1
|
Carrazana R, Espinoza F, Ávila A. Mechanistic perspective on the actions of vitamin a in autism spectrum disorder etiology. Neuroscience 2024; 554:72-82. [PMID: 39002756 DOI: 10.1016/j.neuroscience.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Vitamin A (VA) has many functions in the body, some of which are key for the development and functioning of the nervous system, while some others might indirectly influence neural function. Both hypovitaminosis and hypervitaminosis A can lead to clinical manifestations of concern for individuals and for general global health. Scientific evidence on the link between VA and autism spectrum disorder (ASD) is growing, with some clinical studies and accumulating results obtained from basic research using cellular and animal models. Remarkably, it has been shown that VA deficiency can exacerbate autistic symptomatology. In turn, VA supplementation has been shown to be able to improve autistic symptomatology in selected groups of individuals with ASD. However, it is important to recognize that ASD is a highly heterogeneous condition. Therefore, it is important to clarify how and when VA supplementation can be of benefit for affected individuals. Here we delve into the relationship between VA and ASD, discussing clinical observations and mechanistic insights obtained from research on selected autistic syndromes and laboratory models to advance in defining how the VA signaling pathway can be exploited for treatment of ASD.
Collapse
Affiliation(s)
- Ramón Carrazana
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Francisca Espinoza
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| |
Collapse
|
2
|
Serna MF, Mosquera Escudero M, García-Perdomo HA. Lipoxins and their relationship with inflammation-associated diseases. A systematic review. Obes Res Clin Pract 2023; 17:298-307. [PMID: 37316341 DOI: 10.1016/j.orcp.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
AIM To determine the relationship of lipoxin levels with inflammation and disease development in adults and children. METHODS We conducted a systematic review. The search strategy included Medline, Ovid, EMBASE, LILACS, The Cochrane Central Register of Controlled Trials, and Open Gray. We included Clinical trials, cohort studies, case-control studies, and cross-sectional studies. Animal experiments were excluded. RESULTS We included fourteen studies in this review, nine consistently showing decreased lipoxin levels and anti-inflammatory markers or increased pro-inflammatory markers in cardiovascular disease, metabolic syndrome, Alzheimer's disease, periodontitis, or autism. Five studies showed increased lipoxin levels and pro-inflammatory markers in pre-eclampsia, asthma, and coronary disease. On the other hand, one showed increased lipoxin levels and decreased pro-inflammatory marker levels. CONCLUSIONS Decreases in lipoxins are associated with developing pathologies such as cardiovascular and neurological diseases, indicating that lipoxins protect against these pathologies. However, in other pathologies, such as asthma, pre-eclampsia, and periodontitis, which are associated with chronic inflammation despite increased levels of LXA4, the increase in inflammation suggests a possible failure of this regulatory pathway. Therefore, further studies are necessary to evaluate the role of LXA4 in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Maria Fernanda Serna
- Nutrition Group. School of Basic Sciences. Universidad del Valle, Cali, Colombia
| | | | - Herney Andrés García-Perdomo
- Nutrition Group. School of Basic Sciences. Universidad del Valle, Cali, Colombia; Division of Urology/Urooncology. Department of Surgery. School of Medicine. Universidad del Valle, Cali, Colombia.
| |
Collapse
|
3
|
Behavioral, Anti-Inflammatory, and Neuroprotective Effects of a Novel FPR2 Agonist in Two Mouse Models of Autism. Pharmaceuticals (Basel) 2022; 15:ph15020161. [PMID: 35215274 PMCID: PMC8875614 DOI: 10.3390/ph15020161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of heterogeneous neurodevelopmental conditions characterized by social deficits, repetitive stereotyped behaviors, and altered inflammatory responses. Accordingly, children with ASD show decreased plasma levels of lipoxin A4 (LXA4), a mediator involved in the resolution of inflammation, which is the endogenous ligand of the formyl peptide receptor 2 (FPR2). To investigate the role of FPR2 in ASDs, we have used a new ureidopropanamide derivative able to activate the receptor, named MR-39. The effects of MR-39 (10 mg/kg, for 8 days) on hippocampal pro-inflammatory profile, neuronal plasticity, and social behavior were evaluated in two validated animal models of ASD: BTBR mouse strain and mice prenatally exposed to valproic acid (VPA). Primary cultures of hippocampal neurons from BTBR mice were also used to evaluate the effect of MR-39 on neurite elongation. Our results show that MR-39 treatment reduced several inflammatory markers, restored the low expression of LXA4, and modulated FPR2 expression in hippocampal tissues of both ASD animal models. These findings were accompanied by a significant positive effect of MR-39 on social behavioral tests of ASD mice. Finally, MR-39 stimulates neurite elongation in isolated hippocampal neurons of BTBR mice. In conclusion, these data indicate FPR2 as a potential target for an innovative therapeutical approach for the cure of ASD.
