1
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
2
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024; 14:1266. [PMID: 39456199 PMCID: PMC11506420 DOI: 10.3390/biom14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Several studies have proposed a potential role for oxidative stress in the development of multiple sclerosis (MS). For this reason, it seems tentative to think that treatment with antioxidant substances could be useful in the treatment of this disease. In this narrative review, we provide a summary of the current findings on antioxidant treatments, both in experimental models of MS, especially in experimental autoimmune encephalomyelitis (EAE) and in the cuprizone-induced demyelination model, and clinical trials in patients diagnosed with MS. Practically all the antioxidants tested in experimental models of MS have shown improvement in clinical parameters, in delaying the evolution of the disease, and in improving histological and biochemical parameters, including decreased levels of markers of inflammation and oxidative stress in the central nervous system and other tissues. Only a few clinical trials have been carried out to investigate the potential efficacy of antioxidant substances in patients with MS, most of them in the short term and involving a short series of patients, so the results of these should be considered inconclusive. In this regard, it would be desirable to design long-term, randomized, multicenter clinical trials with a long series of patients, assessing several antioxidants that have demonstrated efficacy in experimental models of MS.
Collapse
Grants
- PI18/00540 Fondo de Investigación Sanitaria, Instituto de Salud Carlos, Madrid, Spain
- PI21/01683 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain
- IB20134 Junta de Extremadura, Mérida, Spain
- GR21073 Junta de Extremadura, Mérida, Spain
Collapse
Affiliation(s)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
3
|
Kwok A, Chaqour B, Khan RS, Aravand P, Dine K, Ross AG, Shindler KS. Pharmacological Activation and Transgenic Overexpression of SIRT1 Attenuate Traumatic Optic Neuropathy Induced by Blunt Head Impact. Transl Vis Sci Technol 2024; 13:27. [PMID: 39330985 PMCID: PMC11437676 DOI: 10.1167/tvst.13.9.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Purpose Resveratrol (RSV) is a nutraceutical compound known for its therapeutic potential in neurodegenerative and metabolic diseases. RSV promotes survival signals in retinal ganglion cells (RGCs) through activation of SIRT1, an NAD+-dependent deacetylase. RSV and SIRT1 reduce RGC loss induced by direct optic nerve injury, but effects in indirect models of traumatic optic neuropathy remain unknown and are examined in this study. Methods An electromagnetic stereotaxic impactor device was used to impart five traumatic skull impacts with an inter-concussion interval of 48 hours to wild type (WT) and SIRT1 knock in (KI) C57BL/6J mice overexpressing the SIRT1 gene. A cohort of WT mice also received intranasal administration of RSV (16 mg/kg) throughout the experimental period. Loss of righting reflex (RR), optokinetic response (OKR) scores, and immunolabeled RGC count are determined to assess optic neuropathy in this model of traumatic brain injury (TBI). Results TBI significantly decreases RGC survival and decreases OKR scores compared with control uninjured mice. Either RSV administration in WT mice, or SIRT1 overexpression in SIRT1 KI mice, significantly increases RGC survival and improves OKR scores. RR time increases after the first few impacts in all groups of mice subjected to TBI, demonstrating that RSV and SIRT1 overexpression are able to attenuate optic neuropathy following similar degrees of TBI. Conclusions Intranasal RSV is effective in preserving visual function in WT mice following TBI. Constitutive overexpression of SIRT1 recapitulates the neuroprotective effect of RSV. Translational Relevance Results support future exploration of RSV as a potential therapy for indirect traumatic optic neuropathy.
Collapse
Affiliation(s)
- Alex Kwok
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Reas S Khan
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Puya Aravand
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ahmara G Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Nikvarz N, Sedighi B, Ansari M, Shahdizade S, Shojaei R, Sharififar F. Medicinal plants used in multiple sclerosis patients, prevalence and associated factors: a descriptive cross-sectional study. BMC Complement Med Ther 2024; 24:278. [PMID: 39039480 PMCID: PMC11265095 DOI: 10.1186/s12906-024-04587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic and debilitating disease that not only leads to disability and associated condition but also impacts one's ability to maintain a professional life. People's acceptance and utilization of medicinal plants (MPs) play an important role in managing their treatment process. As a result, this study aims to investigate the use of medicinal herbs among patients with MS. METHODS A descriptive cross-sectional study was conducted on 150 MS patients who visited a private clinic and the MS Association in Kerman, Iran in 2021. A questionnaire comprising questions about sociodemographic information, disease variables, and aspects of MPs usage was utilized for data collection. Statistical analysis was performed using SPSS version 20 (SPSS Inc., Chicago, IL). The Chi-square test was employed to identify any association between demographic characteristics and MPs usage. To determine the prevalence of plant use in a specific area and the consensus among informants, the use value (UV) and Informant consensus factor (Fic) were calculated. RESULTS The study revealed a high prevalence of MPs usage among MS patients. Chamomile (66.6%) and golegavzaban (62.0%) were the most commonly used plants with the highest UV indices (0.88 and 0.82 respectively), while St. John's wort and licorice were rarely used (0.67% and 4% respectively). Participants cited pursuing a healthier lifestyle as the primary reason for using MPs (24%). St. John's wort, lavender, and chamomile were the most satisfying plants (100%, 100%, and 53.0% respectively). Chamomile had the highest Fic too. Most patients were motivated to get MPs from their relatives. CONCLUSIONS Given the widespread use of MPs among MS patients, neurologists should enhance their knowledge in this area to guide patients away from seeking advice from non-professionals. Providing standardized formulations can help prevent potential interactions between MPs and mainstream drugs, thereby improving patients safety and outcomes.
Collapse
Affiliation(s)
- Naemeh Nikvarz
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Behnaz Sedighi
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Pharmaceutical Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shirin Shahdizade
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Reyhane Shojaei
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutical Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Mu C, Gao M, Xu W, Sun X, Chen T, Xu H, Qiu H. Mechanisms of microRNA-132 in central neurodegenerative diseases: A comprehensive review. Biomed Pharmacother 2024; 170:116029. [PMID: 38128185 DOI: 10.1016/j.biopha.2023.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNA-132 (miR-132) is a highly conserved molecule that plays a crucial regulatory role in central nervous system (CNS) disorders. The expression levels of miR-132 exhibit variability in various neurological disorders and have been closely linked to disease onset and progression. The expression level of miR-132 in the CNS is regulated by a diverse range of stimuli and signaling pathways, including neuronal migration and integration, dendritic outgrowth, and complexity, synaptogenesis, synaptic plasticity, as well as inflammation and apoptosis activation. The aberrant expression of miR-132 in various central neurodegenerative diseases has garnered widespread attention. Clinical studies have revealed altered miR-132 expression levels in both chronic and acute CNS diseases, positioning miR-132 as a potential biomarker or therapeutic target. An in-depth exploration of miR-132 holds the promise of enhancing our understanding of the mechanisms underlying CNS diseases, thereby offering novel insights and strategies for disease diagnosis and treatment. It is anticipated that this review will assist researchers in recognizing the potential value of miR-132 and in generating innovative ideas for clinical trials related to CNS degenerative diseases.
Collapse
Affiliation(s)
- Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Meng Gao
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Weijing Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Tianhao Chen
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
6
|
Ahmed RH, Rashad Ahmed R, Galaly SR, Moustafa N, Abourehab MAS, Abdelgawad MA, Ahmed OM, Abdul-Hamid M. Mesenchymal Stem Cells and Curcumin Effectively Mitigate Freund's Adjuvant- induced Arthritis via their Anti-inflammatory and Gene Expression of COX-1, IL-6 and IL-4. Endocr Metab Immune Disord Drug Targets 2024; 24:468-488. [PMID: 36825726 DOI: 10.2174/1871530323666230223143011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 02/25/2023]
Abstract
BACKGROUND AND OBJECTIVES Rheumatoid arthritis (RA) is a type of arthritis that damages joints and can affect the thymus and the spleen. RA is an autoimmune disorder in which the immune system targets the body's own tissues. The causes of RA are unknown, although a genetic link is thought to be involved. The objective of this research was to evaluate the effect of curcumin, mesenchymal stem cells (MSCs), and their combination on the disruption of serum cytokines, ankle joint, thymus and spleen histopathology, and affected genes in complete Freund's adjuvant (CFA)-induced arthritis in male and female Wistar rats. METHODS Experimental animals were organized into 16 groups (6 animals for each), eight groups including male rats and the other eight groups including females rats. The groups are normal control, CMC, curcumin, MSCs, CFA, CFA/curcumin, CFA/ MSCs and the arthritic group treated with MSCs and curcumin. One subcutaneous injection of 0.1 mL CFA was given to rats into the right hind leg footpad to induce RA. The arthritic rats were intravenously injected three times with bone marrow-derived MSCs (BM-MSCs) and/or treated orally with curcumin daily (100 mg per kg body weight per day) for 21 days. RESULTS Curcumin and BM-MSCs work together to dramatically (P < 0.05) restore the high serum PGE2 and IL-17 levels and lower the IL-13 level in arthritic rats to normal levels. Deleterious effects on the spleen and thymus histological structure were counteracted. Gene expression of COX-1 and IL-6 was increased and IL-4 was decreased; these changes were improved by the combination treatment (P < 0.05). CONCLUSION Based on these findings, additive therapeutic effects on RA occur from the combined treatment of curcumin and BM-MSCs compared with their individual use (P < 0.05). Thus, it can be said that both curcumin and BM-MSCs are effective at reducing inflammation while also having beneficial effects on the ankle joint, thymus and spleen.
