1
|
Slapø NB, Jørgensen KN, Elvsåshagen T, Nerland S, Roelfs D, Valstad M, Timpe CMF, Richard G, Beck D, Sæther LS, Frogner Werner MC, Lagerberg TV, Andreassen OA, Melle I, Agartz I, Westlye LT, Moberget T, Jönsson EG. Relationship between function and structure in the visual cortex in healthy individuals and in patients with severe mental disorders. Psychiatry Res Neuroimaging 2023; 332:111633. [PMID: 37028226 DOI: 10.1016/j.pscychresns.2023.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023]
Abstract
Patients with schizophrenia spectrum disorders (SCZspect) and bipolar disorders (BD) show impaired function in the primary visual cortex (V1), indicated by altered visual evoked potential (VEP). While the neural substrate for altered VEP in these patients remains elusive, altered V1 structure may play a role. One previous study found a positive relationship between the amplitude of the P100 component of the VEP and V1 surface area, but not V1 thickness, in a small sample of healthy individuals. Here, we aimed to replicate these findings in a larger healthy control (HC) sample (n = 307) and to examine the same relationship in patients with SCZspect (n = 30) or BD (n = 45). We also compared the mean P100 amplitude, V1 surface area and V1 thickness between controls and patients and found no significant group differences. In HC only, we found a significant positive P100-V1 surface area association, while there were no significant P100-V1 thickness relationships in HC, SCZspect or BD. Together, our results confirm previous findings of a positive P100-V1 surface area association in HC, whereas larger patient samples are needed to further clarify the function-structure relationship in V1 in SCZspect and BD.
Collapse
Affiliation(s)
- Nora Berz Slapø
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway.
| | - Kjetil Nordbø Jørgensen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Norway
| | - Stener Nerland
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Daniel Roelfs
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Mathias Valstad
- Department of Mental Disorders, Norwegian Institute of Public Health, Norway
| | - Clara M F Timpe
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | | | - Dani Beck
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | | | | | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ingrid Melle
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Lars T Westlye
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Torgeir Moberget
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Behavioral Sciences, Faculty of Health Sciences, Oslo Metropolitan University, OsloMet, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
2
|
Slapø NB, Nerland S, Nordbø Jørgensen K, Mørch-Johnsen L, Pettersen JH, Roelfs D, Parker N, Valstad M, Pentz A, Timpe CMF, Richard G, Beck D, Werner MCF, Lagerberg TV, Melle I, Agartz I, Westlye LT, Steen NE, Andreassen OA, Moberget T, Elvsåshagen T, Jönsson EG. Auditory Cortex Thickness Is Associated With N100 Amplitude in Schizophrenia Spectrum Disorders. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad015. [PMID: 38812720 PMCID: PMC7616042 DOI: 10.1093/schizbullopen/sgad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Background and Hypothesis The auditory cortex (AC) may play a central role in the pathophysiology of schizophrenia and auditory hallucinations (AH). Previous schizophrenia studies report thinner AC and impaired AC function, as indicated by decreased N100 amplitude of the auditory evoked potential. However, whether these structural and functional alterations link to AH in schizophrenia remain poorly understood. Study Design Patients with a schizophrenia spectrum disorder (SCZspect), including patients with a lifetime experience of AH (AH+), without (AH-), and healthy controls underwent magnetic resonance imaging (39 SCZspect, 22 AH+, 17 AH-, and 146 HC) and electroencephalography (33 SCZspect, 17 AH+, 16 AH-, and 144 HC). Cortical thickness of the primary (AC1, Heschl's gyrus) and secondary (AC2, Heschl's sulcus, and the planum temporale) AC was compared between SCZspect and controls and between AH+, AH-, and controls. To examine if the association between AC thickness and N100 amplitude differed between groups, we used regression models with interaction terms. Study Results N100 amplitude was nominally smaller in SCZspect (P = .03, d = 0.42) and in AH- (P = .020, d = 0.61), while AC2 was nominally thinner in AH+ (P = .02, d = 0.53) compared with controls. AC1 thickness was positively associated with N100 amplitude in SCZspect (t = 2.56, P = .016) and AH- (t = 3.18, P = .008), while AC2 thickness was positively associated with N100 amplitude in SCZspect (t = 2.37, P = .024) and in AH+ (t = 2.68, P = .019). Conclusions The novel findings of positive associations between AC thickness and N100 amplitude in SCZspect, suggest that a common neural substrate may underlie AC thickness and N100 amplitude alterations.
