1
|
Lv R, Zhao Y, Wang X, He Y, Dong N, Min X, Liu X, Yu Q, Yuan K, Yue H, Yin Q. GLP-1 analogue liraglutide attenuates CIH-induced cognitive deficits by inhibiting oxidative stress, neuroinflammation, and apoptosis via the Nrf2/HO-1 and MAPK/NF-κB signaling pathways. Int Immunopharmacol 2024; 142:113222. [PMID: 39321702 DOI: 10.1016/j.intimp.2024.113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Obstructive sleep apnea (OSA) is a common clinical condition linked to cognitive impairment, mainly characterized by chronic intermittent hypoxia (CIH). GLP-1 receptor agonist, known for promoting insulin secretion and reducing glucose levels, has demonstrated neuroprotective effects in various experimental models such as stroke, Alzheimer's disease, and Parkinson's disease. This study aims to investigate the potential role and mechanisms of the GLP-1 receptor agonist liraglutide in ameliorating OSA-induced cognitive deficits. CIH exposure, a well-established and mature OSA pathological model, was used both in vitro and in vivo. In vitro, CIH significantly activated oxidative stress, inflammation, and apoptosis in SH-SY5Y cells. Liraglutide enhanced the nuclear translocation of Nrf2, activating its downstream pathways, thereby mitigating CIH-induced injury in SH-SY5Y cells. Additionally, liraglutide modulated the MAPK/NF-κB signaling pathway, reducing the expression of inflammatory factors and proteins. In vivo, we subjected mice to an intermittent hypoxia incubator to mimic the pathogenesis of human OSA. The Morris water maze test revealed that CIH exposure substantially impaired spatial memory. Subsequent western blot analyses and histopathological examinations indicated that liraglutide could activate the Nrf2/HO-1 axis and inhibit the MAPK/NF-κB signaling pathway, thereby alleviating OSA-associated cognitive dysfunction in mice. These findings suggest that GLP-1 receptor agonists may offer a promising preventive strategy for OSA-associated cognitive impairment. By refining these findings, we provide new insights into GLP-1's protective mechanisms in combating cognitive deficits associated with CIH, underscoring its potential as a therapeutic agent for conditions linked to OSA.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yan Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xiangzhen Min
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xueying Liu
- Jinan Third People's Hospital, Jinan, Shandong 250132, China
| | - Qin Yu
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China.
| |
Collapse
|
2
|
Wang S, Tan J, Zhang Q. Cytosolic Escape of Mitochondrial DNA Triggers cGAS-STING Pathway-Dependent Neuronal PANoptosis in Response to Intermittent Hypoxia. Neurochem Res 2024; 49:2228-2248. [PMID: 38833090 DOI: 10.1007/s11064-024-04151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Intermittent hypoxia (IH) is the predominant pathophysiological disturbance in obstructive sleep apnea (OSA), characterized by neuronal cell death and neurocognitive impairment. We focus on the accumulated mitochondrial DNA (mtDNA) in the cytosol, which acts as a damage-associated molecular pattern (DAMP) and activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, a known trigger for immune responses and neuronal death in degenerative diseases. However, the specific role and mechanism of the mtDNA-cGAS-STING axis in IH-induced neural damage remain largely unexplored. Here, we investigated the involvement of PANoptosis, a novel type of programmed cell death linked to cytosolic mtDNA accumulation and the cGAS-STING pathway activation, in neuronal cell death induced by IH. Our study found that PANoptosis occurred in primary cultures of hippocampal neurons and HT22 cell lines exposed to IH. In addition, we discovered that during IH, mtDNA released into the cytoplasm via the mitochondrial permeability transition pore (mPTP) activates the cGAS-STING pathway, exacerbating PANoptosis-associated neuronal death. Pharmacologically inhibiting mPTP opening or depleting mtDNA significantly reduced cGAS-STING pathway activation and PANoptosis in HT22 cells under IH. Moreover, our findings indicated that the cGAS-STING pathway primarily promotes PANoptosis by modulating endoplasmic reticulum (ER) stress. Inhibiting or silencing the cGAS-STING pathway substantially reduced ER stress-mediated neuronal death and PANoptosis, while lentivirus-mediated STING overexpression exacerbated these effects. In summary, our study elucidates that cytosolic escape of mtDNA triggers cGAS-STING pathway-dependent neuronal PANoptosis in response to IH, mainly through regulating ER stress. The discovery of the novel mechanism provides theoretical support for the prevention and treatment of neuronal damage and cognitive impairment in patients with OSA.
