1
|
Thiele C, Rufener KS, Repplinger S, Zaehle T, Ruhnau P. Transcranial temporal interference stimulation (tTIS) influences event-related alpha activity during mental rotation. Psychophysiology 2024; 61:e14651. [PMID: 38997805 DOI: 10.1111/psyp.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Non-invasive brain stimulation techniques offer therapeutic potential for neurological and psychiatric disorders. However, current methods are often limited in their stimulation depth. The novel transcranial temporal interference stimulation (tTIS) aims to overcome this limitation by non-invasively targeting deeper brain regions. In this study, we aimed to evaluate the efficacy of tTIS in modulating alpha activity during a mental rotation task. The effects of tTIS were compared with transcranial alternating current stimulation (tACS) and a sham control. Participants were randomly assigned to a tTIS, tACS, or sham group. They performed alternating blocks of resting and mental rotation tasks before, during, and after stimulation. During the stimulation blocks, participants received 20 min of stimulation adjusted to their individual alpha frequency (IAF). We assessed shifts in resting state alpha power, event-related desynchronization (ERD) of alpha activity during mental rotation, as well as resulting improvements in behavioral performance. Our results indicate tTIS and tACS to be effective in modulating cortical alpha activity during mental rotation, leading to an increase in ERD from pre- to poststimulation as well as compared to sham stimulation. However, this increase in ERD was not correlated with enhanced mental rotation performance, and resting state alpha power remained unchanged. Our findings underscore the complex nature of tTIS and tACS efficacy, indicating that stimulation effects are more observable during active cognitive tasks, while their impacts are less pronounced on resting neuronal systems.
Collapse
Affiliation(s)
- Carsten Thiele
- Department of Neurology, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Katharina S Rufener
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine of Childhood and Adolescents, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
| | - Stefan Repplinger
- Department of Neurology, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Philipp Ruhnau
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
- School of Psychology and Humanities, University of Central Lancashire, Preston, UK
| |
Collapse
|
2
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
3
|
Dondé C, Fivel L, Haesebaert F, Poulet E, Mondino M, Brunelin J. Mechanistic account of the left auditory cortex for tone-matching in schizophrenia: A pilot transcranial random noise stimulation (tRNS) sham-controlled study. Asian J Psychiatr 2024; 92:103879. [PMID: 38157711 DOI: 10.1016/j.ajp.2023.103879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Deficits in the ability to match tones following brief delay and their contribution to higher-order cognitive alterations have been repeatedly documented in schizophrenia. The aim was to explore if left fronto-temporal high-frequency transcranial random noise stimulation (hf-tRNS), with electrodes placed over brain regions involved in tone-matching would significantly modulate performances in participants with schizophrenia. METHODS In a randomized, double-blind sham-controlled study, 10 participants with schizophrenia were allocated to receive ten sessions of either active or sham hf-tRNS. The anode was placed over the left prefrontal cortex and the cathode over the left temporoparietal junction. A tone-matching task was administered before and after the hf-tRNS. RESULTS We calculated the changes in tone-matching performance before and after hf-tRNS session in each group. A significant between-group difference was observed for the difficult tone-matching conditions (W= 14.500, p = 0.032), with tone-matching improvement in the sham group and no improvement in the active group. DISCUSSION hf-tRNS could disrupt the test-retest learning effect in the tone-matching task in individuals with schizophrenia. It is likely that this disruption resulted from cathodal-induced inhibition of the functional coupling between auditory cortical areas that correlates with tone-matching performance in patients. CONCLUSION The findings contribute to our understanding of hf-tRNS effects on early auditory processing in schizophrenia.
Collapse
Affiliation(s)
- Clément Dondé
- Univ. Grenoble Alpes, F-38000 Grenoble, France; INSERM, U1216, Grenoble institute Neurosciences, F-38000 Grenoble, France; Adult Psychiatry Department, University Hospital Grenoble Alpes, F-38000 Grenoble, France.
| | - Laure Fivel
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, F-69500 Bron, France; Centre Hospitalier Le Vinatier, F-69500 Bron, France
| | - Fréderic Haesebaert
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, F-69500 Bron, France; Centre Hospitalier Le Vinatier, F-69500 Bron, France
| | - Emmanuel Poulet
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, F-69500 Bron, France; Centre Hospitalier Le Vinatier, F-69500 Bron, France
| | - Marine Mondino
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, F-69500 Bron, France; Centre Hospitalier Le Vinatier, F-69500 Bron, France
| | - Jérôme Brunelin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, F-69500 Bron, France; Centre Hospitalier Le Vinatier, F-69500 Bron, France.
