1
|
Cuellar-Barboza AB, Prieto ML, Coombes BJ, Gardea-Resendez M, Núñez N, Winham SJ, Romo-Nava F, González S, McElroy SL, Frye MA, Biernacka JM. Polygenic prediction of bipolar disorder in a Latin American sample. Am J Med Genet B Neuropsychiatr Genet 2023; 192:139-146. [PMID: 36919637 DOI: 10.1002/ajmg.b.32936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
To date, bipolar disorder (BD) genetic studies and polygenic risk scores (PRSs) for BD are based primarily on populations of European descent (EUR) and lack representation from other ancestries including Latin American (LAT). Here, we describe a new LAT cohort from the Mayo Clinic Bipolar Biobank (MCBB), a multisite collaboration with recruitment sites in the United States (EUR; 1,443 cases and 777 controls) and Mexico and Chile (LAT; 211 cases and 161 controls) and use the sample to explore the performance of a BD-PRS in a LAT population. Using results from the largest genome-wide association study of BD in EUR individuals, PRSice2 and LDpred2 were used to compute BD-PRSs in the LAT and EUR samples from the MCBB. PRSs explained up to 1.4% (PRSice) and 4% (LDpred2) of the phenotypic variance on the liability scale in the LAT sample compared to 3.8% (PRSice2) and 3.4% (LDpred2) in the EUR samples. Future larger studies should further explore the differential performance of different PRS approaches across ancestries. International multisite studies, such as this one, have the potential to address diversity-related limitations of prior genomic studies and ultimately contribute to the reduction of health disparities.
Collapse
Affiliation(s)
- Alfredo B Cuellar-Barboza
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Psychiatry, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Miguel L Prieto
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Psychiatry, Universidad de los Andes, Santiago, Chile
- Mental Health Service, Clinica Universidad de los Andes, Santiago, Chile
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Nicolás Núñez
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stacey J Winham
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Sarai González
- Department of Psychiatry, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Susan L McElroy
- Lindner Center of HOPE/University of Cincinnati, Cincinnati, Ohio, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joanna M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Kleine-Levin syndrome is associated with birth difficulties and genetic variants in the TRANK1 gene loci. Proc Natl Acad Sci U S A 2021; 118:2005753118. [PMID: 33737391 DOI: 10.1073/pnas.2005753118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kleine-Levin syndrome (KLS) is a rare disorder characterized by severe episodic hypersomnia, with cognitive impairment accompanied by apathy or disinhibition. Pathophysiology is unknown, although imaging studies indicate decreased activity in hypothalamic/thalamic areas during episodes. Familial occurrence is increased, and risk is associated with reports of a difficult birth. We conducted a worldwide case-control genome-wide association study in 673 KLS cases collected over 14 y, and ethnically matched 15,341 control individuals. We found a strong genome-wide significant association (rs71947865, Odds Ratio [OR] = 1.48, P = 8.6 × 10-9) within the 3'region of TRANK1 gene locus, previously associated with bipolar disorder and schizophrenia. Strikingly, KLS cases with rs71947865 variant had significantly increased reports of a difficult birth. As perinatal outcomes have dramatically improved over the last 40 y, we further stratified our sample by birth years and found that recent cases had a significantly reduced rs71947865 association. While the rs71947865 association did not replicate in the entire follow-up sample of 171 KLS cases, rs71947865 was significantly associated with KLS in the subset follow-up sample of 59 KLS cases who reported birth difficulties (OR = 1.54, P = 0.01). Genetic liability of KLS as explained by polygenic risk scores was increased (pseudo R 2 = 0.15; P < 2.0 × 10-22 at P = 0.5 threshold) in the follow-up sample. Pathway analysis of genetic associations identified enrichment of circadian regulation pathway genes in KLS cases. Our results suggest links between KLS, circadian regulation, and bipolar disorder, and indicate that the TRANK1 polymorphisms in conjunction with reported birth difficulties may predispose to KLS.
