1
|
Thermal Response of Circulating Estrogens in an Emydid Turtle, Chrysemys picta, and the Challenges of Climate Change. DIVERSITY 2023. [DOI: 10.3390/d15030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Maternal hormones such as estrogens deposited into the yolk of turtle eggs follow circulating levels in adult females, and they may alter the sexual fate of developing embryos in species with temperature-dependent sex determination (TSD). In temperate regions, this deposition occurs during the spring when estrogens increase in adult females as ambient temperatures rise, drop after the first clutch, and peak again (albeit less) in the fall. Global warming alters turtle nesting phenology (inducing earlier nesting), but whether it affects circulating hormones remains unknown, hindering our understanding of all potential challenges posed by climate change and the adaptive potential (or lack thereof) of turtle populations. Here, we addressed this question in painted turtles (Chrysemys picta) by quantifying estradiol, estrone, and testosterone via mass spectrometry in the blood of wild adult females exposed to 26 °C and 21 °C in captivity between mid-August and mid-October (15 females per treatment). Results from ANOVA and pairwise comparisons revealed no differences between treatments in circulating hormones measured at days 0, 2, 7, 14, 28, and 56 of the experiment. Further research is warranted (during the spring, using additional temperatures) before concluding that females are truly buffered against the indirect risk of climate change via maternal hormone allocation.
Collapse
|
2
|
Nemesházi E, Bókony V. Asymmetrical sex reversal: Does the type of heterogamety predict propensity for sex reversal? Bioessays 2022; 44:e2200039. [PMID: 35543235 DOI: 10.1002/bies.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Sex reversal, a mismatch between phenotypic and genetic sex, can be induced by chemical and thermal insults in ectotherms. Therefore, climate change and environmental pollution may increase sex-reversal frequency in wild populations, with wide-ranging implications for sex ratios, population dynamics, and the evolution of sex determination. We propose that reconsidering the half-century old theory "Witschi's rule" should facilitate understanding the differences between species in sex-reversal propensity and thereby predicting their vulnerability to anthropogenic environmental change. The idea is that sex reversal should be asymmetrical: more likely to occur in the homogametic sex, assuming that sex-reversed heterogametic individuals would produce new genotypes with reduced fitness. A review of the existing evidence shows that while sex reversal can be induced in both homogametic and heterogametic individuals, the latter seem to require stronger stimuli in several cases. We provide guidelines for future studies on sex reversal to facilitate data comparability and reliability.
Collapse
Affiliation(s)
- Edina Nemesházi
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Veronika Bókony
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary.,Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
3
|
Warner DA, Mitchell TS, Bodensteiner BL, Janzen FJ. Sex and Incubation Temperature Independently Affect Embryonic Development and Offspring Size in a Turtle with Temperature-Dependent Sex Determination. Physiol Biochem Zool 2020; 93:62-74. [DOI: 10.1086/706786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Warner DA, Mitchell TS, Bodensteiner BL, Janzen FJ. The effect of hormone manipulations on sex ratios varies with environmental conditions in a turtle with temperature-dependent sex determination. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 327:172-181. [PMID: 29356364 DOI: 10.1002/jez.2085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/27/2017] [Indexed: 02/03/2023]
Abstract
Exogenous application of steroids and related substances to eggs affects offspring sex ratios in species with temperature-dependent sex determination (TSD). Laboratory studies demonstrate that this effect is most pronounced near the constant temperature that produces 1:1 sex ratios (i.e., pivotal temperature). However, the impact of such chemicals on sex determination under natural nest temperatures (which fluctuate daily) is unknown, but could provide insight into the relative contributions of these two factors under natural conditions. We applied estradiol (E2) and an aromatase inhibitor (fadrozole) to eggs of the painted turtle (Chrysemys picta), a species with TSD, and allowed eggs to incubate under natural conditions during two field seasons (in 2012 and 2013). Exogenous E2, fadrozole, and nest temperature contributed to variation in offspring sex ratio, but the relative contributions of these factors differed between years. In 2012, a much hotter than average season, sex ratios were heavily female biased regardless of nest temperature and chemical treatment. However, in 2013, a milder season, both nest temperature and chemical treatment were important. Moreover, a significant interaction between nest temperature and treatment demonstrated that exogenous estradiol induces female development regardless of nest temperature, but aromatase inhibition widens the range of temperatures that produces both sexes.