Collapse
Affiliation(s)
- Shuying Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China.
| |
Collapse
|
3
|
Kumar A, Bajaj P, Singh B, Paul K, Sharma P, Mehra S, Robin, Kaur P, Jasrotia S, Kumar P, Rajat, Singh V, Tuli HS. Sesamol as a potent anticancer compound: from chemistry to cellular interactions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4961-4979. [PMID: 38180556 DOI: 10.1007/s00210-023-02919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Sesamol (SM), a well-known component isolated from sesame seeds (Sesamum indicum), used in traditional medicines in treating numerous ailments. However, numerous molecular investigations revealed the various mechanisms behind its activity, emphasizing its antiproliferative, anti-inflammatory, and apoptosis-inducing properties, preventing cancer cell spread to distant organs. In several cells derived from various malignant tissues, SM-regulated signal transduction pathways and cellular targets have been identified. This review paper comprehensively describes the anticancer properties of SM and SM-viable anticancer drugs. Additionally, the interactions of this natural substance with standard anticancer drugs are examined, and the benefits of using nanotechnology in SM applications are explored. This makes SM a prime example of how ethnopharmacological knowledge can be applied to the development of contemporary drugs.
Collapse
Affiliation(s)
- Ajay Kumar
- University Center for Research & Development (UCRD), Biotechnology Engineering & Food Technology, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| | - Payal Bajaj
- Advanced Eye Center, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Kapil Paul
- Kanya Maha Vidyalaya, Jalandhar, 144004, Punjab, India
| | - Pooja Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sukanya Mehra
- P.G. Department of Science, Khalsa College For Women, Amritsar, 143001, Punjab, India
| | - Robin
- Regional Water Testing Laboratory, Department of Water Supply and Sanitation, Agilent Technologies India Pvt. Ltd., Amritsar, Punjab, India
| | - Pardeep Kaur
- Post Graduate Department of Botany, Khalsa College, Amritsar, Punjab, India
| | - Shivam Jasrotia
- Department of Biosciences, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Parveen Kumar
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Rajat
- Punjab Biotechnology Incubator (PBTI), Phase VIII, Mohali, 160071, India
| | - Vipourpreet Singh
- Coast Mountain College, Prince Rupert, British Columbia, V8J3S8, Canada
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| |
Collapse
|
4
|
Javed H, Meeran MFN, Jha NK, Ashraf GM, Ojha S. Sesamol: A Phenolic Compound of Health Benefits and Therapeutic Promise in Neurodegenerative Diseases. Curr Top Med Chem 2024; 24:797-809. [PMID: 38141184 DOI: 10.2174/0115680266273944231213070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 12/25/2023]
Abstract
Sesamol, one of the key bioactive ingredients of sesame seeds (Sesamum indicum L.), is responsible for many of its possible nutritional benefits. Both the Chinese and Indian medical systems have recognized the therapeutic potential of sesame seeds. It has been shown to have significant therapeutic potential against oxidative stress, inflammatory diseases, metabolic syndrome, neurodegeneration, and mental disorders. Sesamol is a benign molecule that inhibits the expression of inflammatory indicators like numerous enzymes responsible for inducing inflammation, protein kinases, cytokines, and redox status. This review summarises the potential beneficial effects of sesamol against neurological diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Recently, sesamol has been shown to reduce amyloid peptide accumulation and attenuate cognitive deficits in AD models. Sesamol has also been demonstrated to reduce the severity of PD and HD in animal models by decreasing oxidative stress and inflammatory pathways. The mechanism of sesamol's pharmacological activities against neurodegenerative diseases will also be discussed in this review.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, UP, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Majdalawieh AF, Ahari SH, Yousef SM, Nasrallah GK. Sesamol: A lignan in sesame seeds with potent anti-inflammatory and immunomodulatory properties. Eur J Pharmacol 2023; 960:176163. [PMID: 37925135 DOI: 10.1016/j.ejphar.2023.176163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Inflammation is associated with the development and progression of a plethora of diseases including joint, metabolic, neurological, hepatic, and renal disorders. Sesamol, derived from the seeds of Sesamum indicum L., has received considerable attention due to its well-documented multipotent phytotherapeutic effects, including its anti-inflammatory and immunomodulatory properties. However, to date, no comprehensive review has been established to highlight or summarize the anti-inflammatory and immunomodulatory properties of sesamol. Herein, we aim to address this gap in the literature by presenting a thorough review encapsulating evidence surrounding the range of inflammatory mediators and cytokines shown to be targeted by sesamol in modulating its anti-inflammatory actions against a range of inflammatory disorders. Additionally, evidence highlighting the role that sesamol has in modulating components of adaptive immunity including cellular immune responses and Th1/Th2 balance is underscored. Moreover, the molecular mechanisms and the signaling pathways underlying such effects are also highlighted. Findings indicate that this seemingly potent lignan mediates its anti-inflammatory actions, at least in part, via suppression of various pro-inflammatory cytokines like IL-1β and TNFα, and downregulation of a multitude of signaling pathways including NF-κB and MAPK. In conclusion, we anticipate that sesamol may be employed in future therapeutic regimens to aid in more effective drug development to alleviate immune-related and inflammatory conditions.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Sogand H Ahari
