1
|
Bunday KL, Ellmers TJ, Wimalaratna MR, Nadarajah L, Bronstein AM. Dissociated cerebellar contributions to feedforward gait adaptation. Exp Brain Res 2024; 242:1583-1593. [PMID: 38760469 PMCID: PMC11208272 DOI: 10.1007/s00221-024-06840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
The cerebellum is important for motor adaptation. Lesions to the vestibulo-cerebellum selectively cause gait ataxia. Here we investigate how such damage affects locomotor adaptation when performing the 'broken escalator' paradigm. Following an auditory cue, participants were required to step from the fixed surface onto a moving platform (akin to an airport travellator). The experiment included three conditions: 10 stationary (BEFORE), 15 moving (MOVING) and 10 stationary (AFTER) trials. We assessed both behavioural (gait approach velocity and trunk sway after stepping onto the moving platform) and neuromuscular outcomes (lower leg muscle activity, EMG). Unlike controls, cerebellar patients showed reduced after-effects (AFTER trials) with respect to gait approach velocity and leg EMG activity. However, patients with cerebellar damage maintain the ability to learn the trunk movement required to maximise stability after stepping onto the moving platform (i.e., reactive postural behaviours). Importantly, our findings reveal that these patients could even initiate these behaviours in a feedforward manner, leading to an after-effect. These findings reveal that the cerebellum is crucial for feedforward locomotor control, but that adaptive locomotor behaviours learned via feedback (i.e., reactive) mechanisms may be preserved following cerebellum damage.
Collapse
Affiliation(s)
- Karen L Bunday
- Psychology, School of Social Sciences, University of Westminster, 115 New Cavendish Street, London, UK
| | - Toby J Ellmers
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK.
| | - M Rashmi Wimalaratna
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK
| | - Luxme Nadarajah
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK
| | - Adolfo M Bronstein
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, Charing Cross Hospital, London, UK.
| |
Collapse
|
2
|
Tadokoro S, Shinji Y, Yamanaka T, Hirata Y. Learning capabilities to resolve tilt-translation ambiguity in goldfish. Front Neurol 2024; 15:1304496. [PMID: 38774058 PMCID: PMC11106485 DOI: 10.3389/fneur.2024.1304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/08/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Spatial orientation refers to the perception of relative location and self-motion in space. The accurate formation of spatial orientation is essential for animals to survive and interact safely with their environment. The formation of spatial orientation involves the integration of sensory inputs from the vestibular, visual, and proprioceptive systems. Vestibular organs function as specialized head motion sensors, providing information regarding angular velocity and linear acceleration via the semicircular canals and otoliths, respectively. However, because forces arising from the linear acceleration (translation) and inclination relative to the gravitational axis (tilt) are equivalent, they are indistinguishable by accelerometers, including otoliths. This is commonly referred to as the tilt - translation ambiguity, which can occasionally lead to the misinterpretation of translation as a tilt. The major theoretical frameworks addressing this issue have proposed that the interpretation of tilt versus translation may be contingent on an animal's previous experiences of motion. However, empirical confirmation of this hypothesis is lacking. Methods In this study, we conducted a behavioral experiment using goldfish to investigate how an animal's motion experience influences its interpretation of tilt vs. translation. We examined a reflexive eye movement called the vestibulo-ocular reflex (VOR), which compensatory-rotates the eyes in response to head motion and is known to reflect an animal's three-dimensional head motion estimate. Results We demonstrated that the VORs of naïve goldfish do not differentiate between translation and tilt at 0.5 Hz. However, following prolonged visual-translation training, which provided appropriate visual stimulation in conjunction with translational head motion, the VORs were capable of distinguishing between the two types of head motion within 3 h. These results were replicated using the Kalman filter model of spatial orientation, which incorporated the variable variance of process noise corresponding to the accumulated motion experience. Discussion Based on these experimental and computational findings, we discuss the neural mechanism underlying the resolution of tilt-translation ambiguity within a context analogous to, yet distinct from, previous cross-axis VOR adaptations.
Collapse
Affiliation(s)
- Shin Tadokoro
- Department of Robotic Science and Technology, Graduate School of Engineering, Chubu University, Kasugai, Japan
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Tokorozawa, Japan
- Japan Air Self-Defense Force, Ichigaya, Japan
| | - Yusuke Shinji
- Department of Computer Science, Graduate School of Engineering, Chubu University, Kasugai, Japan
| | - Toshimi Yamanaka
- Department of Robotic Science and Technology, Graduate School of Engineering, Chubu University, Kasugai, Japan
| | - Yutaka Hirata
- Department of Robotic Science and Technology, Graduate School of Engineering, Chubu University, Kasugai, Japan
- Center for Mathematical Science and Artificial Intelligence, Chubu University, Kasugai, Japan
- Academy of Emerging Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
3
|
Cullen KE. Internal models of self-motion: neural computations by the vestibular cerebellum. Trends Neurosci 2023; 46:986-1002. [PMID: 37739815 PMCID: PMC10591839 DOI: 10.1016/j.tins.2023.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
The vestibular cerebellum plays an essential role in maintaining our balance and ensuring perceptual stability during activities of daily living. Here I examine three key regions of the vestibular cerebellum: the floccular lobe, anterior vermis (lobules I-V), and nodulus and ventral uvula (lobules X-IX of the posterior vermis). These cerebellar regions encode vestibular information and combine it with extravestibular signals to create internal models of eye, head, and body movements, as well as their spatial orientation with respect to gravity. To account for changes in the external environment and/or biomechanics during self-motion, the neural mechanisms underlying these computations are continually updated to ensure accurate motor behavior. To date, studies on the vestibular cerebellum have predominately focused on passive vestibular stimulation, whereas in actuality most stimulation is the result of voluntary movement. Accordingly, I also consider recent research exploring these computations during active self-motion and emerging evidence establishing the cerebellum's role in building predictive models of self-generated movement.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Pettorossi VE, Occhigrossi C, Panichi R, Botti FM, Ferraresi A, Ricci G, Faralli M. Induction and Cancellation of Self-Motion Misperception by Asymmetric Rotation in the Light. Audiol Res 2023; 13:196-206. [PMID: 36960980 PMCID: PMC10037580 DOI: 10.3390/audiolres13020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Asymmetrical sinusoidal whole-body rotation sequences with half-cycles at different velocities induce self-motion misperception. This is due to an adaptive process of the vestibular system that progressively reduces the perception of slow motion and increases that of fast motion. It was found that perceptual responses were conditioned by four previous cycles of asymmetric rotation in the dark, as the perception of self-motion during slow and fast rotations remained altered for several minutes. Surprisingly, this conditioned misperception remained even when asymmetric stimulation was performed in the light, a state in which vision completely cancels out the perceptual error. This suggests that vision is unable to cancel the misadaptation in the vestibular system but corrects it downstream in the central perceptual processing. Interestingly, the internal vestibular perceptual misperception can be cancelled by a sequence of asymmetric rotations with fast/slow half-cycles in a direction opposite to that of the conditioning asymmetric rotations.
