion channels and highlights the therapeutic implications of ion channels in the treatment of ASD.
Collapse
Affiliation(s)
- Marwa Daghsni
- L'institut du Thorax, INSERM UMR1087/CNRS UMR6291, Université de Nantes, Nantes, France.,Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, 1007, Tunis, Tunisie
| | - Mohamad Rima
- Department of Neuroscience, Institute of Biology Paris-Seine, CNRS UMR 8246, INSERM U1130, Sorbonne Universités, Paris, France
| | - Ziad Fajloun
- Azm Center for Research in Biotechnology and Its Application, Lebanese University, Tripoli, Lebanon
| | - Michel Ronjat
- L'institut du Thorax, INSERM UMR1087/CNRS UMR6291, Université de Nantes, Nantes, France.,LabEx Ion Channels Science and Therapeutics, Nice, France
| | - Juan L Brusés
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY, USA
| | - Ridha M'rad
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, 1007, Tunis, Tunisie.,Service des Maladies Congénitales et Héréditaires, Hôpital Charles Nicolle, Tunis, Tunisie
| | - Michel De Waard
- L'institut du Thorax, INSERM UMR1087/CNRS UMR6291, Université de Nantes, Nantes, France.,LabEx Ion Channels Science and Therapeutics, Nice, France
| |
Collapse
|
8
|
Lacivita E, Perrone R, Margari L, Leopoldo M. Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. J Med Chem 2017; 60:9114-9141. [PMID: 29039668 DOI: 10.1021/acs.jmedchem.7b00965] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests, and activities. Various factors are involved in the etiopathogenesis of ASD, including genetic factors, environmental toxins and stressors, impaired immune responses, mitochondrial dysfunction, and neuroinflammation. The heterogeneity in the phenotype among ASD patients and the complex etiology of the condition have long impeded the advancement of the development of pharmacological therapies. In the recent years, the integration of findings from mouse models to human genetics resulted in considerable progress toward the understanding of ASD pathophysiology. Currently, strategies to treat core symptoms of ASD are directed to correct synaptic dysfunctions, abnormalities in central oxytocin, vasopressin, and serotonin neurotransmission, and neuroinflammation. Here, we present a survey of the studies that have suggested molecular targets for drug development for ASD and the state-of-the-art of medicinal chemistry efforts in related areas.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Roberto Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Lucia Margari
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Unità di Neuropsichiatria Infantile, Università degli Studi di Bari Aldo Moro , Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
9
|
Notarangelo FM, Pocivavsek A. Elevated kynurenine pathway metabolism during neurodevelopment: Implications for brain and behavior. Neuropharmacology 2017; 112:275-285. [PMID: 26944732 PMCID: PMC5010529 DOI: 10.1016/j.neuropharm.2016.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/20/2022]
Abstract
The kynurenine pathway (KP) of tryptophan degradation contains several neuroactive metabolites that may influence brain function in health and disease. Mounting focus has been dedicated to investigating the role of these metabolites during neurodevelopment and elucidating their involvement in the pathophysiology of psychiatric disorders with a developmental component, such as schizophrenia. In this review, we describe the changes in KP metabolism in the brain from gestation until adulthood and illustrate how environmental and genetic factors affect the KP during development. With a particular focus on kynurenic acid, the antagonist of α7 nicotinic acetylcholine (α7nACh) and N-methyl-d-aspartate (NMDA) receptors, both implicated in modulating brain development, we review animal models designed to ascertain the role of perinatal KP elevation on long-lasting biochemical, neuropathological, and behavioral deficits later in life. We present new data demonstrating that combining perinatal choline-supplementation, to potentially increase activation of α7nACh receptors during development, with embryonic kynurenine manipulation is effective in attenuating cognitive impairments in adult rat offspring. With these findings in mind, we conclude the review by discussing the advancement of therapeutic interventions that would target not only symptoms, but potentially the root cause of central nervous system diseases that manifest from a perinatal KP insult. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'.