Collapse
Affiliation(s)
- Nora Berz Slapø
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stener Nerland
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Lynn Mørch-Johnsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Grålum, Norway
- Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | | | - Daniel Roelfs
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nadine Parker
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mathias Valstad
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Atle Pentz
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Clara M. F. Timpe
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Geneviève Richard
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dani Beck
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Maren C. Frogner Werner
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ingrid Melle
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatry, Telemark Hospital, Skien, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Sweden
| | - Lars T. Westlye
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torgeir Moberget
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Behavioral Sciences, Faculty of Health Sciences, Oslo Metropolitan University, OsloMet, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Erik G. Jönsson
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Worschech F, Altenmüller E, Jünemann K, Sinke C, Krüger THC, Scholz DS, Müller CAH, Kliegel M, James CE, Marie D. Evidence of cortical thickness increases in bilateral auditory brain structures following piano learning in older adults. Ann N Y Acad Sci 2022; 1513:21-30. [PMID: 35292982 DOI: 10.1111/nyas.14762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/03/2022] [Indexed: 12/25/2022]
Abstract
Morphological differences in the auditory brain of musicians compared to nonmusicians are often associated with life-long musical activity. Cross-sectional studies, however, do not allow for any causal inferences, and most experimental studies testing music-driven adaptations investigated children. Although the importance of the age at which musical training begins is widely recognized to impact neuroplasticity, there have been few longitudinal studies examining music-related changes in the brains of older adults. Using magnetic resonance imaging, we measured cortical thickness (CT) of 12 auditory-related regions of interest before and after 6 months of musical instruction in 134 healthy, right-handed, normal-hearing, musically-naive older adults (64-76 years old). Prior to the study, all participants were randomly assigned to either piano training or to a musical culture/music listening group. In five regions-left Heschl's gyrus, left planum polare, bilateral superior temporal sulcus, and right Heschl's sulcus-we found an increase in CT in the piano training group compared with the musical culture group. Furthermore, CT of the right Heschl's gyrus could be identified as a morphological substrate supporting speech in noise perception. The results support the conclusion that playing an instrument is an effective stimulator for cortical plasticity, even in older adults.
Collapse
Affiliation(s)
- Florian Worschech
- Institute for Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Eckart Altenmüller
- Institute for Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Kristin Jünemann
- Center for Systems Neuroscience, Hanover, Germany.,Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Christopher Sinke
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Tillmann H C Krüger
- Center for Systems Neuroscience, Hanover, Germany.,Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Daniel S Scholz
- Institute for Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Cécile A H Müller
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva, Switzerland
| | - Matthias Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.,Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
| | - Clara E James
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva, Switzerland.,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Damien Marie
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva, Switzerland.,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Bilateral age-related atrophy in the planum temporale is associated with vowel discrimination difficulty in healthy older adults. Hear Res 2021; 406:108252. [PMID: 33951578 DOI: 10.1016/j.heares.2021.108252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 11/24/2022]
Abstract
In this study we investigated the association between age-related brain atrophy and behavioural as well as electrophysiological markers of vowel perception in a sample of healthy younger and older adults with normal pure-tone hearing. Twenty-three older adults and 27 younger controls discriminated a set of vowels with altered second formants embedded in consonant-vowel syllables. Additionally, mismatch negativity (MMN) responses were recorded in a separate oddball paradigm with the same set of stimuli. A structural magnet resonance scan was obtained for each participant to determine cortical architecture of the left and right planum temporale (PT). The PT was chosen for its function as a major processor of auditory cues and speech. Results suggested that older adults performed worse in vowel discrimination despite normal-for-age pure-tone hearing. In the older group, we found evidence that those with greater age-related cortical atrophy (i.e., lower cortical surface area and cortical volume) in the left and right PT also showed weaker vowel discrimination. In comparison, we found a lateralized correlation in the younger group suggesting that those with greater cortical thickness in only the left PT performed weaker in the vowel discrimination task. We did not find any associations between macroanatomical traits of the PT and MMN responses. We conclude that deficient vowel processing is not only caused by pure-tone hearing loss but is also influenced by atrophy-related changes in the ageing auditory-related cortices. Furthermore, our results suggest that auditory processing might become more bilateral across the lifespan.
Collapse
|
5
|
Sorati M, Behne DM. Audiovisual Modulation in Music Perception for Musicians and Non-musicians. Front Psychol 2020; 11:1094. [PMID: 32547458 PMCID: PMC7273518 DOI: 10.3389/fpsyg.2020.01094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
In audiovisual music perception, visual information from a musical instrument being played is available prior to the onset of the corresponding musical sound and consequently allows a perceiver to form a prediction about the upcoming audio music. This prediction in audiovisual music perception, compared to auditory music perception, leads to lower N1 and P2 amplitudes and latencies. Although previous research suggests that audiovisual experience, such as previous musical experience may enhance this prediction, a remaining question is to what extent musical experience modifies N1 and P2 amplitudes and latencies. Furthermore, corresponding event-related phase modulations quantified as inter-trial phase coherence (ITPC) have not previously been reported for audiovisual music perception. In the current study, audio video recordings of a keyboard key being played were presented to musicians and non-musicians in audio only (AO), video only (VO), and audiovisual (AV) conditions. With predictive movements from playing the keyboard isolated from AV music perception (AV-VO), the current findings demonstrated that, compared to the AO condition, both groups had a similar decrease in N1 amplitude and latency, and P2 amplitude, along with correspondingly lower ITPC values in the delta, theta, and alpha frequency bands. However, while musicians showed lower ITPC values in the beta-band in AV-VO compared to the AO, non-musicians did not show this pattern. Findings indicate that AV perception may be broadly correlated with auditory perception, and differences between musicians and non-musicians further indicate musical experience to be a specific factor influencing AV perception. Predicting an upcoming sound in AV music perception may involve visual predictory processes, as well as beta-band oscillations, which may be influenced by years of musical training. This study highlights possible interconnectivity in AV perception as well as potential modulation with experience.