Collapse
Affiliation(s)
- Vito Enrico Pettorossi
- Department of Medicine and Surgery, Section of Human Physiology, University of Perugia, 06132 Perugia, Italy
| | - Chiara Occhigrossi
- Department of Medicine and Surgery, Section of Human Physiology, University of Perugia, 06132 Perugia, Italy
| | - Roberto Panichi
- Department of Medicine and Surgery, Section of Human Physiology, University of Perugia, 06132 Perugia, Italy
| | - Fabio Massimo Botti
- Department of Medicine and Surgery, Section of Human Physiology, University of Perugia, 06132 Perugia, Italy
| | - Aldo Ferraresi
- Department of Medicine and Surgery, Section of Human Physiology, University of Perugia, 06132 Perugia, Italy
| | - Giampietro Ricci
- Department of Medicine and Surgery, Section of Otorhinolaryngology, University of Perugia, 06132 Perugia, Italy
| | - Mario Faralli
- Department of Medicine and Surgery, Section of Otorhinolaryngology, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
5
|
Abstract
Aims of the present article are: 1) assessing vestibular contribution to spatial navigation, 2) exploring how age, global positioning systems (GPS) use, and vestibular navigation contribute to subjective sense of direction (SOD), 3) evaluating vestibular navigation in patients with lesions of the vestibular-cerebellum (patients with downbeat nystagmus, DBN) that could inform on the signals carried by vestibulo-cerebellar-cortical pathways. We applied two navigation tasks on a rotating chair in the dark: return-to-start (RTS), where subjects drive the chair back to the origin after discrete angular displacement stimuli (path reversal), and complete-the-circle (CTC) where subjects drive the chair on, all the way round to origin (path completion). We examined 24 normal controls (20-83 yr), five patients with DBN (62-77 yr) and, as proof of principle, two patients with early dementia (84 and 76 yr). We found a relationship between SOD, assessed by Santa Barbara Sense of Direction Scale, and subject's age (positive), GPS use (negative), and CTC-vestibular-navigation-task (positive). Age-related decline in vestibular navigation was observed with the RTS task but not with the complex CTC task. Vestibular navigation was normal in patients with vestibulo-cerebellar dysfunction but abnormal, particularly CTC, in the demented patients. We conclude that vestibular navigation skills contribute to the build-up of our SOD. Unexpectedly, perceived SOD in the elderly is not inferior, possibly explained by increased GPS use by the young. Preserved vestibular navigation in cerebellar patients suggests that ascending vestibular-cerebellar projections carry velocity (not position) signals. The abnormalities in the cognitively impaired patients suggest that their vestibulo-spatial navigation is disrupted.NEW & NOTEWORTHY Our subjective sense-of-direction is influenced by how good we are at spatial navigation using vestibular cues. Global positioning systems (GPS) may inhibit sense of direction. Increased use of GPS by the young may explain why the elderly's sense of direction is not worse than the young's. Patients with vestibulo-cerebellar dysfunction (downbeat nystagmus syndrome) display normal vestibular navigation, suggesting that ascending vestibulo-cerebellar-cortical pathways carry velocity rather than position signals. Pilot data indicate that dementia disrupts vestibular navigation.
Collapse
Affiliation(s)
- Athena Zachou
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, Charing Cross Hospital Campus, London, United Kingdom
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Adolfo M Bronstein
- Neuro-otology Unit, Department of Brain Sciences, Imperial College London, Charing Cross Hospital Campus, London, United Kingdom
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
6
|
Chepisheva MK. Spatial orientation, postural control and the vestibular system in healthy elderly and Alzheimer's dementia. PeerJ 2023; 11:e15040. [PMID: 37151287 PMCID: PMC10162042 DOI: 10.7717/peerj.15040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2023] [Indexed: 05/09/2023] Open
Abstract
Background While extensive research has been advancing our understanding of the spatial and postural decline in healthy elderly (HE) and Alzheimer's disease (AD), much less is known about how the vestibular system contributes to the spatial and postural processing in these two populations. This is especially relevant during turning movements in the dark, such as while walking in our garden or at home at night, where the vestibular signal becomes central. As the prevention of falls and disorientation are of serious concern for the medical service, more vestibular-driven knowledge is necessary to decrease the burden for HE and AD patients with vestibular disabilities. Overview of the article The review briefly presents the current "non-vestibular based" knowledge (i.e. knowledge based on research that does not mention the "vestibular system" as a contributor or does not investigate its effects) about spatial navigation and postural control during normal healthy ageing and AD pathology. Then, it concentrates on the critical sense of the vestibular system and explores the current expertise about the aspects of spatial orientation and postural control from a vestibular system point of view. The norm is set by first looking at how healthy elderly change with age with respect to their vestibular-guided navigation and balance, followed by the AD patients and the difficulties they experience in maintaining their balance or during navigation. Conclusion Vestibular spatial and vestibular postural deficits present a considerable disadvantage and are felt not only on a physical but also on a psychological level by all those affected. Still, there is a clear need for more (central) vestibular-driven spatial and postural knowledge in healthy and pathological ageing, which can better facilitate our understanding of the aetiology of these dysfunctions. A possible change can start with the more frequent implementation of the "vestibular system examination/rehabilitation/therapy" in the clinic, which can then lead to an improvement of future prognostication and disease outcome for the patients.
Collapse
|
7
|
Lawn T, Dipasquale O, Vamvakas A, Tsougos I, Mehta MA, Howard MA. Differential contributions of serotonergic and dopaminergic functional connectivity to the phenomenology of LSD. Psychopharmacology (Berl) 2022; 239:1797-1808. [PMID: 35322297 PMCID: PMC9166846 DOI: 10.1007/s00213-022-06117-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/11/2022] [Indexed: 02/25/2023]
Abstract
RATIONALE LSD is the prototypical psychedelic. Despite a clear central role of the 5HT2a receptor in its mechanism of action, the contributions of additional receptors for which it shows affinity and agonist activity remain unclear. OBJECTIVES We employed receptor-enriched analysis of functional connectivity by targets (REACT) to explore differences in functional connectivity (FC) associated with the distributions of the primary targets of LSD-the 5HT1a, 5HT1b, 5HT2a, D1 and D2 receptors. METHODS We performed secondary analyses of an openly available dataset (N = 15) to estimate the LSD-induced alterations in receptor-enriched FC maps associated with these systems. Principal component analysis (PCA) was employed as a dimension reduction strategy for subjective experiences associated with LSD captured by the Altered States of Consciousness (ASC) questionnaire. Correlations between these principal components as well as VAS ratings of subjective effects with receptor-enriched FC were explored. RESULTS Compared to placebo, LSD produced differences in FC when the analysis was enriched with each of the primary serotonergic and dopaminergic receptors. Altered receptor-enriched FC showed relationships with the subjective effects of LSD on conscious experience, with serotonergic and dopaminergic systems being predominantly associated with perceptual effects and perceived selfhood as well as cognition respectively. These relationships were dissociable, with different receptors showing the same relationships within, but not between, the serotonergic and dopaminergic systems. CONCLUSIONS These exploratory findings provide new insights into the pharmacology of LSD and highlight the need for additional investigation of non-5HT2a-mediated mechanisms.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Alexandros Vamvakas
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Medical Physics Department, School of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Tsougos
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Medical Physics Department, School of Medicine, University of Thessaly, Larissa, Greece
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Matthew A. Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
8
|
Zobeiri OA, Cullen KE. Distinct representations of body and head motion are dynamically encoded by Purkinje cell populations in the macaque cerebellum. eLife 2022; 11:75018. [PMID: 35467528 PMCID: PMC9075952 DOI: 10.7554/elife.75018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
The ability to accurately control our posture and perceive our spatial orientation during self-motion requires knowledge of the motion of both the head and body. However, while the vestibular sensors and nuclei directly encode head motion, no sensors directly encode body motion. Instead, the integration of vestibular and neck proprioceptive inputs is necessary to transform vestibular information into the body-centric reference frame required for postural control. The anterior vermis of the cerebellum is thought to play a key role in this transformation, yet how its Purkinje cells transform multiple streams of sensory information into an estimate of body motion remains unknown. Here, we recorded the activity of individual anterior vermis Purkinje cells in alert monkeys during passively applied whole-body, body-under-head, and head-on-body rotations. Most Purkinje cells dynamically encoded an intermediate representation of self-motion between head and body motion. Notably, Purkinje cells responded to both vestibular and neck proprioceptive stimulation with considerable heterogeneity in their response dynamics. Furthermore, their vestibular responses were tuned to head-on-body position. In contrast, targeted neurons in the deep cerebellar nuclei are known to unambiguously encode either head or body motion across conditions. Using a simple population model, we established that combining responses of~40-50 Purkinje cells could explain the responses of these deep cerebellar nuclei neurons across all self-motion conditions. We propose that the observed heterogeneity in Purkinje cell response dynamics underlies the cerebellum’s capacity to compute the dynamic representation of body motion required to ensure accurate postural control and perceptual stability in our daily lives.
