1
|
Nibbeling EAR, Delnooz CCS, de Koning TJ, Sinke RJ, Jinnah HA, Tijssen MAJ, Verbeek DS. Using the shared genetics of dystonia and ataxia to unravel their pathogenesis. Neurosci Biobehav Rev 2017; 75:22-39. [PMID: 28143763 DOI: 10.1016/j.neubiorev.2017.01.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/09/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
In this review we explore the similarities between spinocerebellar ataxias and dystonias, and suggest potentially shared molecular pathways using a gene co-expression network approach. The spinocerebellar ataxias are a group of neurodegenerative disorders characterized by coordination problems caused mainly by atrophy of the cerebellum. The dystonias are another group of neurological movement disorders linked to basal ganglia dysfunction, although evidence is now pointing to cerebellar involvement as well. Our gene co-expression network approach identified 99 shared genes and showed the involvement of two major pathways: synaptic transmission and neurodevelopment. These pathways overlapped in the two disorders, with a large role for GABAergic signaling in both. The overlapping pathways may provide novel targets for disease therapies. We need to prioritize variants obtained by whole exome sequencing in the genes associated with these pathways in the search for new pathogenic variants, which can than be used to help in the genetic counseling of patients and their families.
Collapse
Affiliation(s)
- Esther A R Nibbeling
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Cathérine C S Delnooz
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Tom J de Koning
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Richard J Sinke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory Clinic, Atlanta, USA
| | - Marina A J Tijssen
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Dineke S Verbeek
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| |
Collapse
|
2
|
Shahani N, Swarnkar S, Giovinazzo V, Morgenweck J, Bohn LM, Scharager-Tapia C, Pascal B, Martinez-Acedo P, Khare K, Subramaniam S. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network ("Rhesactome") in the striatum. Sci Signal 2016; 9:ra111. [PMID: 27902448 PMCID: PMC5142824 DOI: 10.1126/scisignal.aaf6670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The striatum of the brain coordinates motor function. Dopamine-related drugs may be therapeutic to patients with striatal neurodegeneration, such as Huntington's disease (HD) and Parkinson's disease (PD), but these drugs have unwanted side effects. In addition to stimulating the release of norepinephrine, amphetamines, which are used for narcolepsy and attention-deficit/hyperactivity disorder (ADHD), trigger dopamine release in the striatum. The guanosine triphosphatase Ras homolog enriched in the striatum (Rhes) inhibits dopaminergic signaling in the striatum, is implicated in HD and L-dopa-induced dyskinesia, and has a role in striatal motor control. We found that the guanine nucleotide exchange factor RasGRP1 inhibited Rhes-mediated control of striatal motor activity in mice. RasGRP1 stabilized Rhes, increasing its synaptic accumulation in the striatum. Whereas partially Rhes-deficient (Rhes+/-) mice had an enhanced locomotor response to amphetamine, this phenotype was attenuated by coincident depletion of RasGRP1. By proteomic analysis of striatal lysates from Rhes-heterozygous mice with wild-type or partial or complete knockout of Rasgrp1, we identified a diverse set of Rhes-interacting proteins, the "Rhesactome," and determined that RasGRP1 affected the composition of the amphetamine-induced Rhesactome, which included PDE2A (phosphodiesterase 2A; a protein associated with major depressive disorder), LRRC7 (leucine-rich repeat-containing 7; a protein associated with bipolar disorder and ADHD), and DLG2 (discs large homolog 2; a protein associated with chronic pain). Thus, this Rhes network provides insight into striatal effects of amphetamine and may aid the development of strategies to treat various neurological and psychological disorders associated with the striatal dysfunction.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Vincenzo Giovinazzo
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Jenny Morgenweck
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Bruce Pascal
- Informatics Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Kshitij Khare
- Department of Statistics, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
3
|