Collapse
|
4
|
Research Progress in Vitamin A and Autism Spectrum Disorder. Behav Neurol 2021; 2021:5417497. [PMID: 34917197 PMCID: PMC8670912 DOI: 10.1155/2021/5417497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder. Over the past few decades, many studies have investigated the effects of VA supplementation in ASD patients and the relationship between vitamin A (VA) levels and ASD. VA is an essential micronutrient that plays an important role in various systems and biological processes in the form of retinoic acid (RA). Recent studies have shown that serum VA concentration is negatively correlated with the severity of ASD. The lack of VA during pregnancy or early fetal development can affect brain development and lead to long-term or even permanent impairment in the learning process, memory formation, and cognitive function. In addition, VA deficiency has been reported to have a major impact on the gastrointestinal function of children with ASD, while VA supplementation has been shown to improve the symptoms of ASD to a certain extent. This paper provides a comprehensive review of the relationship between VA and ASD.
Collapse
|
5
|
El-Ansary A, Chirumbolo S, Bhat RS, Dadar M, Ibrahim EM, Bjørklund G. The Role of Lipidomics in Autism Spectrum Disorder. Mol Diagn Ther 2021; 24:31-48. [PMID: 31691195 DOI: 10.1007/s40291-019-00430-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental syndrome commonly diagnosed in early childhood; it is usually characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social withdrawal with loss in communication skills. Its development may be affected by a variety of environmental and genetic factors. Trained physicians diagnose and evaluate the severity of ASD based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. Several important issues and concerns exist regarding the diagnostic competence of the many abnormal plasma metabolites produced in the different biochemical pathways evaluated in individuals with ASD. The search for high-performing bio-analytes to diagnose and follow-up ASD development is still a major target in medicine. Dysregulation in the oxidative stress response and proinflammatory processes are major etiological causes of ASD pathogenesis. Furthermore, dicarboxylic acid metabolites, cholesterol-related metabolites, phospholipid-related metabolites, and lipid transporters and mediators are impaired in different pathological conditions that have a role in the ASD etiology. A mechanism may exist by which pro-oxidant environmental stressors and abnormal metabolites regulate clinical manifestations and development of ASD.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia.,CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia.,Therapeutic Chemistry Department, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Eiman M Ibrahim
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
6
|
Zhao H, Zhang H, Liu S, Luo W, Jiang Y, Gao J. Association of Peripheral Blood Levels of Cytokines With Autism Spectrum Disorder: A Meta-Analysis. Front Psychiatry 2021; 12:670200. [PMID: 34276441 PMCID: PMC8283413 DOI: 10.3389/fpsyt.2021.670200] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Although increasing evidence suggests an association between alterations in peripheral cytokines and autism spectrum disorder (ASD), a consensus is lacking. To determine whether abnormal cytokine profiles in peripheral blood were associated with ASD, we performed this systemic review and meta-analysis. Methods: A systematic literature search was conducted through the Embase, PubMed, Web of Knowledge, PsycINFO, and Cochrane databases up to 4 June 2020. Clinical studies exploring the aberration of peripheral cytokines of autistic patients and controls were included in our meta-analysis. We pooled extracted data using fixed- or random-effects models based on heterogeneity tests with Comprehensive Meta-analysis software. We converted standardized mean differences to Hedges' g statistic to obtain the effect sizes adjusted for sample size. Subgroup analyses, sensitivity analyses, meta-regression, and publication bias tests were also carried out. Results: Sixty-one articles (326 studies) were included to assess the association between 76 cytokines and ASD. We conducted our meta-analysis based on 37 cytokines with 289 studies. Since there were fewer than three studies on any of the other 39 cytokines, we only provided basic information for them. The levels of peripheral IL-6, IL-1β, IL-12p70, macrophage migration inhibitory factor (MIF), eotaxin-1, monocyte chemotactic protein-1 (MCP-1), IL-8, IL-7, IL-2, IL-12, tumor necrosis factor-α (TNF-α), IL-17, and IL-4 were defined as abnormal cytokines in the peripheral blood of ASD patients compared with controls. The other 24 cytokines did not obviously change in ASD patients compared with the controls. Conclusions: The findings of our meta-analysis strengthen the evidence for an abnormal cytokine profile in ASD. These abnormal cytokines may be potential biomarkers for the diagnosis and treatment of ASD in the future.