Collapse
Affiliation(s)
- Rania Hamed Ahmed
- Department of Zoology, Faculty of Science, Histology, Cell Biology and Genetic Division, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Rasha Rashad Ahmed
- Department of Zoology, Faculty of Science, Histology, Cell Biology and Genetic Division, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sanaa Rida Galaly
- Department of Zoology, Faculty of Science, Histology, Cell Biology and Genetic Division, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Nadia Moustafa
- Department of Zoology, Faculty of Science, Histology, Cell Biology and Genetic Division, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohammed Abdelwahab Sayed Abourehab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Osama Mohamed Ahmed
- Department of Zoology, Faculty of Science, Physiology Division, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Department of Zoology, Faculty of Science, Histology, Cell Biology and Genetic Division, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
7
|
Shamsher E, Khan RS, Davis BM, Dine K, Luong V, Somavarapu S, Cordeiro MF, Shindler KS. Nanoparticles Enhance Solubility and Neuroprotective Effects of Resveratrol in Demyelinating Disease. Neurotherapeutics 2023; 20:1138-1153. [PMID: 37160530 PMCID: PMC10457259 DOI: 10.1007/s13311-023-01378-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/11/2023] Open
Abstract
Resveratrol is a natural polyphenol which may be useful for treating neurodegenerative diseases such as multiple sclerosis (MS). To date, current immunomodulatory treatments for MS aim to reduce inflammation with limited effects on the neurodegenerative component of this disease. The purpose of the current study is to develop a novel nanoparticle formulation of resveratrol to increase its solubility, and to assess its ability to prevent optic nerve and spinal cord degeneration in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Resveratrol nanoparticles (RNs) were made using a thin rehydration technique. EAE mice received a daily oral administration of vehicle, RNs or unconjugated resveratrol for one month. They were assessed daily for clinical signs of paralysis and weekly for their visual acuity with optokinetic responses (OKR). After one month, their spinal cords and optic nerves were stained for inflammation and demyelination and retinal ganglion cells immunostained for Brn3a. RNs were stable for three months. The administration of RNs did not have any effect on clinical manifestation of EAE and did not preserve OKR scores but reduced the intensity of the disease. It did not reduce inflammation and demyelination in the spinal cord and the optic nerve. However, RNs were able to decrease RGC loss compared to the vehicle. Results demonstrate that resveratrol is neuroprotective by reducing RGC loss. Interestingly, neuroprotective effects and decreased disease severity occurred without reduction of inflammation or demyelination, suggesting this therapy may fill an unmet need to limit the neurodegenerative component of MS.
Collapse
Affiliation(s)
- Ehtesham Shamsher
- Institute of Ophthalmology, University College London, London, UK
- Jules-Gonin Eye Hospital, Lausanne University, Lausanne, Switzerland
| | - Reas S Khan
- Departments of Ophthalmology and Neurology, Scheie Eye Institute, University of Pennsylvania, 51 N 39th Street, Philadelphia, PA, 19104, USA
| | - Benjamin M Davis
- Institute of Ophthalmology, University College London, London, UK
| | - Kimberly Dine
- Departments of Ophthalmology and Neurology, Scheie Eye Institute, University of Pennsylvania, 51 N 39th Street, Philadelphia, PA, 19104, USA
| | - Vy Luong
- Institute of Ophthalmology, University College London, London, UK
| | | | - M Francesca Cordeiro
- Institute of Ophthalmology, University College London, London, UK
- Imperial College London Ophthalmology Research Group, London, UK
- Western Eye Hospital, London, UK
| | - Kenneth S Shindler
- Departments of Ophthalmology and Neurology, Scheie Eye Institute, University of Pennsylvania, 51 N 39th Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Tyler SE, Tyler LD. Pathways to healing: Plants with therapeutic potential for neurodegenerative diseases. IBRO Neurosci Rep 2023; 14:210-234. [PMID: 36880056 PMCID: PMC9984566 DOI: 10.1016/j.ibneur.2023.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.
Collapse
Key Words
- A-H, Alpers-Huttenlocher syndrome
- AD, Alzheimer’s disease
- ALS, Amyotrophic lateral sclerosis
- BBB, blood-brain barrier
- C. elegans,, Caenorhabditis elegans
- CJD, Creutzfeldt-Jakob disease
- CMT, Charcot–Marie–Tooth disease
- CS, Cockayne syndrome
- Ech A, Echinochrome A
- FDA, Food and Drug Administration
- FRDA, Friedreich’s ataxia
- FTD, Frontotemporal dementia
- HD, Huntington’s disease
- Hsp, Heat shock protein
- LSD, Lysosomal storage diseases
- MS, Multiple sclerosis
- MSA, Multiple system atrophy
- MSP, Multisystem proteinopathy
- Medicinal plant
- ND, neurodegenerative disease
- NPC, Neimann-Pick disease type C
- NSC, neural stem cells
- Neuro-inflammation
- Neurodegeneration
- Neurogenesis
- PC, pharmacological chaperone
- PD, Parkinson’s disease
- Protein misfolding
- SMA, Spinal muscular atrophy
- VD, Vascular dementia
- prion dis, prion diseases
- α-syn, alpha-synuclein
Collapse
Affiliation(s)
- Sheena E.B. Tyler
- John Ray Research Field Station, Cheshire, United Kingdom
- Corresponding author.
| | - Luke D.K. Tyler
- School of Natural Sciences, Bangor University, Gwynedd, United Kingdom
| |
Collapse
|
9
|
Samy DM, Zaki EI, Hassaan PS, Abdelmonsif DA, Mohamed DY, Saleh SR. Neurobehavioral, biochemical and histological assessment of the effects of resveratrol on cuprizone-induced demyelination in mice: role of autophagy modulation. J Physiol Biochem 2023:10.1007/s13105-023-00959-z. [PMID: 37131098 DOI: 10.1007/s13105-023-00959-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Resveratrol is known to exhibit neuroprotective effects in many neurological disorders via autophagy modulation. However, controversial results have been reported about the therapeutic potential of resveratrol and the implication of autophagy in demyelinating diseases. This study aimed to evaluate the autophagic changes in cuprizone-intoxicated C57Bl/6 mice and explore the effect of autophagy activation by resveratrol on the demyelination and remyelination processes. Mice were fed with chow containing 0.2% cuprizone for 5 weeks, followed by a cuprizone-free diet for 2 weeks. Resveratrol (250 mg/kg/day) and/or chloroquine (an autophagy inhibitor; 10 mg/kg/day) were given for 5 weeks starting from the third week. At the end of the experiment, animals were tested on rotarod and then sacrificed for biochemical assessment, luxol fast blue (LFB) staining, and transmission electron microscopy (TEM) imaging of the corpus callosum. We observed that cuprizone-induced demyelination was associated with impaired degradation of autophagic cargo, induction of apoptosis, and manifest neurobehavioral disturbances. Oral treatment with resveratrol promoted motor coordination and improved remyelination with regular compacted myelin in most axons without a significant impact on myelin basic protein (MBP) mRNA expression. These effects are mediated, at least in part, via activating autophagic pathways that may involve SIRT1/FoxO1 activation. This study verified that resveratrol dampens cuprizone-induced demyelination, and partially enhances myelin repair through modulation of the autophagic flux, since interruption of the autophagic machinery by chloroquine reversed the therapeutic potential of resveratrol.
Collapse
Affiliation(s)
- Doaa M Samy
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Eiman I Zaki
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Passainte S Hassaan
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalia Y Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar R Saleh
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Bioscreening and Preclinical Trial Lab, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
La Rosa G, Lonardo MS, Cacciapuoti N, Muscariello E, Guida B, Faraonio R, Santillo M, Damiano S. Dietary Polyphenols, Microbiome, and Multiple Sclerosis: From Molecular Anti-Inflammatory and Neuroprotective Mechanisms to Clinical Evidence. Int J Mol Sci 2023; 24:ijms24087247. [PMID: 37108412 PMCID: PMC10138565 DOI: 10.3390/ijms24087247] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple sclerosis (MS) is a multifactorial, immune-mediated disease caused by complex gene-environment interactions. Dietary factors modulating the inflammatory status through the control of the metabolic and inflammatory pathways and the composition of commensal gut microbiota, are among the main environmental factors involved in the pathogenesis of MS. There is no etiological therapy for MS and the drugs currently used, often accompanied by major side effects, are represented by immunomodulatory substances capable of modifying the course of the disease. For this reason, nowadays, more attention is paid to alternative therapies with natural substances with anti-inflammatory and antioxidant effects, as adjuvants of classical therapies. Among natural substances with beneficial effects on human health, polyphenols are assuming an increasing interest due to their powerful antioxidant, anti-inflammatory, and neuroprotective effects. Beneficial properties of polyphenols on the CNS are achieved through direct effects depending on their ability to cross the blood-brain barrier and indirect effects exerted in part via interaction with the microbiota. The aim of this review is to examine the literature about the molecular mechanism underlying the protective effects of polyphenols in MS achieved by experiments conducted in vitro and in animal models of the disease. Significant data have been accumulated for resveratrol, curcumin, luteolin, quercetin, and hydroxytyrosol, and therefore we will focus on the results obtained with these polyphenols. Clinical evidence for the use of polyphenols as adjuvant therapy in MS is restricted to a smaller number of substances, mainly curcumin and epigallocatechin gallate. In the last part of the review, a clinical trial studying the effects of these polyphenols in MS patients will also be revised.
Collapse
Affiliation(s)
- Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Maria Serena Lonardo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Nunzia Cacciapuoti
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Espedita Muscariello
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Bruna Guida
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Raffaella Faraonio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| |
Collapse
|
11
|
Makar TK, Guda PR, Ray S, Andhavarapu S, Keledjian K, Gerzanich V, Simard JM, Nimmagadda VKC, Bever CT. Immunomodulatory therapy with glatiramer acetate reduces endoplasmic reticulum stress and mitochondrial dysfunction in experimental autoimmune encephalomyelitis. Sci Rep 2023; 13:5635. [PMID: 37024509 PMCID: PMC10079956 DOI: 10.1038/s41598-023-29852-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/11/2023] [Indexed: 04/08/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are found in lesions of multiple sclerosis (MS) and animal models of MS such as experimental autoimmune encephalomyelitis (EAE), and may contribute to the neuronal loss that underlies permanent impairment. We investigated whether glatiramer acetate (GA) can reduce these changes in the spinal cords of chronic EAE mice by using routine histology, immunostaining, and electron microscopy. EAE spinal cord tissue exhibited increased inflammation, demyelination, mitochondrial dysfunction, ER stress, downregulation of NAD+ dependent pathways, and increased neuronal death. GA reversed these pathological changes, suggesting that immunomodulating therapy can indirectly induce neuroprotective effects in the CNS by mediating ER stress.
Collapse
Affiliation(s)
- Tapas K Makar
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA.