Swarnkar S, Chen Y, Pryor WM, Shahani N, Page DT, Subramaniam S. Ectopic expression of the striatal-enriched GTPase Rhes elicits cerebellar degeneration and an ataxia phenotype in Huntington's disease. Neurobiol Dis 2015; 82:66-77. [PMID: 26048156 DOI: 10.1016/j.nbd.2015.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease (HD) is caused by an expansion of glutamine repeats in the huntingtin protein (mHtt) that invokes early and prominent damage of the striatum, a region that controls motor behaviors. Despite its ubiquitous expression, why certain brain regions, such as the cerebellum, are relatively spared from neuronal loss by mHtt remains unclear. Previously, we implicated the striatal-enriched GTPase, Rhes (Ras homolog enriched in the striatum), which binds and SUMOylates mHtt and increases its solubility and cellular cytotoxicity, as the cause for striatal toxicity in HD. Here, we report that Rhes deletion in HD mice (N171-82Q), which express the N-terminal fragment of human Htt with 82 glutamines (Rhes(-/-)/N171-82Q), display markedly reduced HD-related behavioral deficits, and absence of lateral ventricle dilatation (secondary to striatal atrophy), compared to control HD mice (N171-82Q). To further validate the role of GTPase Rhes in HD, we tested whether ectopic Rhes expression would elicit a pathology in a brain region normally less affected in HD. Remarkably, ectopic expression of Rhes in the cerebellum of N171-82Q mice, during the asymptomatic period led to an exacerbation of motor deficits, including loss of balance and motor incoordination with ataxia-like features, not apparent in control-injected N171-82Q mice or Rhes injected wild-type mice. Pathological and biochemical analysis of Rhes-injected N171-82Q mice revealed a cerebellar lesion with marked loss of Purkinje neuron layer parvalbumin-immunoreactivity, induction of caspase 3 activation, and enhanced soluble forms of mHtt. Similarly reintroducing Rhes into the striatum of Rhes deleted Rhes(-/-)Hdh(150Q/150Q) knock-in mice, elicited a progressive HD-associated rotarod deficit. Overall, these studies establish that Rhes plays a pivotal role in vivo for the selective toxicity of mHtt in HD.
Collapse
Affiliation(s)
- Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Youjun Chen
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - William M Pryor
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA.
| |
Collapse
|
4
|
Lee JH, Sowada MJ, Boudreau RL, Aerts AM, Thedens DR, Nopoulos P, Davidson BL. Rhes suppression enhances disease phenotypes in Huntington's disease mice. J Huntingtons Dis 2014; 3:65-71. [PMID: 25062765 DOI: 10.3233/jhd-140094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In Huntington's disease (HD) mutant HTT is ubiquitously expressed yet the striatum undergoes profound early degeneration. Cell culture studies suggest that a striatal-enriched protein, Rhes, may account for this vulnerability. We investigated the therapeutic potential of silencing Rhes in vivo using inhibitory RNAs (miRhes). While Rhes suppression was tolerated in wildtype mice, it failed to improve rotarod function in two distinct HD mouse models. Additionally, miRhes treated HD mice had increased anxiety-like behaviors and enhanced striatal atrophy as measured by longitudinal MRI when compared to control treated mice. These findings raise caution regarding the long-term implementation of inhibiting Rhes as a therapy for HD.
Collapse
Affiliation(s)
- John H Lee
- Medical Scientist Training Program, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA Department of Molecular Physiology & Biophysics, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Matthew J Sowada
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Ryan L Boudreau
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Andrea M Aerts
- Department of Psychiatry, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Daniel R Thedens
- Department of Radiology, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Peg Nopoulos
- Department of Psychiatry, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Beverly L Davidson
- Department of Molecular Physiology & Biophysics, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA Department of Neurology, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
5
|
Muller M, Leavitt BR. Iron dysregulation in Huntington's disease. J Neurochem 2014; 130:328-50. [PMID: 24717009 DOI: 10.1111/jnc.12739] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is one of many neurodegenerative diseases with reported alterations in brain iron homeostasis that may contribute to neuropathogenesis. Iron accumulation in the specific brain areas of neurodegeneration in HD has been proposed based on observations in post-mortem tissue and magnetic resonance imaging studies. Altered magnetic resonance imaging signal within specific brain regions undergoing neurodegeneration has been consistently reported and interpreted as altered levels of brain iron. Biochemical studies using various techniques to measure iron species in human samples, mouse tissue, or in vitro has generated equivocal data to support such an association. Whether elevated brain iron occurs in HD, plays a significant contributing role in HD pathogenesis, or is a secondary effect remains currently unclear.