Collapse
Affiliation(s)
- Daniel A Warner
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa.,Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Timothy S Mitchell
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa.,Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Brooke L Bodensteiner
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| | - Fredric J Janzen
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| |
Collapse
|
5
|
Carter AW, Bowden RM, Paitz RT. Seasonal shifts in sex ratios are mediated by maternal effects and fluctuating incubation temperatures. Funct Ecol 2017; 31:876-884. [PMID: 28584392 PMCID: PMC5456293 DOI: 10.1111/1365-2435.12801] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sex-specific maternal effects can be adaptive sources of phenotypic plasticity. Reptiles with temperature-dependent sex determination (TSD) are a powerful system to investigate such maternal effects because offspring phenotype, including sex, can be sensitive to maternal influences such as oestrogens and incubation temperatures.In red-eared slider turtles (Trachemys scripta), concentrations of maternally derived oestrogens and incubation temperatures increase across the nesting season; we wanted to determine if sex ratios shift in a seasonally concordant manner, creating the potential for sex-specific maternal effects, and to define the sex ratio reaction norms under fluctuating temperatures across the nesting season.Eggs from early and late season clutches were incubated under a range of thermally fluctuating temperatures, maternally derived oestradiol concentrations were quantified via radioimmunoassay, and hatchling sex was identified. We found that late season eggs had higher maternal oestrogen concentrations and were more likely to produce female hatchlings. The sex ratio reaction norm curves systematically varied with season, such that with even a slight increase in temperature (0.5°C), late season eggs produced up to 49% more females than early season eggs.We found a seasonal shift in sex ratios which creates the potential for sex-specific phenotypic matches across the nesting season driven by maternal effects. We also describe, for the first time, systematic variation in the sex ratio reaction norm curve within a single population in a species with TSD.
Collapse
Affiliation(s)
- Amanda W. Carter
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Rachel M. Bowden
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Ryan T. Paitz
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| |
Collapse
|
6
|
Manshack LK, Conard CM, Bryan SJ, Deem SL, Holliday DK, Bivens NJ, Givan SA, Rosenfeld CS. Transcriptomic alterations in the brain of painted turtles ( Chrysemys picta) developmentally exposed to bisphenol A or ethinyl estradiol. Physiol Genomics 2017; 49:201-215. [PMID: 28159858 DOI: 10.1152/physiolgenomics.00103.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 12/25/2022] Open
Abstract
Developmental exposure of turtles and other reptiles to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA) and ethinyl estradiol (EE), can stimulate partial to full gonadal sex-reversal in males. We have also recently shown that in ovo exposure to either EDC can induce similar sex-dependent behavioral changes typified by improved spatial learning and memory or possibly feminized brain responses. Observed behavioral changes are presumed to be due to BPA- and EE-induced brain transcriptomic alterations during development. To test this hypothesis, we treated painted turtles (Chrysemys picta) at developmental stage 17, incubated at 26°C (male-inducing temperature), with 1) BPA (1 ng/µl), 2) EE (4 ng/µl), or 3) vehicle ethanol (control group). Ten months after hatching and completion of the behavioral tests, juvenile turtles were euthanized, brains were collected and frozen in liquid nitrogen, and RNA was isolated for RNA-Seq analysis. Turtles exposed to BPA clustered separately from EE-exposed and control individuals. More transcripts and gene pathways were altered in BPA vs. EE individuals. The one transcript upregulated in both BPA- and EE-exposed individuals was the mitochondrial-associated gene, ND5, which is involved in oxidative phosphorylation. Early exposure of turtles to BPA increases transcripts linked with ribosomal and mitochondrial functions, especially bioenergetics, which has been previously linked with improved cognitive performance. In summary, even though both BPA and EE resulted in similar behavioral alterations, they diverge in the pattern of neural transcript alterations with early BPA significantly upregulating several genes involved in oxidative phosphorylation, mitochondrial activity, and ribosomal function, which could enhance cognitive performance.