Collapse
Affiliation(s)
- Huaying Zhao
- Department of Rehabilitation Medicine, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Hongqi Zhang
- Department of Pulmonary and Critical Care Medicine, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Shijie Liu
- The 947th Hospital of Army, Kashi, China
| | - Wulin Luo
- Department of Medical Psychology and Neurology, The 947th Hospital of Army, Kashi, China
| | - Yongfeng Jiang
- Department of Rehabilitation Medicine, The 947th Hospital of Army, Kashi, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
7
|
Blood homocysteine levels in children with autism spectrum disorder: An updated systematic review and meta-analysis. Psychiatry Res 2020; 291:113283. [PMID: 32763544 DOI: 10.1016/j.psychres.2020.113283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/11/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
Abstract
Results of studies on peripheral blood levels of homocysteine (Hcy) in children with autism spectrum disorder (ASD) are inconsistent, and conclusions from two previous meta-analyses on this subject published in 2012 are already outdated. Therefore, we conducted an updated systematic review and meta-analysis to quantitatively summarize the peripheral blood Hcy data in children with ASD compared with healthy controls (HC). We searched PubMed, EMBASE, PsycINFO, PsycARTICLES, Web of Science, and Cochrane Library databases from inception to September 2019 for eligible studies, with no language restriction. Using random-effects model, we computed summary statistics. Thirty-one studies (3304 participants including 1641 cases) were included. The pooled results showed that the peripheral blood Hcy levels were significantly elevated in children with ASD when compared to HC (Hedges's g = 0.56, 95% CI = 0.36 to 0.76, P < 0.001). By sensitivity analyses, we confirmed that our results were quite robust. Additionally, no publication bias was observed in this meta-analysis. In conclusion, our study support the association of increased circulating Hcy levels with ASD in children, and the involvement of Hcy in the occurrence of ASD. However, in view of the significant between-study heterogeneity, the conclusions should be interpreted cautiously and more investigation is required.
Collapse
|
8
|
Yin F, Wang H, Liu Z, Gao J. Association between peripheral blood levels of C-reactive protein and Autism Spectrum Disorder in children: A systematic review and meta-analysis. Brain Behav Immun 2020; 88:432-441. [PMID: 32272227 DOI: 10.1016/j.bbi.2020.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION In the past five years, a growing number of studies have tried to illustrate the association between the peripheral blood level of C-reactive protein (CRP) and Autism Spectrum Disorders (ASD). However, the results have been inconsistent. To assess whether abnormal CRP in peripheral blood was associated with ASD, we conducted a systematic review and meta-analysis. METHODS A systematic literature search was performed using the Embase, PubMed, Web of Knowledge, PsycINFO, and Cochrane databases through August 27, 2019. Reference lists were also checked by hand-searching. Clinical studies exploring CRP concentration in the peripheral blood of autistic children and healthy controls were included in our meta-analysis. Overlapping samples were excluded. We pooled obtained data using a fixed- or random-effect model based on a heterogeneity test with Comprehensive Meta-Analysis software and STATA software. Standardized mean differences were converted to Hedges' g statistic in order to obtain the effect size adjusted for sample size. Subgroup analyses, sensitivity analyses, meta-regression, and publication bias tests were also undertaken. RESULTS Nine studies with 592 ASD children and 604 healthy children were included in our meta-analysis. Significantly elevated CRP levels in peripheral blood were found in ASD children compared with healthy controls (Hedges' g = 0.527, 95% CI: 0.224-0.830, p = 0.001). Subgroup analyses based on sample types and ethnicity also showed similar results, except for the plasma subgroup. There was also a significant association between peripheral CRP concentration and ASD after removing the studies identified by Galbraith plots. The results of the sensitivity analysis revealed that no single study could reverse our results. Meta-regression analyses revealed that the gender of autistic children had a moderating effect on the outcome of the meta-analysis. In addition, no obvious publication bias was found in the meta-analysis. CONCLUSIONS AND RELEVANCE In our study, peripheral CRP levels were significantly elevated in autistic children compared with healthy children. These results may provide us some new insights about ASD.