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Sarah M Yousef
- Department of Psychology, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Pérez-Jiménez J, Agnant K, Lamuela-Raventós RM, St-Onge MP. Dietary polyphenols and sleep modulation: Current evidence and perspectives. Sleep Med Rev 2023; 72:101844. [PMID: 37659249 PMCID: PMC10872761 DOI: 10.1016/j.smrv.2023.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Polyphenols are plant compounds with several biological activities. This review aims to summarize current knowledge on the potential role of polyphenols in modulating sleep. A total of 28 preclinical studies, 12 intervention studies and four observational studies exploring the role of polyphenol intake on sleep were identified. From animal studies, 26 out of the 28 studies found beneficial effects of polyphenols on sleep architecture. Three out of four human observational studies found a beneficial association between polyphenol intake and sleep parameters. And, among clinical intervention studies, eight from a total of 12 studies found some beneficial effect of polyphenol intake on various sleep parameters, although some discrepancies between studies were found. Overall, emerging evidence suggests a benefit of polyphenol intake on sleep. Several mechanisms of action have been suggested, ranging from effects on neurotransmitters to an action through the gut-brain axis. However, more research in this field is needed, emphasizing the use of nutritional doses in mechanistic studies and interventions targeting participants with sleep problems. This would allow to elucidate whether an additional biological effect of polyphenols is modulation of sleep, a behavior associated with adverse health outcomes.
Collapse
Affiliation(s)
- Jara Pérez-Jiménez
- Dept. Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain; CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, Madrid, Spain; Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kaitha Agnant
- Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rosa M Lamuela-Raventós
- Dept. Nutrition, Food Sciences and Gastronomy, XIA, INSA-UB, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), ISCIII, Madrid, Spain
| | - Marie-Pierre St-Onge
- Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
7
|
He D, Chen J, Du X, Xu L. Summary of drug therapy to treat cognitive impairment-induced obstructive sleep apnea. Front Cell Neurosci 2023; 17:1222626. [PMID: 37731463 PMCID: PMC10507626 DOI: 10.3389/fncel.2023.1222626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a severe sleep disorder associated with intermittent hypoxia and sleep fragmentation. Cognitive impairment is a signifi- cant and common OSA complication often described in such patients. The most commonly utilized methods in clinical OSA treatment are oral appliances and continuous positive airway pressure (CPAP). However, the current therapeutic methods for improving cognitive function could not achieve the expected efficacy in same patients. Therefore, further understanding the molecular mechanism behind cognitive dysfunction in OSA disease will provide new treatment methods and targets. This review briefly summarized the clinical manifestations of cognitive impairment in OSA disease. Moreover, the pathophysiological molecular mechanism of OSA was outlined. Our study concluded that both SF and IH could induce cognitive impairment by multiple signaling pathways, such as oxidative stress activation, inflammation, and apoptosis. However, there is a lack of effective drug therapy for cognitive impairment in OSA. Finally, the therapeutic potential of some novel compounds and herbal medicine was evaluated on attenuating cognitive impairment based on certain preclinical studies.
Collapse
Affiliation(s)
- Daqiang He
- Department of Laboratory Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoxue Du
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linhao Xu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Badran M, Puech C, Barrow MB, Runion AR, Gozal D. Solriamfetol enhances wakefulness and improves cognition and anxiety in a murine model of OSA. Sleep Med 2023; 107:89-99. [PMID: 37137196 DOI: 10.1016/j.sleep.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a chronic condition characterized by intermittent hypoxia (IH). Excessive daytime sleepiness (EDS) is a common consequence of OSA and is associated with cognitive deficits and anxiety. Modafinil (MOD) and Solriamfetol (SOL) are potent wake-promoting agents clinically used to improve wakefulness in OSA patients with EDS. METHODS Male C57Bl/6J mice were exposed to either IH or room air (RA) controls during the light phase for 16 weeks. Both groups were then randomly assigned to receive once-daily intraperitoneal injections of SOL (200 mg/kg), MOD (200 mg/kg) or vehicle (VEH) for 9 days while continuing IH exposures. Sleep/wake activity was assessed during the dark (active) phase. Novel object recognition (NOR), elevated-plus maze test (EPMT), and forced swim test (FST) were performed before and after drug treatment. RESULTS IH exposure increased dark phase sleep percentage and reduced wake bouts lengths and induced cognitive deficits and anxiogenic effects. Both SOL and MOD treatments decreased sleep propensity under IH conditions, but only SOL promoted improvements in NOR performance (explicit memory) and reduced anxiety-like behaviors. CONCLUSION Chronic IH, a hallmark feature of OSA, induces EDS in young adult mice that is ameliorated by both SOL and MOD. SOL, but not MOD, significantly improves IH-induced cognitive deficits and promotes anxiolytic effects. Thus, SOL could potentially benefit OSA patients beyond EDS management.