- Research Service, Institute of Human Virology, VA Maryland Health Care System, 725 W Lombard St, Baltimore, MD, 21201, USA.
| | - Poornachander R Guda
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Sugata Ray
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Sanketh Andhavarapu
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - J Marc Simard
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - Vamshi K C Nimmagadda
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Christopher T Bever
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
- Research Service, Institute of Human Virology, VA Maryland Health Care System, 725 W Lombard St, Baltimore, MD, 21201, USA
- Department of Veterans Affairs, Office of Research and Development, Washington, USA
| |
Collapse
|
12
|
Yue J, Khan RS, Duong TT, Dine KE, Cui QN, O'Neill N, Aravand P, Liu T, Chaqour B, Shindler KS, Ross AG. Cell-Specific Expression of Human SIRT1 by Gene Therapy Reduces Retinal Ganglion Cell Loss Induced by Elevated Intraocular Pressure. Neurotherapeutics 2023; 20:896-907. [PMID: 36941497 PMCID: PMC10275821 DOI: 10.1007/s13311-023-01364-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
SIRT1 prevents retinal ganglion cell (RGC) loss in several acute and subacute optic neuropathy models following pharmacologic activation or genetic overexpression. We hypothesized that adeno-associated virus (AAV)-mediated overexpression of SIRT1 in RGCs in a chronic ocular hypertension model can reduce RGC loss, thereby preserving visual function by sustained therapeutic effect. A control vector AAV-eGFP and therapeutic vector AAV-SIRT1 were constructed and optimized for transduction efficiency. A magnetic microbead mouse model of ocular hypertension was optimized to induce a time-dependent and chronic loss of visual function and RGC degeneration. Mice received intravitreal injection of control or therapeutic AAV in which a codon-optimized human SIRT1 expression is driven by a RGC selective promoter. Intraocular pressure (IOP) was measured, and visual function was examined by optokinetic response (OKR) weekly for 49 days following microbead injection. Visual function, RGC survival, and axon numbers were compared among control and therapeutic AAV-treated animals. AAV-eGFP and AAV-SIRT1 showed transduction efficiency of ~ 40%. AAV-SIRT1 maintains the transduction of SIRT1 over time and is selectively expressed in RGCs. Intravitreal injections of AAV-SIRT1 in a glaucoma model preserved visual function, increased RGC survival, and reduced axonal degeneration compared with the control construct. Over-expression of SIRT1 through AAV-mediated gene transduction indicates a RGC-selective component of neuroprotection in multiple models of acute optic nerve degeneration. Results here show a neuroprotective effect of RGC-selective gene therapy in a chronic glaucoma model characterized by sustained elevation of IOP and subsequent RGC loss. Results suggest that this strategy may be an effective therapeutic approach for treating glaucoma, and warrants evaluation for the treatment of other chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Jipeng Yue
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
| | - Reas S Khan
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thu T Duong
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly E Dine
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
| | - Qi N Cui
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
| | - Nuala O'Neill
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
| | - Puya Aravand
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tehui Liu
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brahim Chaqour
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Shindler
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmara G Ross
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA.
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Kubiliute A, Gedvilaite G, Vilkeviciute A, Kriauciuniene L, Bruzaite A, Zaliuniene D, Liutkeviciene R. The role of SIRT1 level and SIRT1 gene polymorphisms in optic neuritis patients with multiple sclerosis. Orphanet J Rare Dis 2023; 18:64. [PMID: 36949521 PMCID: PMC10031967 DOI: 10.1186/s13023-023-02665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 03/11/2023] [Indexed: 03/24/2023] Open
Abstract
THE AIM To investigate the role of Sirtuin 1 (SIRT1) level and SIRT1 (rs3818292, rs3758391, rs7895833) gene polymorphisms in patients with optic neuritis (ON) and multiple sclerosis (MS). METHODS 79 patients with ON and 225 healthy subjects were included in the study. ON patients were divided into 2 subgroups: patients with MS (n = 30) and patients without MS (n = 43). 6 ON patients did not have sufficient data for MS diagnosis and were excluded from the subgroup analysis. DNA was extracted from peripheral blood leukocytes and genotyped by real-time polymerase chain reaction. Results were analysed using the program "IBM SPSS Statistics 27.0". RESULTS We discovered that SIRT1 rs3758391 was associated with a twofold increased odds of developing ON under the codominant (p = 0.007), dominant (p = 0.011), and over-dominant (p = 0.008) models. Also, it was associated with a threefold increased odds ofON with MS development under the dominant (p = 0.010), twofold increased odds under the over-dominant (p = 0.032) models and a 1.2-fold increased odds of ON with MS development (p = 0.015) under the additive model. We also discovered that the SIRT1 rs7895833 was significantly associated with a 2.5-fold increased odds of ON development under the codominant (p = 0.001), dominant (p = 0.006), and over-dominant (p < 0.001) models, and a fourfold increased odds of ON with MS development under the codominant (p < 0.001), dominant (p = 0.001), over-dominant (p < 0.001) models and with a twofold increased odds of ON with MS development (p = 0.013) under the additive genetic model. There was no association between SIRT1 levels and ON with/without MS development. CONCLUSIONS SIRT1 rs3758391 and rs7895833 polymorphisms are associated with ON and ON with MS development.
Collapse
Affiliation(s)
- Aleksandra Kubiliute
- Medical Faculty, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania.
| | - Alvita Vilkeviciute
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Akvile Bruzaite
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Dalia Zaliuniene
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2 Str, 50161, Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2 Str, 50161, Kaunas, Lithuania
| |
Collapse
|
14
|
Jeong YE, Rajbhandari L, Kim BW, Venkatesan A, Hoke A. Downregulation of SF3B2 protects CNS neurons in models of multiple sclerosis. Ann Clin Transl Neurol 2023; 10:246-265. [PMID: 36574260 PMCID: PMC9930435 DOI: 10.1002/acn3.51717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Neurodegeneration induced by inflammatory stress in multiple sclerosis (MS) leads to long-term neurological disabilities that are not amenable to current immunomodulatory therapies. METHODS AND RESULTS Here, we report that neuronal downregulation of Splicing factor 3b subunit 2 (SF3B2), a component of U2 small nuclear ribonucleoprotein (snRNP), preserves retinal ganglion cell (RGC) survival and axonal integrity in experimental autoimmune encephalomyelitis (EAE)-induced mice. By employing an in vitro system recapitulating the inflammatory environment of MS lesion, we show that when SF3B2 levels are downregulated, cell viability and axon integrity are preserved in cortical neurons against inflammatory toxicity. Notably, knockdown of SF3B2 suppresses the expression of injury-response and necroptosis genes and prevents activation of Sterile Alpha and TIR Motif Containing 1 (Sarm1), a key enzyme that mediates programmed axon degeneration. INTERPRETATION Together, these findings suggest that the downregulation of SF3B2 is a novel potential therapeutic target to prevent secondary neurodegeneration in MS.
Collapse
Affiliation(s)
- Ye Eun Jeong
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Labchan Rajbhandari
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Byung Woo Kim
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
15
|
The Multiple Sclerosis Modulatory Potential of Natural Multi-Targeting Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238402. [PMID: 36500494 PMCID: PMC9740750 DOI: 10.3390/molecules27238402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Multiple sclerosis (MS) is a complex neurodegenerative disease. Although its pathogenesis is rather vague in some aspects, it is well known to be an inflammatory process characterized by inflammatory cytokine release and oxidative burden, resulting in demyelination and reduced remyelination and axonal survival together with microglial activation. Antioxidant compounds are gaining interest towards the manipulation of MS, since they offer, in most of the cases, many benefits, due to their pleiotropical activity, that mainly derives from the oxidative stress decrease. This review analyzes research articles, of the last decade, which describe biological in vitro, in vivo and clinical evaluation of various categories of the most therapeutically applied natural antioxidant compounds, and some of their derivatives, with anti-MS activity. It also summarizes some of the main characteristics of MS and the role the reactive oxygen and nitrogen species may have in its progression, as well as their relation with the other mechanistic aspects of the disease, in order for the multi-targeting potential of those antioxidants to be defined and the source of origination of such activity explained. Antioxidant compounds with specific characteristics are expected to affect positively some aspects of the disease, and their potential may render them as effective candidates for neurological impairment reduction in combination with the MS treatment regimen. However, more studies are needed in order such antioxidants to be established as recommended treatment to MS patients.
Collapse
|
16
|
Chojdak-Łukasiewicz J, Bizoń A, Waliszewska-Prosół M, Piwowar A, Budrewicz S, Pokryszko-Dragan A. Role of Sirtuins in Physiology and Diseases of the Central Nervous System. Biomedicines 2022; 10:2434. [PMID: 36289696 PMCID: PMC9598817 DOI: 10.3390/biomedicines10102434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 07/30/2023] Open
Abstract
Silent information regulators, sirtuins (SIRTs), are a family of enzymes which take part in major posttranslational modifications of proteins and contribute to multiple cellular processes, including metabolic and energetic transformations, as well as regulation of the cell cycle. Recently, SIRTs have gained increased attention as the object of research because of their multidirectional activity and possible role in the complex pathomechanisms underlying human diseases. The aim of this study was to review a current literature evidence of SIRTs' role in the physiology and pathology of the central nervous system (CNS). SIRTs have been demonstrated to be crucial players in the crosstalk between neuroinflammation, neurodegeneration, and metabolic alterations. The elucidation of SIRTs' role in the background of various CNS diseases offers a chance to define relevant markers of their progression and promising candidates for novel therapeutic targets. Possible diagnostic and therapeutic implications from SIRTs-related investigations are discussed, as well as their future directions and associated challenges.