Collapse
Affiliation(s)
- Fangna Yin
- Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Hongbing Wang
- Department of Radiotherapy Oncology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Zeya Liu
- Department of Blood Transfusion, China-Japan Friendship Hospital, Beijing 100029, China
| | - Junwei Gao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
9
|
Ansel A, Posen Y, Ellis R, Deutsch L, Zisman PD, Gesundheit B. Biomarkers for Autism Spectrum Disorders (ASD): A Meta-analysis. Rambam Maimonides Med J 2019; 10:RMMJ.10375. [PMID: 31675302 PMCID: PMC6824829 DOI: 10.5041/rmmj.10375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To compare the reported accuracy and sensitivity of the various modalities used to diagnose autism spectrum disorders (ASD) in efforts to help focus further biomarker research on the most promising methods for early diagnosis. METHODS The Medline scientific literature database was searched to identify publications assessing potential clinical ASD biomarkers. Reports were categorized by the modality used to assess the putative markers, including protein, genetic, metabolic, or objective imaging methods. The reported sensitivity, specificity, area under the curve, and overall agreement were summarized and analyzed to determine weighted averages for each diagnostic modality. Heterogeneity was measured using the I2 test. RESULTS Of the 71 papers included in this analysis, each belonging to one of five modalities, protein-based followed by metabolite-based markers provided the highest diagnostic accuracy, each with a pooled overall agreement of 83.3% and respective weighted area under the curve (AUC) of 89.5% and 88.3%. Sensitivity provided by protein markers was highest (85.5%), while metabolic (85.9%) and protein markers (84.7%) had the highest specificity. Other modalities showed degrees of sensitivity, specificity, and overall agreements in the range of 73%-80%. CONCLUSIONS Each modality provided for diagnostic accuracy and specificity similar or slightly higher than those reported for the gold-standard Autism Diagnostic Observation Schedule (ADOS) instrument. Further studies are required to identify the most predictive markers within each modality and to evaluate biological pathways or clustering with possible etiological relevance. Analyses will also be necessary to determine the potential of these novel biomarkers in diagnosing pediatric patients, thereby enabling early intervention.
Collapse
Affiliation(s)
| | - Yehudit Posen
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- PSW Ltd, Rehovot, Israel
| | - Ronald Ellis
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- Biotech & Biopharma Consulting, Jerusalem, Israel
| | - Lisa Deutsch
- Biostats Statistical Consulting Ltd, Modiin, Israel
| | | | - Benjamin Gesundheit
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Diagnostic and Severity-Tracking Biomarkers for Autism Spectrum Disorder. J Mol Neurosci 2018; 66:492-511. [DOI: 10.1007/s12031-018-1192-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 01/06/2023]
|
11
|
Bittker SS, Bell KR. Acetaminophen, antibiotics, ear infection, breastfeeding, vitamin D drops, and autism: an epidemiological study. Neuropsychiatr Dis Treat 2018; 14:1399-1414. [PMID: 29910617 PMCID: PMC5987866 DOI: 10.2147/ndt.s158811] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND While many studies have examined environmental risk factors for autism spectrum disorder (ASD), much of the research focus has been on prenatal or perinatal factors. Yet, the postnatal environment may affect the risk of ASD as well. OBJECTIVE To determine whether a set of five postnatal variables are associated with ASD. These variables are: acetaminophen exposure, antibiotic exposure, incidence of ear infection, decreased duration of breastfeeding, and decreased consumption of oral vitamin D drops. MATERIALS AND METHODS An Internet-based survey was conducted. Participants were parents living in the USA with at least one biological child between 3 and 12 years of age. Potential participants were informed about the survey via postings on social media, websites, and listservs and were offered an opportunity to participate in a raffle as well. Participants were also recruited through the Interactive Autism Network. RESULTS There were 1,741 completed survey responses. After exclusions, there remained 1,001 responses associated with children with ASD (cases) and 514 responses associated with children who do not have ASD (controls). In this data set, doses of postnatal acetaminophen (adjusted odds ratio [aOR] 1.016, CI: 1.003-1.032, p=0.026), courses of postnatal antibiotics (aOR 1.103, CI: 1.046-1.168, p<0.001), incidence of postnatal ear infection (aOR 1.137, CI: 1.046-1.236, p=0.003), and decreased duration of breastfeeding (aOR 0.948, CI: 0.932-0.965, p<0.001) are all associated with ASD when adjusted for eight demographic variables. A weak association between oral vitamin D drop exposure and ASD was also found when adjusted for breastfeeding and demographics (aOR 1.025, CI: 0.995-1.056, p=0.102). CONCLUSION This study adds to evidence that postnatal acetaminophen use, postnatal antibiotic use, incidence of ear infection, and early weaning are associated with an increased risk of ASD. It also finds that postnatal oral vitamin D drops are weakly associated with ASD when adjusted for breastfeeding and demographics.