Collapse
|
3
|
Kasyanov ED, Merkulova TV, Kibitov AO, Mazo GE. Genetics of Bipolar Spectrum Disorders: Focus on Family Studies Using Whole Exome Sequencing. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420070054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Gonzalez S, Villa E, Rodriguez M, Ramirez M, Zavala J, Armas R, Dassori A, Contreras J, Raventós H, Flores D, Jerez A, Ontiveros A, Nicolini H, Escamilla M. Fine-mapping scan of bipolar disorder susceptibility loci in Latino pedigrees. Am J Med Genet B Neuropsychiatr Genet 2019; 180:213-222. [PMID: 30779416 DOI: 10.1002/ajmg.b.32715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/27/2018] [Accepted: 01/28/2019] [Indexed: 11/11/2022]
Abstract
We previously identified bipolar disorder (BD) susceptibility loci on 8q24, 14q32, and 2q12-14 in a genome-wide nonparametric linkage screen in a Latino cohort. We now perform a fine mapping analysis using a dense map of additional SNPs to identify BD susceptibility genes within these regions. One thousand nine hundred and thirty-eight individuals with Latino ancestry (880 individuals with BD Type I or Schizoaffective, Bipolar Type) from 416 Latino pedigrees from the United States, Mexico, Costa Rica, and Guatemala were genotyped with 3,074 SNPs to provide dense coverage of the 8q24 (11.5 cM), 14q32 (7.5 cM), and 2q12-14 (6.5 cM) chromosomal loci. Single-marker association tests in the presence of linkage were performed using the LAMP software. The top linkage peak (rs7834818; LOD = 5.08, p = 3.30E - 5) and associated single marker (rs2280915, p = 2.70E - 12) were located within FBXO32 on 8q24. On chromosome 2, the top linkage peak (rs6750326; LOD = 5.06, p = 3.50E - 5) and associated single marker (rs11887088, p = 2.90E - 6) were located in intragenic regions near ACTR3 and DPP10. None of the additional markers in the region around chromosome 14q32 met significance levels for linkage or association. We identified six SNPs on 2q12-q14 and one SNP in FBXO32 on 8q24 that were significantly associated with BD in this Latino cohort.
Collapse
Affiliation(s)
- Suzanne Gonzalez
- Center of Emphasis in Neurosciences, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas.,Departments of Psychiatry and Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Erika Villa
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Marco Rodriguez
- Center of Emphasis in Neurosciences, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Mercedes Ramirez
- Center of Emphasis in Neurosciences, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas.,Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Juan Zavala
- Center of Emphasis in Neurosciences, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas.,Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Regina Armas
- Langley Porter Psychiatric Institute, University of California at San Francisco, San Francisco, California
| | - Albana Dassori
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Psychiatry, South Texas Veterans Health Care System, San Antonio, Texas
| | - Javier Contreras
- Centro de Investigación en Biología Celular y Molecular y Escuela de Biologia, Universidad de Costa Rica, San Jose, Costa Rica
| | - Henriette Raventós
- Centro de Investigación en Biología Celular y Molecular y Escuela de Biologia, Universidad de Costa Rica, San Jose, Costa Rica
| | - Deborah Flores
- Los Angeles Biomedical Research Center at Harbor, University of California Los Angeles Medical Center, Torrance, California
| | - Alvaro Jerez
- Centro Internacional de Trastornos Afectivos y de la Conducta Adictiva, Guatemala City, Guatemala
| | - Alfonso Ontiveros
- Departamento de Psiquiatria, Hospital Universitario UANL, Monterrey, Nuevo Leon, Mexico
| | - Humberto Nicolini
- Grupo de Estudios Médicos y Familiares Carracci S.C., México, Distrito Federal, Mexico.,Laboratorio de Enfermedades Psychiatricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, México, Distrito Federal, Mexico
| | - Michael Escamilla
- Center of Emphasis in Neurosciences, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas.,Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| |
Collapse
|
5
|
Chen X, Long F, Cai B, Chen X, Chen G. A novel relationship for schizophrenia, bipolar and major depressive disorder Part 7: A hint from chromosome 7 high density association screen. Behav Brain Res 2015; 293:241-51. [PMID: 26192912 DOI: 10.1016/j.bbr.2015.06.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 11/18/2022]
Abstract
Convergent evidence from genetics, symptology and psychopharmacology imply that there are intrinsic connection between schizophrenia (SCZ), bipolar disorder (BPD) and major depressive disorder (MDD). Also, any two or even three of these disorders could co-existe in some families. A total of 47,144 single nucleotide polymorphism (SNPs) on chromosome 7 were genotyped by Affymetrix Genome-Wide Human SNP array 6.0 on 119 SCZ, 253 BPD (type-I), 177 MDD, and 1000 controls. Associated SNP loci were comprehensively revealed and outstanding susceptibility genes were identified including CNTNAP2. a neurexin family gene. Unexpectedly, flanking genes for up to 94.74 % of of the associated SNPs were replicated (P≤9.9 E-8) in an enlarged cohort of 986 SCZ patients. Considering other convergent evidence, our results further implicate that BPD and MDD are subtypes of SCZ.
