1
|
DeVeaux SA, Vyshnya S, Propsom K, Gbotosho OT, Singh AS, Horning RZ, Sharma M, Jegga AG, Niu L, Botchwey EA, Hyacinth HI. Neuroinflammation underlies the development of social stress induced cognitive deficit in sickle cell disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577074. [PMID: 38328164 PMCID: PMC10849745 DOI: 10.1101/2024.01.24.577074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cognitive deficit is a debilitating complication of SCD with multifactorial pathobiology. Here we show that neuroinflammation and dysregulation in lipidomics and transcriptomics profiles are major underlying mechanisms of social stress-induced cognitive deficit in SCD. Townes sickle cell (SS) mice and controls (AA) were exposed to social stress using the repeat social defeat (RSD) paradigm concurrently with or without treatment with minocycline. Mice were tested for cognitive deficit using novel object recognition (NOR) and fear conditioning (FC) tests. SS mice exposed to RSD without treatment had worse performance on cognitive tests compared to SS mice exposed to RSD with treatment or to AA controls, irrespective of their RSD or treatment disposition. Additionally, compared to SS mice exposed to RSD with treatment, SS mice exposed to RSD without treatment had significantly more cellular evidence of neuroinflammation coupled with a significant shift in the differentiation of neural progenitor cells towards astrogliogenesis. Additionally, brain tissue from SS mice exposed to RSD was significantly enriched for genes associated with blood-brain barrier dysfunction, neuron excitotoxicity, inflammation, and significant dysregulation in sphingolipids important to neuronal cell processes. We demonstrate in this study that neuroinflammation and lipid dysregulation are potential underlying mechanisms of social stress-related cognitive deficit in SS mice.
Collapse
Affiliation(s)
- S’Dravious A. DeVeaux
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, USA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sofiya Vyshnya
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, USA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Katherine Propsom
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Oluwabukola T. Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Asem S. Singh
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert Z. Horning
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mihika Sharma
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Liang Niu
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Edward A. Botchwey
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, USA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
2
|
Zhang J, Chang Q, Rizzello L, Wu Y. Research progress on the effects and mechanisms of anesthetics on neural stem cells. IBRAIN 2022; 8:453-464. [PMID: 37786590 PMCID: PMC10528967 DOI: 10.1002/ibra.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 10/04/2023]
Abstract
Exposure to anesthetic drugs has been proven to seriously affect developing animals in terms of neural stem cells' (NSCs') proliferation, differentiation, and apoptosis. This can severely hamper the development of physiological learning and memory skills. Studies on the effects of anesthetics on NSCs' proliferation and differentiation are thus reviewed here, with the aim to highlight which specific drug mechanisms are the least harmful to NSCs. PubMed has been used as the preferential searching database of relevant literature to identify studies on the effects and mechanisms of NSCs' proliferation and differentiation. It was concluded that propofol and sevoflurane may be the safest options for NSCs during pregnancy and in pediatric clinical procedures, while dexmedetomidine has been found to reduce opioid-related damage in NSCs. It was also found that the growth environment may impact neurodevelopment even more than narcotic drugs. Nonetheless, the current scientific literature available further highlights how more extensive clinical trials are absolutely required for corroborating the conclusion drawn here.
Collapse
Affiliation(s)
- Ji Zhang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Quan‐Yuan Chang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Loris Rizzello
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- National Institute of Molecular Genetics (INGM)MilanItaly
| | - You Wu
- Department of Family PlanningThe Affiliated Hospital of Zunyi Medical UniversityGuizhouZunyiChina
| |
Collapse
|
3
|
Useinovic N, Maksimovic S, Near M, Quillinan N, Jevtovic-Todorovic V. Do We Have Viable Protective Strategies against Anesthesia-Induced Developmental Neurotoxicity? Int J Mol Sci 2022; 23:ijms23031128. [PMID: 35163060 PMCID: PMC8834847 DOI: 10.3390/ijms23031128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Since its invention, general anesthesia has been an indispensable component of modern surgery. While traditionally considered safe and beneficial in many pathological settings, hundreds of preclinical studies in various animal species have raised concerns about the detrimental and long-lasting consequences that general anesthetics may cause to the developing brain. Clinical evidence of anesthetic neurotoxicity in humans continues to mount as we continue to contemplate how to move forward. Notwithstanding the alarming evidence, millions of children are being anesthetized each year, setting the stage for substantial healthcare burdens in the future. Hence, furthering our knowledge of the molecular underpinnings of anesthesia-induced developmental neurotoxicity is crucially important and should enable us to develop protective strategies so that currently available general anesthetics could be safely used during critical stages of brain development. In this mini-review, we provide a summary of select strategies with primary focus on the mechanisms of neuroprotection and potential for clinical applicability. First, we summarize a diverse group of chemicals with the emphasis on intracellular targets and signal-transduction pathways. We then discuss epigenetic and transgenerational effects of general anesthetics and potential remedies, and also anesthesia-sparing or anesthesia-delaying approaches. Finally, we present evidence of a novel class of anesthetics with a distinct mechanism of action and a promising safety profile.