Collapse
Affiliation(s)
- Francesca M Notarangelo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Deutsch SI, Burket JA, Benson AD, Urbano MR. The 15q13.3 deletion syndrome: Deficient α(7)-containing nicotinic acetylcholine receptor-mediated neurotransmission in the pathogenesis of neurodevelopmental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:109-17. [PMID: 26257138 DOI: 10.1016/j.pnpbp.2015.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 11/15/2022]
Abstract
Array comparative genomic hybridization (array CGH) has led to the identification of microdeletions of the proximal region of chromosome 15q between breakpoints (BP) 3 or BP4 and BP5 encompassing CHRNA7, the gene encoding the α7-nicotinic acetylcholine receptor (α7nAChR) subunit. Phenotypic manifestations of persons with these microdeletions are variable and some heterozygous carriers are seemingly unaffected, consistent with their variable expressivity and incomplete penetrance. Nonetheless, the 15q13.3 deletion syndrome is associated with several neuropsychiatric disorders, including idiopathic generalized epilepsy, intellectual disability, autism spectrum disorders (ASDs) and schizophrenia. Haploinsufficient expression of CHRNA7 in this syndrome has highlighted important roles the α7nAChR plays in the developing brain and normal processes of attention, cognition, memory and behavior throughout life. Importantly, the existence of the 15q13.3 deletion syndrome contributes to an emerging literature supporting clinical trials therapeutically targeting the α7nAChR in disorders such as ASDs and schizophrenia, including the larger population of patients with no evidence of haploinsufficient expression of CHRNA7. Translational clinical trials will be facilitated by the existence of positive allosteric modulators (PAMs) of the α7nAChR that act at sites on the receptor distinct from the orthosteric site that binds acetylcholine and choline, the receptor's endogenous ligands. PAMs lack intrinsic efficacy by themselves, but act where and when the endogenous ligands are released in response to relevant social and cognitive provocations to increase the likelihood they will result in α7nAChR ion channel activation.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA 23507-1912, United States.
| | - Jessica A Burket
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA 23507-1912, United States
| | - Andrew D Benson
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA 23507-1912, United States
| | - Maria R Urbano
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA 23507-1912, United States
| |
Collapse
|
11
|
The α7 nicotinic acetylcholine receptor: A mediator of pathogenesis and therapeutic target in autism spectrum disorders and Down syndrome. Biochem Pharmacol 2015; 97:363-377. [DOI: 10.1016/j.bcp.2015.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023]
|
12
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
13
|
Gillentine MA, Schaaf CP. The human clinical phenotypes of altered CHRNA7 copy number. Biochem Pharmacol 2015; 97:352-362. [PMID: 26095975 DOI: 10.1016/j.bcp.2015.06.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/10/2015] [Indexed: 01/03/2023]
Abstract
Copy number variants (CNVs) have been implicated in multiple neuropsychiatric conditions, including autism spectrum disorder (ASD), schizophrenia, and intellectual disability (ID). Chromosome 15q13 is a hotspot for such CNVs due to the presence of low copy repeat (LCR) elements, which facilitate non-allelic homologous recombination (NAHR). Several of these CNVs have been overrepresented in individuals with neuropsychiatric disorders; yet variable expressivity and incomplete penetrance are commonly seen. Dosage sensitivity of the CHRNA7 gene, which encodes for the α7 nicotinic acetylcholine receptor in the human brain, has been proposed to have a major contribution to the observed cognitive and behavioral phenotypes, as it represents the smallest region of overlap to all the 15q13.3 deletions and duplications. Individuals with zero to four copies of CHRNA7 have been reported in the literature, and represent a range of clinical severity, with deletions causing generally more severe and more highly penetrant phenotypes. Potential mechanisms to account for the variable expressivity within each group of 15q13.3 CNVs will be discussed.
Collapse
Affiliation(s)
- Madelyn A Gillentine
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
14
|
Molas S, Dierssen M. The role of nicotinic receptors in shaping and functioning of the glutamatergic system: a window into cognitive pathology. Neurosci Biobehav Rev 2014; 46 Pt 2:315-25. [PMID: 24879992 DOI: 10.1016/j.neubiorev.2014.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/13/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
The involvement of the cholinergic system in learning, memory and attention has long been recognized, although its neurobiological mechanisms are not fully understood. Recent evidence identifies the endogenous cholinergic signaling via nicotinic acetylcholine receptors (nAChRs) as key players in determining the morphological and functional maturation of the glutamatergic system. Here, we review the available experimental and clinical evidence of nAChRs contribution to the establishment of the glutamatergic system, and therefore to cognitive function. We provide some clues of the putative underlying molecular mechanisms and discuss recent human studies that associate genetic variability of the genes encoding nAChR subunits with cognitive disorders. Finally, we discuss the new avenues to therapeutically targeting nAChRs in persons with cognitive dysfunction for which the α7-nAChR subunit is an important etiological mechanism.