| |
Collapse
|
4
|
Zhang R, Ren J, Zhang C. Efficacy of transcranial alternating current stimulation for schizophrenia treatment: A systematic review. J Psychiatr Res 2023; 168:52-63. [PMID: 37897837 DOI: 10.1016/j.jpsychires.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) is an innovative noninvasive technique in brain stimulation that involves applying a low-intensity electrical current to the scalp. And increasing evidence has revealed its potential in schizophrenia treatment. OBJECTIVE This systematic review aimed to evaluate the efficacy of tACS as a novel neurostimulation technique for improving cognitive impairment and alleviating psychotic symptoms in schizophrenia. Additionally, this review attempted to explore the impact of stimulation parameters on the effectiveness of tACS treatment. METHODS A systematic literature search was conducted across five databases, including Web of Science, Embase, PubMed, CENTRAL, and PsycINFO, to identify studies investigating the use of tACS in schizophrenia. Only studies that involved the experimental use of tACS in patients with schizophrenia were included in this review. RESULTS Nineteen studies were included in this review. The most frequently used current intensities were 2 mA and 1 mA, and the most commonly used frequencies were alpha (10 Hz), theta (4.5 Hz and 6 Hz), and gamma (40 Hz). Some studies showed that tACS may have a potential therapeutic effect by improving cognitive functions in various cognitive domains and/or ameliorating negative symptoms, hallucinations, and delusions in patients with schizophrenia, while others showed no significant change. These studies also implicated that tACS treatment is safe and well tolerated. CONCLUSIONS Overall, this systematic review suggests that tACS has promise as a novel, effective, and adjunctive treatment approach for treating schizophrenia. Future research is needed to determine the optimal parameters of tACS for treating this complex disorder.
Collapse
Affiliation(s)
- Rong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juanjuan Ren
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Sehatpour P, Kreither J, Lopez-Calderon J, Shastry AM, De Baun HM, Martinez A, Javitt DC. Network-level mechanisms underlying effects of transcranial direct current stimulation (tDCS) on visuomotor learning in schizophrenia. Transl Psychiatry 2023; 13:360. [PMID: 37993420 PMCID: PMC10665365 DOI: 10.1038/s41398-023-02656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
Motor learning is a fundamental skill to our daily lives. Dysfunction in motor performance in schizophrenia (Sz) has been associated with poor social and functional outcomes. Transcranial direct current stimulation (tDCS), a non-invasive electrical brain stimulation approach, can influence underlying brain function with potential for improving motor learning in Sz. We used a well-established Serial Reaction Time Task (SRTT) to study motor learning, in combination with simultaneous tDCS and EEG recording, to investigate mechanisms of motor and procedural learning deficits in Sz, and to develop refined non-invasive brain stimulation approaches to improve neurocognitive dysfunction. We recruited 27 individuals with Sz and 21 healthy controls (HC). Individuals performed the SRTT task as they received sham and active tDCS with simultaneous EEG recording. Reaction time (RT), neuropsychological, and measures of global functioning were assessed. SRTT performance was significantly impaired in Sz and showed significant correlations with motor-related and working memory measures as well as global function. Source-space time-frequency decomposition of EEG showed beta-band coherence across supplementary-motor, primary-motor and visual cortex forming a network involved in SRTT performance. Motor-cathodal and visual-cathodal stimulations resulted in significant modulation in coherence particularly across the motor-visual nodes of the network accompanied by significant improvement in motor learning in both controls and patients. Here, we confirm earlier reports of SRTT impairment in Sz and demonstrate significant reversal of the deficits with tDCS. The findings support continued development of tDCS for enhancement of plasticity-based interventions in Sz, as well as source-space EEG analytic approaches for evaluating underlying neural mechanisms.