Collapse
Affiliation(s)
- Marzieh Sorati
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dawn Marie Behne
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Ratnanather JT. Structural neuroimaging of the altered brain stemming from pediatric and adolescent hearing loss-Scientific and clinical challenges. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1469. [PMID: 31802640 PMCID: PMC7307271 DOI: 10.1002/wsbm.1469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/01/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022]
Abstract
There has been a spurt in structural neuroimaging studies of the effect of hearing loss on the brain. Specifically, magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) technologies provide an opportunity to quantify changes in gray and white matter structures at the macroscopic scale. To date, there have been 32 MRI and 23 DTI studies that have analyzed structural differences accruing from pre- or peri-lingual pediatric hearing loss with congenital or early onset etiology and postlingual hearing loss in pre-to-late adolescence. Additionally, there have been 15 prospective clinical structural neuroimaging studies of children and adolescents being evaluated for cochlear implants. The results of the 70 studies are summarized in two figures and three tables. Plastic changes in the brain are seen to be multifocal rather than diffuse, that is, differences are consistent across regions implicated in the hearing, speech and language networks regardless of modes of communication and amplification. Structures in that play an important role in cognition are affected to a lesser extent. A limitation of these studies is the emphasis on volumetric measures and on homogeneous groups of subjects with hearing loss. It is suggested that additional measures of morphometry and connectivity could contribute to a greater understanding of the effect of hearing loss on the brain. Then an interpretation of the observed macroscopic structural differences is given. This is followed by discussion of how structural imaging can be combined with functional imaging to provide biomarkers for longitudinal tracking of amplification. This article is categorized under: Developmental Biology > Developmental Processes in Health and Disease Translational, Genomic, and Systems Medicine > Translational Medicine Laboratory Methods and Technologies > Imaging.
Collapse
Affiliation(s)
- J. Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
7
|
Sorati M, Behne DM. Musical Expertise Affects Audiovisual Speech Perception: Findings From Event-Related Potentials and Inter-trial Phase Coherence. Front Psychol 2019; 10:2562. [PMID: 31803107 PMCID: PMC6874039 DOI: 10.3389/fpsyg.2019.02562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/29/2019] [Indexed: 12/03/2022] Open
Abstract
In audiovisual speech perception, visual information from a talker's face during mouth articulation is available before the onset of the corresponding audio speech, and thereby allows the perceiver to use visual information to predict the upcoming audio. This prediction from phonetically congruent visual information modulates audiovisual speech perception and leads to a decrease in N1 and P2 amplitudes and latencies compared to the perception of audio speech alone. Whether audiovisual experience, such as with musical training, influences this prediction is unclear, but if so, may explain some of the variations observed in previous research. The current study addresses whether audiovisual speech perception is affected by musical training, first assessing N1 and P2 event-related potentials (ERPs) and in addition, inter-trial phase coherence (ITPC). Musicians and non-musicians are presented the syllable, /ba/ in audio only (AO), video only (VO), and audiovisual (AV) conditions. With the predictory effect of mouth movement isolated from the AV speech (AV-VO), results showed that, compared to audio speech, both groups have a lower N1 latency and P2 amplitude and latency. Moreover, they also showed lower ITPCs in the delta, theta, and beta bands in audiovisual speech perception. However, musicians showed significant suppression of N1 amplitude and desynchronization in the alpha band in audiovisual speech, not present for non-musicians. Collectively, the current findings indicate that early sensory processing can be modified by musical experience, which in turn can explain some of the variations in previous AV speech perception research.
Collapse
Affiliation(s)
- Marzieh Sorati
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
8
|
Keller M, Neuschwander P, Meyer M. When right becomes less right: Neural dedifferentiation during suprasegmental speech processing in the aging brain. Neuroimage 2019; 189:886-895. [DOI: 10.1016/j.neuroimage.2019.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/27/2023] Open
|
9
|
Novén M, Schremm A, Nilsson M, Horne M, Roll M. Cortical thickness of Broca's area and right homologue is related to grammar learning aptitude and pitch discrimination proficiency. BRAIN AND LANGUAGE 2019; 188:42-47. [PMID: 30572263 DOI: 10.1016/j.bandl.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 11/23/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Aptitude for and proficiency in acquiring new languages varies in the human population but their neural bases are largely unknown. We investigated the influence of cortical thickness on language learning predictors measured by the LLAMA tests and a pitch-change discrimination test. The LLAMA tests are first language-independent assessments of language learning aptitude for vocabulary, phonetic working memory, sound-symbol correspondence (not used in this study), and grammatical inferencing. Pitch perception proficiency is known to predict aptitude for learning new phonology. Results show a correlation between scores in a grammatical meaning-inferencing aptitude test and cortical thickness of Broca's area (r(30) = 0.65, p = 0.0202) and other frontal areas (r(30) = 0.66, p = 0.0137). Further, a correlation was found between proficiency in discriminating pitch-change direction and cortical thickness of the right Broca homologue (r(30) = 0.57, p = 0.0006). However, no correlations were found for aptitude for vocabulary learning or phonetic working memory. Results contribute to locating cortical regions important for language-learning aptitude.