Collapse
Affiliation(s)
- Nemanja Useinovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
- Correspondence:
| | - Stefan Maksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
| | - Michelle Near
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Doi H, Matsuda T, Sakai A, Matsubara S, Hoka S, Yamaura K, Nakashima K. Early-life midazolam exposure persistently changes chromatin accessibility to impair adult hippocampal neurogenesis and cognition. Proc Natl Acad Sci U S A 2021; 118:e2107596118. [PMID: 34526402 PMCID: PMC8463898 DOI: 10.1073/pnas.2107596118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
Linkage between early-life exposure to anesthesia and subsequent learning disabilities is of great concern to children and their families. Here we show that early-life exposure to midazolam (MDZ), a widely used drug in pediatric anesthesia, persistently alters chromatin accessibility and the expression of quiescence-associated genes in neural stem cells (NSCs) in the mouse hippocampus. The alterations led to a sustained restriction of NSC proliferation toward adulthood, resulting in a reduction of neurogenesis that was associated with the impairment of hippocampal-dependent memory functions. Moreover, we found that voluntary exercise restored hippocampal neurogenesis, normalized the MDZ-perturbed transcriptome, and ameliorated cognitive ability in MDZ-exposed mice. Our findings thus explain how pediatric anesthesia provokes long-term adverse effects on brain function and provide a possible therapeutic strategy for countering them.
Collapse
Affiliation(s)
- Hiroyoshi Doi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan;
| | - Atsuhiko Sakai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Shuzo Matsubara
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Sumio Hoka
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
- Department of Pharmaceutical Sciences, International University of Health and Welfare, 831-8501 Fukuoka, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan;
| |
Collapse
|
5
|
Liu Q, Min T, Dong J, Wang X. Minocycline alleviates the symptoms of morphine withdrawal via the CaMKII-Ras-ERK signaling pathway. Neurosci Lett 2021; 752:135825. [PMID: 33727130 DOI: 10.1016/j.neulet.2021.135825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the effect of minocycline on morphine withdrawal symptoms. METHODS We established a rat model of morphine dependence, then injected the animals with naloxone to induce withdrawal symptoms. Minocycline was injected into the midbrain periaqueductal gray and its effect on withdrawal symptoms and Ca2+-dependent protein kinase (CaMKII), Ras, and phospho-extracellular signal-regulated kinase (p-ERK) expression was observed. RESULTS Minocycline inhibited withdrawal symptoms such as "wet dog" shakes, teeth chatter, and ptosis, perhaps by inhibiting the activation of microglia and the expression of CaMKII, Ras, and p-ERK. Minocycline had no effect on the behavior of control rats or on CaMKII, Ras, or p-ERK expression. CONCLUSION Minocycline alleviates morphine withdrawal symptoms by inhibiting the activation of microglia and downregulating the expression of CaMKII, Ras, and p-ERK.
Collapse
Affiliation(s)
- Qiaofeng Liu
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China; Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| | - Ting Min
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China; Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| | - Jun Dong
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China; Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| | - Xin Wang
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China; Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
6
|
Rahman AA, Amruta N, Pinteaux E, Bix GJ. Neurogenesis After Stroke: A Therapeutic Perspective. Transl Stroke Res 2021; 12:1-14. [PMID: 32862401 PMCID: PMC7803692 DOI: 10.1007/s12975-020-00841-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Stroke is a major cause of death and disability worldwide. Yet therapeutic strategies available to treat stroke are very limited. There is an urgent need to develop novel therapeutics that can effectively facilitate functional recovery. The injury that results from stroke is known to induce neurogenesis in penumbra of the infarct region. There is considerable interest in harnessing this response for therapeutic purposes. This review summarizes what is currently known about stroke-induced neurogenesis and the factors that have been identified to regulate it. Additionally, some key studies in this field have been highlighted and their implications on future of stroke therapy have been discussed. There is a complex interplay between neuroinflammation and neurogenesis that dictates stroke outcome and possibly recovery. This highlights the need for a better understanding of the neuroinflammatory process and how it affects neurogenesis, as well as the need to identify new mechanisms and potential modulators. Neuroinflammatory processes and their impact on post-stroke repair have therefore also been discussed.
