1
|
Holcomb KM, Biggerstaff BJ, Johansson MA, Mead PS, Kugeler KJ, Eisen RJ. Revisiting the Relationship between Weather and Interannual Variation in Human Plague Cases in the Southwestern United States. Am J Trop Med Hyg 2025; 112:840-844. [PMID: 39808829 PMCID: PMC11964823 DOI: 10.4269/ajtmh.24-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/17/2024] [Indexed: 01/16/2025] Open
Abstract
Plague is a rare, potentially fatal flea-borne zoonosis endemic in the western United States. A previous model described interannual variation in human cases based on temperature and lagged precipitation. We recreated this model in northeastern Arizona (1960-1997) to evaluate its capacity to predict recent cases (1998-2022). In recreating the original model, we found that future instead of concurrent temperature had inadvertently been used for the presented fit. Prediction from our revised models with lagged precipitation and temporally plausible temperature relationships aligned with low observed cases in 1998-2022. Elevated precipitation associated with high cases in historical data (>6 inches combined precipitation over two previous springs) was only observed once in the last quarter century, so we could not assess if these conditions were reliably associated with elevated (four or more) human plague cases. Observed weather conditions were similar to those previously associated with low (fewer than or equal to two) case counts, suggesting "baseline" conditions in the last quarter century.
Collapse
Affiliation(s)
- Karen M. Holcomb
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Brad J. Biggerstaff
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Michael A. Johansson
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Paul S. Mead
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Kiersten J. Kugeler
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Rebecca J. Eisen
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
2
|
Bezerra MF, Fernandes DLRS, Rocha IV, Pitta JLLP, Freitas NDA, Oliveira ALS, Guimarães RJPS, Gomes ECS, de Andreazzi CS, Sobreira M, Rezende AM, Cordeiro-Estrela P, Almeida AMP. Ecologic, Geoclimatic, and Genomic Factors Modulating Plague Epidemics in Primary Natural Focus, Brazil. Emerg Infect Dis 2024; 30:1850-1864. [PMID: 39173663 PMCID: PMC11346973 DOI: 10.3201/eid3009.240468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Plague is a deadly zoonosis that still poses a threat in many regions of the world. We combined epidemiologic, host, and vector surveillance data collected during 1961-1980 from the Araripe Plateau focus in northeastern Brazil with ecologic, geoclimatic, and Yersinia pestis genomic information to elucidate how these factors interplay in plague activity. We identified well-delimited plague hotspots showing elevated plague risk in low-altitude areas near the foothills of the plateau's concave sectors. Those locations exhibited distinct precipitation and vegetation coverage patterns compared with the surrounding areas. We noted a seasonal effect on plague activity, and human cases linearly correlated with precipitation and rodent and flea Y. pestis positivity rates. Genomic characterization of Y. pestis strains revealed a foundational strain capable of evolving into distinct genetic variants, each linked to temporally and spatially constrained plague outbreaks. These data could identify risk areas and improve surveillance in other plague foci within the Caatinga biome.
Collapse
|
3
|
Rakotosamimanana S, Taglioni F, Ravaoarimanga M, Rajerison ME, Rakotomanana F. Socioenvironmental determinants as indicators of plague risk in the central highlands of Madagascar: Experience of Ambositra and Tsiroanomandidy districts. PLoS Negl Trop Dis 2023; 17:e0011538. [PMID: 37672517 PMCID: PMC10506711 DOI: 10.1371/journal.pntd.0011538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/18/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Human plague cases are reported annually in the central highland regions of Madagascar, where the disease is endemic. The socioenvironmental characteristics and lifestyles of the populations of the central highland localities could be linked to this endemicity. The aim of this study was to determine socioenvironmental determinants that may be associated with plague risk and explain this variation in epidemiological contexts. METHODS The current study was based on the distribution of plague cases between 2006 and 2015 that occurred in localities of districts positioned in the central highlands. Household surveys were performed from June to August 2017 using a questionnaire and direct observations on the socioenvironmental aspects of households in selected localities. Bivariate and multivariate analyses were performed to highlight the socioenvironmental parameters associated with plague risk in both districts. RESULTS A total of 503 households were surveyed, of which 54.9% (276/503) were in Ambositra and 45.1% (227/503) were in Tsiroanomandidy. Multivariate analyses showed that thatched roofs [adjusted odds ratio (AOR): 2.63; 95% confidence interval (95% CI): 1.78-3.88] and ground floor houses [AOR: 2.11; 95% CI: 1.3-3.45-] were significantly associated with the vulnerability of a household to plague risk (p value<0.05). CONCLUSIONS Plague risk in two districts of the Malagasy central highlands is associated with human socioenvironmental characteristics. Socioenvironmental characteristics are parameters expressing spatial heterogeneity through the difference in epidemiological expression of the plague in Ambositra and Tsiroanomandidy. These characteristics could be used as indicators of vulnerability to plague risk in plague-endemic areas.
