1
|
Moe AAK, Singh N, Dimmock M, Cox K, McGarvey L, Chung KF, McGovern AE, McMahon M, Richards AL, Farrell MJ, Mazzone SB. Brainstem processing of cough sensory inputs in chronic cough hypersensitivity. EBioMedicine 2024; 100:104976. [PMID: 38244293 PMCID: PMC10831188 DOI: 10.1016/j.ebiom.2024.104976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Chronic cough is a prevalent and difficult to treat condition often accompanied by cough hypersensitivity, characterised by cough triggered from exposure to low level sensory stimuli. The mechanisms underlying cough hypersensitivity may involve alterations in airway sensory nerve responsivity to tussive stimuli which would be accompanied by alterations in stimulus-induced brainstem activation, measurable with functional magnetic resonance imaging (fMRI). METHODS We investigated brainstem responses during inhalation of capsaicin and adenosine triphosphate (ATP) in 29 participants with chronic cough and 29 age- and sex-matched controls. Psychophysical testing was performed to evaluate individual sensitivities to inhaled stimuli and fMRI was used to compare neural activation in participants with cough and control participants while inhaling stimulus concentrations that evoked equivalent levels of urge-to-cough sensation. FINDINGS Participants with chronic cough were significantly more sensitive to inhaled capsaicin and ATP and showed a change in relationship between urge-to-cough perception and cough induction. When urge-to-cough levels were matched, participants with chronic cough displayed significantly less neural activation in medullary regions known to integrate airway sensory inputs. By contrast, neural activations did not differ significantly between the two groups in cortical brain regions known to encode cough sensations whereas activation in a midbrain region of participants with chronic cough was significantly increased compared to controls. INTERPRETATION Cough hypersensitivity in some patients may occur in brain circuits above the level of the medulla, perhaps involving midbrain regions that amplify ascending sensory signals or change the efficacy of central inhibitory control systems that ordinarily serve to filter sensory inputs. FUNDING Supported in part by a research grant from Investigator-Initiated Studies Program of Merck Sharp & Dohme Pty Ltd. The opinions expressed in this paper are those of the authors and do not necessarily represent those of Merck Sharp & Dohme (Australia) Pty Ltd.
Collapse
Affiliation(s)
- Aung Aung Kywe Moe
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
| | - Nabita Singh
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
| | - Matthew Dimmock
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia; School of Allied Health Professions, Keele University, Staffordshire, UK
| | - Katherine Cox
- Centre for Human Psychopharmacology, Swinburne University, Australia
| | - Lorcan McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Kian Fan Chung
- Experimental Studies Unit, National Heart & Lung Institute, Imperial College London, UK; Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, UK
| | - Alice E McGovern
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Marcus McMahon
- Department of Respiratory and Sleep Medicine, Austin Hospital, Heidelberg, Australia
| | - Amanda L Richards
- Department of Otolaryngology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia; Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Luo HM, Ye JR, Pu FQ, Luo HL, Zhang WJ. Role and therapeutic target of P2X2/3 receptors in visceral pain. Neuropeptides 2023; 101:102355. [PMID: 37390743 DOI: 10.1016/j.npep.2023.102355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Visceral pain (VP) is caused by internal organ disease. VP is involved in nerve conduction and related signaling molecules, but its specific pathogenesis has not yet been fully elucidated. Currently, there are no effective methods for treating VP. The role of P2X2/3 in VP has progressed. After visceral organs are subjected to noxious stimulation, cells release ATP, activate P2X2/3, enhance the sensitivity of peripheral receptors and the plasticity of neurons, enhance sensory information transmission, sensitize the central nervous system, and play an important role in the development of VP. However, antagonists possess the pharmacological effect of relieving pain. Therefore, in this review, we summarize the biological functions of P2X2/3 and discuss the intrinsic link between P2X2/3 and VP. Moreover, we focus on the pharmacological effects of P2X2/3 antagonists on VP therapy and provide a theoretical basis for its targeted therapy.