Collapse
Affiliation(s)
| | - Anna Bizoń
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | | | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Anna Pokryszko-Dragan
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
17
|
Tecellioğlu M, Türkmen NB, Ciftçi O, Taşlıdere A, Ekmekyapar T, Yüce H, Öztanır MN, Özcan C. The Beneficial Effects of Resveratrol on Experimental Autoimmune Encephalomyelitis (EAE) in C57BL/6J Mouse Model. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Ross AG, Chaqour B, McDougald DS, Dine KE, Duong TT, Shindler RE, Yue J, Liu T, Shindler KS. Selective Upregulation of SIRT1 Expression in Retinal Ganglion Cells by AAV-Mediated Gene Delivery Increases Neuronal Cell Survival and Alleviates Axon Demyelination Associated with Optic Neuritis. Biomolecules 2022; 12:830. [PMID: 35740955 PMCID: PMC9221096 DOI: 10.3390/biom12060830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Optic neuritis (ON), the most common ocular manifestation of multiple sclerosis, is an autoimmune inflammatory demyelinating disease also characterized by degeneration of retinal ganglion cells (RGCs) and their axons, which commonly leads to visual impairment despite attempted treatments. Although ON disease etiology is not known, changes in the redox system and exacerbated optic nerve inflammation play a major role in the pathogenesis of the disease. Silent information regulator 1 (sirtuin-1/SIRT1) is a ubiquitously expressed NAD+-dependent deacetylase, which functions to reduce/prevent both oxidative stress and inflammation in various tissues. Non-specific upregulation of SIRT1 by pharmacologic and genetic approaches attenuates RGC loss in experimental ON. Herein, we hypothesized that targeted expression of SIRT1 selectively in RGCs using an adeno-associated virus (AAV) vector as a delivery vehicle is an effective approach to reducing neurodegeneration and preserving vision in ON. We tested this hypothesis through intravitreal injection of AAV7m8.SNCG.SIRT1, an AAV2-derived vector optimized for highly efficient SIRT1 transgene transfer and protein expression into RGCs in mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis that recapitulates optic neuritis RGC loss and axon demyelination. Our data show that EAE mice injected with a control vehicle exhibit progressive alteration of visual function reflected by decreasing optokinetic response (OKR) scores, whereas comparatively, AAV7m8.SNCG.SIRT1-injected EAE mice maintain higher OKR scores, suggesting that SIRT1 reduces the visual deficit imparted by EAE. Consistent with this, RGC survival determined by immunolabeling is increased and axon demyelination is decreased in the AAV7m8.SNCG.SIRT1 RGC-injected group of EAE mice compared to the mouse EAE counterpart injected with a vehicle or with control vector AAV7m8.SNCG.eGFP. However, immune cell infiltration of the optic nerve is not significantly different among all EAE groups of mice injected with either vehicle or AAV7m8.SNCG.SIRT1. We conclude that despite minimally affecting the inflammatory response in the optic nerve, AAV7m8-mediated SIRT1 transfer into RGCs has a neuroprotective potential against RGC loss, axon demyelination and vison deficits associated with EAE. Together, these data suggest that SIRT1 exerts direct effects on RGC survival and function.
Collapse
Affiliation(s)
- Ahmara G. Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Devin S. McDougald
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kimberly E. Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Thu T. Duong
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ryan E. Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jipeng Yue
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tehui Liu
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kenneth S. Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Garutti M, Nevola G, Mazzeo R, Cucciniello L, Totaro F, Bertuzzi CA, Caccialanza R, Pedrazzoli P, Puglisi F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front Nutr 2022; 9:888974. [PMID: 35711559 PMCID: PMC9196906 DOI: 10.3389/fnut.2022.888974] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole grains are a pivotal food category for the human diet and represent an invaluable source of carbohydrates, proteins, fibers, phytocompunds, minerals, and vitamins. Many studies have shown that the consumption of whole grains is linked to a reduced risk of cancer, cardiovascular diseases, and type 2 diabetes and other chronic diseases. However, several of their positive health effects seem to disappear when grains are consumed in the refined form. Herein we review the available literature on whole grains with a focus on molecular composition and health benefits on many chronic diseases with the aim to offer an updated and pragmatic reference for physicians and nutrition professionals.
Collapse
Affiliation(s)
- Mattia Garutti
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Gerardo Nevola
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Roberta Mazzeo
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Linda Cucciniello
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Totaro
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Carlos Alejandro Bertuzzi
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Puglisi
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
20
|
Piacente F, Bottero M, Benzi A, Vigo T, Uccelli A, Bruzzone S, Ferrara G. Neuroprotective Potential of Dendritic Cells and Sirtuins in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23084352. [PMID: 35457169 PMCID: PMC9025744 DOI: 10.3390/ijms23084352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Myeloid cells, including parenchymal microglia, perivascular and meningeal macrophages, and dendritic cells (DCs), are present in the central nervous system (CNS) and establish an intricate relationship with other cells, playing a crucial role both in health and in neurological diseases. In this context, DCs are critical to orchestrating the immune response linking the innate and adaptive immune systems. Under steady-state conditions, DCs patrol the CNS, sampling their local environment and acting as sentinels. During neuroinflammation, the resulting activation of DCs is a critical step that drives the inflammatory response or the resolution of inflammation with the participation of different cell types of the immune system (macrophages, mast cells, T and B lymphocytes), resident cells of the CNS and soluble factors. Although the importance of DCs is clearly recognized, their exact function in CNS disease is still debated. In this review, we will discuss modern concepts of DC biology in steady-state and during autoimmune neuroinflammation. Here, we will also address some key aspects involving DCs in CNS patrolling, highlighting the neuroprotective nature of DCs and emphasizing their therapeutic potential for the treatment of neurological conditions. Recently, inhibition of the NAD+-dependent deac(et)ylase sirtuin 6 was demonstrated to delay the onset of experimental autoimmune encephalomyelitis, by dampening DC trafficking towards inflamed LNs. Thus, a special focus will be dedicated to sirtuins’ role in DCs functions.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Marta Bottero
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Andrea Benzi
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Santina Bruzzone
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
- Correspondence: ; Tel.: +39-(0)10-353-8150
| | - Giovanni Ferrara
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| |
Collapse
|
21
|
Yan L, Guo MS, Zhang Y, Yu L, Wu JM, Tang Y, Ai W, Zhu FD, Law BYK, Chen Q, Yu CL, Wong VKW, Li H, Li M, Zhou XG, Qin DL, Wu AG. Dietary Plant Polyphenols as the Potential Drugs in Neurodegenerative Diseases: Current Evidence, Advances, and Opportunities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5288698. [PMID: 35237381 PMCID: PMC8885204 DOI: 10.1155/2022/5288698] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by the progressive degeneration of neurons. Although the etiology and pathogenesis of neurodegenerative diseases have been studied intensively, the mechanism is still in its infancy. In general, most neurodegenerative diseases share common molecular mechanisms, and multiple risks interact and promote the pathologic process of neurogenerative diseases. At present, most of the approved drugs only alleviate the clinical symptoms but fail to cure neurodegenerative diseases. Numerous studies indicate that dietary plant polyphenols are safe and exhibit potent neuroprotective effects in various neurodegenerative diseases. However, low bioavailability is the biggest obstacle for polyphenol that largely limits its adoption from evidence into clinical practice. In this review, we summarized the widely recognized mechanisms associated with neurodegenerative diseases, such as misfolded proteins, mitochondrial dysfunction, oxidative damage, and neuroinflammatory responses. In addition, we summarized the research advances about the neuroprotective effect of the most widely reported dietary plant polyphenols. Moreover, we discussed the current clinical study and application of polyphenols and the factors that result in low bioavailability, such as poor stability and low permeability across the blood-brain barrier (BBB). In the future, the improvement of absorption and stability, modification of structure and formulation, and the combination therapy will provide more opportunities from the laboratory into the clinic for polyphenols. Lastly, we hope that the present review will encourage further researches on natural dietary polyphenols in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lu Yan
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Min-Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yue Zhang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Wei Ai
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Department of Nursing, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hua Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Mao Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
22
|
Shen P, Deng X, Chen Z, Ba X, Qin K, Huang Y, Huang Y, Li T, Yan J, Tu S. SIRT1: A Potential Therapeutic Target in Autoimmune Diseases. Front Immunol 2021; 12:779177. [PMID: 34887866 PMCID: PMC8650132 DOI: 10.3389/fimmu.2021.779177] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
The morbidity and mortality of autoimmune diseases (Ads) have been increasing worldwide, and the identification of novel therapeutic strategies for prevention and treatment is urgently needed. Sirtuin 1 (SIRT1), a member of the class III family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, has been reported to participate in the progression of several diseases. SIRT1 also regulates inflammation, oxidative stress, mitochondrial function, immune responses, cellular differentiation, proliferation and metabolism, and its altered functions are likely involved in Ads. Several inhibitors and activators have been shown to affect the development of Ads. SIRT1 may represent a novel therapeutic target in these diseases, and small molecules or natural products that modulate the functions of SIRT1 are potential therapeutic agents. In the present review, we summarize current studies of the biological functions of SIRT1 and its role in the pathogenesis and treatment of Ads.
Collapse
Affiliation(s)
- Pan Shen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
The Role of Nutritional Lifestyle and Physical Activity in Multiple Sclerosis Pathogenesis and Management: A Narrative Review. Nutrients 2021; 13:nu13113774. [PMID: 34836032 PMCID: PMC8620342 DOI: 10.3390/nu13113774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Studies on the role of nutritional factors and physical activity (PA) in the pathogenesis of multiple sclerosis (MS) go back a long time. Despite the intrinsic difficulty of studying their positive or negative role in MS, the interest of researchers on these topics increased during the last few decades, since the role of diet has been investigated with the perspective of the association with disease-modifying drugs (DMD). The association of DMD, diets, and PA might have an additive effect in modifying disease severity. Among the various diets investigated (low-carbohydrate, gluten-free, Mediterranean, low-fat, fasting-mimicking, and Western diets) only low-carbohydrate, Mediterranean, and fast-mimicking diets have shown both in animal models and in humans a positive effect on MS course and in patient-reported outcomes (PROs). However, the Mediterranean diet is easier to be maintained compared to fast-mimicking and low-carbohydrate diets, which may lead to detrimental side effects requiring careful clinical monitoring. Conversely, the Western diet, which is characterized by a high intake of highly saturated fats and carbohydrates, may lead to the activation of pro-inflammatory immune pathways and is therefore not recommended. PA showed a positive effect both in animal models as well as on disease course and PROs in humans. Training with combined exercises is considered the more effective approach.