Collapse
Affiliation(s)
- Lindsey K Manshack
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Caroline M Conard
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Sara J Bryan
- Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri
| | - Sharon L Deem
- Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri.,Saint Louis Zoo Institute for Conservation Medicine, St. Louis, Missouri
| | - Dawn K Holliday
- Pathology and Anatomical Sciences, School of Medicine, University of Missouri, Columbia, Missouri.,Department of Biology and Environmental Sciences, Westminster College, Fulton, Missouri
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, Missouri
| | - Scott A Givan
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,Informatics Research Core Facility, University of Missouri, Columbia, Missouri.,Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri; .,Biomedical Sciences, University of Missouri, Columbia, Missouri.,Genetics Area Program, University of Missouri, Columbia, Missouri; and.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri
| |
Collapse
|
7
|
Manshack LK, Conard CM, Johnson SA, Alex JM, Bryan SJ, Deem SL, Holliday DK, Ellersieck MR, Rosenfeld CS. Effects of developmental exposure to bisphenol A and ethinyl estradiol on spatial navigational learning and memory in painted turtles (Chrysemys picta). Horm Behav 2016; 85:48-55. [PMID: 27476434 DOI: 10.1016/j.yhbeh.2016.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/13/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022]
Abstract
Developmental exposure of turtles and other reptiles to endocrine disrupting chemicals (EDCs), including bisphenol A (BPA) and ethinyl estradiol (EE2, estrogen present in birth control pills), can induce partial to full gonadal sex-reversal in males. No prior studies have considered whether in ovo exposure to EDCs disrupts normal brain sexual differentiation. Yet, rodent model studies indicate early exposure to these chemicals disturbs sexually selected behavioral traits, including spatial navigational learning and memory. Thus, we sought to determine whether developmental exposure of painted turtles (Chrysemys picta) to BPA and EE2 results in sex-dependent behavioral changes. At developmental stage 17, turtles incubated at 26⁰C (male-inducing temperature) were treated with 1) BPA High (100μg /mL), 2) BPA Low (0.01μg/mL), 3) EE2 (0.2μg/mL), or 4) vehicle or no vehicle control groups. Five months after hatching, turtles were tested with a spatial navigational test that included four food containers, only one of which was baited with food. Each turtle was randomly assigned one container that did not change over the trial period. Each individual was tested for 14 consecutive days. Results show developmental exposure to BPA High and EE2 improved spatial navigational learning and memory, as evidenced by increased number of times spent in the correct target zone and greater likelihood of solving the maze compared to control turtles. This study is the first to show that in addition to overriding temperature sex determination (TSD) of the male gonad, these EDCs may induce sex-dependent behavioral changes in turtles.
Collapse
Affiliation(s)
- Lindsey K Manshack
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caroline M Conard
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Sarah A Johnson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jorden M Alex
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Sara J Bryan
- Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
| | - Sharon L Deem
- Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA; Saint Louis Zoo Institute for Conservation Medicine, St. Louis, MO 63110, USA
| | - Dawn K Holliday
- Pathology and Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biology and Environmental Sciences, Westminster College, Fulton, MO 65251, USA
| | - Mark R Ellersieck
- Agriculture Experimental Station-Statistics, University of Missouri, Columbia, MO 65211, USA
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program, University of Missouri, Columbia, MO 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
8
|
Miura I, Ohtani H, Ogata M, Ezaz T. Evolutionary Changes in Sensitivity to Hormonally Induced Gonadal Sex Reversal in a Frog Species. Sex Dev 2016; 10:79-90. [DOI: 10.1159/000445848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 11/19/2022] Open
|
9
|
Warner DA, Addis E, Du WG, Wibbels T, Janzen FJ. Exogenous application of estradiol to eggs unexpectedly induces male development in two turtle species with temperature-dependent sex determination. Gen Comp Endocrinol 2014; 206:16-23. [PMID: 24954686 DOI: 10.1016/j.ygcen.2014.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/28/2014] [Accepted: 06/08/2014] [Indexed: 11/23/2022]
Abstract
Steroid hormones affect sex determination in a variety of vertebrates. The feminizing effects of exposure to estradiol and the masculinizing effects of aromatase inhibition during development are well established in a broad range of vertebrate taxa, but paradoxical findings are occasionally reported. Four independent experiments were conducted on two turtle species with temperature-dependent sex determination (Chrysemys picta and Chelydra serpentina) to quantify the effects of egg incubation temperature, estradiol, and an aromatase inhibitor on offspring sex ratios. As expected, the warmer incubation temperatures induced female development and the cooler temperatures produced primarily males. However, application of an aromatase inhibitor had no effect on offspring sex ratios, and exogenous applications of estradiol to eggs produced male offspring across all incubation temperatures. These unexpected results were remarkably consistent across all four experiments and both study species. Elevated concentrations of estradiol could interact with androgen receptors or inhibit aromatase expression, which might result in relatively high testosterone concentrations that lead to testis development. These findings add to a short list of studies that report paradoxical effects of steroid hormones, which addresses the need for a more comprehensive understanding of the role of sex steroids in sexual development.