Collapse
Affiliation(s)
- Hong-Mei Luo
- Department of Rheumatology, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province 343000, China
| | - Jia-Rong Ye
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China
| | - Fan-Qin Pu
- Department of Rheumatology, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province 343000, China
| | - Hong-Liang Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China.
| |
Collapse
|
3
|
van Weperen VYH, Vaseghi M. Cardiac vagal afferent neurotransmission in health and disease: review and knowledge gaps. Front Neurosci 2023; 17:1192188. [PMID: 37351426 PMCID: PMC10282187 DOI: 10.3389/fnins.2023.1192188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
The meticulous control of cardiac sympathetic and parasympathetic tone regulates all facets of cardiac function. This precise calibration of cardiac efferent innervation is dependent on sensory information that is relayed from the heart to the central nervous system. The vagus nerve, which contains vagal cardiac afferent fibers, carries sensory information to the brainstem. Vagal afferent signaling has been predominantly shown to increase parasympathetic efferent response and vagal tone. However, cardiac vagal afferent signaling appears to change after cardiac injury, though much remains unknown. Even though subsequent cardiac autonomic imbalance is characterized by sympathoexcitation and parasympathetic dysfunction, it remains unclear if, and to what extent, vagal afferent dysfunction is involved in the development of vagal withdrawal. This review aims to summarize the current understanding of cardiac vagal afferent signaling under in health and in the setting of cardiovascular disease, especially after myocardial infarction, and to highlight the knowledge gaps that remain to be addressed.
Collapse
Affiliation(s)
- Valerie Y. H. van Weperen
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States
| | - Marmar Vaseghi
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
4
|
Kim BS. The translational revolution of itch. Neuron 2022; 110:2209-2214. [PMID: 35447089 DOI: 10.1016/j.neuron.2022.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 02/08/2023]
Abstract
The ability to sense the environment is essential to survival and is the primary purpose of the somatosensory nervous system. However, despite its highly conserved nature, the sensation of itch has been historically overlooked, and its importance in medicine underappreciated. Herein, we highlight how fundamental discoveries, coupled to rapid successes of new therapeutics, have placed itch biology at the forefront of a translational revolution in the field of somatosensation and beyond.
Collapse
Affiliation(s)
- Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Moe AAK, McGovern AE, Mazzone SB. Jugular vagal ganglia neurons and airway nociception: A target for treating chronic cough. Int J Biochem Cell Biol 2021; 135:105981. [PMID: 33895353 DOI: 10.1016/j.biocel.2021.105981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
The airways receive a dense supply of sensory nerve fibers that are responsive to damaging or potentially injurious stimuli. These airway nociceptors are mainly derived from the jugular and nodose vagal ganglia, and when activated they induce a range of reflexes and sensations that play an essential role in airway protection. Jugular nociceptors differ from nodose nociceptors in their embryonic origins, molecular profile and termination patterns in the airways and the brain, and recent discoveries suggest that excessive activity in jugular nociceptors may be central to the development of chronic cough. For these reasons, targeting jugular airway nociceptor signaling processes at different levels of the neuraxis may be a promising target for therapeutic development. In this focused review, we present the current understanding of jugular ganglia nociceptors, how they may contribute to chronic cough and mechanisms that could be targeted to bring about cough suppression.
Collapse
Affiliation(s)
- Aung Aung Kywe Moe
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alice E McGovern
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
6
|
Plevkova J, Brozmanova M, Matloobi A, Poliacek I, Honetschlager J, Buday T. Animal models of cough. Respir Physiol Neurobiol 2021; 290:103656. [PMID: 33781930 DOI: 10.1016/j.resp.2021.103656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/16/2021] [Accepted: 03/21/2021] [Indexed: 01/10/2023]
Abstract
Cough is a vital airway reflex that keeps the respiratory tract wisely protected. It is also a sign of many diseases of the respiratory system and it may become a disease in its own right. Even though the efficacy of antitussive compounds is extensively studied in animal models with promising results, the treatment of pathological cough in humans is insufficient at the moment. The limited translational potential of animal models used to study cough causes, mechanisms and possible therapeutic targets stems from multiple sources. First of all, cough induced in the laboratory by mechanical or chemical stimuli is far from natural cough present in human disease. The main objective of this review is to provide a comprehensive summary of animal models currently used in cough research and to address their advantages and disadvantages. We also want to encourage cough researchers to call for precision is research by addressing the sex bias which has existed in basic cough research for decades and discuss the role of specific pathogen-free (SPF) animals.