Collapse
|
4
|
Cao B, Bai C, Wu K, La T, Su Y, Che L, Zhang M, Lu Y, Gao P, Yang J, Xue Y, Li G. Tracing the future of epidemics: Coincident niche distribution of host animals and disease incidence revealed climate-correlated risk shifts of main zoonotic diseases in China. GLOBAL CHANGE BIOLOGY 2023; 29:3723-3746. [PMID: 37026556 DOI: 10.1111/gcb.16708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/06/2023]
Abstract
Climate has critical roles in the origin, pathogenesis and transmission of infectious zoonotic diseases. However, large-scale epidemiologic trend and specific response pattern of zoonotic diseases under future climate scenarios are poorly understood. Here, we projected the distribution shifts of transmission risks of main zoonotic diseases under climate change in China. First, we shaped the global habitat distribution of main host animals for three representative zoonotic diseases (2, 6, and 12 hosts for dengue, hemorrhagic fever, and plague, respectively) with 253,049 occurrence records using maximum entropy (Maxent) modeling. Meanwhile, we predicted the risk distribution of the above three diseases with 197,098 disease incidence records from 2004 to 2017 in China using an integrated Maxent modeling approach. The comparative analysis showed that there exist highly coincident niche distributions between habitat distribution of hosts and risk distribution of diseases, indicating that the integrated Maxent modeling is accurate and effective for predicting the potential risk of zoonotic diseases. On this basis, we further projected the current and future transmission risks of 11 main zoonotic diseases under four representative concentration pathways (RCPs) (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in 2050 and 2070 in China using the above integrated Maxent modeling with 1,001,416 disease incidence records. We found that Central China, Southeast China, and South China are concentrated regions with high transmission risks for main zoonotic diseases. More specifically, zoonotic diseases had diverse shift patterns of transmission risks including increase, decrease, and unstable. Further correlation analysis indicated that these patterns of shifts were highly correlated with global warming and precipitation increase. Our results revealed how specific zoonotic diseases respond in a changing climate, thereby calling for effective administration and prevention strategies. Furthermore, these results will shed light on guiding future epidemiologic prediction of emerging infectious diseases under global climate change.
Collapse
Affiliation(s)
- Bo Cao
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Chengke Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ting La
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yiyang Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lingyu Che
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Meng Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yumeng Lu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Pufan Gao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jingjing Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ying Xue
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
5
|
Barrile GM, Augustine DJ, Porensky LM, Duchardt CJ, Shoemaker KT, Hartway CR, Derner JD, Hunter EA, Davidson AD. A big data-model integration approach for predicting epizootics and population recovery in a keystone species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2827. [PMID: 36846939 DOI: 10.1002/eap.2827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 06/02/2023]
Abstract
Infectious diseases pose a significant threat to global health and biodiversity. Yet, predicting the spatiotemporal dynamics of wildlife epizootics remains challenging. Disease outbreaks result from complex nonlinear interactions among a large collection of variables that rarely adhere to the assumptions of parametric regression modeling. We adopted a nonparametric machine learning approach to model wildlife epizootics and population recovery, using the disease system of colonial black-tailed prairie dogs (BTPD, Cynomys ludovicianus) and sylvatic plague as an example. We synthesized colony data between 2001 and 2020 from eight USDA Forest Service National Grasslands across the range of BTPDs in central North America. We then modeled extinctions due to plague and colony recovery of BTPDs in relation to complex interactions among climate, topoedaphic variables, colony characteristics, and disease history. Extinctions due to plague occurred more frequently when BTPD colonies were spatially clustered, in closer proximity to colonies decimated by plague during the previous year, following cooler than average temperatures the previous summer, and when wetter winter/springs were preceded by drier summers/falls. Rigorous cross-validations and spatial predictions indicated that our final models predicted plague outbreaks and colony recovery in BTPD with high accuracy (e.g., AUC generally >0.80). Thus, these spatially explicit models can reliably predict the spatial and temporal dynamics of wildlife epizootics and subsequent population recovery in a highly complex host-pathogen system. Our models can be used to support strategic management planning (e.g., plague mitigation) to optimize benefits of this keystone species to associated wildlife communities and ecosystem functioning. This optimization can reduce conflicts among different landowners and resource managers, as well as economic losses to the ranching industry. More broadly, our big data-model integration approach provides a general framework for spatially explicit forecasting of disease-induced population fluctuations for use in natural resource management decision-making.