Collapse
Affiliation(s)
- Mikael Novén
- Department of Linguistics and Phonetics, Lund University, 221 00, Sweden.
| | - Andrea Schremm
- Department of Linguistics and Phonetics, Lund University, 221 00, Sweden.
| | - Markus Nilsson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Radiology, Lund 221 00, Sweden.
| | - Merle Horne
- Department of Linguistics and Phonetics, Lund University, 221 00, Sweden.
| | - Mikael Roll
- Department of Linguistics and Phonetics, Lund University, 221 00, Sweden.
| |
Collapse
|
10
|
Zoellner S, Benner J, Zeidler B, Seither-Preisler A, Christiner M, Seitz A, Goebel R, Heinecke A, Wengenroth M, Blatow M, Schneider P. Reduced cortical thickness in Heschl's gyrus as an in vivo marker for human primary auditory cortex. Hum Brain Mapp 2018; 40:1139-1154. [PMID: 30367737 DOI: 10.1002/hbm.24434] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/28/2022] Open
Abstract
The primary auditory cortex (PAC) is located in the region of Heschl's gyrus (HG), as confirmed by histological, cytoarchitectonical, and neurofunctional studies. Applying cortical thickness (CTH) analysis based on high-resolution magnetic resonance imaging (MRI) and magnetoencephalography (MEG) in 60 primary school children and 60 adults, we investigated the CTH distribution of left and right auditory cortex (AC) and primary auditory source activity at the group and individual level. Both groups showed contoured regions of reduced auditory cortex (redAC) along the mediolateral extension of HG, illustrating large inter-individual variability with respect to shape, localization, and lateralization. In the right hemisphere, redAC localized more within the medial portion of HG, extending typically across HG duplications. In the left hemisphere, redAC was distributed significantly more laterally, reaching toward the anterolateral portion of HG. In both hemispheres, redAC was found to be significantly thinner (mean CTH of 2.34 mm) as compared to surrounding areas (2.99 mm). This effect was more dominant in the right hemisphere rather than in the left one. Moreover, localization of the primary component of auditory evoked activity (P1), as measured by MEG in response to complex harmonic sounds, strictly co-localized with redAC. This structure-function link was found consistently at the group and individual level, suggesting PAC to be represented by areas of reduced cortex in HG. Thus, we propose reduced CTH as an in vivo marker for identifying shape and localization of PAC in the individual brain.
Collapse
Affiliation(s)
- Simeon Zoellner
- Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, Heidelberg, Germany.,Department of Neuroradiology, University of Heidelberg Medical School, Heidelberg, Germany
| | - Jan Benner
- Department of Neuroradiology, University of Heidelberg Medical School, Heidelberg, Germany
| | - Bettina Zeidler
- Department of Neuroradiology, University of Heidelberg Medical School, Heidelberg, Germany.,Institute of Systematic Musicology, University of Hamburg, Hamburg, Germany
| | | | - Markus Christiner
- Department of Linguistics, Unit for Language Learning and Teaching Research, University of Vienna, Vienna, Austria
| | - Angelika Seitz
- Department of Phoniatrics and Pedaudiology, University of Heidelberg Medical School, Heidelberg, Germany
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology, Universiteit Maastricht, Maastricht, The Netherlands
| | - Armin Heinecke
- Department of Cognitive Neuroscience, Faculty of Psychology, Universiteit Maastricht, Maastricht, The Netherlands
| | - Martina Wengenroth
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Maria Blatow
- Department of Neuroradiology and Clinical Neuroscience Center, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Peter Schneider
- Department of Neurology, Section of Biomagnetism, University of Heidelberg Medical School, Heidelberg, Germany.,Department of Neuroradiology, University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|
11
|
Schremm A, Novén M, Horne M, Söderström P, van Westen D, Roll M. Cortical thickness of planum temporale and pars opercularis in native language tone processing. BRAIN AND LANGUAGE 2018; 176:42-47. [PMID: 29223785 DOI: 10.1016/j.bandl.2017.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/13/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
The present study investigated the relationship between linguistic tone processing and cortical thickness of bilateral planum temporale (PT) and pars opercularis of the inferior frontal gyrus (IFGpo). Swedish tones on word stems function as cues to upcoming endings. Correlating structural brain imaging data with participants' response time patterns for suffixes, we found that thicker cortex in the left PT was associated with greater reliance on tones to anticipate upcoming inflections on real words. On inflected pseudoword stems, however, the cortical thickness of left IFGpo was associated with tone-suffix processing. Thus cortical thickness of the left PT might play a role in processing tones as part of stored representations for familiar speech segments, most likely when inflected forms are accessed as whole words. In the absence of stored representations, listeners might need to rely on morphosyntactic rules specifying tone-suffix associations, potentially facilitated by greater cortical thickness of left IFGpo.