Collapse
Affiliation(s)
- Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
9
|
Faralli M, Ori M, Ricci G, Roscini M, Panichi R, Pettorossi VE. Disruption of self-motion perception without vestibular reflex alteration in ménière's disease. J Vestib Res 2021; 32:193-203. [PMID: 34151876 DOI: 10.3233/ves-201520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Self-motion misperception has been observed in vestibular patients during asymmetric body oscillations. This misperception is correlated with the patient's vestibular discomfort. OBJECTIVE To investigate whether or not self-motion misperception persists in post-ictal patients with Ménière's disease (MD). METHODS Twenty-eight MD patients were investigated while in the post-ictal interval. Self-motion perception was studied by examining the displacement of a memorized visual target after sequences of opposite directed fast-slow asymmetric whole body rotations in the dark. The difference in target representation was analyzed and correlated with the Dizziness Handicap Inventory (DHI) score. The vestibulo-ocular reflex (VOR) and clinical tests for ocular reflex were also evaluated. RESULTS All MD patients showed a noticeable difference in target representation after asymmetric rotation depending on the direction of the fast/slow rotations. This side difference suggests disruption of motion perception. The DHI score was correlated with the amount of motion misperception. In contrast, VOR and clinical trials were altered in only half of these patients. CONCLUSIONS Asymmetric rotation reveals disruption of self-motion perception in MD patients during the post-ictal interval, even in the absence of ocular reflex impairment. Motion misperception may cause persistent vestibular discomfort in these patients.
Collapse
Affiliation(s)
- Mario Faralli
- Department of Surgery and Biomedical Sciences, Section of Otorhinolaryngology, University of Perugia, Italy
| | - Michele Ori
- Department of Surgery and Biomedical Sciences, Section of Otorhinolaryngology, University of Perugia, Italy
| | - Giampietro Ricci
- Department of Surgery and Biomedical Sciences, Section of Otorhinolaryngology, University of Perugia, Italy
| | - Mauro Roscini
- Department of Medicine and Surgery, Section of Human Physiology and Biochemistry, University of Perugia, Italy
| | - Roberto Panichi
- Department of Medicine and Surgery, Section of Human Physiology and Biochemistry, University of Perugia, Italy
| | - Vito Enrico Pettorossi
- Department of Medicine and Surgery, Section of Human Physiology and Biochemistry, University of Perugia, Italy
| |
Collapse
|
10
|
Britton Z, Arshad Q. Vestibular and Multi-Sensory Influences Upon Self-Motion Perception and the Consequences for Human Behavior. Front Neurol 2019; 10:63. [PMID: 30899238 PMCID: PMC6416181 DOI: 10.3389/fneur.2019.00063] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/17/2019] [Indexed: 11/16/2022] Open
Abstract
In this manuscript, we comprehensively review both the human and animal literature regarding vestibular and multi-sensory contributions to self-motion perception. This covers the anatomical basis and how and where the signals are processed at all levels from the peripheral vestibular system to the brainstem and cerebellum and finally to the cortex. Further, we consider how and where these vestibular signals are integrated with other sensory cues to facilitate self-motion perception. We conclude by demonstrating the wide-ranging influences of the vestibular system and self-motion perception upon behavior, namely eye movement, postural control, and spatial awareness as well as new discoveries that such perception can impact upon numerical cognition, human affect, and bodily self-consciousness.
Collapse
Affiliation(s)
- Zelie Britton
- Department of Neuro-Otology, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Qadeer Arshad
- Department of Neuro-Otology, Charing Cross Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Abstract
The cerebellum is known to support motor behaviors, including postural stability, but new research supports the view that cerebellar function is also critical for perception of spatial orientation, particularly because of its role in vestibular processing.
Collapse
Affiliation(s)
- Paul R MacNeilage
- Department of Psychology, Cognitive and Brain Sciences, University of Nevada, Reno, USA.
| | - Stefan Glasauer
- Computational Neuroscience, Institute of Medical Technology, Brandenburg University of Technology Cottbus - Senftenberg, Germany.
| |
Collapse
|
12
|
Abstract
The cerebellum plays an integral role in the control of limb and ocular movements, balance, and walking. Cerebellar disorders may be classified as sporadic or hereditary with clinical presentation varying with the extent and site of cerebellar damage and extracerebellar signs. Deficits in balance and walking reflect the cerebellum's proposed role in coordination, sensory integration, coordinate transformation, motor learning, and adaptation. Cerebellar dysfunction results in increased postural sway, hypermetric postural responses to perturbations and optokinetic stimuli, and postural responses that are poorly coordinated with volitional movement. Gait variability is characteristic and may arise from a combination of balance impairments, interlimb incoordination, and incoordination between postural activity and leg movement. Intrinsic problems with balance lead to a high prevalence of injurious falls. Evidence for pharmacologic management is limited, although aminopyridines reduce attacks in episodic ataxias and may have a role in improving gait ataxia in other conditions. Intensive exercises targeting balance and coordination lead to improvements in balance and walking but require ongoing training to maintain/maximize any effects. Noninvasive brain stimulation of the cerebellum may become a useful adjunct to therapy in the future. Walking aids, orthoses, specialized footwear and seating may be required for more severe cases of cerebellar ataxia.
Collapse
Affiliation(s)
- Jonathan F Marsden
- Department of Rehabilitation, School of Health Professions, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|
13
|
Colnaghi S, Honeine JL, Sozzi S, Schieppati M. Body Sway Increases After Functional Inactivation of the Cerebellar Vermis by cTBS. THE CEREBELLUM 2017; 16:1-14. [PMID: 26780373 PMCID: PMC5243877 DOI: 10.1007/s12311-015-0758-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Balance stability correlates with cerebellar vermis volume. Furthermore, the cerebellum is involved in precise timing of motor processes by fine-tuning the sensorimotor integration. We tested the hypothesis that any cerebellar action in stance control and in timing of visuomotor integration for balance is impaired by continuous theta-burst stimulation (cTBS) of the vermis. Ten subjects stood quietly and underwent six sequences of 10-min acquisition of center of foot pressure (CoP) data after cTBS, sham stimulation, and no stimulation. Visual shifts from eyes closed (EC) to eyes open (EO) and vice versa were presented via electronic goggles. Mean anteroposterior and mediolateral CoP position and oscillation, and the time delay at which body sway changed after visual shift were calculated. CoP position under both EC and EO condition was not modified after cTBS. Sway path length was greater with EC than EO and increased in both visual conditions after cTBS. CoP oscillation was also larger with EC and increased under both visual conditions after cTBS. The delay at which body oscillation changed after visual shift was longer after EC to EO than EO to EC, but unaffected by cTBS. The time constant of decrease or increase of oscillation was longer in EC to EO shifts, but unaffected by cTBS. Functional inactivation of the cerebellar vermis is associated with increased sway. Despite this, cTBS does not detectably modify onset and time course of the sensorimotor integration process of adaptation to visual shifts. Cerebellar vermis normally controls oscillation, but not timing of adaptation to abrupt changes in stabilizing information.