Collapse
Affiliation(s)
- Jana Plevkova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pathophysiology, Martin, Slovakia
| | - Mariana Brozmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pathophysiology, Martin, Slovakia
| | - Alireza Matloobi
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pathophysiology, Martin, Slovakia
| | - Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Biophysics, Martin, Slovakia
| | - Jan Honetschlager
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Buday
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pathophysiology, Martin, Slovakia.
| |
Collapse
|
7
|
Dodds KN, Kyloh MA, Travis L, Beckett EAH, Spencer NJ. Morphological identification of thoracolumbar spinal afferent nerve endings in mouse uterus. J Comp Neurol 2020; 529:2029-2041. [PMID: 33190293 DOI: 10.1002/cne.25070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 11/06/2022]
Abstract
Major sensory innervation to the uterus is provided by spinal afferent nerves, whose cell bodies lie predominantly in thoracolumbar dorsal root ganglia (DRG). While the origin of the cell bodies of uterine spinal afferents is clear, the identity of their sensory endings has remained unknown. Hence, our major aim was to identify the location, morphology, and calcitonin gene-related peptide (CGRP)-immunoreactivity of uterine spinal afferent endings supplied by thoracolumbar DRG. We also sought to determine the degree of uterine afferent innervation provided by the vagus nerve. Using an anterograde tracing technique, nulliparous female C57BL/6 mice were injected unilaterally with biotinylated dextran into thoracolumbar DRG (T13-L3). After 7-9 days, uterine horns were stained to visualize traced nerve axons and endings immunoreactive to CGRP. Whole uteri from a separate cohort of animals were injected with retrograde neuronal tracer (DiI) and dye uptake in nodose ganglia was examined. Anterogradely labeled axons innervated each uterine horn, these projected rostrally or caudally from their site of entry, branching to form varicose endings in the myometrium and/or vascular plexus. Most spinal afferent endings were CGRP-immunoreactive and morphologically classified as "simple-type." Rarely, uterine nerve cell bodies were labeled in nodose ganglia. Here, we provide the first detailed description of spinal afferent nerve endings in the uterus of a vertebrate. Distinct morphological types of spinal afferent nerve endings were identified throughout multiple anatomical layers of the uterine wall. Compared to other visceral organs, uterine spinal afferent endings displayed noticeably less morphological diversity. Few neurons in nodose ganglia innervate the uterus.
Collapse
Affiliation(s)
- Kelsi N Dodds
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Melinda A Kyloh
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Lee Travis
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Elizabeth A H Beckett
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, South Australia, Australia
| |
Collapse
|
8
|
Taylor-Clark TE. Molecular identity, anatomy, gene expression and function of neural crest vs. placode-derived nociceptors in the lower airways. Neurosci Lett 2020; 742:135505. [PMID: 33197519 DOI: 10.1016/j.neulet.2020.135505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The lower airways (larynx to alveoli) are protected by a complex array of neural networks that regulate respiration and airway function. Harmful stimuli trigger defensive responses such as apnea, cough and bronchospasm by activating a subpopulation of sensory afferent nerves (termed nociceptors) which are found throughout the airways. Airway nociceptive fibers are projected from the nodose vagal ganglia, the jugular vagal ganglia and the dorsal root ganglia, which are derived from distinct embryological sources: the former from the epibranchial placodes, the latter two from the neural crest. Embryological source determines nociceptive gene expression of receptors and neurotransmitters and recent evidence suggests that placode- and neural crest-derived nociceptors have distinct stimuli sensitivity, innervation patterns and functions. Improved understanding of the function of each subset in specific reflexes has substantial implications for therapeutic targeting of the neuronal components of airway disease such as asthma, viral infections and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
9
|