Collapse
Affiliation(s)
- Seth Scott Bittker
- Interdisciplinary Center for Innovative Theory and Empirics (INCITE), Columbia University, New York, NY, USA
| | | |
Collapse
|
12
|
Liu X, Liu J, Xiong X, Yang T, Hou N, Liang X, Chen J, Cheng Q, Li T. Correlation between Nutrition and Symptoms: Nutritional Survey of Children with Autism Spectrum Disorder in Chongqing, China. Nutrients 2016; 8:nu8050294. [PMID: 27187463 PMCID: PMC4882707 DOI: 10.3390/nu8050294] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
Restricted diets and inadequate nutrient intake of children with autism spectrum disorder (ASD) have been reported. This study examined the nutritional statuses of children with ASD and the relationships between their behaviors and nutritional intake. A total of 154 children with ASD (age = 5.21 ± 1.83 years) and 73 typically-developing (TD) children (age = 4.83 ± 0.84 years) from Chongqing, China, were enrolled. The severity of ASD was evaluated using the Childhood Autism Rating Scale (CARS). The serum ferritin, folate, vitamin B12, 25(OH) vitamin D, and vitamin A concentrations in the children with ASD were determined. All participants underwent anthropometric examinations, dietary assessments, and questionnaire assessments about their feeding behaviors, and gastrointestinal symptoms. The ZHA, ZWA, and ZBMIA were found to be significantly lower in the children with ASD compared with those without ASD. In addition, the percentages of children exhibiting severe picky eating and severe resistance to new foods, as well as those with a reported general impression of severe eating problems and constipation, were higher among the children with ASD. These children consumed significantly fewer macronutrients compared with the children without ASD. In addition, the children with ASD had the highest rate of vitamin A deficiency, followed by iron deficiency. After adjusting for sex, the vitamin A concentration was found to be negatively correlated with the CARS score (rs = -0.222, p = 0.021). No correlation between the ferritin, folate, vitamin D, or vitamin B12 concentration and the CARS score was found. These results suggest that reduced macronutrient intakes, severe feeding behavior issues, constipation, and vitamin A deficiency are quite common among children with ASD. Further, a low serum vitamin A level may be a risk factor for symptoms of ASD. However, the underlying mechanism should be further studied.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Juan Liu
- Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Xueqin Xiong
- Pediatric Department of Clinical Medicine of Dazhou Vocational and Technical College, Dazhou 635001, China.
| | - Ting Yang
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Nali Hou
- Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Xiaohua Liang
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Jie Chen
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Qian Cheng
- Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Tingyu Li
- Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| |
Collapse
|
13
|
Meng WD, Sun SJ, Yang J, Chu RX, Tu W, Liu Q. Elevated Serum Brain-Derived Neurotrophic Factor (BDNF) but not BDNF Gene Val66Met Polymorphism Is Associated with Autism Spectrum Disorders. Mol Neurobiol 2016; 54:1167-1172. [PMID: 26820673 DOI: 10.1007/s12035-016-9721-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022]
Abstract
The aim of our study was to illuminate the potential role of brain-derived neurotrophic factor (BDNF) in autism spectrum disorder (ASD). We measured the circulating levels of BDNF in serum and BDNF gene (Val66Met) polymorphisms, in which two indicators were then compared between ASD and normal controls. A total of 82 drug-naïve ASD children and 82 age- and gender-matched normal controls were enrolled in the study. Their serum BDNF levels were detected by the ELISA. BDNF Val66Met polymorphism genotyping was conducted as according to the laboratory's standard protocol in laboratory. The ASD severity assessment was mainly determined by the score of the Childhood Autism Rating Scale (CARS). ELISA assay showed that the mean serum BDNF level of children with ASD was significantly (P < 0.0001) higher than that of the control cases (17.75 ± 5.43 vs. 11.49 ± 2.85 ng/ml; t = 9.236). Besides, the serum BDNF levels and CARS scores (P < 0.0001) were positively related. And, the BDNF genotyping results showed that there was no difference between the ASD cases and the control. Among the children with ASD, the mean serum BDNF level of Met/Met group was lower than other groups. According to the ROC curve generated from our clinical data, the optimal cutoff value of serum BDNF levels, an indicator for diagnosis of ASD, was projected to be 12.50 ng/ml. Thus, it yielded a corresponding sensitivity of 81.7 % and the specificity of 66.9 %. Accordingly, area value under the curve was 0.836 (95 % CI, 0.774-0.897); the positive predictive value (PPV) and the negative predictive value (NPV) were 70.1 and 79.1 %, respectively. These results suggested that rather than Val66Met polymorphism, BDNF was more possible to impact the pathogenesis of ASD.