Collapse
Affiliation(s)
- Susanna Molas
- Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona E-08003, Spain; University Pompeu Fabra (UPF), Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona E-08003, Spain
| | - Mara Dierssen
- Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona E-08003, Spain; University Pompeu Fabra (UPF), Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona E-08003, Spain.
| |
Collapse
|
15
|
Lacaze E, Gruchy N, Penniello-Valette MJ, Plessis G, Richard N, Decamp M, Mittre H, Leporrier N, Andrieux J, Kottler ML, Gerard M. De novo 15q13.3 microdeletion with cryptogenic West syndrome. Am J Med Genet A 2013; 161A:2582-7. [PMID: 23929658 DOI: 10.1002/ajmg.a.36085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 05/20/2013] [Indexed: 11/11/2022]
Abstract
West syndrome is a well-recognized form of epilepsy, defined by a triad of infantile spasms, hypsarrhythmia and developmental arrest. West syndrome is heterogenous, caused by mutations of genes ARX, STXBP1, KCNT1 among others; 16p13.11 and 17q21.31 microdeletions are less frequent, usually associated with intellectual disability and facial dysmorphism. So-called "idiopathic" West syndrome is of better prognostic, without prior intellectual deficiency and usually responsive to anti-epileptic treatment. We report on a boy falling within the scope of idiopathic West syndrome, with no dysmorphic features and normal development before the beginning of West syndrome, with a good resolution after treatment, bearing a de novo 15q13.3 microdeletion. Six genes are located in the deleted region, including CHRNA7, which encodes a subunit of a nicotinic acetylcholine receptor, and is frequently associated with epilepsy. Exploration of the 15q13.3 region should be proposed in idiopathic West syndrome.
Collapse
Affiliation(s)
- Elodie Lacaze
- Department of Genetics, Hôpital Côte de Nacre, Caen, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci U S A 2013; 110:12078-83. [PMID: 23818597 DOI: 10.1073/pnas.1307849110] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cognitive function of the highly evolved dorsolateral prefrontal cortex (dlPFC) is greatly influenced by arousal state, and is gravely afflicted in disorders such as schizophrenia, where there are genetic insults in α7 nicotinic acetylcholine receptors (α7-nAChRs). A recent behavioral study indicates that ACh depletion from dlPFC markedly impairs working memory [Croxson PL, Kyriazis DA, Baxter MG (2011) Nat Neurosci 14(12):1510-1512]; however, little is known about how α7-nAChRs influence dlPFC cognitive circuits. Goldman-Rakic [Goldman-Rakic (1995) Neuron 14(3):477-485] discovered the circuit basis for working memory, whereby dlPFC pyramidal cells excite each other through glutamatergic NMDA receptor synapses to generate persistent network firing in the absence of sensory stimulation. Here we explore α7-nAChR localization and actions in primate dlPFC and find that they are enriched in glutamate network synapses, where they are essential for dlPFC persistent firing, with permissive effects on NMDA receptor actions. Blockade of α7-nAChRs markedly reduced, whereas low-dose stimulation selectively enhanced, neuronal representations of visual space. These findings in dlPFC contrast with the primary visual cortex, where nAChR blockade had no effect on neuronal firing [Herrero JL, et al. (2008) Nature 454(7208):1110-1114]. We additionally show that α7-nAChR stimulation is needed for NMDA actions, suggesting that it is key for the engagement of dlPFC circuits. As ACh is released in cortex during waking but not during deep sleep, these findings may explain how ACh shapes differing mental states during wakefulness vs. sleep. The results also explain why genetic insults to α7-nAChR would profoundly disrupt cognitive experience in patients with schizophrenia.
Collapse
|