Collapse
Affiliation(s)
- Michelle Muller
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | | |
Collapse
|
6
|
Small G Proteins Dexras1 and RHES and Their Role in Pathophysiological Processes. Int J Cell Biol 2014; 2014:308535. [PMID: 24817889 PMCID: PMC3979064 DOI: 10.1155/2014/308535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/18/2014] [Indexed: 11/23/2022] Open
Abstract
Dexras1 and RHES, monomeric G proteins, are members of small GTPase family that are involved in modulation of pathophysiological processes. Dexras1 and RHES levels are modulated by hormones and Dexras1 expression undergoes circadian fluctuations. Both these GTPases are capable of modulating calcium ion channels which in turn can potentially modulate neurosecretion/hormonal release. These two GTPases have been reported to prevent the aberrant cell growth and induce apoptosis in cell lines. Present review focuses on role of these two monomeric GTPases and summarizes their role in pathophysiological processes.
Collapse
|
7
|
Choi BR, Bang S, Chen Y, Cheah JH, Kim SF. PKA modulates iron trafficking in the striatum via small GTPase, Rhes. Neuroscience 2013; 253:214-20. [PMID: 23999124 DOI: 10.1016/j.neuroscience.2013.08.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 11/18/2022]
Abstract
Ras homolog enriched in striatum (Rhes), is a highly conserved small guanosine-5'-triphosphate (GTP) binding protein belonging to the Ras superfamily. Rhes is involved in the dopamine receptor-mediated signaling and behavior though adenylyl cyclase. The striatum-specific GTPase share a close homology with Dexras1, which regulates iron trafficking in the neurons when activated though the post-translational modification called s-nitrosylation by nitric oxide (NO). We report that Rhes physiologically interacted with Peripheral benzodiazepine receptor-associated protein7 and participated in iron uptake via divalent metal transporter 1 similar to Dexras1. Interestingly, Rhes is not S-nitrosylated by NO-treatment, however phosphorylated by protein kinase A at the site of serine-239. Two Rhes mutants - the phosphomimetic form (serine 239 to aspartic acid) and constitutively active form (alanine 173 to valine) - displayed an increase in iron uptake compared to the wild-type Rhes. These findings suggest that Rhes may play a crucial role in striatal iron homeostasis.