Collapse
Affiliation(s)
- Abir A Rahman
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA
| | - Narayanappa Amruta
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, A.V. Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Gregory J Bix
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Li S, Liao Y, Dong Y, Li X, Li J, Cheng Y, Cheng J, Yuan Z. Microglial deletion and inhibition alleviate behavior of post-traumatic stress disorder in mice. J Neuroinflammation 2021; 18:7. [PMID: 33402212 PMCID: PMC7786489 DOI: 10.1186/s12974-020-02069-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background Alteration of immune status in the central nervous system (CNS) has been implicated in the development of post-traumatic stress disorder (PTSD). However, the nature of overall changes in brain immunocyte landscape in PTSD condition remains unclear. Methods We constructed a mouse PTSD model by electric foot-shocks followed by contextual reminders and verified the PTSD-related symptoms by behavior test (including contextual freezing test, open-field test, and elevated plus maze test). We examined the immunocyte panorama in the brains of the naïve or PTSD mice by using single-cell mass cytometry. Microglia number and morphological changes in the hippocampus, prefrontal cortex, and amygdala were analyzed by histopathological methods. The gene expression changes of those microglia were detected by quantitative real-time PCR. Genetic/pharmacological depletion of microglia or minocycline treatment before foot-shocks exposure was performed to study the role of microglia in PTSD development and progress. Results We found microglia are the major brain immune cells that respond to PTSD. The number of microglia and ratio of microglia to immunocytes was significantly increased on the fifth day of foot-shock exposure. Furthermore, morphological analysis and gene expression profiling revealed temporal patterns of microglial activation in the hippocampus of the PTSD brains. Importantly, we found that genetic/pharmacological depletion of microglia or minocycline treatment before foot-shock exposure alleviated PTSD-associated anxiety and contextual fear. Conclusion Our results demonstrated a critical role for microglial activation in PTSD development and a potential therapeutic strategy for the clinical treatment of PTSD in the form of microglial inhibition. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02069-9.
Collapse
Affiliation(s)
- Shuoshuo Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xiaoheng Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jun Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Motaghinejad M, Mashayekh R, Motevalian M, Safari S. The possible role of CREB-BDNF signaling pathway in neuroprotective effects of minocycline against alcohol-induced neurodegeneration: molecular and behavioral evidences. Fundam Clin Pharmacol 2021; 35:113-130. [PMID: 32579730 DOI: 10.1111/fcp.12584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 05/02/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Abstract
Abuse of alcohol triggers neurodegeneration in human brain. Minocycline has characteristics conferring neuroprotection. Current study evaluates the role of the CREB-BDNF signaling pathway in mediating minocycline's neuroprotective effects against alcohol-induced neurodegeneration. Seventy adult male rats were randomly split into groups 1 and 2 that received saline and alcohol (2 g/kg/day by gavage, once daily), respectively, and groups 3, 4, 5, and 6 were treated simultaneously with alcohol and minocycline (10, 20, 30 and 40 mg/kg I.P, respectively) for 21 days. Group 7 received minocycline alone (40 mg/kg, i.p) for 21 days. Morris water maze (MWM) has been used to assess cognitive activity. Hippocampal neurodegenerative and histological parameters as well as cyclic AMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) levels were assessed. Alcohol impaired cognition, and concurrent therapy with various minocycline doses attenuated alcohol-induced cognition disturbances. Additionally, alcohol administration boosted lipid peroxidation and levels of glutathione in oxidized form (GSSG), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and Bax protein, while decreased reducing type of glutathione (GSH), Bcl-2 protein, phosphorylated CREB, and BDNF levels in rat hippocampus. Alcohol also decreased the activity in the hippocampus of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR). In comparison, minocycline attenuated alcohol-induced neurodegeneration; elevating expression levels of P-CREB and BDNF and inhibited alcohol induced histopathological changes in both dentate gyrus (DG) and CA1 of hippocampus. Thus, minocycline is likely to provide neuroprotection against alcohol-induced neurodegeneration through mediation of the P-CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Mashayekh
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Manijeh Motevalian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Kim JL, Bulthuis NE, Cameron HA. The Effects of Anesthesia on Adult Hippocampal Neurogenesis. Front Neurosci 2020; 14:588356. [PMID: 33192273 PMCID: PMC7643675 DOI: 10.3389/fnins.2020.588356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023] Open