Collapse
Affiliation(s)
- Silvia Colnaghi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100, Pavia, Italy.
| | - Jean-Louis Honeine
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100, Pavia, Italy
| | - Stefania Sozzi
- Centro Studi Attività Motorie, Fondazione Salvatore Maugeri (IRCCS), Pavia, Italy
| | - Marco Schieppati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100, Pavia, Italy
- Centro Studi Attività Motorie, Fondazione Salvatore Maugeri (IRCCS), Pavia, Italy
| |
Collapse
|
14
|
Panichi R, Faralli M, Bruni R, Kiriakarely A, Occhigrossi C, Ferraresi A, Bronstein AM, Pettorossi VE. Asymmetric vestibular stimulation reveals persistent disruption of motion perception in unilateral vestibular lesions. J Neurophysiol 2017; 118:2819-2832. [PMID: 28814637 PMCID: PMC5680356 DOI: 10.1152/jn.00674.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/17/2022] Open
Abstract
Self-motion perception was studied in patients with unilateral vestibular lesions (UVL) due to acute vestibular neuritis at 1 wk and 4, 8, and 12 mo after the acute episode. We assessed vestibularly mediated self-motion perception by measuring the error in reproducing the position of a remembered visual target at the end of four cycles of asymmetric whole-body rotation. The oscillatory stimulus consists of a slow (0.09 Hz) and a fast (0.38 Hz) half cycle. A large error was present in UVL patients when the slow half cycle was delivered toward the lesion side, but minimal toward the healthy side. This asymmetry diminished over time, but it remained abnormally large at 12 mo. In contrast, vestibulo-ocular reflex responses showed a large direction-dependent error only initially, then they normalized. Normalization also occurred for conventional reflex vestibular measures (caloric tests, subjective visual vertical, and head shaking nystagmus) and for perceptual function during symmetric rotation. Vestibular-related handicap, measured with the Dizziness Handicap Inventory (DHI) at 12 mo correlated with self-motion perception asymmetry but not with abnormalities in vestibulo-ocular function. We conclude that 1) a persistent self-motion perceptual bias is revealed by asymmetric rotation in UVLs despite vestibulo-ocular function becoming symmetric over time, 2) this dissociation is caused by differential perceptual-reflex adaptation to high- and low-frequency rotations when these are combined as with our asymmetric stimulus, 3) the findings imply differential central compensation for vestibuloperceptual and vestibulo-ocular reflex functions, and 4) self-motion perception disruption may mediate long-term vestibular-related handicap in UVL patients. NEW & NOTEWORTHY A novel vestibular stimulus, combining asymmetric slow and fast sinusoidal half cycles, revealed persistent vestibuloperceptual dysfunction in unilateral vestibular lesion (UVL) patients. The compensation of motion perception after UVL was slower than that of vestibulo-ocular reflex. Perceptual but not vestibulo-ocular reflex deficits correlated with dizziness-related handicap.
Collapse
Affiliation(s)
- R Panichi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, Università di Perugia, Perugia, Italy
| | - M Faralli
- Dipartimento di Specialità Medico-Chirurgiche e Sanità Pubblica, Sezione di Otorinolaringoiatria, Università di Perugia, Perugia, Italy; and
| | - R Bruni
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, Università di Perugia, Perugia, Italy
| | - A Kiriakarely
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, Università di Perugia, Perugia, Italy
| | - C Occhigrossi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, Università di Perugia, Perugia, Italy
| | - A Ferraresi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, Università di Perugia, Perugia, Italy
| | - A M Bronstein
- Academic Neuro-Otology, Centre for Neuroscience, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - V E Pettorossi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, Università di Perugia, Perugia, Italy
| |
Collapse
|
15
|
Ronconi L, Casartelli L, Carna S, Molteni M, Arrigoni F, Borgatti R. When one is Enough: Impaired Multisensory Integration in Cerebellar Agenesis. Cereb Cortex 2017; 27:2041-2051. [PMID: 26946125 DOI: 10.1093/cercor/bhw049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the last two decades, an intriguing shift in the understanding of the cerebellum has led to consider the nonmotor functions of this structure. Although various aspects of perceptual and sensory processing have been linked to the cerebellar activity, whether the cerebellum is essential for binding information from different sensory modalities remains uninvestigated. Multisensory integration (MSI) appears very early in the ontogenesis and is critical in several perceptual, cognitive, and social domains. For the first time, we investigated MSI in a rare case of cerebellar agenesis without any other associated brain malformations. To this aim, we measured reaction times (RTs) after the presentation of visual, auditory, and audiovisual stimuli. A group of neurotypical age-matched individuals was used as controls. Although we observed the typical advantage of the auditory modality relative to the visual modality in our patient, a clear impairment in MSI was found. Beyond the obvious prudence necessary for inferring definitive conclusions from this single-case picture, this finding is of interest in the light of reduced MSI abilities reported in several neurodevelopmental and psychiatric disorders-such as autism, dyslexia, and schizophrenia-in which the cerebellum has been implicated.
Collapse
Affiliation(s)
- L Ronconi
- Developmental and Cognitive Neuroscience Laboratory, Department of General Psychology, University of Padova, 35122 Padova, Italy.,Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842 Lecco, Italy
| | - L Casartelli
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842 Lecco, Italy.,Developmental Psychopathology Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - S Carna
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842 Lecco, Italy.,Developmental Psychopathology Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - M Molteni
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842 Lecco, Italy
| | | | - R Borgatti
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCSEugenio Medea, Bosisio Parini, 23842 Lecco, Italy
| |
Collapse
|
16
|
Abstract
We investigated whether the perceived angular velocity following velocity steps of 80°/s in the dark decreased with the repetition of the stimulation in the same direction. The perceptual response to velocity steps in the opposite direction was also compared before and after this unidirectional habituation training. Participants indicated their perceived angular velocity by clicking on a wireless mouse every time they felt that they had rotated by 90°. The prehabituation perceptual response decayed exponentially with a time constant of 23.9 s. After 100 velocity steps in the same direction, this time constant was 12.9 s. The time constant after velocity steps in the opposite direction was 13.4 s, indicating that the habituation of the sensation of rotation is not direction specific. The peak velocity of the perceptual response was not affected by the habituation training. The differences between the habituation characteristics of self-motion perception and eye movements confirm that different velocity storage mechanisms mediate ocular and perceptual responses.
Collapse
|
17
|
Dahlem K, Valko Y, Schmahmann JD, Lewis RF. Cerebellar contributions to self-motion perception: evidence from patients with congenital cerebellar agenesis. J Neurophysiol 2016; 115:2280-5. [PMID: 26888100 DOI: 10.1152/jn.00763.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
The cerebellum was historically considered a brain region dedicated to motor control, but it has become clear that it also contributes to sensory processing, particularly when sensory discrimination is required. Prior work, for example, has demonstrated a cerebellar contribution to sensory discrimination in the visual and auditory systems. The cerebellum also receives extensive inputs from the motion and gravity sensors in the vestibular labyrinth, but its role in the perception of head motion and orientation has received little attention. Drawing on the lesion-deficit approach to understanding brain function, we evaluated the contributions of the cerebellum to head motion perception by measuring perceptual thresholds in two subjects with congenital agenesis of the cerebellum. We used a set of passive motion paradigms that activated the semicircular canals or otolith organs in isolation or combination, and compared results of the agenesis patients with healthy control subjects. Perceptual thresholds for head motion were elevated in the agenesis subjects for all motion protocols, most prominently for paradigms that only activated otolith inputs. These results demonstrate that the cerebellum increases the sensitivity of the brain to the motion and orientation signals provided by the labyrinth during passive head movements.
Collapse
Affiliation(s)
- Kilian Dahlem
- Rijksuniversity Groningen University Medical Center, Groningen, The Netherlands; Jenks Vestibular Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Yulia Valko
- Jenks Vestibular Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Department of Neurology, University Hospital Zurich/University of Zurich, Zurich, Switzerland
| | - Jeremy D Schmahmann
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Richard F Lewis
- Jenks Vestibular Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Department of Neurology, Harvard Medical School, Boston, Massachusetts; Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Merfeld DM, Clark TK, Lu YM, Karmali F. Dynamics of individual perceptual decisions. J Neurophysiol 2015; 115:39-59. [PMID: 26467513 DOI: 10.1152/jn.00225.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/13/2015] [Indexed: 02/02/2023] Open
Abstract
Perceptual decision making is fundamental to a broad range of fields including neurophysiology, economics, medicine, advertising, law, etc. Although recent findings have yielded major advances in our understanding of perceptual decision making, decision making as a function of time and frequency (i.e., decision-making dynamics) is not well understood. To limit the review length, we focus most of this review on human findings. Animal findings, which are extensively reviewed elsewhere, are included when beneficial or necessary. We attempt to put these various findings and data sets, which can appear to be unrelated in the absence of a formal dynamic analysis, into context using published models. Specifically, by adding appropriate dynamic mechanisms (e.g., high-pass filters) to existing models, it appears that a number of otherwise seemingly disparate findings from the literature might be explained. One hypothesis that arises through this dynamic analysis is that decision making includes phasic (high pass) neural mechanisms, an evidence accumulator and/or some sort of midtrial decision-making mechanism (e.g., peak detector and/or decision boundary).