Collapse
Affiliation(s)
- Bo-Ran Choi
- Department of Psychiatry and Pharmacology, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31 St. TRL Rm 2207, Philadelphia, PA 19104
| | - Sookhee Bang
- Department of Psychiatry and Pharmacology, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31 St. TRL Rm 2207, Philadelphia, PA 19104
| | - Yong Chen
- Department of Psychiatry and Pharmacology, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31 St. TRL Rm 2207, Philadelphia, PA 19104
| | - Jaime H Cheah
- Department of Psychiatry and Pharmacology, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31 St. TRL Rm 2207, Philadelphia, PA 19104
| | - Sangwon F Kim
- Department of Psychiatry and Pharmacology, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31 St. TRL Rm 2207, Philadelphia, PA 19104
| |
Collapse
|
8
|
Harrison LM, Muller SH, Spano D. Effects of the Ras homolog Rhes on Akt/protein kinase B and glycogen synthase kinase 3 phosphorylation in striatum. Neuroscience 2013; 236:21-30. [PMID: 23380502 DOI: 10.1016/j.neuroscience.2012.12.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
G protein-coupled receptors (GPCR) signal not only through heterotrimeric G proteins, but also through alternate pathways. Thus, dopamine D2 receptors in the striatum signal through Gαi/o and also by promoting formation of a multi-protein complex containing β-arrestin2, protein phosphatase 2A (PP2A), and Akt in order to dephosphorylate Akt. Lithium, on the other hand, disrupts this complex to increase Akt phosphorylation. Rhes is a striatally enriched GTP-binding protein that has been shown to inhibit dopamine receptor-mediated behavior and signaling through heterotrimeric G proteins. Therefore, our objective was to test whether Rhes similarly affects signaling through the Akt/GSK3 pathway in the striatum. Rhes(-/-) mice showed basally increased Akt and GSK3β phosphorylation relative to rhes(+/+) mice that was not further enhanced by lithium treatment. Furthermore, they responded to the D1/D2 agonist apomorphine with increased Akt and GSK3 phosphorylation. Co-immunoprecipitation experiments revealed that apomorphine treatment recruits PP 2A-C to Akt in both rhes(+/+) and rhes(-/-) mice. Lithium did not disrupt their interaction in rhes(-/-) mice as there was little basal interaction. Rhes co-immunoprecipitated with β-arrestins, suggesting that it is integral to the multi-protein complex. Thus, Rhes is necessary for Akt dephosphorylation by the striatal multi-protein complex, and in its absence, a lithium-treated phenotype results.
Collapse
Affiliation(s)
- L M Harrison
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
9
|
Sex differences in novelty- and psychostimulant-induced behaviors of C57BL/6 mice. Psychopharmacology (Berl) 2013; 225:707-18. [PMID: 22975726 PMCID: PMC3547129 DOI: 10.1007/s00213-012-2860-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/20/2012] [Indexed: 01/16/2023]
Abstract
RATIONALE Women are more sensitive than men to psychostimulants and progress from initial use to drug addiction more quickly. The mouse has been an under-utilized model to study sex differences in psychostimulant action. Mice could serve as an ideal genetically tractable model for mechanistic studies into sex and hormone effects on psychostimulant behavior. OBJECTIVES The objective of this study was to characterize psychostimulant effects in male and female mice with a combination of automated data collection and behavioral observation. METHODS Male and female C57BL/6 mice (Charles River) were given a single dose or sequential ascending binge doses of D-amphetamine (AMPH) or cocaine (COC). Behavior was assessed in open field chambers using both automated photobeam interruptions and behavioral observations. Brain psychostimulant concentrations were determined at the time of maximum behavioral stimulation. RESULTS Psychostimulants induced behavioral activation in mice including both increased locomotion as detected with an automated system and a sequence of behaviors progressing from stereotyped sniffing at low doses to patterned locomotion and rearing at high doses. Females exhibited more patterned locomotion and a shift towards higher behavior scores after either psychostimulant despite having lower AMPH and equivalent COC brain levels as males. CONCLUSIONS Female C57BL/6 mice exhibit enhanced psychostimulant-induced behavior compared to males, similar to reports in rats. The combination of automated behavioral measures and behavioral observation was essential for verifying the existence of these differences. These results indicate the importance of testing both sexes when characterizing genetically manipulated mice to control for potential sex-specific effects.