Abstract
In animal studies, prolonged sedation with general anesthetics has resulted in cognitive impairments that can last for days to weeks after exposure. One mechanism by which anesthesia may impair cognition is by decreasing adult hippocampal neurogenesis. Several studies have seen a reduction in cell survival after anesthesia in rodents with most studies focusing on two particularly vulnerable age windows: the neonatal period and old age. However, the extent to which sedation affects neurogenesis in young adults remains unclear. Adult neurogenesis in the dentate gyrus (DG) was analyzed in male and female rats 24 h after a 4-h period of sedation with isoflurane, propofol, midazolam, or dexmedetomidine. Three different cell populations were quantified: cells that were 1 week or 1 month old, labeled with the permanent birthdate markers EdU or BrdU, respectively, and precursor cells, identified by their expression of the endogenous dividing cell marker proliferating cell nuclear antigen (PCNA) at the time of sacrifice. Midazolam and dexmedetomidine reduced cell proliferation in the adult DG in both sexes but had no effect on postmitotic cells. Propofol reduced the number of relatively mature, 28-day old, neurons specifically in female rats and had no effects on younger cells. Isoflurane had no detectable effects on any of the cell populations examined. These findings show no general effect of sedation on adult-born neurons but demonstrate that certain sedatives do have drug-specific and sex-specific effects. The impacts observed on different cell populations predict that any cognitive effects of these sedatives would likely occur at different times, with propofol producing a rapid but short-lived impairment and midazolam and dexmedetomidine altering cognition after a several week delay. Taken together, these studies lend support to the hypothesis that decreased neurogenesis in the young adult DG may mediate the effects of sedation on cognitive function.
Collapse
Affiliation(s)
| | | | - Heather A. Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Hardy RA, Rached NA, Jones JA, Archer DR, Hyacinth HI. Role of age and neuroinflammation in the mechanism of cognitive deficits in sickle cell disease. Exp Biol Med (Maywood) 2020; 246:106-120. [PMID: 32962408 DOI: 10.1177/1535370220958011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
IMPACT STATEMENT This study provides crucial information that could be helpful in the development of new or repurposing of existing therapies for the treatment of cognitive deficit in individuals with sickle cell disease (SCD). Its impact is in demonstrating for the first time that neuroinflammation and along with abnormal neuroplasticity are among the underlying mechanism of cognitive and behavioral deficits in SCD and that drugs such as minocycline which targets these pathophysiological mechanisms could be repurposed for the treatment of this life altering complication of SCD.
Collapse
Affiliation(s)
- Raven A Hardy
- Neuroscience Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA.,Atlanta Sickle Cell Disease Consortium, Emory University, Atlanta, GA 30322, USA
| | - Noor Abi Rached
- Neuroscience and Behavioral Biology Program, Emory University, Atlanta, GA 30322, USA
| | - Jayre A Jones
- Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - David R Archer
- Atlanta Sickle Cell Disease Consortium, Emory University, Atlanta, GA 30322, USA.,Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Hyacinth I Hyacinth
- Neuroscience Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA.,Atlanta Sickle Cell Disease Consortium, Emory University, Atlanta, GA 30322, USA.,Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Injection of minocycline into the periaqueductal gray attenuates morphine withdrawal signs. Neurosci Lett 2020; 736:135283. [PMID: 32739271 DOI: 10.1016/j.neulet.2020.135283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of minocycline microinjections, into the midbrain periaqueductal gray (PAG), on morphine withdrawal and the expression of pannexin-1 (panx1), phosphorylated mammalian target of rapamycin (p-mTOR), protein kinase A (PKA), and cAMP response element-binding protein (CREB). Rats were injected with morphine, intraperitoneally, at increasing doses, twice per day, to establish animal models of morphine exposure. Minocycline was administered into the PAG before the first intraperitoneal (i.p.) injection of morphine each day, on days 1-4. On the last day of the experiment, all rats were injected with naloxone, and morphine withdrawal was observed, and then changes in the expression levels of ionized calcium-binding adaptor molecule 1 (Iba1) and its downstream factors, panx1, p-mTOR, PKA, and CREB were evaluated by western blot and immunohistochemistry analyses. Morphine withdrawal increased microglial activation, whereas minocycline could inhibit microglial activation and withdrawal and the downregulation of panx1, p-mTOR, PKA, and CREB expression, reducing the effects of morphine withdrawal.