Collapse
Affiliation(s)
- Mohammad Badran
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Clementine Puech
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Max B Barrow
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - Alexandra R Runion
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
9
|
Si J, Liu B, Qi K, Chen X, Li D, Yang S, Ji E. Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116677. [PMID: 37268259 DOI: 10.1016/j.jep.2023.116677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic intermittent hypoxia (CIH) is the primary pathophysiological process of obstructive sleep apnea (OSA) and is closely linked to neurocognitive dysfunction. Tanshinone IIA (Tan IIA) is extracted from Salvia miltiorrhiza Bunge and used in Traditional Chinese Medicine (TCM) to improve cognitive impairment. Studies have shown that Tan IIA has anti-inflammatory, anti-oxidant, and anti-apoptotic properties and provides protection in intermittent hypoxia (IH) conditions. However, the specific mechanism is still unclear. AIM OF THE STUDY To assess the protective effect and mechanism of Tan IIA treatment on neuronal injury in HT22 cells exposed to IH. MATERIALS AND METHODS The study established an HT22 cell model exposed to IH (0.1% O2 3 min/21% O2 7 min for six cycles/h). Cell viability was determined using the Cell Counting Kit-8, and cell injury was determined using the LDH release assay. Mitochondrial damage and cell apoptosis were observed using the Mitochondrial Membrane Potential and Apoptosis Detection Kit. Oxidative stress was assessed using DCFH-DA staining and flow cytometry. The level of autophagy was assessed using the Cell Autophagy Staining Test Kit and transmission electron microscopy (TEM). Western blot was used to detect the expressions of the AMPK-mTOR pathway, LC3, P62, Beclin-1, Nrf2, HO-1, SOD2, NOX2, Bcl-2/Bax, and caspase-3. RESULTS The study showed that Tan IIA significantly improved HT22 cell viability under IH conditions. Tan IIA treatment improved mitochondrial membrane potential, decreased cell apoptosis, inhibited oxidative stress, and increased autophagy levels in HT22 cells under IH conditions. Furthermore, Tan IIA increased AMPK phosphorylation and LC3II/I, Beclin-1, Nrf2, HO-1, SOD2, and Bcl-2/Bax expressions, while decreasing mTOR phosphorylation and NOX2 and cleaved caspase-3/caspase-3 expressions. CONCLUSION The study suggested that Tan IIA significantly ameliorated neuronal injury in HT22 cells exposed to IH. The neuroprotective mechanism of Tan IIA may mainly be related to inhibiting oxidative stress and neuronal apoptosis by activating the AMPK/mTOR autophagy pathway under IH conditions.
Collapse
Affiliation(s)
- Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Bingbing Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Kerong Qi
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Xue Chen
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Dongli Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
10
|
Yang C, Zhou Y, Liu H, Xu P. The Role of Inflammation in Cognitive Impairment of Obstructive Sleep Apnea Syndrome. Brain Sci 2022; 12:brainsci12101303. [PMID: 36291237 PMCID: PMC9599901 DOI: 10.3390/brainsci12101303] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) has become a major worldwide public health concern, given its global prevalence. It has clear links with multiple comorbidities and mortality. Cognitive impairment is one related comorbidity causing great pressure on individuals and society. The clinical manifestations of cognitive impairment in OSAS include decline in attention/vigilance, verbal–visual memory loss, visuospatial/structural ability impairment, and executive dysfunction. It has been proven that chronic intermittent hypoxia (CIH) may be a main cause of cognitive impairment in OSAS. Inflammation plays important roles in CIH-induced cognitive dysfunction. Furthermore, the nuclear factor kappa B and hypoxia-inducible factor 1 alpha pathways play significant roles in this inflammatory mechanism. Continuous positive airway pressure is an effective therapy for OSAS; however, its effect on cognitive impairment is suboptimal. Therefore, in this review, we address the role inflammation plays in the development of neuro-impairment in OSAS and the association between OSAS and cognitive impairment to provide an overview of its pathophysiology. We believe that furthering the understanding of the inflammatory mechanisms involved in OSAS-associated cognitive impairment could lead to the development of appropriate and effective therapy.