Collapse
|
10
|
Bang S, Steenstra C, Kim SF. Striatum specific protein, Rhes regulates AKT pathway. Neurosci Lett 2012; 521:142-7. [PMID: 22683505 DOI: 10.1016/j.neulet.2012.05.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/19/2012] [Accepted: 05/25/2012] [Indexed: 01/11/2023]
Abstract
The Rhes/RASD2 GTPase complex is involved in dopamine D1/D2 receptor-mediated signaling and behavior. This GTP binding protein belongs to the RAS superfamily, along with Dexras1/RASD1, and is primarily expressed in the striatum. RASDs differ from typical small GTPases as they have an extended C-terminal tail of roughly 7 kDa. Previously, it has been shown that dopamine depletion reduces Rhes mRNA expression in the brain. Here we show that Rhes interacts with p85, the regulatory subunit of PI3K. Specifically, the C-terminal unique tail region of Rhes is responsible for this interaction. The interaction between p85 and the C-terminal region of Rhes is enhanced upon growth factor treatment in vitro, while AKT translocation to the membrane is facilitated in the presence of Rhes or the Rhes-p85 complex. These findings suggest that Rhes is a novel striatal regulator of the AKT-mediated pathway in the striatum.
Collapse
Affiliation(s)
- Sookhee Bang
- Department of Psychiatry and Pharmacology, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, 125 S 31st St., TRL Rm 2207, Philadelphia, PA 19104, United States
| | | | | |
Collapse
|
11
|
Harrison LM. Rhes: a GTP-binding protein integral to striatal physiology and pathology. Cell Mol Neurobiol 2012; 32:907-18. [PMID: 22450871 DOI: 10.1007/s10571-012-9830-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/09/2012] [Indexed: 02/07/2023]
Abstract
Rhes, the Ras Homolog Enriched in Striatum, is a GTP-binding protein whose gene was discovered during a screen for mRNAs preferentially expressed in rodent striatum. This 266 amino acid protein is intermediate in size between small Ras-like GTP-binding proteins and α-subunits of heterotrimeric G proteins. It is most closely related to another Ras-like GTP-binding protein termed Dexras1 or AGS1. Although subsequent studies have shown that the rhes gene is expressed in other brain areas in addition to striatum, the striatal expression level is relatively high, and Rhes protein is likely to play a vital role in striatal physiology and pathology. Indeed, it has recently been shown to interact with the Huntingtin protein and play a pivotal role in the selective vulnerability of striatum in Huntington's disease (HD). Not surprisingly, Rhes can interact with multiple proteins to affect striatal physiology at multiple levels. Functional studies have indicated that Rhes plays a role in signaling by striatal G protein-coupled receptors (GPCR), although the details of the mechanism remain to be determined. Rhes has been shown to bind to both α- and β-subunits of heterotrimeric G proteins and to affect signaling by both Gi/o- and Gs/olf-coupled receptors. In this context, Rhes can be classified as a member of the family of accessory proteins to GPCR signaling. With documented effects in dopamine- and opioid-mediated behaviors, an interaction with thyroid hormone systems and a role in HD pathology, Rhes is emerging as an important protein in striatal physiology and pathology.
Collapse
Affiliation(s)
- Laura M Harrison
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
12
|
Subramaniam S, Napolitano F, Mealer RG, Kim S, Errico F, Barrow R, Shahani N, Tyagi R, Snyder SH, Usiello A. Rhes, a striatal-enriched small G protein, mediates mTOR signaling and L-DOPA-induced dyskinesia. Nat Neurosci 2011; 15:191-3. [PMID: 22179112 PMCID: PMC3267880 DOI: 10.1038/nn.2994] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/26/2011] [Indexed: 12/19/2022]
Abstract
L–DOPA–induced dyskinesia, the rate–limiting side–effect in the therapy of Parkinson’s Disease, is mediated by activation of mTOR signaling in the striatum. We show that Rhes, a striatal–specific protein, binds to and activates mTOR. Moreover, Rhes deleted mice manifest reduced striatal mTOR signaling and diminished dyskinesia but maintain motor improvement upon L–DOPA treatment, implying therapeutic benefit for Rhes–binding drugs.