Collapse
Affiliation(s)
- Andrea Schremm
- Department of Linguistics and Phonetics, Lund University, Box 201, 22100 Lund, Sweden.
| | - Mikael Novén
- Department of Linguistics and Phonetics, Lund University, Box 201, 22100 Lund, Sweden.
| | - Merle Horne
- Department of Linguistics and Phonetics, Lund University, Box 201, 22100 Lund, Sweden.
| | - Pelle Söderström
- Department of Linguistics and Phonetics, Lund University, Box 201, 22100 Lund, Sweden.
| | - Danielle van Westen
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Box 201, 22100 Lund, Sweden.
| | - Mikael Roll
- Department of Linguistics and Phonetics, Lund University, Box 201, 22100 Lund, Sweden.
| |
Collapse
|
12
|
Giroud N, Hirsiger S, Muri R, Kegel A, Dillier N, Meyer M. Neuroanatomical and resting state EEG power correlates of central hearing loss in older adults. Brain Struct Funct 2017; 223:145-163. [DOI: 10.1007/s00429-017-1477-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 07/11/2017] [Indexed: 02/02/2023]
|
13
|
Benner J, Wengenroth M, Reinhardt J, Stippich C, Schneider P, Blatow M. Prevalence and function of Heschl's gyrus morphotypes in musicians. Brain Struct Funct 2017; 222:3587-3603. [PMID: 28397108 DOI: 10.1007/s00429-017-1419-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/31/2017] [Indexed: 12/29/2022]
Abstract
Morphological variations of the first transverse Heschl's gyrus (HG) in the human auditory cortex (AC) are common, yet little is known about their functional implication. We investigated individual morphology and function of HG variations in the AC of 41 musicians, using structural and functional magnetic resonance imaging (fMRI) as well as magnetoencephalography (MEG). Four main morphotypes of HG were (i) single HG, (ii) common stem duplication (CSD), (iii) complete posterior duplication (CPD), and (iv) multiple duplications (MD). The vast majority of musicians (90%) exhibited HG multiplications (type ii-iv) in either one (39%) or both (51%) hemispheres. In 27% of musicians, MD with up to four gyri were found. To probe the functional contribution of HG multiplications to auditory processing we performed fMRI and MEG with auditory stimulation using analogous instrumental tone paradigms. Both methods pointed to the recruitment of all parts of HG during auditory stimulation, including multiplications if present. FMRI activations extended with the degree of HG gyrification. MEG source waveform patterns were distinct for the different types of HG: (i) hemispheres with single HG and (ii) CSD exhibited dominant N1 responses, whereas hemispheres with (iii) CPD and (iv) MD exhibited dominant P1 responses. N1 dipole amplitudes correlated with the localization of the first complete Heschl's sulcus (cHS), designating the most posterior anatomical border of HG. P2 amplitudes were significantly higher in professional as compared to amateur musicians. The results suggest that HG multiplications occur much more frequently in musicians than in the general population and constitute a functional unit with HG.
Collapse
Affiliation(s)
- Jan Benner
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland.,Department of Neuroradiology, University of Heidelberg Medical School, INF 400, 69120, Heidelberg, Germany
| | - Martina Wengenroth
- Department of Neuroradiology, University of Heidelberg Medical School, INF 400, 69120, Heidelberg, Germany.,Department of Neurology, Institute of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Julia Reinhardt
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Christoph Stippich
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Peter Schneider
- Department of Neuroradiology, University of Heidelberg Medical School, INF 400, 69120, Heidelberg, Germany.,Section of Biomagnetism, Department of Neurology, University of Heidelberg Medical School, INF 400, 69120, Heidelberg, Germany
| | - Maria Blatow
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
14
|
Butler JS, Fearon C, Killane I, Waechter SM, Reilly RB, Lynch T. Motor preparation rather than decision-making differentiates Parkinson’s disease patients with and without freezing of gait. Clin Neurophysiol 2017; 128:463-471. [DOI: 10.1016/j.clinph.2016.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/04/2016] [Accepted: 12/18/2016] [Indexed: 11/28/2022]
|
15
|
Tan A, Hu L, Tu Y, Chen R, Hung YS, Zhang Z. N1 Magnitude of Auditory Evoked Potentials and Spontaneous Functional Connectivity Between Bilateral Heschl's Gyrus Are Coupled at Interindividual Level. Brain Connect 2016; 6:496-504. [PMID: 27105665 DOI: 10.1089/brain.2016.0418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
N1 component of auditory evoked potentials is extensively used to investigate the propagation and processing of auditory inputs. However, the substantial interindividual variability of N1 could be a possible confounding factor when comparing different individuals or groups. Therefore, identifying the neuronal mechanism and origin of the interindividual variability of N1 is crucial in basic research and clinical applications. This study is aimed to use simultaneously recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data to investigate the coupling between N1 and spontaneous functional connectivity (FC). EEG and fMRI data were simultaneously collected from a group of healthy individuals during a pure-tone listening task. Spontaneous FC was estimated from spontaneous blood oxygenation level-dependent (BOLD) signals that were isolated by regressing out task evoked BOLD signals from raw BOLD signals and then was correlated to N1 magnitude across individuals. It was observed that spontaneous FC between bilateral Heschl's gyrus was significantly and positively correlated with N1 magnitude across individuals (Spearman's R = 0.829, p < 0.001). The specificity of this observation was further confirmed by two whole-brain voxelwise analyses (voxel-mirrored homotopic connectivity analysis and seed-based connectivity analysis). These results enriched our understanding of the functional significance of the coupling between event-related brain responses and spontaneous brain connectivity, and hold the potential to increase the applicability of brain responses as a probe to the mechanism underlying pathophysiological conditions.