Collapse
|
11
|
Zhu J, Zeng Z, Xiong M, Mo H, Jin M, Hu K. Associations between daytime and nighttime plasma orexin A levels and cognitive function in patients with obstructive sleep apnea. Sleep Biol Rhythms 2022; 20:421-429. [PMID: 38469416 PMCID: PMC10900028 DOI: 10.1007/s41105-022-00387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
The relationship between plasma orexin A (OXA) levels and cognitive function in patients with obstructive sleep apnea (OSA) remains unclear. This study aimed to evaluate associations between daytime and nighttime plasma OXA levels and cognitive function in patients with OSA. Subjects with suspected OSA underwent overnight polysomnography (PSG), Montreal Cognitive Assessment (MoCA), and Epworth Sleepiness Scale (ESS) assessment. Subjects were considered controls or having OSA according to the apnea-hypopnea index (AHI). Daytime and nighttime plasma OXA levels were determined by ELISA. Receiver-operating characteristics curves were used to evaluate the diagnostic value of plasma OXA levels for assessing cognitive impairment in OSA patients. One hundred and six subjects met the inclusion criteria. MoCA scores and plasma OXA concentrations were significantly lower in OSA patients than controls (p < 0.01). Patients with moderate and severe OSA had significantly lower MoCA scores than controls and mild OSA patients (p < 0.01). Daytime and nighttime OXA levels were significantly lower in OSA patients with cognitive impairment than those without cognitive impairment (p < 0.01). Both daytime and nighttime plasma OXA levels in patients with OSA were positively correlated with MoCA scores and nadir SaO2, negatively correlated with AHI, oxygen desaturation index, and percentage of time spent with an SaO2 below 90% (all p < 0.05), and not correlated with ESS scores. The optimal threshold of daytime plasma OXA to diagnose OSA with cognitive impairment was 49.34 pg/ml, with a sensitivity of 80.0% and a specificity of 74.3%. We concluded that plasma OXA concentrations might be related to cognitive function and daytime plasma OXA levels have diagnostic value for assessing cognitive impairment in OSA patients. Supplementary Information The online version contains supplementary material available at 10.1007/s41105-022-00387-4.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Zhaofu Zeng
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Mengqing Xiong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Huaheng Mo
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Meng Jin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| |
Collapse
|
12
|
Kang J, Tian Z, Wei J, Mu Z, Liang J, Li M. Association between obstructive sleep apnea and Alzheimer's disease-related blood and cerebrospinal fluid biomarkers: A meta-analysis. J Clin Neurosci 2022; 102:87-94. [PMID: 35753156 DOI: 10.1016/j.jocn.2022.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Recent studies indicate that Alzheimer's disease- (AD) related biomarkers, including amyloid β (Aβ40 and Aβ42) and tau proteins (P-tau and T-tau), in blood and cerebrospinal fluid (CSF) are associated with obstructive sleep apnea (OSA). However, the results have been inconsistent. Therefore, the primary purpose of this meta-analysis was to determine the relationship between blood and CSF AD-related biomarkers and OSA. METHODS We searched the Embase, PubMed, Scopus, and Cochrane Library databases for relevant articles till February 2022. RESULTS Eight articles were finally included after the literature screening, including 446 patients with OSA and 286 controls. Pooled analysis showed that CSF Aβ42 (SMD = -0.220, P = 0.136), T-tau (SMD = 0.012, P = 0.89), and P-tau (SMD = 0.099, P = 0.274) levels were not different between patients with OSA and controls. In patients with moderate to severe OSA, CSF Aβ42 (SMD = -0.482, P = 0.031) were significantly lower than in controls. Blood T-tau (SMD = 0.560, P = 0.026), P-tau (SMD = 0.621, P < 0.001), and Aβ40 (SMD = 0.656, P < 0.001) levels were significantly higher in patients with OSA than in controls. Blood Aβ42 (SMD = 0.241, P = 0.232) were not different between patients with OSA and controls. CONCLUSION OSA is associated with changes in AD-related markers. Higher OSA severity may be associated with the development of AD. AD-related biomarkers, especially in the blood, are clinically efficient, less invasively assessed and monitored, and may be useful for detecting OSA and related cognitive impairments. Further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Jing Kang
- Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Jilin Medical University, Jilin, Jilin 132013, China
| | - Zongsheng Tian
- Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jun Wei
- Jilin Medical University, Jilin, Jilin 132013, China