Collapse
Affiliation(s)
- Srinivasa Subramaniam
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cabeza-Arvelaiz Y, Fleming SM, Richter F, Masliah E, Chesselet MF, Schiestl RH. Analysis of striatal transcriptome in mice overexpressing human wild-type alpha-synuclein supports synaptic dysfunction and suggests mechanisms of neuroprotection for striatal neurons. Mol Neurodegener 2011; 6:83. [PMID: 22165993 PMCID: PMC3271045 DOI: 10.1186/1750-1326-6-83] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/13/2011] [Indexed: 01/08/2023] Open
Abstract
Background Alpha synuclein (SNCA) has been linked to neurodegenerative diseases (synucleinopathies) that include Parkinson's disease (PD). Although the primary neurodegeneration in PD involves nigrostriatal dopaminergic neurons, more extensive yet regionally selective neurodegeneration is observed in other synucleinopathies. Furthermore, SNCA is ubiquitously expressed in neurons and numerous neuronal systems are dysfunctional in PD. Therefore it is of interest to understand how overexpression of SNCA affects neuronal function in regions not directly targeted for neurodegeneration in PD. Results The present study investigated the consequences of SNCA overexpression on cellular processes and functions in the striatum of mice overexpressing wild-type, human SNCA under the Thy1 promoter (Thy1-aSyn mice) by transcriptome analysis. The analysis revealed alterations in multiple biological processes in the striatum of Thy1-aSyn mice, including synaptic plasticity, signaling, transcription, apoptosis, and neurogenesis. Conclusion The results support a key role for SNCA in synaptic function and revealed an apoptotic signature in Thy1-aSyn mice, which together with specific alterations of neuroprotective genes suggest the activation of adaptive compensatory mechanisms that may protect striatal neurons in conditions of neuronal overexpression of SNCA.
Collapse
Affiliation(s)
- Yofre Cabeza-Arvelaiz
- Department of Pathology and Environmental Health Sciences, The Geffen School of Medicine and School of Public Health, University of California, Los Angeles, 650 Charles E, Young Dr. S, CHS 71-295, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Harrison LM, He Y. Rhes and AGS1/Dexras1 affect signaling by dopamine D1 receptors through adenylyl cyclase. J Neurosci Res 2011; 89:874-82. [PMID: 21374700 DOI: 10.1002/jnr.22604] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 12/30/2010] [Accepted: 12/31/2010] [Indexed: 12/31/2022]
Abstract
The GTP binding proteins Rhes and AGS1/Dexras1 define a subfamily of the Ras superfamily and have been shown to affect signaling by G-protein-coupled receptors. We tested the effects of both proteins at an early stage of signaling by dopamine receptors, activation of adenylyl cyclase. Rhes decreased dopamine D1 receptor agonist-stimulated cAMP accumulation in a pertussis toxin-sensitive manner. It had no effect on cAMP accumulation in the absence of agonist. AGS1/Dexras1, on the other hand, decreased cAMP accumulation in both vehicle-treated and agonist-treated cells, resulting in a higher percentage of stimulation by agonist or a higher signal-to-noise ratio. The effects of AGS1/Dexras1 on cAMP accumulation were not blocked by pertussis toxin, suggesting that it may produce these effects through interaction with a G(α) i monomer. Both Rhes and AGS1/Dexras1 were associated with GTP-bound G(α) i in pull-down assays. However, Rhes had no effect on the ability of activated D2 receptor to inhibit cAMP. Neither Rhes nor AGS1/Dexras1 interacted with the D1 receptor in pull-down assays. These findings show that, in addition to its well-known effects on signaling through Gi-coupled receptors, AGS1/Dexras1 can affect signaling through a Gs/olf-coupled receptor. Furthermore, the results suggest that Rhes exerts some of its effects by interacting with G(α) i.