Collapse
Affiliation(s)
- Ao Tan
- 1 Department of Electrical and Electronic Engineering, The University of Hong Kong , Hong Kong, China
| | - Li Hu
- 2 Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China .,3 Faculty of Psychology, Southwest University , Chongqing, China
| | - Yiheng Tu
- 1 Department of Electrical and Electronic Engineering, The University of Hong Kong , Hong Kong, China
| | - Rui Chen
- 3 Faculty of Psychology, Southwest University , Chongqing, China
| | - Yeung Sam Hung
- 1 Department of Electrical and Electronic Engineering, The University of Hong Kong , Hong Kong, China
| | - Zhiguo Zhang
- 4 School of Data and Computer Science, Sun Yat-Sen University , Guangzhou, China
| |
Collapse
|
16
|
Marie D, Maingault S, Crivello F, Mazoyer B, Tzourio-Mazoyer N. Surface-Based Morphometry of Cortical Thickness and Surface Area Associated with Heschl's Gyri Duplications in 430 Healthy Volunteers. Front Hum Neurosci 2016; 10:69. [PMID: 27014013 PMCID: PMC4779901 DOI: 10.3389/fnhum.2016.00069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 02/11/2016] [Indexed: 01/31/2023] Open
Abstract
We applied Surface-Based Morphometry to assess the variations in cortical thickness (CT) and cortical surface area (CSA) in relation to the occurrence of Heschl's gyrus (HG) duplications in each hemisphere. 430 healthy brains that had previously been classified as having a single HG, Common Stem Duplication (CSD) or Complete Posterior Duplication (CPD) in each hemisphere were analyzed. To optimally align the HG area across the different groups of gyrification, we computed a specific surface-based template composed of 40 individuals with a symmetrical HG gyrification pattern (20 single HG, 10 CPD, 10 CSD). After normalizing the 430 participants' T1 images to this specific template, we separately compared the groups constituted of participants with a single HG, CPD, and CSD in each hemisphere. The occurrence of a duplication in either hemisphere was associated with an increase in CT posterior to the primary auditory cortex. This may be the neural support of expertise or great abilities in either speech or music processing domains that were related with duplications by previous studies. A decrease in CSA in the planum temporale was detected in cases with duplication in the left hemisphere. In the right hemisphere, a medial decrease in CSA and a lateral increase in CSA were present in HG when a CPD occurred together with an increase in CSA in the depth of the superior temporal sulcus (STS) in CSD compared to a single HG. These variations associated with duplication might be related to the functions that they process jointly within each hemisphere: temporal and speech processing in the left and spectral and music processing in the right.