Collapse
Affiliation(s)
- Daniel A Warner
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50014, USA; Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Elizabeth Addis
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50014, USA; Department of Biology, Gonzaga University, Spokane, WA 99258, USA.
| | - Wei-guo Du
- Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Thane Wibbels
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Fredric J Janzen
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50014, USA.
| |
Collapse
|
10
|
Abstract
The ability to adjust sex ratios at the individual level exists among all vertebrate groups studied to date. In many cases, there is evidence for facultative adjustment of sex ratios in response to environmental and/or social cues. Because environmental and social information must be first transduced into a physiological signal to influence sex ratios, hormones likely play a role in the adjustment of sex ratio in vertebrates, because the endocrine system acts as a prime communicator that directs physiological activities in response to changing external conditions. This symposium was developed to bring together investigators whose work on adjustment of sex ratio represents a variety of vertebrate groups in an effort to draw comparisons between species in which the sex-determination process is well-established and those in which more work is needed to understand how adjustments in sex ratio are occurring. This review summarizes potential hormone targets that may underlie the mechanisms of adjustment of sex ratio in humans, non-human mammals, birds, reptiles, and fishes.
Collapse
Affiliation(s)
- Kristen J Navara
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Uller T, Helanterä H. From the origin of sex-determining factors to the evolution of sex-determining systems. QUARTERLY REVIEW OF BIOLOGY 2011; 86:163-80. [PMID: 21954700 DOI: 10.1086/661118] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sex determination is typically classified as either genotypic or environmental. However, this dichotomy obscures the developmental origin and evolutionary modification of determinants of sex, and therefore hinders an understanding of the processes that generates diversity in sex-determining systems. Recent research on reptiles and fish emphasizes that sex determination is a multifactorial regulatory process that is best understood as a threshold dichotomy rather than as the result of genetically inherited triggers of development. Here we critically assess the relationship between the developmental origin of sex-determining factors and evolutionary transitions in sex-determining systems. Our perspective emphasizes the importance of both genetic and nongenetic causes in evolution of sex determination and may help to generate predictions with respect to the evolutionary patterns of sex-determining systems and the underlying diversity of developmental and genetic regulatory networks.
Collapse
Affiliation(s)
- Tobias Uller
- Edward Grey Institute, Department of Zoology, University of Oxford Oxford OX1 3PS United Kingdom.