Collapse
Affiliation(s)
- Gabriel M Barrile
- Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | | | - Courtney J Duchardt
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kevin T Shoemaker
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA
| | | | | | - Elizabeth A Hunter
- U.S. Geological Survey, Virginia Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA
| | - Ana D Davidson
- Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
6
|
Yang R, Atkinson S, Chen Z, Cui Y, Du Z, Han Y, Sebbane F, Slavin P, Song Y, Yan Y, Wu Y, Xu L, Zhang C, Zhang Y, Hinnebusch BJ, Stenseth NC, Motin VL. Yersinia pestis and Plague: some knowns and unknowns. ZOONOSES (BURLINGTON, MASS.) 2023; 3:5. [PMID: 37602146 PMCID: PMC10438918 DOI: 10.15212/zoonoses-2022-0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Since its first identification in 1894 during the third pandemic in Hong Kong, there has been significant progress of understanding the lifestyle of Yersinia pestis, the pathogen that is responsible for plague. Although we now have some understanding of the pathogen's physiology, genetics, genomics, evolution, gene regulation, pathogenesis and immunity, there are many unknown aspects of the pathogen and its disease development. Here, we focus on some of the knowns and unknowns relating to Y. pestis and plague. We notably focus on some key Y. pestis physiological and virulence traits that are important for its mammal-flea-mammal life cycle but also its emergence from the enteropathogen Yersinia pseudotuberculosis. Some aspects of the genetic diversity of Y. pestis, the distribution and ecology of plague as well as the medical countermeasures to protect our population are also provided. Lastly, we present some biosafety and biosecurity information related to Y. pestis and plague.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Steve Atkinson
- School of Life Sciences, Centre for Biomolecular Science, University of Nottingham, Nottingham, United Kingdom
| | - Ziqi Chen
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yujun Cui
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zongmin Du
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanping Han
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Philip Slavin
- Division of History and Politics, University of Stirling, Stirling FK9 4LJ, UK
| | - Yajun Song
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanfeng Yan
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yarong Wu
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Chutian Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yun Zhang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Vladimir L. Motin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
7
|
Ma J, Guo Y, Gao J, Tang H, Xu K, Liu Q, Xu L. Climate Change Drives the Transmission and Spread of Vector-Borne Diseases: An Ecological Perspective. BIOLOGY 2022; 11:1628. [PMID: 36358329 PMCID: PMC9687606 DOI: 10.3390/biology11111628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023]
Abstract
Climate change affects ecosystems and human health in multiple dimensions. With the acceleration of climate change, climate-sensitive vector-borne diseases (VBDs) pose an increasing threat to public health. This paper summaries 10 publications on the impacts of climate change on ecosystems and human health; then it synthesizes the other existing literature to more broadly explain how climate change drives the transmission and spread of VBDs through an ecological perspective. We highlight the multi-dimensional nature of climate change, its interaction with other factors, and the impact of the COVID-19 pandemic on transmission and spread of VBDs, specifically including: (1) the generally nonlinear relationship of local climate (temperature, precipitation and wind) and VBD transmission, with temperature especially exhibiting an n-shape relation; (2) the time-lagged effect of regional climate phenomena (the El Niño-Southern Oscillation and North Atlantic Oscillation) on VBD transmission; (3) the u-shaped effect of extreme climate (heat waves, cold waves, floods, and droughts) on VBD spread; (4) how interactions between non-climatic (land use and human mobility) and climatic factors increase VBD transmission and spread; and (5) that the impact of the COVID-19 pandemic on climate change is debatable, and its impact on VBDs remains uncertain. By exploring the influence of climate change and non-climatic factors on VBD transmission and spread, this paper provides scientific understanding and guidance for their effective prevention and control.