Collapse
Affiliation(s)
- Pejman Sehatpour
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Johanna Kreither
- PIA Ciencias Cognitivas, Centro de Investigación en Ciencias Cognitivas, Facultad de Psicología, and Laboratorio de Neurofisiología, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | | | - Adithya M Shastry
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Heloise M De Baun
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Antigona Martinez
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Daniel C Javitt
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
6
|
Javitt D, Sehatpour P, Kreither J, Lopez-Calderon J, Shastry A, De-Baun H, Martinez A. Network-level mechanisms underlying effects of transcranial direct current stimulation (tDCS) on visuomotor learning impairments in schizophrenia. RESEARCH SQUARE 2023:rs.3.rs-2711867. [PMID: 37066410 PMCID: PMC10104242 DOI: 10.21203/rs.3.rs-2711867/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Motor learning is a fundamental skill to our daily lives. Dysfunction in motor performance in schizophrenia (Sz) is associated with poor social and functional outcomes, but nevertheless remains understudied relative to other neurocognitive domains. Moreover, transcranial direct current stimulation (tDCS) can influence underlying brain function in Sz and may be especially useful in enhancing local cortical plasticity, but underlying neural mechanisms remain incompletely understood. Here, we evaluated performance of Sz individuals on the Serial Reaction Time Task (SRTT), which has been extensively used in prior tDCS research, in combination with concurrent tDCS and EEG source localization first to evaluate the integrity of visuomotor learning in Sz relative to other cognitive domains and second to investigate underlying neural mechanisms. Twenty-seven individuals with Sz and 21 healthy controls (HC) performed the SRTT task as they received sham or active tDCS and simultaneous EEG recording. Measures of motor, neuropsychological and global functioning were also assessed. Impaired SRTT performance correlated significantly with deficits in motor performance, working memory, and global functioning. Time-frequency ("Beamformer") EEG source localization showed beta-band coherence across supplementary-motor, primary-motor and visual cortex regions, with reduced visuomotor coherence in Sz relative to HC. Cathodal tDCS targeting both visual and motor regions resulted in significant modulation in coherence particularly across the motor-visual nodes of the network accompanied by significant improvement in motor learning in both controls and patients. Overall, these findings demonstrate the utility of the SRTT to study mechanisms of visuomotor impairment in Sz and demonstrate significant tDCS effects on both learning and connectivity when applied over either visual or motor regions. The findings support continued study of dysfunctional dorsal-stream visual connectivity and motor plasticity as components of cognitive impairment in Sz, of local tDCS administration for enhancement of plasticity, and of source-space EEG-based biomarkers for evaluation of underlying neural mechanisms.
Collapse
Affiliation(s)
- Daniel Javitt
- Columbia University Medical Center/Nathan Kline Institute
| | | | | | | | | | | | | |
Collapse
|
7
|
Li KP, Wu JJ, Zhou ZL, Xu DS, Zheng MX, Hua XY, Xu JG. Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients. Brain Sci 2023; 13:brainsci13030451. [PMID: 36979261 PMCID: PMC10046557 DOI: 10.3390/brainsci13030451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Characterized by high morbidity, mortality, and disability, stroke usually causes symptoms of cerebral hypoxia due to a sudden blockage or rupture of brain vessels, and it seriously threatens human life and health. Rehabilitation is the essential treatment for post-stroke patients suffering from functional impairments, through which hemiparesis, aphasia, dysphagia, unilateral neglect, depression, and cognitive dysfunction can be restored to various degrees. Noninvasive brain stimulation (NIBS) is a popular neuromodulatory technology of rehabilitation focusing on the local cerebral cortex, which can improve clinical functions by regulating the excitability of corresponding neurons. Increasing evidence has been obtained from the clinical application of NIBS, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). However, without a standardized protocol, existing studies on NIBS show a wide variation in terms of stimulation site, frequency, intensity, dosage, and other parameters. Its application for neurorehabilitation in post-stroke patients is still limited. With advances in neuronavigation technologies, functional near-infrared spectroscopy, and functional MRI, specific brain regions can be precisely located for stimulation. On the basis of our further understanding on neural circuits, neuromodulation in post-stroke rehabilitation has also evolved from single-target stimulation to co-stimulation of two or more targets, even circuits and the network. The present study aims to review the findings of current research, discuss future directions of NIBS application, and finally promote the use of NIBS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Kun-Peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zong-Lei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dong-Sheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| |