Collapse
|
12
|
Motaghinejad M, Farokhi N, Motevalian M, Safari S. Molecular, histological and behavioral evidences for neuroprotective effects of minocycline against nicotine-induced neurodegeneration and cognition impairment: Possible role of CREB-BDNF signaling pathway. Behav Brain Res 2020; 386:112597. [PMID: 32198107 DOI: 10.1016/j.bbr.2020.112597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022]
Abstract
AIM Neurodegeneration is one of the serious adverse effects of stimulant agents such as nicotine. Minocycline possess established neuroprotective properties. The role of CREB-BDNF signaling pathway in mediating the neuroprotective effects of minocycline against nicotine-induced neurodegeneration in rats was evaluated in current study. METHODS Seventy adult male rats were divided randomly into seven groups. Group 1 and 2, received 0.7 ml/rat of normal saline (i.p) and nicotine (10 mg/kg, s.c) respectively. Groups 3, 4, 5 and 6, treated concurrently with nicotine (10 mg/kg) and minocycline (10, 20, 30 and 40 mg/kg, i.p, respectively) for 21 days. Group 7 received minocycline alone (40 mg/kg, i.p) for 21 days. From 17th to 21 st days of experiment, Morris water maze (MWM) was used to evaluate learning and spatial memory in rats treated in different groups. According to the critical role of hippocampus in cognitive behavior, hippocampal neurodegenerative parameters (oxidative stress and inflammatory biomarkers) and also cyclic AMP response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) levels were evaluated in isolated hippocampus in day 22 of experiment and after drug treatment. Also hippocampal cell density and tissue changes were evaluated by hematoxylin and eosin staining. RESULT Nicotine administration impaired the learning and spatial memory in rats and simultaneous treatment with various doses of minocycline attenuated the nicotine-induced cognition disturbances. In addition, nicotine treatment increased lipid peroxidation and the levels of oxidized form of glutathione (GSSG), interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and Bax protein, while decreasing reduced form of glutathione (GSH), Bcl-2 protein, P-CREB and BDNF levels in the hippocampus of experimental animals. Nicotine also reduced the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) in the hippocampus. Minocycline attenuated nicotine-induced neurodegeneration and elevating CREB (both forms) and BDNF levels. Also minocycline treatment alone increases the cognitive activity and increased CREB (both forms) and BDNF levels and decreased oxidative stress, inflammation and apoptotic biomarkers. Minocycline at high doses cause inhibition of nicotine induced cell density and changes in both area of dentate gyrus (DG) and CA1 in hippocampus. CONCLUSION It can be concluded that minocycline, probably through activation of P-CREB/BDNF signaling pathway, confers neuroprotection against nicotine-induced neurodegeneration in rat hippocampus.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Negin Farokhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Manijeh Motevalian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Therapeutic Effects of Minocycline Pretreatment in the Locomotor and Sensory Complications of Spinal Cord Injury in an Animal Model. J Mol Neurosci 2020; 70:1064-1072. [DOI: 10.1007/s12031-020-01509-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
|
14
|