Collapse
Affiliation(s)
- Jian Ma
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Yongman Guo
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Jing Gao
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hanxing Tang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Keqiang Xu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Spatiotemporal Variations of Plague Risk in the Tibetan Plateau from 1954-2016. BIOLOGY 2022; 11:biology11020304. [PMID: 35205170 PMCID: PMC8869688 DOI: 10.3390/biology11020304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022]
Abstract
Plague persists in the plague natural foci today. Although previous studies have found climate drives plague dynamics, quantitative analysis on animal plague risk under climate change remains understudied. Here, we analyzed plague dynamics in the Tibetan Plateau (TP) which is a climate-sensitive area and one of the most severe animal plague areas in China to disentangle variations in marmot plague enzootic foci, diffusion patterns, and their possible links with climate and anthropogenic factors. Specifically, we developed a time-sharing ecological niche modelling framework to identify finer potential plague territories and their temporal epidemic trends. Models were conducted by assembling animal records and multi-source ecophysiological variables with actual ecological effects (both climatic predictors and landscape factors) and driven by matching plague strains to periods corresponding to meteorological datasets. The models identified abundant animal plague territories over the TP and suggested the spatial patterns varied spatiotemporal dimension across the years, undergoing repeated spreading and contractions. Plague risk increased in the 1980s and 2000s, with the risk area increasing by 17.7 and 55.5 thousand km2, respectively. The 1990s and 2010s were decades of decreased risk, with reductions of 71.9 and 39.5 thousand km2, respectively. Further factor analysis showed that intrinsic conditions (i.e., elevation, soil, and geochemical landscape) provided fundamental niches. In contrast, climatic conditions, especially precipitation, led to niche differentiation and resulted in varied spatial patterns. Additionally, while increased human interference may temporarily reduce plague risks, there is a strong possibility of recurrence. This study reshaped the plague distribution at multiple time scales in the TP and revealed multifactorial synergistic effects on the spreading and contraction of plague foci, confirming that TP plague is increasingly sensitive to climate change. These findings may facilitate groups to take measures to combat the plague threats and prevent potential future human plague from occurring.
Collapse
|
9
|
Carlson CJ, Bevins SN, Schmid BV. Plague risk in the western United States over seven decades of environmental change. GLOBAL CHANGE BIOLOGY 2022; 28:753-769. [PMID: 34796590 PMCID: PMC9299200 DOI: 10.1111/gcb.15966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/04/2021] [Indexed: 05/02/2023]
Abstract
After several pandemics over the last two millennia, the wildlife reservoirs of plague (Yersinia pestis) now persist around the world, including in the western United States. Routine surveillance in this region has generated comprehensive records of human cases and animal seroprevalence, creating a unique opportunity to test how plague reservoirs are responding to environmental change. Here, we test whether animal and human data suggest that plague reservoirs and spillover risk have shifted since 1950. To do so, we develop a new method for detecting the impact of climate change on infectious disease distributions, capable of disentangling long-term trends (signal) and interannual variation in both weather and sampling (noise). We find that plague foci are associated with high-elevation rodent communities, and soil biochemistry may play a key role in the geography of long-term persistence. In addition, we find that human cases are concentrated only in a small subset of endemic areas, and that spillover events are driven by higher rodent species richness (the amplification hypothesis) and climatic anomalies (the trophic cascade hypothesis). Using our detection model, we find that due to the changing climate, rodent communities at high elevations have become more conducive to the establishment of plague reservoirs-with suitability increasing up to 40% in some places-and that spillover risk to humans at mid-elevations has increased as well, although more gradually. These results highlight opportunities for deeper investigation of plague ecology, the value of integrative surveillance for infectious disease geography, and the need for further research into ongoing climate change impacts.