Collapse
|
24
|
Ravi AK, Muthukrishnan SK. Combination of Probiotics and Natural Compounds to Treat Multiple Sclerosis via Warburg Effect. Adv Pharm Bull 2021; 12:515-523. [PMID: 35935051 PMCID: PMC9348531 DOI: 10.34172/apb.2022.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS). It is an auto-immune disorder. Its usual symptoms are unique to each person. In MS lesions vast fractions of pyruvate molecules are instantly transformed into lactate. This reprogramming mechanism of glycolysis is known as the Warburg effect. MS has no efficient treatment yet. Hence, there is a requirement for profitable immunomodulatory agents in MS. Probiotics perform as an immunomodulator because they regulate the host’s immune responses. Its efficacy gets enhanced for an extended period when it combines with prebiotics. In this review, we focus on the metabolic alterations behind the MS lesions via the Warburg effect, and also suggesting, the combined efficacy of prebiotics and probiotics for the effective treatment of MS without side effects. The Warburg effect mechanism intensifies the infiltration of activated T-cells and B-cells into the CNS. It provokes the inflammation process on the myelin sheath. The infiltration of immune cells can be inhibited by the combination therapy of probiotics and prebiotics. By this review, we can recommend that the idea of this combinational therapy can do miracles in the treatment of MS in the future.
Collapse
|
25
|
Bioactive natural products against experimental autoimmune encephalomyelitis: A pharmacokinetics review. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Protective effect and mechanism of nicotinamide adenine dinucleotide against optic neuritis in mice with experimental autoimmune encephalomyelitis. Int Immunopharmacol 2021; 98:107846. [PMID: 34174704 DOI: 10.1016/j.intimp.2021.107846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
Patients with multiple sclerosis (MS) are commonly accompanied by optic neuritis (ON) that causes retinal ganglion cell (RGC) death and even vision loss. Nicotinamide adenine dinucleotide (NAD+) can protect against cell apoptosis and attenuate MS-triggered symptoms. However, the effect of NAD+ on MS-triggered ON remains unclear. Herein, experimental autoimmune encephalomyelitis (EAE) was established by immunizing female C57BL/6 mice with MOG35-55 peptide. To investigate the effect of NAD+ on ON prevention and treatment, EAE mice received 250 mg/kg NAD+ daily via intraperitoneal injection after immunization and EAE onset, respectively. EX-527 (10 mg/kg, SIRT1 inhibitor) was intraperitoneally injected every two days to explore the role of SIRT1 in NAD+-induced therapeutic effect on EAE. NAD+ intervention attenuated the severity of EAE in mice. NAD+ intervention relieved inflammatory infiltration and CD3+ and CD4+ cell infiltration and decreased the number and activation of microglia and astrocytes in the optic nerve. NAD+ intervention also attenuated demyelination, axonal loss, oligodendrocyte apoptosis and oligodendrocyte progenitor cell recruitment and proliferation in the optic nerve and protected against RGC apoptosis in the retina. NAD+ intervention decreased pro-inflammatory cytokine mRNA and pro-apoptotic protein expression and enhanced anti-inflammatory cytokine mRNA expression and the SIRT1 signaling in the optic nerve and retina and regulated the Th1/Th17/Tregs immune response in the spleen. In addition, EX-527 reversed the therapeutic effect of NAD+ on EAE, suggesting that NAD+ prevented MS-triggered ON by activating the SIRT1 signaling pathway. This study shows the potential of NAD+ to be used as a drug in preventing and treating MS-related ON.
Collapse
|
27
|
Agcayazi SB, Ugurlu A, Ucak T, Tasli NG, Karakurt Y, Icel E, Keskin Cimen F, Süleyman H. Protection against experimental cisplatin-induced optic nerve toxicity using resveratrol: A rat model study. Cutan Ocul Toxicol 2021; 40:263-267. [PMID: 34114905 DOI: 10.1080/15569527.2021.1940195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM To investigate the effects of resveratrol on oxidative stress and inflammation parameters and histological alterations in cisplatin-induced optic nerve damage in a mouse model. MATERIAL AND METHOD Thirty-six albino Wistar male rats were divided into three groups as control, 5 mg/kg cisplatin-administered (Cis) and 5 mg/kg cisplatin + 25 mg/kg resveratrol-administered (Cis + Res) animals. At the end of the experimental period, the rats were sacrificed with high-dose (50 mg/kg) thiopental sodium, and their optic nerves were dissected. Malondialdehyde (MDA), total glutathione (tGSH), total oxidant status (TOS), total antioxidant status (TAS), tumour necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-KB) levels, and histopathological findings were assessed using the optic nerve tissues. RESULTS In the Cis + Res group, the MDA, TOS, OSI, TNF-a and NFK-B levels were significantly lower and the tGSH and TAS levels were significantly higher compared with the Cis group (P = 0.001). In histological evaluations, there were dilated and congested blood vessels, destruction, oedema, degeneration, haemorrhage, and proliferating capillaries indicating the presence of inflammation and damage only in the Cis-administered group. However, in the Cis + Res group, the histological findings were very similar to the healthy controls. CONCLUSION Resveratrol is a promising neuroprotective agent for cisplatin-induced optic nerve toxicity with its anti-oxidant and anti-inflammatory effects. Further investigations are needed to evaluate the possible therapeutic effects on other optic nerve toxicities.
Collapse
Affiliation(s)
- Sümeyye Burcu Agcayazi
- Department of Ophthalmology, Erzincan Binali Yildirim University Faculty of Medicine, Erzincan, Turkey
| | - Adem Ugurlu
- Department of Ophthalmology, Erzincan Binali Yildirim University Faculty of Medicine, Erzincan, Turkey
| | - Turgay Ucak
- Department of Ophthalmology, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Nurdan Gamze Tasli
- Department of Ophthalmology, Erzincan Binali Yildirim University Faculty of Medicine, Erzincan, Turkey
| | - Yucel Karakurt
- Department of Ophthalmology, Erzincan Binali Yildirim University Faculty of Medicine, Erzincan, Turkey
| | - Erel Icel
- Department of Ophthalmology, Erzincan Binali Yildirim University Faculty of Medicine, Erzincan, Turkey
| | - Ferda Keskin Cimen
- Department of Pathology, Erzincan Binali Yildirim University Faculty of Medicine, Erzincan, Turkey
| | - Halis Süleyman
- Erzincan Binali, Yildirim University, Faculty of Medicine, Department of Pharmacology, Erzincan, Turkey
| |
Collapse
|
28
|
Ross AG, McDougald DS, Khan RS, Duong TT, Dine KE, Aravand P, Bennett J, Chavali VRM, Shindler KS. Rescue of retinal ganglion cells in optic nerve injury using cell-selective AAV mediated delivery of SIRT1. Gene Ther 2021; 28:256-264. [PMID: 33589779 PMCID: PMC8149296 DOI: 10.1038/s41434-021-00219-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 11/25/2022]
Abstract
SIRT1 prevents retinal ganglion cell (RGC) loss in models of optic neuropathy following pharmacologic activation or genetic overexpression. The exact mechanism of loss is not known, prior evidence suggests this is through oxidative stress to either neighboring cells or RGC specifically. We investigated the neuroprotective potential of RGC-selective SIRT1 gene therapy in the optic nerve crush (ONC) model. We hypothesized that AAV-mediated overexpression of SIRT1 in RGCs reduces RGC loss, thereby preserving visual function. Cohorts of C57Bl/6J mice received intravitreal injection of experimental or control AAVs using either a ganglion cell promoter or a constitutive promoter and ONC was performed. Visual function was examined by optokinetic response (OKR) for 7 days following ONC. Retina and optic nerves were harvested to investigate RGC survival by immunolabeling. The AAV7m8-SNCG.SIRT1 vector showed 44% transduction efficiency for RGCs compared with 25% (P > 0.05) by AAV2-CAG.SIRT1, and AAV7m8-SNCG.SIRT1 drives expression selectively in RGCs in vivo. Animals modeling ONC demonstrated reduced visual acuity compared to controls. Intravitreal delivery of AAV7m8-SNCG.SIRT1 mediated significant preservation of the OKR and RGC survival compared to AAV7m8-SNCG.eGFP controls, an effect not seen with the AAV2 vector. RGC-selective expression of SIRT1 offers a targeted therapy for an animal model with significant ganglion cell loss. Over-expression of SIRT1 through AAV-mediated gene transduction suggests a RGC selective component of neuro-protection using the ONC model. This study expands our understanding of SIRT1 mediated neuroprotection in the context of compressive or traumatic optic neuropathy, making it a strong therapeutic candidate for testing in all optic neuropathies.
Collapse
Affiliation(s)
- Ahmara G Ross
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA.
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Devin S McDougald
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reas S Khan
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thu T Duong
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly E Dine
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
| | - Puya Aravand
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Bennett
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kenneth S Shindler
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators. Int J Mol Sci 2021; 22:ijms22020630. [PMID: 33435263 PMCID: PMC7827102 DOI: 10.3390/ijms22020630] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Sirtuins (SIRTs), enzymes from the family of NAD+-dependent histone deacetylases, play an important role in the functioning of the body at the cellular level and participate in many biochemical processes. The multi-directionality of SIRTs encourages scientists to undertake research aimed at understanding the mechanisms of their action and the influence that SIRTs have on the organism. At the same time, new substances are constantly being sought that can modulate the action of SIRTs. Extensive research on the expression of SIRTs in various pathological conditions suggests that regulation of their activity may have positive results in supporting the treatment of certain metabolic, neurodegenerative or cancer diseases or this connected with oxidative stress. Due to such a wide spectrum of activity, SIRTs may also be a prognostic markers of selected pathological conditions and prove helpful in assessing their progression, especially by modulating their activity. The article presents and discusses the activating or inhibiting impact of individual SIRTs modulators. The review also gathered selected currently available information on the expression of SIRTs in individual disease cases as well as the biological role that SIRTs play in the human organism, also in connection with oxidative stress condition, taking into account the progress of knowledge about SIRTs over the years, with particular reference to the latest research results.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-(71)-784-01-52
| | - Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| |
Collapse
|
30
|
Khan RS, Ross AG, Willett K, Dine K, Banas R, Brown LR, Shindler KS. Amnion-Derived Multipotent Progenitor Cells Suppress Experimental Optic Neuritis and Myelitis. Neurotherapeutics 2021; 18:448-459. [PMID: 33067748 PMCID: PMC8116466 DOI: 10.1007/s13311-020-00949-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
The human amnion has been used for decades in wound healing, particularly burns. Amnion epithelial cells (AECs) have been the focus of extensive research based on their possible pluripotent differentiation ability. A novel, cultured cell population derived from AECs, termed human amnion-derived multipotent progenitor (AMP) cells, secrete numerous cytokines and growth factors that enhance tissue regeneration and reduce inflammation. This AMP cell secretome, termed ST266, is a unique biological solution that accumulates in eyes and optic nerves following intranasal delivery, resulting in selective suppression of optic neuritis in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, but not myelitis at the administered dose. We tested the hypothesis that systemic AMP cell administration could suppress both optic neuritis and myelitis in EAE. Intravenous and intraperitoneal administration of AMP cells significantly reduced ascending paralysis and attenuated visual dysfunction in EAE mice. AMP cell treatment increased retinal ganglion cell (RGC) survival and decreased optic nerve inflammation, with variable improvement in optic nerve demyelination and spinal cord inflammation and demyelination. Results show systemic AMP cell administration inhibits RGC loss and visual dysfunction similar to previously demonstrated effects of intranasally delivered ST266. Importantly, AMP cells also promote neuroprotective effects in EAE spinal cords, marked by reduced paralysis. Protective effects of systemically administered AMP cells suggest they may serve as a potential novel treatment for multiple sclerosis.