Collapse
Affiliation(s)
- Daniel M Merfeld
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts; and
| | - Torin K Clark
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts; and
| | - Yue M Lu
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts
| | - Faisal Karmali
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
19
|
Moser I, Grabherr L, Hartmann M, Mast FW. Self-motion direction discrimination in the visually impaired. Exp Brain Res 2015. [PMID: 26223579 DOI: 10.1007/s00221-015-4389-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Despite the close interrelation between vestibular and visual processing (e.g., vestibulo-ocular reflex), surprisingly little is known about vestibular function in visually impaired people. In this study, we investigated thresholds of passive whole-body motion discrimination (leftward vs. rightward) in nine visually impaired participants and nine age-matched sighted controls. Participants were rotated in yaw, tilted in roll, and translated along the interaural axis at two different frequencies (0.33 and 2 Hz) by means of a motion platform. Superior performance of visually impaired participants was found in the 0.33 Hz roll tilt condition. No differences were observed in the other motion conditions. Roll tilts stimulate the semicircular canals and otoliths simultaneously. The results could thus reflect a specific improvement in canal-otolith integration in the visually impaired and are consistent with the compensatory hypothesis, which implies that the visually impaired are able to compensate the absence of visual input.
Collapse
Affiliation(s)
- Ivan Moser
- Department of Psychology, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland. .,Center for Cognition, Learning and Memory, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland.
| | - Luzia Grabherr
- Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Matthias Hartmann
- Department of Psychology, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland.,Center for Cognition, Learning and Memory, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland
| | - Fred W Mast
- Department of Psychology, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland.,Center for Cognition, Learning and Memory, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland
| |
Collapse
|
20
|
Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, Leggio M, Mattingley JB, Molinari M, Moulton EA, Paulin MG, Pavlova MA, Schmahmann JD, Sokolov AA. Consensus paper: the role of the cerebellum in perceptual processes. CEREBELLUM (LONDON, ENGLAND) 2015; 14:197-220. [PMID: 25479821 PMCID: PMC4346664 DOI: 10.1007/s12311-014-0627-7] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception.
Collapse
Affiliation(s)
- Oliver Baumann
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland, Australia,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shinder ME, Taube JS. Resolving the active versus passive conundrum for head direction cells. Neuroscience 2014; 270:123-38. [PMID: 24704515 PMCID: PMC4067261 DOI: 10.1016/j.neuroscience.2014.03.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/27/2022]
Abstract
Head direction (HD) cells have been identified in a number of limbic system structures. These cells encode the animal's perceived directional heading in the horizontal plane and are dependent on an intact vestibular system. Previous studies have reported that the responses of vestibular neurons within the vestibular nuclei are markedly attenuated when an animal makes a volitional head turn compared to passive rotation. This finding presents a conundrum in that if vestibular responses are suppressed during an active head turn how is a vestibular signal propagated forward to drive and update the HD signal? This review identifies and discusses four possible mechanisms that could resolve this problem. These mechanisms are: (1) the ascending vestibular signal is generated by more than just vestibular-only neurons, (2) not all vestibular-only neurons contributing to the HD pathway have firing rates that are attenuated by active head turns, (3) the ascending pathway may be spared from the affects of the attenuation in that the HD system receives information from other vestibular brainstem sites that do not include vestibular-only cells, and (4) the ascending signal is affected by the inhibited vestibular signal during an active head turn, but the HD circuit compensates and uses the altered signal to accurately update the current HD. Future studies will be needed to decipher which of these possibilities is correct.
Collapse
Affiliation(s)
- M E Shinder
- Department of Psychological & Brain Sciences, Dartmouth College, United States
| | - J S Taube
- Department of Psychological & Brain Sciences, Dartmouth College, United States.
| |
Collapse
|
22
|
Shaikh AG. Motion perception without Nystagmus--a novel manifestation of cerebellar stroke. J Stroke Cerebrovasc Dis 2013; 23:1148-56. [PMID: 24268101 DOI: 10.1016/j.jstrokecerebrovasdis.2013.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/24/2013] [Accepted: 10/07/2013] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The motion perception and the vestibulo-ocular reflex (VOR) each serve distinct functions. The VOR keeps the gaze steady on the target of interest, whereas vestibular perception serves a number of tasks, including awareness of self-motion and orientation in space. VOR and motion perception might abide the same neurophysiological principles, but their distinct anatomical correlates were proposed. In patients with cerebellar stroke in distribution of medial division of posterior inferior cerebellar artery, we asked whether specific location of the focal lesion in vestibulocerebellum could cause impaired perception of motion but normal eye movements. METHODS/RESULTS Thirteen patients were studied, 5 consistently perceived spinning of surrounding environment (vertigo), but the eye movements were normal. This group was called "disease model." Remaining 8 patients were also symptomatic for vertigo, but they had spontaneous nystagmus. The latter group was called "disease control." Magnetic resonance imaging in both groups consistently revealed focal cerebellar infarct affecting posterior cerebellar vermis (lobule IX). In the "disease model" group, only part of lobule IX was affected. In the disease control group, however, complete lobule IX was involved. CONCLUSIONS This study discovered a novel presentation of cerebellar stroke where only motion perception was affected, but there was an absence of objective neurologic signs.
Collapse
Affiliation(s)
- Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
23
|
Nigmatullina Y, Hellyer PJ, Nachev P, Sharp DJ, Seemungal BM. The neuroanatomical correlates of training-related perceptuo-reflex uncoupling in dancers. Cereb Cortex 2013; 25:554-62. [PMID: 24072889 PMCID: PMC4380084 DOI: 10.1093/cercor/bht266] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory input evokes low-order reflexes and higher-order perceptual responses. Vestibular stimulation elicits vestibular-ocular reflex (VOR) and self-motion perception (e.g., vertigo) whose response durations are normally equal. Adaptation to repeated whole-body rotations, for example, ballet training, is known to reduce vestibular responses. We investigated the neuroanatomical correlates of vestibular perceptuo-reflex adaptation in ballet dancers and controls. Dancers' vestibular-reflex and perceptual responses to whole-body yaw-plane step rotations were: (1) Briefer and (2) uncorrelated (controls' reflex and perception were correlated). Voxel-based morphometry showed a selective gray matter (GM) reduction in dancers' vestibular cerebellum correlating with ballet experience. Dancers' vestibular cerebellar GM density reduction was related to shorter perceptual responses (i.e. positively correlated) but longer VOR duration (negatively correlated). Contrastingly, controls' vestibular cerebellar GM density negatively correlated with perception and VOR. Diffusion-tensor imaging showed that cerebral cortex white matter (WM) microstructure correlated with vestibular perception but only in controls. In summary, dancers display vestibular perceptuo-reflex dissociation with the neuronatomical correlate localized to the vestibular cerebellum. Controls' robust vestibular perception correlated with a cortical WM network conspicuously absent in dancers. Since primary vestibular afferents synapse in the vestibular cerebellum, we speculate that a cerebellar gating of perceptual signals to cortical regions mediates the training-related attenuation of vestibular perception and perceptuo-reflex uncoupling.