Collapse
Affiliation(s)
- Damien Marie
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| | - Sophie Maingault
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| | - Nathalie Tzourio-Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| |
Collapse
|
17
|
Kramer J, Jutzeler C, Haefeli J, Curt A, Freund P. Discrepancy between perceived pain and cortical processing: A voxel-based morphometry and contact heat evoked potential study. Clin Neurophysiol 2016; 127:762-768. [DOI: 10.1016/j.clinph.2015.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/28/2015] [Accepted: 02/25/2015] [Indexed: 01/11/2023]
|
18
|
Narayanan B, Ethridge LE, O'Neil K, Dunn S, Mathew I, Tandon N, Calhoun VD, Ruaño G, Kocherla M, Windemuth A, Clementz BA, Tamminga CA, Sweeney JA, Keshavan MS, Pearlson GD. Genetic Sources of Subcomponents of Event-Related Potential in the Dimension of Psychosis Analyzed From the B-SNIP Study. Am J Psychiatry 2015; 172:466-78. [PMID: 25615564 PMCID: PMC4455958 DOI: 10.1176/appi.ajp.2014.13101411] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Biological risk factors underlying psychosis are poorly understood. Biological underpinnings of the dimension of psychosis can be derived using genetic associations with intermediate phenotypes such as subcomponents of auditory event-related potentials (ERPs). Various ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder are heritable and are expressed in unaffected relatives, although studies investigating genetic contributions to ERP abnormalities are limited. The authors used a novel parallel independent component analysis (para-ICA) to determine which empirically derived gene clusters are associated with data-driven ERP subcomponents, assuming a complex etiology underlying psychosis. METHOD The authors examined the multivariate polygenic association of ERP subcomponents from 64-channel auditory oddball data in 144 individuals with schizophrenia, 210 psychotic bipolar disorder probands, and 95 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Data were reduced by principal components analysis to two target and one standard ERP waveforms. Multivariate association of compressed ERP waveforms with a set of 20,329 single-nucleotide polymorphisms (SNPs) (reduced from a 1-million-SNP array) was examined using para-ICA. Genes associated with SNPs were further examined using pathway analysis tools. RESULTS Para-ICA identified four ERP components that were significantly correlated with three genetic components. Enrichment analysis revealed complement immune response pathway and multiple processes that significantly mediate ERP abnormalities in psychosis, including synaptic cell adhesion, axon guidance, and neurogenesis. CONCLUSIONS This study identified three genetic components comprising multiple genes mediating ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder. The data suggest a possible polygenic structure comprising genes influencing key neurodevelopmental processes, neural circuitry, and brain function mediating biological pathways plausibly associated with psychosis.
Collapse
Affiliation(s)
- Balaji Narayanan
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Lauren E. Ethridge
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Kasey O'Neil
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Sabra Dunn
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Ian Mathew
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Vince D. Calhoun
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131,The Mind Research Network, Albuquerque, NM-87106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| | - Gualberto Ruaño
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | - Mohan Kocherla
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | | | | | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - John A. Sweeney
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| |
Collapse
|
19
|
Abstract
Absolute pitch (AP) refers to the rare ability to identify the chroma of a tone or to produce a specific pitch without reference to keyality (e.g., G or C). Previously, AP has been proposed to rely on the distinctive functional-anatomical architecture of the left auditory-related cortex (ARC), this specific trait possibly enabling an optimized early "categorical perception". In contrast, currently prevailing models of AP postulate that cognitive rather than perceptual processes, namely "pitch labeling" mechanisms, more likely constitute the bearing skeleton of AP. This associative memory component has previously been proposed to be dependent, among other mechanisms, on the recruitment of the left dorsolateral prefrontal cortex (DLPFC) as well as on the integrity of the left arcuate fasciculus, a fiber bundle linking the posterior supratemporal plane with the DLPFC. Here, we attempted to integrate these two apparently conflicting perspectives on AP, namely early "categorical perception" and "pitch labeling". We used electroencephalography and evaluated resting-state intracranial functional connectivity between the left ARC and DLPFC in a sample of musicians with and without AP. Results demonstrate significantly increased left-hemispheric theta phase synchronization in AP compared with non-AP musicians. Within the AP group, this specific electrophysiological marker was predictive of absolute-hearing behavior and explained ∼30% of variance. Thus, we propose that in AP subjects the tonal inputs and the corresponding mnemonic representations are tightly coupled in such a manner that the distinctive electrophysiological signature of AP can saliently be detected in only 3 min of resting-state measurements.
Collapse
|
20
|
Hänggi J, Brütsch K, Siegel AM, Jäncke L. The architecture of the chess player׳s brain. Neuropsychologia 2014; 62:152-62. [DOI: 10.1016/j.neuropsychologia.2014.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/15/2014] [Accepted: 07/17/2014] [Indexed: 10/25/2022]
|
21
|
Sharma A, Campbell J, Cardon G. Developmental and cross-modal plasticity in deafness: evidence from the P1 and N1 event related potentials in cochlear implanted children. Int J Psychophysiol 2014; 95:135-44. [PMID: 24780192 DOI: 10.1016/j.ijpsycho.2014.04.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/15/2022]
Abstract
Cortical development is dependent on extrinsic stimulation. As such, sensory deprivation, as in congenital deafness, can dramatically alter functional connectivity and growth in the auditory system. Cochlear implants ameliorate deprivation-induced delays in maturation by directly stimulating the central nervous system, and thereby restoring auditory input. The scenario in which hearing is lost due to deafness and then reestablished via a cochlear implant provides a window into the development of the central auditory system. Converging evidence from electrophysiologic and brain imaging studies of deaf animals and children fitted with cochlear implants has allowed us to elucidate the details of the time course for auditory cortical maturation under conditions of deprivation. Here, we review how the P1 cortical auditory evoked potential (CAEP) provides useful insight into sensitive period cut-offs for development of the primary auditory cortex in deaf children fitted with cochlear implants. Additionally, we present new data on similar sensitive period dynamics in higher-order auditory cortices, as measured by the N1 CAEP in cochlear implant recipients. Furthermore, cortical re-organization, secondary to sensory deprivation, may take the form of compensatory cross-modal plasticity. We provide new case-study evidence that cross-modal re-organization, in which intact sensory modalities (i.e., vision and somatosensation) recruit cortical regions associated with deficient sensory modalities (i.e., auditory) in cochlear implanted children may influence their behavioral outcomes with the implant. Improvements in our understanding of developmental neuroplasticity in the auditory system should lead to harnessing central auditory plasticity for superior clinical technique.