Collapse
Affiliation(s)
- Laura M Harrison
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| | | |
Collapse
|
15
|
Quintero GC, Spano D. Exploration of sex differences in Rhes effects in dopamine mediated behaviors. Neuropsychiatr Dis Treat 2011; 7:697-706. [PMID: 22128255 PMCID: PMC3225344 DOI: 10.2147/ndt.s25888] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Studies have shown that Ras homolog enriched in striatum (Rhes) proteins are highly expressed in areas of the central nervous system that have high dopaminergic innervation. In this study, we used Rhes mutant mice (Wild type, Rhes KO, Rhes Heterozygous) of both sexes to explore differences in the effects of Rhes protein levels in basal levels of activity, anxiety, and stereotypy, in relation to sex. Adult male and female mice were evaluated in an open field test for measuring basal levels of activity and anxiety for 5 consecutive days, and they were tested in the apomorphine-induced stereotypy paradigm. Rhes protein levels affected basal levels of activity but it was not found to be related to sex differences. Moreover, a decrease in Rhes protein levels was linked to a nonsignificant anxiolytic effect, mainly in female mice. Finally, a decrease in Rhes protein levels does not affect dopamine D(1) and D(2) receptor (D(1)/D(2)) synergism in female or male mice. Together, these results suggest that Rhes protein levels affect locomotion activity, and have an influence in anxiety depending on sex; Rhes protein levels do not affect D(1)/D(2) synergism in both sexes.
Collapse
|
16
|
|
17
|
Lee FA, Baiamonte BA, Spano D, Lahoste GJ, Soignier RD, Harrison LM. Mice lacking rhes show altered morphine analgesia, tolerance, and dependence. Neurosci Lett 2010; 489:182-6. [PMID: 21163334 DOI: 10.1016/j.neulet.2010.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/12/2010] [Accepted: 12/07/2010] [Indexed: 02/05/2023]
Abstract
Rhes, the Ras Homolog Enriched in Striatum, is an intermediate-size GTP binding protein. Although its full functions are not yet known, it has been shown to affect signaling and behaviors mediated by G protein-coupled receptors. Here we have tested whether Rhes affects behaviors mediated by opioid receptors. Wild type and rhes-deficient mice were administered morphine and tested for analgesia in formalin and tail flick tests. Rhes⁻/⁻ mice showed significantly enhanced analgesia in both tests relative to rhes+/+ mice. Furthermore, rhes⁻/⁻ mice did not display tolerance to repeated morphine administration and displayed significantly less withdrawal than rhes+/+ mice. These findings indicate that Rhes is involved in behaviors mediated by mu opioid receptors and in the adaptive response to repeated morphine administration.
Collapse
Affiliation(s)
- Franklin A Lee
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA
| | | | | | | | | | | |
Collapse
|
18
|
Subramaniam S, Mealer RG, Sixt KM, Barrow RK, Usiello A, Snyder SH. Rhes, a physiologic regulator of sumoylation, enhances cross-sumoylation between the basic sumoylation enzymes E1 and Ubc9. J Biol Chem 2010; 285:20428-32. [PMID: 20424159 DOI: 10.1074/jbc.c110.127191] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We recently reported that the small G-protein Rhes has the properties of a SUMO-E3 ligase and mediates mutant huntingtin (mHtt) cytotoxicity. We now demonstrate that Rhes is a physiologic regulator of sumoylation, which is markedly reduced in the corpus striatum of Rhes-deleted mice. Sumoylation involves activation and transfer of small ubiquitin-like modifier (SUMO) from the thioester of E1 to the thioester of Ubc9 (E2) and final transfer to lysines on target proteins, which is enhanced by E3s. We show that E1 transfers SUMO from its thioester directly to lysine residues on Ubc9, forming isopeptide linkages. Conversely, sumoylation on E1 requires transfer of SUMO from the thioester of Ubc9. Thus, the process regarded as "autosumoylation" reflects intermolecular transfer between E1 and Ubc9, which we designate "cross-sumoylation." Rhes binds directly to both E1 and Ubc9, enhancing cross-sumoylation as well as thioester transfer from E1 to Ubc9.