| | - Zhuangzhuang Mu
- Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jianmin Liang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Mingxian Li
- Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
13
|
Talebi A, Hayat P, Ghanbari A, Ardekanian M, Zarbakhsh S. Sesamol protects the function and structure of rat ovaries against side effects of cyclophosphamide by decreasing oxidative stress and apoptosis. J Obstet Gynaecol Res 2022; 48:1786-1794. [PMID: 35613704 DOI: 10.1111/jog.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/01/2022] [Accepted: 05/14/2022] [Indexed: 11/28/2022]
Abstract
AIM Chemotherapy with cyclophosphamide can damage ovaries and cause infertility in girls and women. Sesamol is a phenolic antioxidant that can protect various organs from damage. The purpose of this study was to evaluate the effects of sesamol on protecting the function and structure of rat ovaries against the side effects of a chemotherapy model with cyclophosphamide. METHODS Twenty-four adult female Wistar rats were randomly divided into three groups: (1) normal group, without any treatment, (2) control group, immediately after receiving cyclophosphamide, 0.5% dimethyl sulfoxide (DMSO) as the solvent of sesamol was intraperitoneally injected for 14 consecutive days, (3) sesamol group, immediately after receiving cyclophosphamide, 50 mg/kg sesamol was intraperitoneally injected for 14 consecutive days. Four weeks after the last injection, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels in the ovary, anti-Mullerian hormone (AMH) levels in the serum, number of ovarian follicles in different stages, and expression of proteins growth differentiation factor-9 (GDF-9), Bcl-2, and Bax in the ovary were evaluated. RESULTS The results of SOD activity and MDA levels in the ovary, AMH levels in the serum, number of ovarian follicles in different stages, and expression of proteins GDF9, Bcl-2, and Bax in the ovary were significantly more favorable in the sesamol group than the control group. CONCLUSIONS The results suggest that sesamol may protect function and structure in the rat ovaries against side effects of the chemotherapy model with cyclophosphamide by decreasing oxidative stress and apoptosis in the ovary.
Collapse
Affiliation(s)
- Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Hayat
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Ardekanian
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
14
|
Lu C, Wei Z, Jiang N, Chen Y, Wang Y, Li S, Wang Q, Fan B, Liu X, Wang F. Soy isoflavones protects against cognitive deficits induced by chronic sleep deprivation via alleviating oxidative stress and suppressing neuroinflammation. Phytother Res 2022; 36:2072-2080. [PMID: 35373399 DOI: 10.1002/ptr.7354] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/21/2021] [Accepted: 11/27/2021] [Indexed: 12/30/2022]
Abstract
Mounting evidence suggests that there is a close association between chronic sleep deprivation (CSD) and cognitive deficits. The animal model of CSD-induced cognitive deficits is commonly used to seek potential treatments. Soy isoflavones (SI) have been reported to possess antioxidant, anti-inflammation, and neuroprotective effects. In the present study, the effects of SI on CSD-induced memory impairment were investigated. The mice were subjected to the sleep interruption apparatus and continuously sleep deprived for 2 weeks, while orally administrated with SI (10, 20, and 40 mg/kg) or Modafinil (MOD,100 mg/kg) during the CSD process. Immediately after the SD protocol, cognitive performance of mice was evaluated by the object location recognition (OLR) test, the novel object recognition (NOR) test, and the Morris water maze (MWM) task, as well as the hippocampus, was extracted for evaluation of oxidative stress parameters and inflammation levels through biochemical parameter assay and western blotting analysis. The results showed that SI administration remarkably improved the cognitive performance of CSD-treated mice in OLR, NOR, and MWM tests. In addition, SI significantly elevated total antioxidant capacity and superoxide dismutase enzyme activities, decreased malondialdehyde level, promoting antioxidant element nuclear erythroid-2-related factor 2, and its downstream targets, including heme oxygenase 1, and quinone oxidoreductase 1 protein expressions. Moreover, SI treatment significantly suppressed nuclear factor kappa B p65, nitric oxide synthase, and cyclooxygenase 2 activation, as well as the pro-inflammatory cytokines (Tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6], and interleukin-1β [IL-1β]) release in the hippocampus of CSD-treated mice. In summary, the current study provides an insight into the potential of SI in treatment of cognitive deficits by CSD.