Lei S, Lu P, Lu Y, Zheng J, Li W, Wang N, Zhang H, Li R, Wang K, Wen J, Wei H, Zhang Y, Qiu Z, Xu J, Lv H, Chen X, Liu Y, Zhang P. Dexmedetomidine Alleviates Neurogenesis Damage Following Neonatal Midazolam Exposure in Rats through JNK and P38 MAPK Pathways. ACS Chem Neurosci 2020; 11:579-591. [PMID: 31999428 DOI: 10.1021/acschemneuro.9b00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Midazolam, a widely used anesthetic, inhibits proliferation of neural stem cells (NSCs) and induces neuroapoptosis in neonates. Dexmedetomidine, an effective auxiliary medicine in clinical anesthesia, protects the developing brain against volatile anesthetic-induced neuroapoptosis. Whether dexmedetomidine protects against neurogenesis damage induced by midazolam remains unknown. This study aims to clarify the protective effect of dexmedetomidine on midazolam-induced neurogenesis damage and explore its potential mechanism. Postnatal 7-day-old Sprague-Dawley (SD) rats and cultured NSCs were treated with either normal saline, midazolam, or dexmedetomidine combined with midazolam. The rats were sacrificed at 1, 3, and 7 days after treatment. Cell proliferation was assessed by 5-bromodeoxyurdine (BrdU) incorporation. Cell viability was determined using MTT assay. Cell differentiation and apoptosis were detected by immunofluorescent staining and terminal dUTP nick-end labeling (TUNEL), respectively. The protein levels of p-JNK, p-P38, and cleaved caspase-3 were quantified using Western blotting. Midazolam decreased cell proliferation and increased cell apoptosis in the subventricular zone (SVZ), the subgranular zone (SGZ) of the hippocampus, and cultured NSCs. Moreover, midazolam decreased cell viability and increased the expression of p-JNK and p-P38 in cultured NSCs. Co-treatment with dexmedetomidine attenuated midazolam-induced changes in cell proliferation, viability, apoptosis, and protein expression of p-JNK and p-P38 in cultured NSCs. Midazolam and dexmedetomidine did not affect the differentiation of the cultured NSCs. These results indicate that dexmedetomidine alleviated midazolam-induced neurogenesis damage via JNK and P38 MAPK pathways.
Collapse
Affiliation(s)
- Shan Lei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Pan Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yang Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Juan Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Weisong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Ning Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Hong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Jieqiong Wen
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yuanyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Zhengguo Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Jing Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Haixia Lv
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi’an Jiaotong University, Xi’an 710016, China
| | - Xinlin Chen
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi’an Jiaotong University, Xi’an 710016, China
| | - Yong Liu
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi’an Jiaotong University, Xi’an 710016, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
15
|
Cavuoto KM, Javitt M, Chang TC. Neurodevelopmental Effect of General Anesthesia on the Pediatric Patient. J Pediatr Ophthalmol Strabismus 2019; 56:349-353. [PMID: 31743401 DOI: 10.3928/01913913-20190923-03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/30/2019] [Indexed: 01/05/2023]
Abstract
In this article, the authors review the animal and human data on the recent studies looking at the neurotoxicity of general anesthesia in the pediatric population. Animal studies in rodents and non-human primates demonstrate neurotoxic effects when exposed to general anesthesia at a young age. However, prospective clinical studies in humans do not show significant differences in intelligence quotient outcomes in children younger than 3 years with isolated and/or short exposures. Current studies are investigating alternatives to minimize the potential side effects, including the addition of protective agents to the anesthetic mix. Understanding the findings regarding the laboratory and clinical studies on the effects of general anesthesia is important in guiding both patient care and parent education. This is particularly relevant in the care of children with ophthalmic conditions such as trauma, congenital cataract, and congenital glaucoma, which may require urgent surgery and early anesthetic exposure. [J Pediatr Ophthalmol Strabismus. 2019;56(6):349-353.].