Collapse
Affiliation(s)
- Srinivasa Subramaniam
- Solomon H. Snyder Department of Neuroscience, Departments of Pharmacology and Molecular Sciences and Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
19
|
Galvan L, Brouillet E. Rhes, a protein with selective expression in the striatum, plays a major role in Huntington’s disease pathogenesis. FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of: Subramaniam S, Sixt KM, Barrow R, Snyder SH: Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 324, 1327–1330 (2009). Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by choreiform movements, cognitive deficits and psychiatric disturbances. The disease is caused by an abnormal expansion of a CAG repeat located in exon 1 of the gene encoding the huntingtin protein (Htt). The genetic defect encodes a polyglutamine tract in the N-terminal part of Htt that confers a toxic function to the protein. The most striking neuropathological hallmark in HD patients is the selective atrophy of the striatum. The mechanisms underlying the particular vulnerability of the striatum are unknown. Subramaniam and collaborators demonstrate that the cytotoxicity of mutant Htt is greatly enhanced in the presence of the small GTPase, Rhes, a protein of unclear function that has a preferential expression in the striatum. The study demonstrates that Rhes is an E3 ligase, interacts with mutant Htt and modifies it through SUMOylation, a post-transcriptional process that consists of the addition of the protein SUMO1 to mutant Htt. By contrast, the GTPase activity of Rhes does not seem to be involved in the toxicity of mutant Htt. The Rhes-mediated sumoylation of mutant Htt eventually leads to reduced levels of neuroprotective insoluble aggregates, and increased levels of the toxic soluble form of mutant Htt. These completely novel results shed new light on HD pathogenesis. The selective expression of Rhes in the striatum and its role in mutant Htt toxicity could explain why the striatum is so vulnerable in HD. This work may lead to new therapeutic strategies targeting Rhes.
Collapse
Affiliation(s)
- Laurie Galvan
- CEA, DSV, I2BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France and CEA, CNRS URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- CEA, DSV, I2BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France and CEA, CNRS URA 2210, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
20
|
Harrison LM, Lahoste GJ, Ruskin DN. Ontogeny and dopaminergic regulation in brain of Ras homolog enriched in striatum (Rhes). Brain Res 2008; 1245:16-25. [PMID: 18929545 PMCID: PMC2615551 DOI: 10.1016/j.brainres.2008.09.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/12/2008] [Accepted: 09/23/2008] [Indexed: 11/20/2022]
Abstract
Rhes is one of several signaling molecules preferentially expressed in the striatum. This GTP-binding protein affects dopamine-mediated signaling and behavior. Denervating the striatum of its dopaminergic inputs in adulthood reduces rhes mRNA expression. Here we show that dopamine depletion in adult rats by 6-hydroxydopamine caused a significant decrease in striatal Rhes protein levels as measured by Western blotting. The role of dopamine input on rhes mRNA induction during ontogeny was also examined. Rhes mRNA was measured on postnatal days 4, 6, 8, 10, 15, and 24 with in situ hybridization to determine its normal ontogeny. Signal in striatum was detectable, but very low, on postnatal day 4 and increased gradually to peak levels at days 15 and 24. Outside of the striatum, rhes mRNA was expressed at high levels in hippocampus and cerebellum during the postnatal period. Hippocampal signal was initially highest in CA3 and dentate gyrus, but shifted to higher expression in CA1 by the late postnatal period. Several other nuclei showed low levels of rhes mRNA during ontogeny. Depletion of dopamine by 6-hydroxydopamine injection on postnatal day 4 did not affect the ontogenetic development of rhes mRNA, such that expression did not differ statistically in lesioned versus vehicle-treated animals tested in adulthood. These findings suggest that although dopamine input is not necessary for the ontogenetic development of rhes mRNA expression, changes in both rhes mRNA and Rhes protein are integral components of the response of the adult striatum to dopamine depletion.
Collapse
Affiliation(s)
- Laura M Harrison
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|