| | | |
Collapse
|
12
|
STELKENS RIKEB, WEDEKIND CLAUS. Environmental sex reversal, Trojan sex genes, and sex ratio adjustment: conditions and population consequences. Mol Ecol 2010; 19:627-46. [DOI: 10.1111/j.1365-294x.2010.04526.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
|
14
|
Lance VA. Is regulation of aromatase expression in reptiles the key to understanding temperature-dependent sex determination? ACTA ACUST UNITED AC 2009; 311:314-22. [DOI: 10.1002/jez.465] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Ramsey M, Crews D. Steroid signaling and temperature-dependent sex determination-Reviewing the evidence for early action of estrogen during ovarian determination in turtles. Semin Cell Dev Biol 2009; 20:283-92. [PMID: 18992835 PMCID: PMC2695493 DOI: 10.1016/j.semcdb.2008.10.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 10/13/2008] [Indexed: 01/21/2023]
Abstract
The developmental processes underlying gonadal differentiation are conserved across vertebrates, but the triggers initiating these trajectories are extremely variable. The red-eared slider turtle (Trachemys scripta elegans) exhibits temperature-dependent sex determination (TSD), a system where incubation temperature during a temperature-sensitive period of development determines offspring sex. However, gonadal sex is sensitive to both temperature and hormones during this period-particularly estrogen. We present a model for temperature-based differences in aromatase expression as a critical step in ovarian determination. Localized estrogen production facilitates ovarian development while inhibiting male-specific gene expression. At male-producing temperatures aromatase is not upregulated, thereby allowing testis development.
Collapse
Affiliation(s)
- Mary Ramsey
- Section of Integrative Biology, University of Texas, Austin, Texas, 78712
| | - David Crews
- Section of Integrative Biology, University of Texas, Austin, Texas, 78712
| |
Collapse
|
16
|
Paitz RT, Bowden RM. Rapid decline in the concentrations of three yolk steroids during development: is it embryonic regulation? Gen Comp Endocrinol 2009; 161:246-51. [PMID: 19523390 DOI: 10.1016/j.ygcen.2009.01.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 01/11/2009] [Accepted: 01/20/2009] [Indexed: 11/26/2022]
Abstract
Maternally derived yolk steroids have been found to elicit both short-term and long-term effects on offspring phenotype. Paradoxically, their effects can be strikingly specific given the often substantial concentrations present at oviposition, and they do not appear to uniformly affect all steroid-sensitive processes. To better understand the dynamics of yolk steroids across embryonic development, we quantified levels of progesterone, testosterone, and estradiol at 5-day intervals throughout development in eggs of the red-eared slider turtle (Trachemys scripta) incubated at both male- and female-producing temperatures. We also assessed the effect of season on yolk steroid levels. For all steroids assayed, the concentrations in yolk declined significantly by day 15 of embryonic development despite large differences in initial concentrations among steroids. We found that estradiol was the only steroid whose initial concentration varied significantly with season, while only the decline in testosterone was affected by incubation temperature. These findings illustrate the complex nature of yolk steroid dynamics and suggest that maternal steroids may be rapidly degraded or subject to embryonic processing, emphasizing the need for studies aimed at understanding the mechanisms through which yolk steroids may elicit their effects.
Collapse
Affiliation(s)
- Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA.
| | | |
Collapse
|
17
|
WARNER DANIELA, LOVERN MATTHEWB, SHINE RICHARD. Maternal influences on offspring phenotypes and sex ratios in a multi-clutching lizard with environmental sex determination. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2008.01058.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
The adaptive significance of temperature-dependent sex determination in a reptile. Nature 2008; 451:566-8. [PMID: 18204437 DOI: 10.1038/nature06519] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 11/26/2007] [Indexed: 11/09/2022]
Abstract
Understanding the mechanisms that determine an individual's sex remains a primary challenge for evolutionary biology. Chromosome-based systems (genotypic sex determination) that generate roughly equal numbers of sons and daughters accord with theory, but the adaptive significance of environmental sex determination (that is, when embryonic environmental conditions determine offspring sex, ESD) is a major unsolved problem. Theoretical models predict that selection should favour ESD over genotypic sex determination when the developmental environment differentially influences male versus female fitness (that is, the Charnov-Bull model), but empirical evidence for this hypothesis remains elusive in amniote vertebrates--the clade in which ESD is most prevalent. Here we provide the first substantial empirical support for this model by showing that incubation temperatures influence reproductive success of males differently than that of females in a short-lived lizard (Amphibolurus muricatus, Agamidae) with temperature-dependent sex determination. We incubated eggs at a variety of temperatures, and de-confounded sex and incubation temperature by using hormonal manipulations to embryos. We then raised lizards in field enclosures and quantified their lifetime reproductive success. Incubation temperature affected reproductive success differently in males versus females in exactly the way predicted by theory: the fitness of each sex was maximized by the incubation temperature that produces that sex. Our results provide unequivocal empirical support for the Charnov-Bull model for the adaptive significance of temperature-dependent sex determination in amniote vertebrates.