Collapse
Affiliation(s)
- Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhen Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ning Jiang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongquan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Qiong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xinmin Liu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Bai C, Zhu Y, Dong Q, Zhang Y. Chronic intermittent hypoxia induces the pyroptosis of renal tubular epithelial cells by activating the NLRP3 inflammasome. Bioengineered 2022; 13:7528-7540. [PMID: 35263214 PMCID: PMC8973594 DOI: 10.1080/21655979.2022.2047394] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a respiratory disorder and chronic intermittent hypoxia (CIH) is an important pathological characteristic of OSAS. Injuries on renal tubular epithelial cells were observed under the condition of CIH. Pyroptosis is a programmed mode of cell death following cell apoptosis and cell necrosis, which is mediated by NLRP3 signaling. The present study aims to investigate the effects of CIH on the pyroptosis of renal tubular epithelial cells and the underlying mechanism. Firstly, CIH was induced in two renal tubular epithelial cell lines, HK-2 cells and TCMK-1 cells. As the aggravation of hypoxia, an increasing trend of elevated apoptotic rate was observed in HK-2 cells and TCMK-1 cells, accompanied by the excessive release of ROS and LDH, and upregulation of NLRP3. Subsequently, the CIH model was established on rats. The pathological analysis results indicated that in CIH rats, the glomerular bottom membrane and mesangium were slightly thickened and edema was observed in the renal tubule epithelium. More serious injury was observed in the moderate intermittent hypoxia group. The expression level of IL-1β and IL-18 was promoted as the aggravation of hypoxia, accompanied by the elevated production of LDH and ROS. The expression level of cleaved Caspase-1, Caspase-1, GSDMD, TLR4, MyD88, NF-κB, p-NF-κB, and NLRP3 was found significantly upregulated as the aggravation of hypoxia. Lastly, the pathological changes in rats induced by CIH were dramatically abolished by MCC950, a specific inhibitor of NLRP3. Collectively, CIH triggered the pyroptosis of renal tubular epithelial cells by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Chunyan Bai
- Division of Geriatrics, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yingfei Zhu
- Division of International Medical Services, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| | - Qiaoliang Dong
- Division of International Medical Services, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yuwei Zhang
- Division of International Medical Services, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
16
|
Abou-Zeid SM, Elkhadrawey BA, Anis A, AbuBakr HO, El-Bialy BE, Elsabbagh HS, El-Borai NB. Neuroprotective effect of sesamol against aluminum nanoparticle-induced toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53767-53780. [PMID: 34037932 DOI: 10.1007/s11356-021-14587-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Alumina nanoparticles (ALNPs) are widely used causing neurobehavioral impairment in intoxicated animals and humans. Sesamol (SML) emerged as a natural phytochemical with potent antioxidant and anti-inflammatory properties. However, no study has directly tested the potential of SML to protect against AlNP-induced detrimental effects on the brain. AlNPs (100 mg/kg) were orally administered to rats by gavage with or without oral sesamol (100 mg/kg) for 28 days. In AlNP-intoxicated group, the brain AChE activity was elevated. The concentrations of MDA and 8-OHdG were increased suggesting lipid peroxidation and oxidative DNA damage. GSH depletion with inhibited activities of CAT and SOD were demonstrated. Serum levels of IL-1β and IL-6 were elevated. The expressions of GST, TNF-α, and caspase-3 genes in the brain were upregulated. Histopathologically, AlNPs induced hemorrhages, edema, neuronal necrosis, and/or apoptosis in medulla oblongata. The cerebellum showed loss of Purkinje cells, and the cerebrum showed perivascular edema, neuronal degeneration, necrosis, and neuronal apoptosis. However, concomitant administration of SML with AlNPs significantly ameliorated the toxic effects on the brain, reflecting antioxidant, anti-inflammatory, and anti-apoptotic effects of SML. Considering these results, sesamol could be a promising phytochemical with neuroprotective activity against AlNP-induced neurotoxicity.