Collapse
Affiliation(s)
- Reas S Khan
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmara G Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Keirnan Willett
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rick Banas
- Noveome Biotherapeutics, Inc., Pittsburgh, PA, USA
| | | | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA.
- F.M. Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, University of Pennsylvania Scheie Eye Institute, Stellar-Chance Laboratories, 3rd Floor, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
31
|
Fonseca-Santos B, Chorilli M. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int J Pharm 2020; 589:119832. [PMID: 32877730 DOI: 10.1016/j.ijpharm.2020.119832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Neurological disorders have been growing in recent years and are highly prevalent globally. Resveratrol (RES) is a natural product from plant sources such as grape skins. This compound has shown biological activity in many diseases, in particular, those that act on the central nervous system. The mechanism of action and the key points in neurological disorders were described and show the targeted mechanism of action. Due to the insolubility of this compound; the use of nanotechnology-based systems has been proposed for the incorporation of RES and RES-loaded nanocarriers have been designed for intranasal administration, oral or parenteral routes to deliver it to the brain. In general, these nanosystems have shown to be effective in many studies, pharmacological and pharmacokinetic assays, as well as some cell studies. The outcomes show that RES has been reported in human clinical trials for some neurological diseases, although no studies were performed in humans using nanocarriers, animal and/or cellular models have been reported to show good results regarding therapeutics on neurological diseases. Thus, the use of this nutraceutical has shown true for neurological diseases and its loading into nanocarriers displaying good results on the stability, delivery and targeting to the brain.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo 14801-903, Brazil
| | - Marlus Chorilli
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo 14801-903, Brazil.
| |
Collapse
|
32
|
Wang J, Lu QR. Convergent epigenetic regulation of glial plasticity in myelin repair and brain tumorigenesis: A focus on histone modifying enzymes. Neurobiol Dis 2020; 144:105040. [PMID: 32800999 DOI: 10.1016/j.nbd.2020.105040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Brain regeneration and tumorigenesis are complex processes involving in changes in chromatin structure to regulate cellular states at the molecular and genomic level. The modulation of chromatin structure dynamics is critical for maintaining progenitor cell plasticity, growth and differentiation. Oligodendrocyte precursor cells (OPC) can be differentiated into mature oligodendrocytes, which produce myelin sheathes to permit saltatory nerve conduction. OPCs and their primitive progenitors such as pri-OPC or pre-OPC are highly adaptive and plastic during injury repair or brain tumor formation. Recent studies indicate that chromatin modifications and epigenetic homeostasis through histone modifying enzymes shape genomic regulatory landscape conducive to OPC fate specification, lineage differentiation, maintenance of myelin sheaths, as well as brain tumorigenesis. Thus, histone modifications can be convergent mechanisms in regulating OPC plasticity and malignant transformation. In this review, we will focus on the impact of histone modifying enzymes in modulating OPC plasticity during normal development, myelin regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
33
|
Hamminger P, Rica R, Ellmeier W. Histone deacetylases as targets in autoimmune and autoinflammatory diseases. Adv Immunol 2020; 147:1-59. [PMID: 32981634 DOI: 10.1016/bs.ai.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reversible lysine acetylation of histones is a key epigenetic regulatory process controlling gene expression. Reversible histone acetylation is mediated by two opposing enzyme families: histone acetyltransferases (HATs) and histone deacetylases (HDACs). Moreover, many non-histone targets of HATs and HDACs are known, suggesting a crucial role for lysine acetylation as a posttranslational modification on the cellular proteome and protein function far beyond chromatin-mediated gene regulation. The HDAC family consists of 18 members and pan-HDAC inhibitors (HDACi) are clinically used for the treatment of certain types of cancer. HDACi or individual HDAC member-deficient (cell lineage-specific) mice have also been tested in a large number of preclinical mouse models for several autoimmune and autoinflammatory diseases and in most cases HDACi treatment results in an attenuation of clinical disease severity. A reduction of disease severity has also been observed in mice lacking certain HDAC members. This indicates a high therapeutic potential of isoform-selective HDACi for immune-mediated diseases. Isoform-selective HDACi and thus targeted inactivation of HDAC isoforms might also overcome the adverse effects of current clinically approved pan-HDACi. This review provides a brief overview about the fundamental function of HDACs as epigenetic regulators, highlights the roles of HDACs beyond chromatin-mediated control of gene expression and summarizes the studies showing the impact of HDAC inhibitors and genetic deficiencies of HDAC members for the outcome of autoimmune and autoinflammatory diseases with a focus on rheumatoid arthritis, inflammatory bowel disease and experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis.
Collapse
Affiliation(s)
- Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
34
|
Abstract
Multiple sclerosis (MS) is an aggravating autoimmune disease that cripples young patients slowly with physical, sensory and cognitive deficits. The break of self-tolerance to neuronal antigens is the key to the pathogenesis of MS, with autoreactive T cells causing demyelination that subsequently leads to inflammation-mediated neurodegenerative events in the central nervous system. The exact etiology of MS remains elusive; however, the interplay of genetic and environmental factors contributes to disease development and progression. Given that genetic variation only accounts for a fraction of risk for MS, extrinsic risk factors including smoking, infection and lack of vitamin D or sunshine, which cause changes in gene expression, contribute to disease development through epigenetic regulation. To date, there is a growing body of scientific evidence to support the important roles of epigenetic processes in MS. In this chapter, the three main layers of epigenetic regulatory mechanisms, namely DNA methylation, histone modification and microRNA-mediated gene regulation, will be discussed, with a particular focus on the role of epigenetics on dysregulated immune responses and neurodegenerative events in MS. Also, the potential for epigenetic modifiers as biomarkers and therapeutics for MS will be reviewed.
Collapse
Affiliation(s)
- Vera Sau-Fong Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Queen Mary Hospital, Hong Kong SAR, China.
| |
Collapse
|
35
|
Effects of Varying Intranasal Treatment Regimens in ST266-Mediated Retinal Ganglion Cell Neuroprotection. J Neuroophthalmol 2020; 39:191-199. [PMID: 30829880 DOI: 10.1097/wno.0000000000000760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Previous studies have shown that intranasally administered ST266, a novel biological secretome of amnion-derived multipotent progenitor cells containing multiple growth factors and anti-inflammatory cytokines, attenuated visual dysfunction and prevented retinal ganglion cell (RGC) loss in experimental optic neuritis. Long-term effects and dose escalation studies examined here have not been reported previously. METHODS Optic neuritis was induced in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE). EAE and control mice were treated once or twice daily with intranasal placebo/vehicle or ST266 beginning after onset of optic neuritis for either 15 days or continuously until sacrifice. Visual function was assessed by optokinetic responses (OKRs). RGC survival and optic nerve inflammation and demyelination were measured. RESULTS Both once and twice daily continuous intranasal ST266 treatment from disease onset to 56 days after EAE induction significantly increased OKR scores, decreased RGC loss, and reduced optic nerve inflammation and demyelination compared with placebo (saline, nonspecific protein solution, or cell culture media)-treated EAE mice. ST266 treatment given for just 15 days after disease onset, then discontinued, only delayed OKR decreases, and had limited effects on RGC survival and optic nerve inflammation 56 days after disease induction. CONCLUSIONS ST266 is a potential neuroprotective therapy to prevent RGC damage, and intranasal delivery warrants further study as a novel mechanism to deliver protein therapies for optic neuropathies. Results suggest that once daily ST266 treatment is sufficient to sustain maximal benefits and demonstrate that neuroprotective effects promoted by ST266 are specific to the combination of factors present in this complex biologic therapy.