Collapse
|
19
|
Radder RS, Shine R. Are the phenotypic traits of hatchling lizards affected by maternal allocation of steroid hormones to the egg? Gen Comp Endocrinol 2007; 154:111-9. [PMID: 17632106 DOI: 10.1016/j.ygcen.2007.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 05/14/2007] [Accepted: 05/26/2007] [Indexed: 10/23/2022]
Abstract
In lizards as in many other kinds of animals, strong maternal effects on the phenotypic traits of hatchlings are frequently reported. One plausible non-genetic mechanism that might produce such differences among clutches involves maternal allocation of steroid hormones. Lizard eggs often display considerable inter-clutch variation in the quantities of maternally allocated steroids, and exogenous application of such steroids has been reported to influence the phenotypic traits (especially, sex) of hatchlings. We examined correlations between naturally occurring yolk steroid levels and offspring traits in the scincid lizard Bassiana duperreyi, and also conducted experimental trials (exogenous application of testosterone or 17beta-oestradiol to eggs) to test for causal effects of hormones. Although exogenous hormones readily reversed sex of the hatchling lizards, no other phenotypic traits of the hatchlings (morphology, locomotor performance) were significantly correlated with naturally occurring levels of testosterone, dihydrotestosterone or estrogen, nor were these phenotypic traits significantly affected by exogenous application of hormones. Hence, our results do not support the hypothesis that reproducing female lizards manipulate the phenotypic traits of their offspring by differential allocation of steroid hormones.
Collapse
Affiliation(s)
- Rajkumar S Radder
- School of Biological Sciences A08, The University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
20
|
Maternally derived egg yolk steroid hormones and sex determination: Review of a paradox in reptiles. J Biosci 2007; 32:1213-20. [DOI: 10.1007/s12038-007-0123-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
RADDER RAJKUMARS, SHINE RICHARD. Sex-based hatching asynchrony in an oviparous lizard (Bassiana duperreyi, Scincidae). AUSTRAL ECOL 2007. [DOI: 10.1111/j.1442-9993.2007.01722.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Radder R, Ali S, Shine R. Offspring Sex Is Not Related to Maternal Allocation of Yolk Steroids in the Lizard Bassiana duperreyi (Scincidae). Physiol Biochem Zool 2007; 80:220-7. [PMID: 17252518 DOI: 10.1086/510639] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2006] [Indexed: 11/03/2022]
Abstract
The eggs of birds and reptiles contain detectable levels of several steroid hormones, and experimental application of such steroids can reverse genetically determined sex of the offspring. However, any causal influence of maternally derived yolk steroids on sex determination in birds and reptiles remains controversial. We measured yolk hormones (dihydrotestosterone, testosterone, and 17 beta-estradiol) in newly laid eggs of the montane scincid lizard Bassiana duperreyi. This species is well suited to such an analysis because (1) offspring sex is influenced by incubation temperatures and egg size as well as by sex chromosomes, suggesting that yolk hormones might somehow be involved in the complex pathways of sex determination, and (2) experimental application of either estradiol or fadrozole to such eggs strongly influences offspring sex. We obtained yolk by biopsy, before incubating the eggs at a temperature that produces a 50:50 sex ratio. Yolk steroid levels varied over a threefold range between eggs from different clutches, but there were no significant differences in yolk steroids, or in relative composition of steroids, between eggs destined to become male versus female. Further, yolk steroid concentrations were not significantly related to egg size. Thus, yolk steroid hormones do not appear to play a critical role in sex determination for B. duperreyi.
Collapse
Affiliation(s)
- Rajkumar Radder
- School of Biological Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|