Collapse
Affiliation(s)
- Shimaa M Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt.
| | - Basma A Elkhadrawey
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Anis Anis
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Badr E El-Bialy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Hesham S Elsabbagh
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Nermeen B El-Borai
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| |
Collapse
|
17
|
Ezhilarasan D, Ali D, Varghese R. Sesamol induces cytotoxicity via mitochondrial apoptosis in SCC-25 cells. Hum Exp Toxicol 2021; 40:S423-S433. [PMID: 34586880 DOI: 10.1177/09603271211047926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sesamol is the main constituent of sesame seed oil and is obtained from Sesamum indicum. Oral squamous cell carcinoma (OSCC) is one of the most common neoplasms affecting the oral cavity. In this study, we investigated the cytotoxic potentials of sesamol on human oral squamous carcinoma (SCC-25) cells. Human oral squamous carcinoma cells were treated with different concentrations (62.5, 125, and 250 μM/mL) of sesamol for 24 h. Cytotoxicity was analyzed by 3- (4, 5- dimethylthiazol -2- yl) -2, 5-diphenyltetrazolium bromide (MTT) assay. Intracellular reactive oxygen species (ROS) expression was investigated by dichloro-dihydro-fluorescein diacetate assay. Apoptosis-related morphology was analyzed by acridine orange/ethidium bromide staining. Caspase-9 expression was analyzed by confocal microscopic double immunofluorescence staining. Mitochondrial apoptosis-related markers are analyzed using qPCR. Sesamol treatment caused a significant cytotoxic effect in OSCC cells. Sesamol-induced cytotoxic effect was associated with intracellular ROS generation. Sesamol treatments induced a significant increase in the early and late apoptotic cells. This treatment also induced caspase-9 expression in OSCC cells. Sesamol treatments caused downregulation of Harvey rat sarcoma viral oncogene homolog (HRAS) expression at protein and gene levels. Sesamol treatment modulates intrinsic apoptotic marker gene expression in OSCC cells. Overall results confirm the anti-cancer potential of sesamol and it seems to be a promising candidate for OSCC.
Collapse
Affiliation(s)
- D Ezhilarasan
- Department of Pharmacology, The Blue Laboratory, Molecular Medicine and Toxicology Division, Saveetha Dental College and Hospitals, 194347Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - D Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - R Varghese
- Department of Microbiology, Faculty of Science and Informatics, 37442University of Szeged, Szeged, Hungary
| |
Collapse
|
18
|
The impact of sesamol and exercise on striatal TNF-α level, motor behavior, aversive memory and oxidative stress status in 6-hydroxydopamine-lesioned rats. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Xie Y, Liu J, Shi Y, Wang B, Wang X, Wang W, Sun M, Xu X, Jiang H, Guo M, He Y, Ren C, Cheng L. The combination of sesamol and clofibric acid moieties leads to a novel potent hypolipidemic agent with antioxidant, anti-inflammatory and hepatoprotective activity. Bioorg Med Chem Lett 2021; 44:128121. [PMID: 34015506 DOI: 10.1016/j.bmcl.2021.128121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Oxidative stress and inflammation have been considered the main factors in the liver injury of clofibrate (CF). To obtain a novel antihyperlipidemic agent with antioxidant, anti-inflammation and hepatoprotection, the combination of sesamol and clofibric acid moieties was performed and achieved sesamol-clofibrate (CF-Sesamol). CF-Sesamol showed significant hypolipidemia effects in hyperlipidemia mice induced by Triton WR 1339, reducing TG by 38.8% (P < 0.01) and TC by 35.1% (P < 0.01). CF-Sesamol also displayed an alleviating effect on hepatotoxicity. The hepatic weight and hepatic coefficient were decreased. The amelioration of liver function was observed, such as aspartate and lactate transaminases (AST and ALT), alkaline phosphatase (ALP) and total proteins (TP) levels. Liver histopathological examination showed that hepatocyte necrosis, cytoplasmic loosening, nuclear degeneration and inflammatory cell infiltration reduced obviously by treatment with CF-Sesamol. Related molecular mechanisms on hepatoprotection showed that CF-Sesamol up-regulated Nrf2 and HO-1 expression and down-regulated p-NF-κB p65 expression in hepatic tissues. CF-Sesamol has significant antioxidant and anti-inflammatory effects. Plasma antioxidant enzymes such as SOD and CAT increased, anti-lipid peroxidation product MDA decreased. The expression of TNF-α and IL-6 inflammatory cytokines in liver was significantly lower than that in the CF group. The results indicated that CF-Sesamol exerted more potent antihyperlipidemic effects and definite hepatoprotective activity partly through the Nrf2/NF-κB-mediated signaling pathway.
Collapse
Affiliation(s)
- Yundong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Jiping Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Yongheng Shi
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Bin Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Xiaoping Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Wei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Meng Sun
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Xinya Xu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Haihui Jiang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Min Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Yiyi He
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Cuicui Ren
- First Hospital of Xi'an, Xi'an, Shaanxi Province 710002, People's Republic of China.
| | - Lifei Cheng
- Shaanxi Traffic Hospital, 276 Daxue South Road, Beilin District, Xi'an, Shannxi Province 710068, People's Republic of China.
| |
Collapse
|