Collapse
Affiliation(s)
- Yuliya Nigmatullina
- Neuro-Otology Unit, Division of Brain Sciences, Imperial College London, London W6 8RP, UK
| | - Peter J Hellyer
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, The Hammersmith Hospital, London W12 0NN, UK and
| | | | - David J Sharp
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, The Hammersmith Hospital, London W12 0NN, UK and
| | - Barry M Seemungal
- Neuro-Otology Unit, Division of Brain Sciences, Imperial College London, London W6 8RP, UK
| |
Collapse
|
24
|
Effects of underestimating the kinematics of trunk rotation on simultaneous reaching movements: predictions of a biomechanical model. J Neuroeng Rehabil 2013; 10:54. [PMID: 23758968 PMCID: PMC3684534 DOI: 10.1186/1743-0003-10-54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/06/2013] [Indexed: 11/19/2022] Open
Abstract
Background Rotation of the torso while reaching produces torques (e.g., Coriolis torque) that deviate the arm from its planned trajectory. To ensure an accurate reaching movement, the brain may take these perturbing torques into account during movement planning or, alternatively, it may correct hand trajectory during movement execution. Irrespective of the process selected, it is expected that an underestimation of trunk rotation would likely induce inaccurate shoulder and elbow torques, resulting in hand deviation. Nonetheless, it is still undetermined to what extent a small error in the perception of trunk rotations, translating into an inappropriate selection of motor commands, would affect reaching accuracy. Methods To investigate, we adapted a biomechanical model (J Neurophysiol 89: 276-289, 2003) to predict the consequences of underestimating trunk rotations on right hand reaching movements performed during either clockwise or counter clockwise torso rotations. Results The results revealed that regardless of the degree to which the torso rotation was underestimated, the amplitude of hand deviation was much larger for counter clockwise rotations than for clockwise rotations. This was attributed to the fact that the Coriolis and centripetal joint torques were acting in the same direction during counter clockwise rotation yet in opposite directions during clockwise rotations, effectively cancelling each other out. Conclusions These findings suggest that in order to anticipate and compensate for the interaction torques generated during torso rotation while reaching, the brain must have an accurate prediction of torso rotation kinematics. The present study proposes that when designing upper limb prostheses controllers, adding a sensor to monitor trunk kinematics may improve prostheses control and performance.
Collapse
|
25
|
Cousins S, Kaski D, Cutfield N, Seemungal B, Golding JF, Gresty M, Glasauer S, Bronstein AM. Vestibular perception following acute unilateral vestibular lesions. PLoS One 2013; 8:e61862. [PMID: 23671577 PMCID: PMC3650015 DOI: 10.1371/journal.pone.0061862] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/14/2013] [Indexed: 11/18/2022] Open
Abstract
Little is known about the vestibulo-perceptual (VP) system, particularly after a unilateral vestibular lesion. We investigated vestibulo-ocular (VO) and VP function in 25 patients with vestibular neuritis (VN) acutely (2 days after onset) and after compensation (recovery phase, 10 weeks). Since the effect of VN on reflex and perceptual function may differ at threshold and supra-threshold acceleration levels, we used two stimulus intensities, acceleration steps of 0.5°/s(2) and velocity steps of 90°/s (acceleration 180°/s(2)). We hypothesised that the vestibular lesion or the compensatory processes could dissociate VO and VP function, particularly if the acute vertiginous sensation interferes with the perceptual tasks. Both in acute and recovery phases, VO and VP thresholds increased, particularly during ipsilesional rotations. In signal detection theory this indicates that signals from the healthy and affected side are still fused, but result in asymmetric thresholds due to a lesion-induced bias. The normal pattern whereby VP thresholds are higher than VO thresholds was preserved, indicating that any 'perceptual noise' added by the vertigo does not disrupt the cognitive decision-making processes inherent to the perceptual task. Overall, the parallel findings in VO and VP thresholds imply little or no additional cortical processing and suggest that vestibular thresholds essentially reflect the sensitivity of the fused peripheral receptors. In contrast, a significant VO-VP dissociation for supra-threshold stimuli was found. Acutely, time constants and duration of the VO and VP responses were reduced - asymmetrically for VO, as expected, but surprisingly symmetrical for perception. At recovery, VP responses normalised but VO responses remained shortened and asymmetric. Thus, unlike threshold data, supra-threshold responses show considerable VO-VP dissociation indicative of additional, higher-order processing of vestibular signals. We provide evidence of perceptual processes (ultimately cortical) participating in vestibular compensation, suppressing asymmetry acutely in unilateral vestibular lesions.
Collapse
Affiliation(s)
- Sian Cousins
- Neuro-otology Unit, Division of Brain Sciences, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Diego Kaski
- Neuro-otology Unit, Division of Brain Sciences, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Nicholas Cutfield
- Neurology, Dunedin Hospital, University of Otago, Dunedin, New Zealand
| | - Barry Seemungal
- Neuro-otology Unit, Division of Brain Sciences, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - John F. Golding
- Department of Psychology, University of Westminster, London, United Kingdom
| | - Michael Gresty
- Neuro-otology Unit, Division of Brain Sciences, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Stefan Glasauer
- Sensorimotor Research and German Vertigo Center, Ludwig-Maximilian University, Munich, Germany
| | - Adolfo M. Bronstein
- Neuro-otology Unit, Division of Brain Sciences, Imperial College London, Charing Cross Hospital, London, United Kingdom
| |
Collapse
|
26
|
Pettorossi VE, Panichi R, Botti FM, Kyriakareli A, Ferraresi A, Faralli M, Schieppati M, Bronstein AM. Prolonged asymmetric vestibular stimulation induces opposite, long-term effects on self-motion perception and ocular responses. J Physiol 2013; 591:1907-20. [PMID: 23318876 DOI: 10.1113/jphysiol.2012.241182] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Self-motion perception and the vestibulo-ocular reflex (VOR) were investigated in healthy subjects during asymmetric whole body yaw plane oscillations while standing on a platform in the dark. Platform oscillation consisted of two half-sinusoidal cycles of the same amplitude (40°) but different duration, featuring a fast (FHC) and a slow half-cycle (SHC). Rotation consisted of four or 20 consecutive cycles to probe adaptation further with the longer duration protocol. Self-motion perception was estimated by subjects tracking with a pointer the remembered position of an earth-fixed visual target. VOR was measured by electro-oculography. The asymmetric stimulation pattern consistently induced a progressive increase of asymmetry in motion perception, whereby the gain of the tracking response gradually increased during FHCs and decreased during SHCs. The effect was observed already during the first few cycles and further increased during 20 cycles, leading to a totally distorted location of the initial straight-ahead. In contrast, after some initial interindividual variability, the gain of the slow phase VOR became symmetric, decreasing for FHCs and increasing for SHCs. These oppositely directed adaptive effects in motion perception and VOR persisted for nearly an hour. Control conditions using prolonged but symmetrical stimuli produced no adaptive effects on either motion perception or VOR. These findings show that prolonged asymmetric activation of the vestibular system leads to opposite patterns of adaptation of self-motion perception and VOR. The results provide strong evidence that semicircular canal inputs are processed centrally by independent mechanisms for perception of body motion and eye movement control. These divergent adaptation mechanisms enhance awareness of movement toward the faster body rotation, while improving the eye stabilizing properties of the VOR.