Collapse
Affiliation(s)
- Anu Sharma
- Brain and Behavior Laboratory, Speech Language and Hearing Sciences, University of Colorado at Boulder, United States; Institute of Cognitive Science, University of Colorado at Boulder, United States.
| | - Julia Campbell
- Brain and Behavior Laboratory, Speech Language and Hearing Sciences, University of Colorado at Boulder, United States
| | - Garrett Cardon
- Brain and Behavior Laboratory, Speech Language and Hearing Sciences, University of Colorado at Boulder, United States
| |
Collapse
|
22
|
Elvsåshagen T, Moberget T, Bøen E, Hol PK, Malt UF, Andersson S, Westlye LT. The surface area of early visual cortex predicts the amplitude of the visual evoked potential. Brain Struct Funct 2014; 220:1229-36. [DOI: 10.1007/s00429-013-0703-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 12/30/2013] [Indexed: 01/17/2023]
|
23
|
Brühl AB, Hänggi J, Baur V, Rufer M, Delsignore A, Weidt S, Jäncke L, Herwig U. Increased cortical thickness in a frontoparietal network in social anxiety disorder. Hum Brain Mapp 2013; 35:2966-77. [PMID: 24039023 DOI: 10.1002/hbm.22378] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 11/09/2022] Open
Abstract
Social anxiety disorder (SAD) is the second leading anxiety disorder. On the functional neurobiological level, specific brain regions involved in the processing of anxiety-laden stimuli and in emotion regulation have been shown to be hyperactive and hyper-responsive in SAD such as amygdala, insula and orbito- and prefrontal cortex. On the level of brain structure, prior studies on anatomical differences in SAD resulted in mixed and partially contradictory findings. Based on previous functional and anatomical models of SAD, this study examined cortical thickness in structural magnetic resonance imaging data of 46 patients with SAD without comorbidities (except for depressed episode in one patient) compared with 46 matched healthy controls in a region of interest-analysis and in whole-brain. In a theory-driven ROI-analysis, cortical thickness was increased in SAD in left insula, right anterior cingulate and right temporal pole. Furthermore, the whole-brain analysis revealed increased thickness in right dorsolateral prefrontal and right parietal cortex. This study detected no regions of decreased cortical thickness or brain volume in SAD. From the perspective of brain networks, these findings are in line with prior functional differences in salience networks and frontoparietal networks associated with executive-controlling and attentional functions.
Collapse
Affiliation(s)
- Annette Beatrix Brühl
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zürich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Meyer M, Liem F, Hirsiger S, Jancke L, Hanggi J. Cortical Surface Area and Cortical Thickness Demonstrate Differential Structural Asymmetry in Auditory-Related Areas of the Human Cortex. Cereb Cortex 2013; 24:2541-52. [DOI: 10.1093/cercor/bht094] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
25
|
Liem F, Hurschler MA, Jäncke L, Meyer M. On the planum temporale lateralization in suprasegmental speech perception: evidence from a study investigating behavior, structure, and function. Hum Brain Mapp 2013; 35:1779-89. [PMID: 23633439 DOI: 10.1002/hbm.22291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 01/30/2013] [Accepted: 02/26/2013] [Indexed: 11/09/2022] Open
Abstract
This study combines functional and structural magnetic resonance imaging to test the "asymmetric sampling in time" (AST) hypothesis, which makes assertions about the symmetrical and asymmetrical representation of speech in the primary and nonprimary auditory cortex. Twenty-three volunteers participated in this parametric clustered-sparse fMRI study. The availability of slowly changing acoustic cues in spoken sentences was systematically reduced over continuous segments with varying lengths (100, 150, 200, 250 ms) by utilizing local time-reversion. As predicted by the hypothesis, functional lateralization in Heschl's gyrus could not be observed. Lateralization in the planum temporale and posterior superior temporal gyrus shifted towards the right hemisphere with decreasing suprasegmental temporal integrity. Cortical thickness of the planum temporale was automatically measured. Participants with an L > R cortical thickness performed better on the in-scanner auditory pattern-matching task. Taken together, these findings support the AST hypothesis and provide substantial novel insight into the division of labor between left and right nonprimary auditory cortex functions during comprehension of spoken utterances. In addition, the present data yield support for a structural-behavioral relationship in the nonprimary auditory cortex.
Collapse
Affiliation(s)
- Franziskus Liem
- Division Neuropsychology, Institute of Psychology, University of Zurich, Switzerland; Research Unit for Neuroplasticity and Learning in the Healthy Aging Brain (HAB LAB), Institute of Psychology, University of Zurich, Switzerland
| | | | | | | |
Collapse
|