Farrell MJ, Bautista TG, Liang E, Azzollini D, Egan GF, Mazzone SB. Evidence for multiple bulbar and higher brain circuits processing sensory inputs from the respiratory system in humans. J Physiol 2020; 598:5771-5787. [DOI: 10.1113/jp280220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Michael J. Farrell
- Departmental of Medical Imaging and Radiation Sciences Monash University Clayton VIC Australia
- Monash Biomedical Imaging Monash University Clayton VIC Australia
| | - Tara G. Bautista
- Department of Anatomy and Neuroscience University of Melbourne Parkville Victoria Australia
| | - Emma Liang
- Monash Biomedical Imaging Monash University Clayton VIC Australia
| | - Damian Azzollini
- Monash Biomedical Imaging Monash University Clayton VIC Australia
| | - Gary F. Egan
- Monash Biomedical Imaging Monash University Clayton VIC Australia
- School of Psychological Sciences Monash University Clayton VIC Australia
- ARC Centre of Excellence for Integrative Brain Function Monash University Clayton VIC Australia
| | - Stuart B. Mazzone
- Department of Anatomy and Neuroscience University of Melbourne Parkville Victoria Australia
| |
Collapse
|
10
|
P2X3-Receptor Antagonists as Potential Antitussives: Summary of Current Clinical Trials in Chronic Cough. Lung 2020; 198:609-616. [PMID: 32661659 DOI: 10.1007/s00408-020-00377-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 01/17/2023]
Abstract
Cough is among the most common complaints for which patients worldwide seek medical attention. In a majority of patients with chronic cough (defined as cough of greater than 8 weeks' duration), successful management results from a thorough evaluation and treatment of underlying causes. In a subgroup of patients, however, cough proves refractory to therapeutic trials aimed at known reversible causes of chronic cough. Such patients are appropriately termed as having refractory chronic cough. At present, safe and effective medications are lacking for this challenging patient population. Currently available therapeutic options are usually ineffective or achieve antitussive effect at the expense of intolerable side effects, typically sedation. Fortunately, the past decade has witnessed great progress in elucidating underlying mechanisms of cough. From that knowledge, aided by the development of validated instruments to measure objective and subjective cough-related end points, numerous antitussive drug development programs have emerged. The most active area of inquiry at present involves antagonists of the purinergic P2X receptors. Indeed, four clinical programs (one in Phase 3 and three in Phase 2) are currently underway investigating antagonists of receptors comprised entirely or partially of the P2X3 subunit as potential antitussive medications. Herein we review the foundation on which P2X receptor antagonists were developed as potential antitussive medications and provide an update on current clinical trials.
Collapse
|
11
|
Krajewski JL. P2X3-Containing Receptors as Targets for the Treatment of Chronic Pain. Neurotherapeutics 2020; 17:826-838. [PMID: 33009633 PMCID: PMC7609758 DOI: 10.1007/s13311-020-00934-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Current therapies for the treatment of chronic pain provide inadequate relief for millions of suffering patients, demonstrating the need for better therapies that will treat pain effectively and improve the quality of patient's lives. Better understanding of the mechanisms that mediate chronic pain is critical for developing drugs with improved clinical outcomes. Adenosine triphosphate (ATP) is a key modulator in nociceptive pathways. Release of ATP from injured tissue or sympathetic efferents has sensitizing effects on sensory neurons in the periphery, and presynaptic vesicular release of ATP from the central terminals can increase glutamate release thereby potentiating downstream central sensitization mechanisms, a condition thought to underlie many chronic pain conditions. The purinergic receptors on sensory nerves primarily responsible for ATP signaling are P2X3 and P2X2/3. Selective knockdown experiments, or inhibition with small molecules, demonstrate P2X3-containing receptors are key targets to modulate nociceptive signals. Preclinical studies have identified that P2X3-containing receptors are critical for sensory transduction for bladder function, and clinical studies have shown promise in treatment for bladder pain and pain associated with osteoarthritis. Further clinical characterization of antagonists to P2X3-containing receptors may lead to improved therapies in the treatment of chronic pain.