Collapse
Affiliation(s)
- V E Pettorossi
- Department of Medicina Interna, Sezione di Fisiologia Umana, Universit`a di Perugia, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Signal detection theory and vestibular perception: II. Fitting perceptual thresholds as a function of frequency. Exp Brain Res 2012; 222:303-20. [PMID: 22923225 DOI: 10.1007/s00221-012-3217-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Vestibular perceptual thresholds are defined by a dynamic sensory system. To capture these dynamics, thresholds were previously fit as a function of frequency. In this paper, we compare fits using two published models with two new models. Furthermore, a new fitting method that utilizes vestibular perceptual dynamics is developed to improve fit quality and overcome problems associated with the conventional approach. Combinations of the four models and two fitting methods are tested using both simulated data and previously published experimental data. Simulations reveal that the conventional approach underestimates thresholds when the number of trials at each frequency is limited (circa 50); this underestimation is reduced fivefold by the new fitting method that simultaneously utilizes data across frequencies. The new fitting method also scored best for goodness of fit for both the simulations and experimental data. In fact, the new approach of fitting simultaneously across frequencies proved more accurate, more precise, more robust, and more efficient than the conventional approach of fitting the responses at each frequency individually and then fitting these threshold data across frequency. The revised fit of published yaw rotation threshold data shows that these are best fit by a first-order high-pass filter having a plateau of 0.5°/s (roughly a factor of 4 higher than the motion platform vibration) at frequencies above the cutoff frequency of 0.26 Hz, which is well above the cutoff frequency of the semicircular canals (circa 0.03 Hz). This dynamic analysis suggests the contributions of a velocity leakage mechanism to human yaw rotation thresholds.
Collapse
|
28
|
The vestibular system implements a linear-nonlinear transformation in order to encode self-motion. PLoS Biol 2012; 10:e1001365. [PMID: 22911113 PMCID: PMC3404115 DOI: 10.1371/journal.pbio.1001365] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/13/2012] [Indexed: 11/19/2022] Open
Abstract
Early vestibular processing in macaque monkeys is inherently nonlinear and is optimized to detect specific features of self-motion. Although it is well established that the neural code representing the world changes at each stage of a sensory pathway, the transformations that mediate these changes are not well understood. Here we show that self-motion (i.e. vestibular) sensory information encoded by VIIIth nerve afferents is integrated nonlinearly by post-synaptic central vestibular neurons. This response nonlinearity was characterized by a strong (∼50%) attenuation in neuronal sensitivity to low frequency stimuli when presented concurrently with high frequency stimuli. Using computational methods, we further demonstrate that a static boosting nonlinearity in the input-output relationship of central vestibular neurons accounts for this unexpected result. Specifically, when low and high frequency stimuli are presented concurrently, this boosting nonlinearity causes an intensity-dependent bias in the output firing rate, thereby attenuating neuronal sensitivities. We suggest that nonlinear integration of afferent input extends the coding range of central vestibular neurons and enables them to better extract the high frequency features of self-motion when embedded with low frequency motion during natural movements. These findings challenge the traditional notion that the vestibular system uses a linear rate code to transmit information and have important consequences for understanding how the representation of sensory information changes across sensory pathways. Understanding how the coding of sensory information changes at different stages of sensory processing remains a fundamental challenge in systems neuroscience. Here we address this question by studying early sensory processing in vestibular pathways of monkeys, a system for which sensory stimuli are relatively easy to describe. Peripheral vestibular afferents detect and encode head motion in space to ensure posture and gaze is accurate and stable during everyday life. In this study, we show that central vestibular neurons nonlinearly integrate their afferent inputs, which helps explain the mechanisms that generate enhanced feature detection in sensory pathways. In addition, our results overturn conventional wisdom that early vestibular processing is linear, revealing a striking boosting nonlinearity that is a hallmark of the first central stage of vestibular processing. Studies from other sensory systems have shown that higher-order neurons can more efficiently detect specific features of sensory input, and that nonlinear transformations can increase this efficiency. We suggest that nonlinear integration of afferent input by central vestibular neurons extends their coding range and facilitates the detection of natural vestibular stimuli.
Collapse
|
29
|
Lewis RF, Priesol AJ, Nicoucar K, Lim K, Merfeld DM. Dynamic tilt thresholds are reduced in vestibular migraine. J Vestib Res 2012; 21:323-30. [PMID: 22348937 DOI: 10.3233/ves-2011-0422] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vestibular symptoms caused by migraine, referred to as vestibular migraine, are a frequently diagnosed but poorly understood entity. Based on recent evidence that normal subjects generate vestibular-mediated percepts of head motion and reflexive eye movements using different mechanisms, we hypothesized that percepts of head motion may be abnormal in vestibular migraine. We therefore measured motion detection thresholds in patients with vestibular migraine, migraine patients with no history of vestibular symptoms, and normal subjects using the following paradigms: roll rotation while supine (dynamically activating the semicircular canals); quasi-static roll tilt (statically activating the otolith organs); and dynamic roll tilt (dynamically activating the canals and otoliths). Thresholds were determined while patients were asymptomatic using a staircase paradigm, whereby the peak acceleration of the motion was decreased or increased based on correct or incorrect reports of movement direction. We found a dramatic reduction in motion thresholds in vestibular migraine compared to normal and migraine subjects in the dynamic roll tilt paradigm, but normal thresholds in the roll rotation and quasi-static roll tilt paradigms. These results suggest that patients with vestibular migraine may have enhanced perceptual sensitivity (e.g. increased signal-to-noise ratio) for head motions that dynamically modulate canal and otolith inputs together.
Collapse
Affiliation(s)
- Richard F Lewis
- Department of Otology, Harvard Medical School, Boston MA, USA.
| | | | | | | | | |
Collapse
|
30
|
Bertolini G, Ramat S, Bockisch CJ, Marti S, Straumann D, Palla A. Is vestibular self-motion perception controlled by the velocity storage? Insights from patients with chronic degeneration of the vestibulo-cerebellum. PLoS One 2012; 7:e36763. [PMID: 22719833 PMCID: PMC3376140 DOI: 10.1371/journal.pone.0036763] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 04/09/2012] [Indexed: 11/20/2022] Open
Abstract
Background The rotational vestibulo-ocular reflex (rVOR) generates compensatory eye movements in response to rotational head accelerations. The velocity-storage mechanism (VSM), which is controlled by the vestibulo-cerebellar nodulus and uvula, determines the rVOR time constant. In healthy subjects, it has been suggested that self-motion perception in response to earth-vertical axis rotations depends on the VSM in a similar way as reflexive eye movements. We aimed at further investigating this hypothesis and speculated that if the rVOR and rotational self-motion perception share a common VSM, alteration in the latter, such as those occurring after a loss of the regulatory control by vestibulo-cerebellar structures, would result in similar reflexive and perceptual response changes. We therefore set out to explore both responses in patients with vestibulo-cerebellar degeneration. Methodology/Principal Findings Reflexive eye movements and perceived rotational velocity were simultaneously recorded in 14 patients with chronic vestibulo-cerebellar degeneration (28–81yrs) and 12 age-matched healthy subjects (30–72yrs) after the sudden deceleration (90°/s2) from constant-velocity (90°/s) rotations about the earth-vertical yaw and pitch axes. rVOR and perceived rotational velocity data were analyzed using a two-exponential model with a direct pathway, representing semicircular canal activity, and an indirect pathway, implementing the VSM. We found that VSM time constants of rVOR and perceived rotational velocity co-varied in cerebellar patients and in healthy controls (Pearson correlation coefficient for yaw 0.95; for pitch 0.93, p<0.01). When constraining model parameters to use the same VSM time constant for rVOR and perceived rotational velocity, moreover, no significant deterioration of the quality of fit was found for both populations (variance-accounted-for >0.8). Conclusions/Significance Our results confirm that self-motion perception in response to rotational velocity-steps may be controlled by the same velocity storage network that controls reflexive eye movements and that no additional, e.g. cortical, mechanisms are required to explain perceptual dynamics.