Collapse
|
36
|
Paladino RA, Miller SN, Kleiber KF, Byers DM. Resveratrol reverses the effect of TNF-α on inflammatory markers in a model of autoimmune uveitis. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Tatomir A, Rao G, Boodhoo D, Vlaicu SI, Beltrand A, Anselmo F, Rus V, Rus H. Histone Deacetylase SIRT1 Mediates C5b-9-Induced Cell Cycle in Oligodendrocytes. Front Immunol 2020; 11:619. [PMID: 32328069 PMCID: PMC7160252 DOI: 10.3389/fimmu.2020.00619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Sublytic levels of C5b-9 increase the survival of oligodendrocytes (OLGs) and induce the cell cycle. We have previously observed that SIRT1 co-localizes with surviving OLGs in multiple sclerosis (MS) plaques, but it is not yet known whether SIRT1 is involved in OLGs survival after exposure to sublytic C5b-9. We have now investigated the role of SIRT1 in OLGs differentiation and the effect of sublytic levels of C5b-9 on SIRT1 and phosphorylated-SIRT1 (Ser27) expression. We also examined the downstream effects of SIRT1 by measuring histone H3 lysine 9 trimethylation (H3K9me3) and the expression of cyclin D1 as a marker of cell cycle activation. OLG progenitor cells (OPCs) purified from the brain of rat pups were differentiated in vitro and treated with sublytic C5b-9 or C5b6. To investigate the signaling pathway activated by C5b-9 and required for SIRT1 expression, we pretreated OLGs with a c-jun antisense oligonucleotide, a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002), and a protein kinase C (PKC) inhibitor (H7). Our data show a significant reduction in phospho-SIRT1 and SIRT1 expression during OPCs differentiation, associated with a decrease in H3K9me3 and a peak of cyclin D1 expression in the first 24 h. Stimulation of OLGs with sublytic C5b-9 resulted in an increase in the expression of SIRT1 and phospho-SIRT1, H3K9me3, cyclin D1 and decreased expression of myelin-specific genes. C5b-9-stimulated SIRT1 expression was significantly reduced after pretreatment with c-jun antisense oligonucleotide, H7 or LY294002. Inhibition of SIRT1 with sirtinol also abolished C5b-9-induced DNA synthesis. Taken together, these data show that induction of SIRT1 expression by C5b-9 is required for cell cycle activation and is mediated through multiple signaling pathways.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gautam Rao
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sonia I. Vlaicu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Austin Beltrand
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Freidrich Anselmo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Violeta Rus
- Division of Rheumatology and Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
38
|
Michaličková D, Hrnčíř T, Canová NK, Slanař O. Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis. Eur J Pharmacol 2020; 873:172973. [DOI: 10.1016/j.ejphar.2020.172973] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/08/2020] [Accepted: 01/28/2020] [Indexed: 12/29/2022]
|
39
|
Jamebozorgi K, Rostami D, Pormasoumi H, Taghizadeh E, Barreto GE, Sahebkar A. Epigenetic aspects of multiple sclerosis and future therapeutic options. Int J Neurosci 2020; 131:56-64. [PMID: 32075477 DOI: 10.1080/00207454.2020.1732974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease accompanied by demyelination of neurons in the central nervous system that mostly affects young adults, especially women. This disease has two phases including relapsing-remitting form (RR-MS) by episodes of relapse and periods of clinical remission and secondary-progressive form (SP-MS), which causes more disability. The inheritance pattern of MS is not exactly identified and there is an agreement that it has a complex pattern with an interplay among environmental, genetic and epigenetic alternations. Epigenetic mechanisms that are identified for MS pathogenesis are DNA methylation, histone modification and some microRNAs' alternations. Several cellular processes including apoptosis, differentiation and evolution can be modified along with epigenetic changes. Some alternations are associated with epigenetic mechanisms in MS patients and these changes can become key points for MS therapy. Therefore, the aim of this review was to discuss epigenetic mechanisms that are associated with MS pathogenesis and future therapeutic approaches.
Collapse
Affiliation(s)
| | - Daryoush Rostami
- School of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Hosein Pormasoumi
- Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Assessing the anterior visual pathway in optic neuritis: recent experimental and clinical aspects. Curr Opin Neurol 2020; 32:346-357. [PMID: 30694926 DOI: 10.1097/wco.0000000000000675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) and related autoimmune disorders of the central nervous system such as neuromyelitis optica spectrum disorders (NMOSD) are characterized by chronic disability resulting from autoimmune neuroinflammation, with demyelination, astrocyte damage, impaired axonal transmission and neuroaxonal loss. Novel therapeutics stopping or reversing the progression of disability are still urgently warranted. This review addresses research on optic neuritis in preclinical experimental models and their translation to clinical trials. RECENT FINDINGS Optic neuritis can be used as paradigm for an MS relapse which can serve to evaluate the efficacy of novel therapeutics in clinical trials with a reasonable duration and cohort size. The advantage is the linear structure of the visual pathway allowing the assessment of visual function and retinal structure as highly sensitive outcome parameters. Experimental autoimmune encephalomyelitis is an inducible, inflammatory and demyelinating central nervous system disease extensively used as animal model of MS. Optic neuritis is part of the clinicopathological manifestations in a number of experimental autoimmune encephalomyelitis models. These have gained increasing interest for studies evaluating neuroprotective and/or remyelinating substances as longitudinal, visual and retinal readouts have become available. SUMMARY Translation of preclinical experiments, evaluating neuroprotective or remyelinating therapeutics to clinical studies is challenging. In-vivo readouts like optical coherence tomography, offers the possibility to transfer experimental study designs to clinical optic neuritis trials.
Collapse
|
41
|
Michaličková D, Šíma M, Slanař O. New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Physiol Res 2020; 69:1-19. [PMID: 31852206 DOI: 10.33549/physiolres.934276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination and axonal damage and resulting in a range of physical, mental or even psychiatric symptoms. Key role of oxidative stress (OS) in the pathogenesis of MS has been suggested, as indicated by the biochemical analysis of cerebrospinal fluid and blood samples, tissue homogenates, and animal models of multiple sclerosis. OS causes demyelination and neurodegeneration directly, by oxidation of lipids, proteins and DNA but also indirectly, by inducing a dysregulation of the immunity and favoring the state of pro-inflammatory response. In this review, we discuss the interrelated mechanisms of the impaired redox signaling, of which the most important are inflammation-induced production of free radicals by activated immune cells and growth factors, release of iron from myelin sheath during demyelination and mitochondrial dysfunction and consequent energy failure and impaired oxidative phosphorylation. Review also provides an overview of the interplay between inflammation, immunity and OS in MS. Finally, this review also points out new potential targets in MS regarding attenuation of OS and inflammatory response in MS.
Collapse
Affiliation(s)
- D Michaličková
- Institute of Pharmacology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | | | | |
Collapse
|
42
|
Gianchecchi E, Fierabracci A. Insights on the Effects of Resveratrol and Some of Its Derivatives in Cancer and Autoimmunity: A Molecule with a Dual Activity. Antioxidants (Basel) 2020; 9:antiox9020091. [PMID: 31978952 PMCID: PMC7070243 DOI: 10.3390/antiox9020091] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, the interest in natural compounds exerting immunoregulatory effects has enormously increased. Among these, the polyphenol resveratrol, found in a variety of foods and beverages, including red grapes and red wine, has been demonstrated to exert both in vitro and in vivo biological activities. More specifically, it has antiaging, cardioprotective, antioxidant, immunomodulatory, anti-inflammatory and chemopreventive activities. Due to its anti-proliferative, pro-apoptotic and immunoregulatory effects, resveratrol has gained substantial attention for the treatment of cancer or autoimmunity, which represent frequently diagnosed diseases with important consequences for the health of the patients affected. The aim of the present review is to focus on the role of resveratrol in the modulation of cancer as well as of several organ-specific or systemic autoimmune diseases, including autoimmune hepatitis, type 1 diabetes mellitus, inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi srl, Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy;
- Infectivology and Clinical Trials Research Department, Children’s Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Children’s Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
43
|
Gökdoğan Edgünlü T, Ünal Y, Karakaş Çelik S, Genç Ö, Emre U, Kutlu G. The effect of FOXO gene family variants and global DNA metylation on RRMS disease. Gene 2019; 726:144172. [PMID: 31759981 DOI: 10.1016/j.gene.2019.144172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/27/2022]
Abstract
Multiple sclerosis is a chronic disease that usually occurs with exacerbations and remissions in young adults, affects the central nervous system white matter in multiple localization, and is thought to be the result of complex interactions of genetic and environmental factors, the most common form is relapsing-remitting MS. Forkhead transcription factors O class (FOXO) are responsible for the regulation of various cellular processes including cell cycle, apoptosis, DNA repair, cellular resistance and metabolism. DNA methylation is such an epigenetic change and has been shown to be associated with almost any biological process. The aim of our study to show the relation between the genetic variants of FOXO3a (rs2253310 rs4966936) and FOXO1 (rs3900833, rs4581585) and global DNA methylation in RRMS. We analyzed DNA obtained from 79 RRMS patients and 104 healthy individuals by PCR-RFLP method for the detection of genetic variants. For the determination of global DNA methylation, results were obtained using ELISA method. The data were evaluated statistically. As a result of our analysis; global DNA methylation is higher in RRMS patients compared to control individuals and it can be effective on the disease. In addition, it has been determined that variants of FOXO3a (rs2253310, rs4966936) and FOXO1 (rs3900833), which have been genotyped, may be effective in disease pathogenesis. These results suggest that DNAmethylation and FOXO gene variants may be effective in neuronal loss in RRMS.
Collapse
Affiliation(s)
- Tuba Gökdoğan Edgünlü
- Muğla Sitki Kocman University, Faculty of Medicine, Department of Medical Biology, Muğla, Turkey.
| | - Yasemin Ünal
- Muğla Sitki Kocman University, Faculty of Medicine, Department of Neurology, Muğla, Turkey
| | - Sevim Karakaş Çelik
- Bülent Ecevit University, Faculty of Medicine, Department of Medical Genetic, Zonguldak, Turkey
| | - Öyküm Genç
- Bülent Ecevit University, Faculty of Science, Department of Molecular Biology and Genetic, Zonguldak, Turkey
| | - Ufuk Emre
- Istanbul Teaching and Research Hospital, Department of Neurology, Muğla, Turkey
| | - Gülnihal Kutlu
- Muğla Sitki Kocman University, Faculty of Medicine, Department of Neurology, Muğla, Turkey
| |
Collapse
|
44
|
Katz Sand I, Benn EKT, Fabian M, Fitzgerald KC, Digga E, Deshpande R, Miller A, Gallo S, Arab L. Randomized-controlled trial of a modified Mediterranean dietary program for multiple sclerosis: A pilot study. Mult Scler Relat Disord 2019; 36:101403. [PMID: 31610401 DOI: 10.1016/j.msard.2019.101403] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is a high level of interest in the potential role of diet among the MS community. There is a limited level of evidence for a Mediterranean-style dietary pattern in MS; the feasibility of conducting studies using educational tools to deliver this type of intervention and study its effects is unknown. OBJECTIVES To establish clinical trial feasibility for future studies utilizing educational delivery of a dietary intervention in MS; to explore the effects of a modified Mediterranean dietary intervention in MS. METHODS We randomly assigned women with MS to follow/not follow the prescribed modified Mediterranean dietary intervention for 6 months, delivered through educational sessions. The diet encouraged the intake of fish and other foods high in poly- and monounsaturated fats, fresh fruits, vegetables, and whole grains and eliminated meat, dairy, and most processed foods and limited salt intake to <2 g/day. Primary endpoints related to meeting target enrollment within the specified time frame, adherence, and study completion. Clinical endpoints were evaluated in an exploratory fashion. RESULTS We screened 128 potential participants and enrolled 36 within 9 months, surpassing target enrollment of 30 participants at a single center in 1 year. Self-reported adherence was excellent (90.3%), with an overall study completion rate of 94.4%. The intervention group exhibited a statistically significant decline in the trajectory of Neurological Fatigue Index-MS scores (p = 0.01), a trend toward reduced Multiple Sclerosis Impact Scale-29 scores that became significant after outlier removal (p = 0.12; p = 0.023), and a reduction in Expanded Disability Status Scale (p = 0.01) over time as compared to the non-intervention group. CONCLUSIONS It is reasonable to expect a high level of interest and commitment to this type of dietary intervention study in MS, and feasible to deliver it purely through education in a clinical setting with high adherence levels despite restrictive requirements. In this pilot study, a modified Mediterranean dietary intervention reduced fatigue, impact of MS symptoms, and disability. Further work is needed.