Collapse
|
8
|
Using Nonhuman Primate Models to Reverse-Engineer Prefrontal Circuit Failure Underlying Cognitive Deficits in Schizophrenia. Curr Top Behav Neurosci 2023; 63:315-362. [PMID: 36607528 DOI: 10.1007/7854_2022_407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this chapter, I review studies in nonhuman primates that emulate the circuit failure in prefrontal cortex responsible for working memory and cognitive control deficits in schizophrenia. These studies have characterized how synaptic malfunction, typically induced by blockade of NMDAR, disrupts neural function and computation in prefrontal networks to explain errors in cognitive tasks that are seen in schizophrenia. This work is finding causal relationships between pathogenic events of relevance to schizophrenia at vastly different levels of scale, from synapses, to neurons, local, circuits, distributed networks, computation, and behavior. Pharmacological manipulation, the dominant approach in primate models, has limited construct validity for schizophrenia pathogenesis, as the disease results from a complex interplay between environmental, developmental, and genetic factors. Genetic manipulation replicating schizophrenia risk is more advanced in rodent models. Nonetheless, gene manipulation in nonhuman primates is rapidly advancing, and primate developmental models have been established. Integration of large scale neural recording, genetic manipulation, and computational modeling in nonhuman primates holds considerable potential to provide a crucial schizophrenia model moving forward. Data generated by this approach is likely to fill several crucial gaps in our understanding of the causal sequence leading to schizophrenia in humans. This causal chain presents a vexing problem largely because it requires understanding how events at very different levels of scale relate to one another, from genes to circuits to cognition to social interactions. Nonhuman primate models excel here. They optimally enable discovery of causal relationships across levels of scale in the brain that are relevant to cognitive deficits in schizophrenia. The mechanistic understanding of prefrontal circuit failure they promise to provide may point the way to more effective therapeutic interventions to restore function to prefrontal networks in the disease.
Collapse
|
9
|
Brunelin J, Galvao F, Mondino M. Twice daily low frequency rTMS for treatment-resistant auditory hallucinations. Int J Clin Health Psychol 2023; 23:100344. [PMID: 36299491 PMCID: PMC9577245 DOI: 10.1016/j.ijchp.2022.100344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has emerged as a therapeutic solution in patients with treatment-resistant auditory verbal hallucinations. However, the optimal stimulation parameters remain unclear, especially for patients with clozapine-resistant symptoms. METHOD In an open label retrospective study, we investigated whether parameters of stimulation that were useful in patients with major depressive disorder would help schizophrenia patients with treatment-resistant auditory verbal hallucinations. Fourteen participants, including 9 under clozapine, received 30 sessions of 1 Hz rTMS over 3 weeks (360 pulses per sessions delivered with 60 s 'on' and 30 s 'off' at 110% of the resting motor threshold, 2 sessions per day). Stimulations were applied over the left temporoparietal junction (T3-P3 according to 10/20 system). RESULTS After rTMS, a significant decrease of auditory verbal hallucinations was observed (-38.7% ± 31.8, p = 0.003) on the Auditory Hallucination Rating Scale. The beneficial effects were also significant in the 9 patients who were also receiving clozapine (-34.9% ± 28.4, p = 0.01). CONCLUSIONS Low frequency rTMS, 30 sessions over 3 weeks, appears to be a suitable approach to decrease treatment-resistant auditory verbal hallucinations, including in patients with clozapine-resistant symptoms. Results from the current retrospective study in the clinical settings need to be confirmed by large-scale randomized sham-controlled trials.
Collapse
Affiliation(s)
- Jérôme Brunelin
- Pôle Est, Centre Hospitalier Le Vinatier, F69500 Bron, France,PSYR2 Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, F-69000 Lyon, France,Université Lyon 1, Lyon University, F-69100 Villeurbanne, France,Corresponding author at: CH le Vinatier, PSYR2 team, bat 416 – 1st floor, 95 boulevard Pinel, 69678, BRON Cedex BP 30039, France.
| | - Filipe Galvao
- Pôle Est, Centre Hospitalier Le Vinatier, F69500 Bron, France,PSYR2 Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, F-69000 Lyon, France,Université Lyon 1, Lyon University, F-69100 Villeurbanne, France
| | - Marine Mondino
- Pôle Est, Centre Hospitalier Le Vinatier, F69500 Bron, France,PSYR2 Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, F-69000 Lyon, France,Université Lyon 1, Lyon University, F-69100 Villeurbanne, France
| |
Collapse
|