Collapse
Affiliation(s)
- Giovanni Bertolini
- Department of Neurology, Zurich University Hospital, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
31
|
Cullen KE. The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci 2012; 35:185-96. [PMID: 22245372 DOI: 10.1016/j.tins.2011.12.001] [Citation(s) in RCA: 373] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/03/2011] [Accepted: 12/02/2011] [Indexed: 01/16/2023]
Abstract
Understanding how sensory pathways transmit information under natural conditions remains a major goal in neuroscience. The vestibular system plays a vital role in everyday life, contributing to a wide range of functions from reflexes to the highest levels of voluntary behavior. Recent experiments establishing that vestibular (self-motion) processing is inherently multimodal also provide insight into a set of interrelated questions. What neural code is used to represent sensory information in vestibular pathways? How do the interactions between the organism and the environment shape encoding? How is self-motion information processing adjusted to meet the needs of specific tasks? This review highlights progress that has recently been made towards understanding how the brain encodes and processes self-motion to ensure accurate motor control.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
32
|
Snyder AN, Bockbrader MA, Hoffa AM, Dzemidzic MA, Talavage TM, Wong D, Lowe MJ, O'Donnell BF, Shekhar A. Psychometrically matched tasks evaluating differential fMRI activation during form and motion processing. Neuropsychology 2012; 25:622-33. [PMID: 21534685 DOI: 10.1037/a0022984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Deficits in visual perception and working memory are commonly observed in neuropsychiatric disorders and have been investigated using functional MRI (fMRI). However, interpretation of differences in brain activation may be confounded with differences in task performance between groups. Differences in task difficulty across conditions may also pose interpretative issues in studies of visual processing in healthy subjects. METHOD To address these concerns, the present study characterized brain activation in tasks that were psychometrically matched for difficulty; fMRI was used to assess brain activation in 10 healthy subjects during discrimination and working memory judgments for static and moving stimuli. For all task conditions, performance accuracy was matched at 70.7%. RESULTS Areas associated with V2 and V5 in the dorsal stream were activated during motion processing tasks and V4 in the ventral stream were activated during form processing tasks. Frontoparietal areas associated with working memory were also statistically significant during the working memory tasks. CONCLUSIONS Application of psychophysical methods to equate task demands provides a practical method to equate performance levels across conditions in fMRI studies and to compare healthy and cognitively impaired groups at comparable levels of effort. These psychometrically matched tasks can be applied to patients with a variety of cognitive disorders to investigate dysfunction of multiple a priori defined brain regions. Measuring the changes in typical activation patterns in patients with these diseases can be useful for monitoring disease progression, evaluating new drug treatments, and possibly for developing methods for early diagnosis.
Collapse
Affiliation(s)
- Andrea N Snyder
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Haburcakova C, Lewis RF, Merfeld DM. Frequency dependence of vestibuloocular reflex thresholds. J Neurophysiol 2011; 107:973-83. [PMID: 22072512 DOI: 10.1152/jn.00451.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
How the brain processes signals in the presence of noise impacts much of behavioral neuroscience. Thresholds provide one way to assay noise. While perceptual thresholds have been widely investigated, vestibuloocular reflex (VOR) thresholds have seldom been studied and VOR threshold dynamics have never, to our knowledge, been reported. Therefore, we assessed VOR thresholds as a function of frequency. Specifically, we measured horizontal VOR thresholds evoked by yaw rotation in rhesus monkeys, using standard signal detection approaches like those used in earlier human vestibular perceptual threshold studies. We measured VOR thresholds ranging between 0.21 and 0.76°/s; the VOR thresholds increased slightly with frequency across the measured frequency range (0.2-3 Hz). These results do not mimic the frequency response of human perceptual thresholds that have been shown to increase substantially as frequency decreases below 0.5 Hz. These reported VOR threshold findings could indicate a qualitative difference between vestibular responses of humans and nonhuman primates, but a more likely explanation is an additional dynamic neural mechanism that does not influence the VOR but, rather, influences perceptual thresholds via a decision-making process included in direction recognition tasks.
Collapse
Affiliation(s)
- Csilla Haburcakova
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, and Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
34
|
Abstract
This series of articles for rehabilitation in practice aims to cover a knowledge element of the rehabilitation medicine curriculum. Nevertheless they are intended to be of interest to a multidisciplinary audience. The competency addressed in this article is 'The trainee consistently demonstrates a knowledge of management approaches for specific impairments including spasticity, ataxia.'
Collapse
Affiliation(s)
- Jon Marsden
- School of Health Professions, Peninsula Allied Health Centre, Derriford Road, University of Plymouth, PL6 8BH, UK.
| | | |
Collapse
|
35
|
Bertolini G, Ramat S, Laurens J, Bockisch CJ, Marti S, Straumann D, Palla A. Velocity storage contribution to vestibular self-motion perception in healthy human subjects. J Neurophysiol 2010; 105:209-23. [PMID: 21068266 DOI: 10.1152/jn.00154.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Self-motion perception after a sudden stop from a sustained rotation in darkness lasts approximately as long as reflexive eye movements. We hypothesized that, after an angular velocity step, self-motion perception and reflexive eye movements are driven by the same vestibular pathways. In 16 healthy subjects (25-71 years of age), perceived rotational velocity (PRV) and the vestibulo-ocular reflex (rVOR) after sudden decelerations (90°/s(2)) from constant-velocity (90°/s) earth-vertical axis rotations were simultaneously measured (PRV reported by hand-lever turning; rVOR recorded by search coils). Subjects were upright (yaw) or 90° left-ear-down (pitch). After both yaw and pitch decelerations, PRV rose rapidly and showed a plateau before decaying. In contrast, slow-phase eye velocity (SPV) decayed immediately after the initial increase. SPV and PRV were fitted with the sum of two exponentials: one time constant accounting for the semicircular canal (SCC) dynamics and one time constant accounting for a central process, known as velocity storage mechanism (VSM). Parameters were constrained by requiring equal SCC time constant and VSM time constant for SPV and PRV. The gains weighting the two exponential functions were free to change. SPV were accurately fitted (variance-accounted-for: 0.85 ± 0.10) and PRV (variance-accounted-for: 0.86 ± 0.07), showing that SPV and PRV curve differences can be explained by a greater relative weight of VSM in PRV compared with SPV (twofold for yaw, threefold for pitch). These results support our hypothesis that self-motion perception after angular velocity steps is be driven by the same central vestibular processes as reflexive eye movements and that no additional mechanisms are required to explain the perceptual dynamics.
Collapse
Affiliation(s)
- G Bertolini
- Neurology Department, Zurich University Hospital, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
36
|
Simoneau M, Lamothe V, Hutin E, Mercier P, Teasdale N, Blouin J. Evidence for cognitive vestibular integration impairment in idiopathic scoliosis patients. BMC Neurosci 2009; 10:102. [PMID: 19706173 PMCID: PMC2739533 DOI: 10.1186/1471-2202-10-102] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 08/25/2009] [Indexed: 12/05/2022] Open
Abstract
Background Adolescent idiopathic scoliosis is characterized by a three-dimensional deviation of the vertebral column and its etiopathogenesis is unknown. Various factors cause idiopathic scoliosis, and among these a prominent role has been attributed to the vestibular system. While the deficits in sensorimotor transformations have been documented in idiopathic scoliosis patients, little attention has been devoted to their capacity to integrate vestibular information for cognitive processing for space perception. Seated idiopathic scoliosis patients and control subjects experienced rotations of different directions and amplitudes in the dark and produced saccades that would reproduce their perceived spatial characteristics of the rotations (vestibular condition). We also controlled for possible alteration of the oculomotor and vestibular systems by measuring the subject's accuracy in producing saccades towards memorized peripheral targets in absence of body rotation and the gain of their vestibulo-ocular reflex. Results Compared to healthy controls, the idiopathic scoliosis patients underestimated the amplitude of their rotations. Moreover, the results revealed that idiopathic scoliosis patients produced accurate saccades to memorized peripheral targets in absence of body rotation and that their vestibulo-ocular reflex gain did not differ from that of control participants. Conclusion Overall, results of the present study demonstrate that idiopathic scoliosis patients have an alteration in cognitive integration of vestibular signals. It is possible that severe spine deformity developed partly due to impaired vestibular information travelling from the cerebellum to the vestibular cortical network or alteration in the cortical mechanisms processing the vestibular signals.
Collapse
|