Collapse
Affiliation(s)
- Ilana Katz Sand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, United States.
| | - Emma K T Benn
- Center for Biostatistics and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, United States
| | - Michelle Fabian
- Department of Neurology, Icahn School of Medicine at Mount Sinai, United States
| | | | - Elise Digga
- Department of Neurology, Icahn School of Medicine at Mount Sinai, United States
| | - Richa Deshpande
- Center for Biostatistics and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, United States
| | - Aaron Miller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, United States
| | - Samantha Gallo
- Department of Clinical Nutrition, The Mount Sinai Hospital, United States
| | - Lenore Arab
- Department of Medicine, The David Geffen School of Medicine, University of California Los Angeles, United States
| |
Collapse
|
45
|
Evans E, Piccio L, Cross AH. Use of Vitamins and Dietary Supplements by Patients With Multiple Sclerosis: A Review. JAMA Neurol 2019; 75:1013-1021. [PMID: 29710293 DOI: 10.1001/jamaneurol.2018.0611] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Surveys of patients with multiple sclerosis report that most are interested in modifying their diet and using supplements to potentially reduce the severity and symptoms of the disease. This review provides an updated overview of the current state of evidence for the role that vitamins and dietary supplements play in multiple sclerosis and its animal models, with an emphasis on recent studies, and addresses biological plausibility and safety issues. Observations Several vitamins and dietary supplements have been recently explored both in animal models and by patients with multiple sclerosis. Most human trials have been small or nonblinded, limiting their generalizability. Biotin and vitamin D are currently being tested in large randomized clinical trials. Smaller trials are ongoing or planned for other supplements such as lipoic acid and probiotics. The results of these studies may help guide clinical recommendations. Conclusions and Relevance At the present time, the only vitamin with sufficient evidence to support routine supplementation for patients with multiple sclerosis is vitamin D. Vitamin deficiencies should be avoided. It is important for clinicians to know which supplements their patients are taking and to educate patients on any known efficacy data, along with any potential medication interactions and adverse effects of individual supplements. Given that dietary supplements and vitamins are not subject to the same regulatory oversight as prescription pharmaceuticals in the United States, it is recommended that vitamins and supplements be purchased from reputable manufacturers with the United States Pharmacopeia designation.
Collapse
Affiliation(s)
- Emily Evans
- Department of Neurology, Neuroimmunology Section, Washington University in St Louis, St Louis, Missouri
| | - Laura Piccio
- Department of Neurology, Neuroimmunology Section, Washington University in St Louis, St Louis, Missouri
| | - Anne H Cross
- Department of Neurology, Neuroimmunology Section, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
46
|
Mohtashami L, Shakeri A, Javadi B. Neuroprotective natural products against experimental autoimmune encephalomyelitis: A review. Neurochem Int 2019; 129:104516. [DOI: 10.1016/j.neuint.2019.104516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
|
47
|
Berry KP, Lu QR. Chromatin modification and epigenetic control in functional nerve regeneration. Semin Cell Dev Biol 2019; 97:74-83. [PMID: 31301357 DOI: 10.1016/j.semcdb.2019.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
The repair and functional recovery of the nervous system is a highly regulated process that requires the coordination of many different components including the proper myelination of regenerated axons. Dysmyelination and remyelination failures after injury result in defective nerve conduction, impairing normal nervous system functions. There are many convergent regulatory networks and signaling mechanisms between development and regeneration. For instance, the regulatory mechanisms required for oligodendrocyte lineage progression could potentially play fundamental roles in myelin repair. In recent years, epigenetic chromatin modifications have been implicated in CNS myelination and functional nerve restoration. The pro-regenerative transcriptional program is likely silenced or repressed in adult neural cells including neurons and myelinating cells in the central and peripheral nervous systems limiting the capacity for repair after injury. In this review, we will discuss the roles of epigenetic mechanisms, including histone modifications, chromatin remodeling, and DNA methylation, in the maintenance and establishment of the myelination program during normal oligodendrocyte development and regeneration. We also discuss how these epigenetic processes impact myelination and axonal regeneration, and facilitate the improvement of current preclinical therapeutics for functional nerve regeneration in neurodegenerative disorders or after injury.
Collapse
Affiliation(s)
- Kalen P Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
48
|
Khan RS, Baumann B, Dine K, Song Y, Dunaief JL, Kim SF, Shindler KS. Dexras1 Deletion and Iron Chelation Promote Neuroprotection in Experimental Optic Neuritis. Sci Rep 2019; 9:11664. [PMID: 31406150 PMCID: PMC6690882 DOI: 10.1038/s41598-019-48087-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/30/2019] [Indexed: 12/04/2022] Open
Abstract
Dysregulation of iron metabolism, and resultant cytotoxicity, has been implicated in the pathogenesis of multiple sclerosis (MS) and other neurodegenerative processes. Iron accumulation promotes cytotoxicity through various mechanisms including oxidative stress and glutamate toxicity, and occurs in both MS patients and in the experimental autoimmune encephalomyelitis (EAE) model of MS. Divalent Metal Transporter1, a major iron importer in cells, is stimulated by signaling of Dexras1, a small G protein member of the Ras family. Dexras1 is activated by S-nitrosylation by nitric oxide (NO) produced by either inducible nitric oxide synthase in activated microglia/macrophages or neuronal nitric oxide synthase in neurons. Here we show Dexras1 exacerbates oxidative stress-induced neurodegeneration in experimental optic neuritis, an inflammatory demyelinating optic nerve condition that occurs in MS and EAE. Dexras1 deletion, as well as treatment with the iron chelator deferiprone, preserves vision and attenuates retinal ganglion cell (RGC) and axonal loss during EAE optic neuritis. These results suggest that iron entry triggered by NO-activated Dexras1 signaling is a potential mechanism of neuronal death in experimental optic neuritis. The current data suggest modulation of Dexras1 signaling and iron chelation are potential novel treatment strategies for optic neuritis and MS, and possibly other optic neuropathies as well.
Collapse
Affiliation(s)
- Reas S Khan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Stellar-Chance Laboratories, 3rd Floor, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Bailey Baumann
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Stellar-Chance Laboratories, 3rd Floor, 422 Curie Blvd, Philadelphia, PA, 19104, USA
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimberly Dine
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Stellar-Chance Laboratories, 3rd Floor, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Ying Song
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Stellar-Chance Laboratories, 3rd Floor, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Joshua L Dunaief
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Stellar-Chance Laboratories, 3rd Floor, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Sangwon F Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Kenneth S Shindler
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Stellar-Chance Laboratories, 3rd Floor, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
49
|
Miller ED, Dziedzic A, Saluk-Bijak J, Bijak M. A Review of Various Antioxidant Compounds and their Potential Utility as Complementary Therapy in Multiple Sclerosis. Nutrients 2019; 11:nu11071528. [PMID: 31284389 PMCID: PMC6682972 DOI: 10.3390/nu11071528] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the central nervous system (CNS). The etiology of this multifactorial disease has not been clearly defined. Conventional medical treatment of MS has progressed, but is still based on symptomatic treatment. One of the key factors in the pathogenesis of MS is oxidative stress, enhancing inflammation and neurodegeneration. In MS, both reactive oxygen and nitrogen species are formed in the CNS mainly by activated macrophages and microglia structures, which can lead to demyelination and axon disruption. The course of MS is associated with the secretion of many inflammatory and oxidative stress mediators, including cytokines (IL-1b, IL-6, IL-17, TNF-α, INF-γ) and chemokines (MIP-1a, MCP-1, IP10). The early stage of MS (RRMS) lasts about 10 years, and is dominated by inflammatory processes, whereas the chronic stage is associated with neurodegenerative axon and neuron loss. Since oxidative damage has been known to be involved in inflammatory and autoimmune-mediated processes, antioxidant therapy could contribute to the reduction or even prevention of the progression of MS. Further research is needed in order to establish new aims for novel treatment and provide possible benefits to MS patients. The present review examines the roles of oxidative stress and non-pharmacological anti-oxidative therapies in MS.
Collapse
Affiliation(s)
- Elzbieta Dorota Miller
- Department of Physical Medicine, Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland
- Neurorehabilitation Ward, General Hospital no III, Milionowa 14, 90-001 Lodz, Poland
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
50
|
Foolad F, Khodagholi F, Javan M. Sirtuins in Multiple Sclerosis: The crossroad of neurodegeneration, autoimmunity and metabolism. Mult Scler Relat Disord 2019; 34:47-58. [PMID: 31228716 DOI: 10.1016/j.msard.2019.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/26/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
Abstract
Multiple Sclerosis (MS) is a challenging and disabling condition particularly in the secondary progressive (SP) phase of this disease. The available treatments cannot ameliorate or stop disease progression in this phase, and there is an urgent need to focus on effective therapies and the molecular pathways involved SPMS. Given the significant impact of neurodegeneration, autoimmunity and metabolic alterations in MS, focusing on the molecules that target these different pathways could help in finding new treatments. Sirtuins (SIRTs) are NAD+ dependent epigenetic and metabolic regulators, which have critical roles in the physiology of central nervous system, immune system and metabolism. Based on these facts, SIRTs are crucial candidates of therapeutic targets in MS and collecting the information related to MS disease for each SIRT individually is noteworthy and highlights the lack of investigation in each part. In this review we summarized the role of different sirtuins as key regulator in neurodegeneration, autoimmunity and metabolism pathways. We also clarify the rationale behind selecting SIRTs as therapeutic targets in MS disease by collecting the researches showing alteration of these proteins in human samples of MS patients and animal model of MS, and also the improvement of modeled animals after SIRT-directed treatments.
Collapse
Affiliation(s)
- Forough Foolad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|