Collapse
Affiliation(s)
- Wei-Dong Meng
- Department of Laboratory Medicine, Liaocheng People's Hospital, No. 67, Dongchang West Road, Liaocheng, 252000, China
| | - Shao-Jun Sun
- Department of Laboratory Medicine, Liaocheng People's Hospital, No. 67, Dongchang West Road, Liaocheng, 252000, China.
| | - Jie Yang
- Department of Pharmacy, Liaocheng Herbalist Hospital, Liaocheng, China
| | - Rui-Xue Chu
- Department of Laboratory Medicine, Liaocheng People's Hospital, No. 67, Dongchang West Road, Liaocheng, 252000, China
| | - Wenjun Tu
- Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, No. 238, Baiti Road, Tianjin, 300192, China
| | - Qiang Liu
- Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, No. 238, Baiti Road, Tianjin, 300192, China.
| |
Collapse
|
14
|
Abruzzo PM, Ghezzo A, Bolotta A, Ferreri C, Minguzzi R, Vignini A, Visconti P, Marini M. Perspective Biological Markers for Autism Spectrum Disorders: Advantages of the Use of Receiver Operating Characteristic Curves in Evaluating Marker Sensitivity and Specificity. DISEASE MARKERS 2015; 2015:329607. [PMID: 26648598 PMCID: PMC4655021 DOI: 10.1155/2015/329607] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/08/2015] [Accepted: 10/11/2015] [Indexed: 12/15/2022]
Abstract
Autism Spectrum Disorders (ASD) are a heterogeneous group of neurodevelopmental disorders. Recognized causes of ASD include genetic factors, metabolic diseases, toxic and environmental factors, and a combination of these. Available tests fail to recognize genetic abnormalities in about 70% of ASD children, where diagnosis is solely based on behavioral signs and symptoms, which are difficult to evaluate in very young children. Although it is advisable that specific psychotherapeutic and pedagogic interventions are initiated as early as possible, early diagnosis is hampered by the lack of nongenetic specific biological markers. In the past ten years, the scientific literature has reported dozens of neurophysiological and biochemical alterations in ASD children; however no real biomarker has emerged. Such literature is here reviewed in the light of Receiver Operating Characteristic (ROC) analysis, a very valuable statistical tool, which evaluates the sensitivity and the specificity of biomarkers to be used in diagnostic decision making. We also apply ROC analysis to some of our previously published data and discuss the increased diagnostic value of combining more variables in one ROC curve analysis. We also discuss the use of biomarkers as a tool for advancing our understanding of nonsyndromic ASD.
Collapse
Affiliation(s)
- Provvidenza M. Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
- Don Carlo Gnocchi Foundation ONLUS, IRCCS “S. Maria Nascente”, Via Alfonso Capecelatro 66, 20148 Milan, Italy
| | - Alessandro Ghezzo
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
| | - Alessandra Bolotta
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
- Don Carlo Gnocchi Foundation ONLUS, IRCCS “S. Maria Nascente”, Via Alfonso Capecelatro 66, 20148 Milan, Italy
| | | | | | - Arianna Vignini
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60128 Ancona, Italy
| | - Paola Visconti
- Child Neurology and Psychiatry Unit, IRCCS Institute of Neurological Sciences, 40139 Bologna, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
- Don Carlo Gnocchi Foundation ONLUS, IRCCS “S. Maria Nascente”, Via Alfonso Capecelatro 66, 20148 Milan, Italy
| |
Collapse
|