Collapse
|
16
|
|
17
|
Salehi P, Shahmirzadi ZY, Mirrezaei FS, Shirvani Boushehri F, Mayahi F, Songhori M, Abofazeli M, Motaghinejad M, Safari S. A hypothetic role of minocycline as a neuroprotective agent against methylphenidate-induced neuronal mitochondrial dysfunction and tau protein hyper-phosphorylation: Possible role of PI3/Akt/GSK3β signaling pathway. Med Hypotheses 2019; 128:6-10. [PMID: 31203911 DOI: 10.1016/j.mehy.2019.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
Abstract
The underlining mechanism in neural mitochondrial dysfunction and consequences neurotoxicity, and cognitive behavior after methylphenidate (MPH) prolonged uses is unclear and proposing of therapeutic approaches for treatment of these types of neurotoxicity is one of the main goals of scientist in this manner. MPH-induced mitochondrial dysfunction in neural cells caused induction of oxidative stress, apoptosis, inflammation and cognition impairment, which leads to neurotoxicity, was reported previously but role of key neural cells proteins and involved signaling pathway in this manner remained indeterminate. Tau protein aggregation is a biomarker for mitochondrial dysfunction, neurodegenerative event and cognition impairment. Tau aggregation occur by stimulation effects of Glycogen synthase kinase-3(GSK3β) and phosphatidylinositol 3-kinase (PI3K) which activates protein kinase B(Akt) and causes inhibition of phosphorylation(activation) of GSK3β, thus Akt activation can cause inhibition of tau aggregation (hyper-phosphorylation). Management of mentioned MPH-induced mitochondrial dysfunction and consequences of neurotoxicity, and cognitive behavior through a new generation neuroprotective combination, based on modulation of disturbed in Akt function and inhibition of GSK3β and tau hyper-phosphorylation can be a prefect therapeutic interventions. Therefore, finding, introduction and development of new neuroprotective properties and explanation of their effects with potential capacity for modulation of tau hyper-phosphorylation via PI3/Akt/GSK signaling pathway is necessitated. During recent years, using new neuroprotective compounds with therapeutic probability for treatment of psychostimulant-induced mitochondrial dysfunction, neurotoxicity and cognitive malicious effects have been amazingly increased. Many previous studies have reported the neuroprotective roles of minocycline (a broad-spectrum and long-acting antibiotic) in multiple neurodegenerative events and diseases in animal model. But the role of neuroprotective effects of this agent against MPH induced mitochondrial dysfunction, neurotoxicity and cognitive malicious and also role of tau hyper-phosphorylation by modulation of PI3/Akt/GSK signaling pathway in this manner remain unknown. Thus we suggested and theorized that by using minocycline in MPH addicted subject, it would provide neuroprotection against MPH-induced mitochondrial dysfunction, neurotoxicity and cognitive malicious. Also we hypothesized that minocycline, via modulation of PI3/Akt/GSK and inhibition of tau hyper-phosphorylation, can inhibit MPH-induced mitochondrial dysfunction, neurotoxicity and cognitive malicious. In this article, we tried to discuss our hypothesis regarding the possible role of minocycline, as a powerful neuroprotective agent, and also role of tau hyper-phosphorylation related to PI3/Akt/GSK signaling pathway in treatment of MPH-induced mitochondrial dysfunction, neurotoxicity and cognitive disturbance.
Collapse
Affiliation(s)
- Pegah Salehi
- Research Center for Addiction and Risky Behaviors (ReCARB), Iran Psychiatric Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zhara Yaraei Shahmirzadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Fatemeh Sadat Mirrezaei
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Farima Shirvani Boushehri
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Fatemeh Mayahi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Mojtaba Songhori
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Maryam Abofazeli
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Majid Motaghinejad
- Research Center for Addiction and Risky Behaviors (ReCARB), Iran Psychiatric Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Safari
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Wang W, Wang R, Xu J, Qin X, Jiang H, Khalid A, Liu D, Pan F, Ho CSH, Ho RCM. Minocycline Attenuates Stress-Induced Behavioral Changes via Its Anti-inflammatory Effects in an Animal Model of Post-traumatic Stress Disorder. Front Psychiatry 2018; 9:558. [PMID: 30459654 PMCID: PMC6232125 DOI: 10.3389/fpsyt.2018.00558] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidences have suggested that anxiety-like behavior and impairment of learning and memory are key symptoms of post-traumatic stress disorder (PTSD), and pharmacological treatment can ameliorate anxiety and cognitive impairments. Recent studies have shown that minocycline exhibits anxiolytic effects. The aims of the present study were to determine whether minocycline administration would alter anxiety-like behavior and cognitive deficits induced by inescapable foot shock (IFS) and to explore the underlying mechanisms. Male Wistar rats were exposed to the IFS protocol for a period of 6 days to induce PTSD. The PTSD-like behavior was tested using the open field test, elevated plus maze test, and Morris water maze test. The effects of minocycline on pro-inflammatory cytokines, activation of microglia, and NF-κB in the PFC and hippocampus were also examined. Treatment with minocycline significantly reversed the IFS induced behavioral and cognitive parameters (impaired learning and memory function) in stressed rats. Additionally, IFS was able to increase pro-inflammatory cytokines, activate microglia, and enhance NF-κB levels, while minocycline significantly reversed these alterations. Taken together, our results suggest that the anxiolytic effect of minocycline is related to its ability to decrease the levels of pro-inflammatory cytokines and inhibit activation of microglia and NF-κB in the PFC and hippocampus.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Rui Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jingjing Xu
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaqing Qin
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hong Jiang
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Arslan Khalid
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Cyrus S H Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger C M Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|