Collapse
|
12
|
Kaelberer MM, Caceres AI, Jordt SE. Activation of a nerve injury transcriptional signature in airway-innervating sensory neurons after lipopolysaccharide-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 2020; 318:L953-L964. [PMID: 32159971 DOI: 10.1152/ajplung.00403.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lungs and the immune and nervous systems functionally interact to respond to respiratory environmental exposures and infections. The lungs are innervated by vagal sensory neurons of the jugular and nodose ganglia, fused together in smaller mammals as the jugular-nodose complex (JNC). Whereas the JNC shares properties with the other sensory ganglia, the trigeminal (TG) and dorsal root ganglia (DRG), these sensory structures express differential sets of genes that reflect their unique functionalities. Here, we used RNA sequencing (RNA-seq) in mice to identify the differential transcriptomes of the three sensory ganglia types. Using a fluorescent retrograde tracer and fluorescence-activated cell sorting, we isolated a defined population of airway-innervating JNC neurons and determined their differential transcriptional map after pulmonary exposure to lipopolysaccharide (LPS), a major mediator of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) after infection with gram-negative bacteria or inhalation of organic dust. JNC neurons activated an injury response program, leading to increased expression of gene products such as the G protein-coupled receptor Cckbr, inducing functional changes in neuronal sensitivity to peptides, and Gpr151, also rapidly induced upon neuropathic nerve injury in pain models. Unique JNC-specific transcripts, present at only minimal levels in TG, DRG, and other organs, were identified. These included TMC3, encoding for a putative mechanosensor, and urotensin 2B, a hypertensive peptide. These findings highlight the unique properties of the JNC and reveal that ALI/ARDS rapidly induces a nerve injury-related state, changing vagal excitability.
Collapse
Affiliation(s)
| | - Ana Isabel Caceres
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine. Durham, North Carolina.,Integrated Toxicology and Environmental Health Program (ITEHP), Duke University, Durham, North Carolina
| |
Collapse
|
13
|
Spencer NJ, Kyloh MA, Travis L, Dodds KN. Identification of spinal afferent nerve endings in the colonic mucosa and submucosa that communicate directly with the spinal cord: The gut–brain axis. J Comp Neurol 2020; 528:1742-1753. [DOI: 10.1002/cne.24854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Nick J. Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience Flinders University Bedford Park South Australia Australia
| | - Melinda A. Kyloh
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience Flinders University Bedford Park South Australia Australia
| | - Lee Travis
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience Flinders University Bedford Park South Australia Australia
| | - Kelsi N. Dodds
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience Flinders University Bedford Park South Australia Australia
| |
Collapse
|
14
|
Undem BJ, Sun H. Molecular/Ionic Basis of Vagal Bronchopulmonary C-Fiber Activation by Inflammatory Mediators. Physiology (Bethesda) 2020; 35:57-68. [PMID: 31799905 PMCID: PMC6985783 DOI: 10.1152/physiol.00014.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Stimulation of bronchopulmonary vagal afferent C fibers by inflammatory mediators can lead to coughing, chest tightness, and changes in breathing pattern, as well as reflex bronchoconstriction and secretions. These responses serve a defensive function in healthy lungs but likely contribute to many of the signs and symptoms of inflammatory airway diseases. A better understanding of the mechanisms underlying the activation of bronchopulmonary C-fiber terminals may lead to novel therapeutics that would work in an additive or synergic manner with existing anti-inflammatory strategies.
Collapse
Affiliation(s)
| | - Hui Sun
- Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
15
|
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is densely expressed in spinal sensory neurons as well as in cranial sensory neurons, including their central terminal endings. Recent work in the less familiar cranial sensory neurons, despite their many similarities with spinal sensory neurons, suggest that TRPV1 acts as a calcium channel to release a discrete population of synaptic vesicles. The modular and independent regulation of release offers new questions about nanodomain organization of release and selective actions of G protein–coupled receptors.
Collapse
Affiliation(s)
- Michael C. Andresen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
16
|
Transcriptional Profiling of Individual Airway Projecting Vagal Sensory Neurons. Mol Neurobiol 2019; 57:949-963. [DOI: 10.1007/s12035-019-01782-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
|