Collapse
Affiliation(s)
- Xing Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, People's Republic of China
| | - Feng Long
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, People's Republic of China
| | - Bin Cai
- CapitalBio corporation, 18 Life Science Parkway, Changping District, Beijing 102206, People's Republic of China
| | - Xiaohong Chen
- CapitalBio corporation, 18 Life Science Parkway, Changping District, Beijing 102206, People's Republic of China
| | - Gang Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Secolin R, Banzato CEM, Mella LFB, Santos ML, Dalgalarrondo P, Lopes-Cendes I. Refinement of chromosome 3p22.3 region and identification of a susceptibility gene for bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:163-8. [PMID: 23280964 DOI: 10.1002/ajmg.b.32127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/07/2012] [Indexed: 12/24/2022]
Abstract
Genome-wide association studies and meta-analysis, as well as our own previous family-based association results, have pointed to chromosome (ch) 3p22.3 and 3p21.1 as candidate regions to contain a susceptibility gene for bipolar affective disorder (BPAD). In the present study, we further refined the region of interest on ch 3p22.3. We genotyped 94 SNPs within the candidate region in 74 families and performed family-based association analysis using a transmission disequilibrium test. One single SNP (rs166508) was associated with the BPAD phenotype (P = 0.0187). This SNP is located within intron 15 of the integrin alpha 9 (ITGA9) gene. ITGA9 encodes the α9 subunit of the α9β1 integrin, a membrane glycoprotein receptor for neurotrophins, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Quantification of ITGA9 transcripts in the peripheral blood of patients with BPAD and controls showed an upregulation of ITGA9 (Kruskal-Wallis P = 0.0339) in patients with the disease-associated genotype (rs166508*A/A), compared to those with rs166508*G/G and rs166508*G/A genotypes. Sequencing of the ITGA9 cDNA revealed a sequence variant (r.1689_1839del) in rs166508*A carriers, which leads to loss of the entire exon 16. In silico analysis revealed that the deleted region contains three putative microRNA binding sites, which may be involved in the negative regulation of ITGA9. In conclusion, our results confirm previous evidence pointing to a candidate region for BPAD on ch 3p.22.3. In addition, we suggest a molecular substrate that could explain the increase of ITGA9 mRNA levels in probands with BPAD, proposing a new mechanism that could be involved in the genetic susceptibility to the disease.
Collapse
Affiliation(s)
- Rodrigo Secolin
- Department of Medical Genetics, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Chen DT, Jiang X, Akula N, Shugart YY, Wendland JR, Steele CJM, Kassem L, Park JH, Chatterjee N, Jamain S, Cheng A, Leboyer M, Muglia P, Schulze TG, Cichon S, Nöthen MM, Rietschel M, McMahon FJ, Farmer A, McGuffin P, Craig I, Lewis C, Hosang G, Cohen-Woods S, Vincent JB, Kennedy JL, Strauss J. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry 2013; 18:195-205. [PMID: 22182935 DOI: 10.1038/mp.2011.157] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Meta-analyses of bipolar disorder (BD) genome-wide association studies (GWAS) have identified several genome-wide significant signals in European-ancestry samples, but so far account for little of the inherited risk. We performed a meta-analysis of ∼750,000 high-quality genetic markers on a combined sample of ∼14,000 subjects of European and Asian-ancestry (phase I). The most significant findings were further tested in an extended sample of ∼17,700 cases and controls (phase II). The results suggest novel association findings near the genes TRANK1 (LBA1), LMAN2L and PTGFR. In phase I, the most significant single nucleotide polymorphism (SNP), rs9834970 near TRANK1, was significant at the P=2.4 × 10(-11) level, with no heterogeneity. Supportive evidence for prior association findings near ANK3 and a locus on chromosome 3p21.1 was also observed. The phase II results were similar, although the heterogeneity test became significant for several SNPs. On the basis of these results and other established risk loci, we used the method developed by Park et al. to estimate the number, and the effect size distribution, of BD risk loci that could still be found by GWAS methods. We estimate that >63,000 case-control samples would be needed to identify the ∼105 BD risk loci discoverable by GWAS, and that these will together explain <6% of the inherited risk. These results support previous GWAS findings and identify three new candidate genes for BD. Further studies are needed to replicate these findings and may potentially lead to identification of functional variants. Sample size will remain a limiting factor in the discovery of common alleles associated with BD.
Collapse
Affiliation(s)
- D T Chen
- Human Genetics Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Le Merrer J, Befort K, Gardon O, Filliol D, Darcq E, Dembele D, Becker JAJ, Kieffer BL. Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network. Addict Biol 2012; 17:1-12. [PMID: 21955143 DOI: 10.1111/j.1369-1600.2011.00365.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Addiction is a chronic brain disorder. Prolonged abstinence from drugs of abuse involves dysphoria, high stress responsiveness and craving. The neurobiology of drug abstinence, however, is poorly understood. We previously identified a unique set of hundred mu-opioid receptor-dependent genes in the extended amygdala, a key site for hedonic and stress processing in the brain. Here we examined these candidate genes either immediately after chronic morphine, nicotine, Δ9-tetrahydrocannabinol or alcohol, or following 4 weeks of abstinence. Regulation patterns strongly differed among chronic groups. In contrast, gene regulations strikingly converged in the abstinent groups and revealed unforeseen common adaptations within a novel huntingtin-centered molecular network previously unreported in addiction research. This study demonstrates that, regardless the drug, a specific set of transcriptional regulations develops in the abstinent brain, which possibly contributes to the negative affect characterizing protracted abstinence. This transcriptional signature may represent a hallmark of drug abstinence and a unitary adaptive molecular mechanism in substance abuse disorders.
Collapse
Affiliation(s)
- Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM and CNRS, Illkirch-Graffenstaden, France
| | | | | | | | | | | | | | | |
Collapse
|