Collapse
Affiliation(s)
- Colin J. Carlson
- Center for Global Health Science and SecurityGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Sarah N. Bevins
- US Department of Agriculture Animal and Plant Health Inspection Service–Wildlife Services National Wildlife Research CenterFort CollinsColoradoUSA
| | - Boris V. Schmid
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
10
|
Rupasinghe R, Chomel BB, Martínez-López B. Climate change and zoonoses: A review of the current status, knowledge gaps, and future trends. Acta Trop 2022; 226:106225. [PMID: 34758355 DOI: 10.1016/j.actatropica.2021.106225] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022]
Abstract
Emerging infectious diseases (EIDs), especially those with zoonotic potential, are a growing threat to global health, economy, and safety. The influence of global warming and geoclimatic variations on zoonotic disease epidemiology is evident by alterations in the host, vector, and pathogen dynamics and their interactions. The objective of this article is to review the current literature on the observed impacts of climate change on zoonoses and discuss future trends. We evaluated several climate models to assess the projections of various zoonoses driven by the predicted climate variations. Many climate projections revealed potential geographical expansion and the severity of vector-borne, waterborne, foodborne, rodent-borne, and airborne zoonoses. However, there are still some knowledge gaps, and further research needs to be conducted to fully understand the magnitude and consequences of some of these changes. Certainly, by understanding the impact of climate change on zoonosis emergence and distribution, we could better plan for climate mitigation and climate adaptation strategies.
Collapse
Affiliation(s)
- Ruwini Rupasinghe
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, University of California, Davis, CA, USA.
| | - Bruno B Chomel
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, University of California, Davis, CA, USA.
| |
Collapse
|
11
|
Diaz JH. Regional Rodent-Borne Infectious Diseases in North America: What Wilderness Medicine Providers Need to Know. Wilderness Environ Med 2021; 32:365-376. [PMID: 34215513 DOI: 10.1016/j.wem.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 11/18/2022]
Abstract
Rodents can transmit infectious diseases directly to humans and other animals via bites and exposure to infectious salivary aerosols and excreta. Arthropods infected while blood-feeding on rodents can also transmit rodent-borne pathogens indirectly to humans and animals. Environmental events, such as wet winters, cooler summers, heavy rains, and flooding, have precipitated regional rodent-borne infectious disease outbreaks; these outbreaks are now increasing with climate change. The objectives of this review are to inform wilderness medicine providers about the environmental conditions that can precipitate rodent-borne infectious disease outbreaks; to describe the regional geographic distributions of rodent-borne infectious diseases in North America; and to recommend prophylactic treatments and effective prevention and control strategies for rodent-borne infectious diseases. To meet these objectives, Internet search engines were queried with keywords to identify scientific articles on outbreaks of the most common regional rodent-borne infectious diseases in North America. Wilderness medicine providers should maintain high levels of suspicion for regional rodent-borne diseases in patients who develop febrile illnesses after exposure to contaminated freshwater after heavy rains or floods and after swimming, rafting, or paddling in endemic areas. Public health education strategies should encourage limiting human contact with rodents; avoiding contact with or safely disposing of rodent excreta; avoiding contact with contaminated floodwaters, especially contact with open wounds; securely containing outdoor food stores; and modifying wilderness cabins and campsites to deter rodent colonization.
Collapse
Affiliation(s)
- James H Diaz
- LSU School of Public Health, Louisiana State University Health Sciences Center in New Orleans, New Orleans, Louisiana.
| |
Collapse
|
12
|
Yue RPH, Lee HF. The delayed effect of cooling reinforced the NAO-plague connection in pre-industrial Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143122. [PMID: 33129517 DOI: 10.1016/j.scitotenv.2020.143122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Previous studies on the connection between climate and plague were mostly conducted without considering the influence of large-scale atmospheric circulations and long-term historical observations. The current study seeks to reveal the sophisticated role of climatic control on plague by investigating the combined effect of North Atlantic Oscillation (NAO) and temperature on plague outbreaks in Europe from 1347 to 1760 CE. Moving correlation analysis is applied to explore the non-linear relationship between NAO and plague transmission over time. Also, we apply the cross-correlation function to identify the role of temperature in mediating the NAO-plague connection and the lead-lag relationship in between. Our statistical results show that the pathway from climate change to plague incidence is distinctive in its spatial, temporal, and non-linear patterns. The multi-decadal temperature change exerted a 15-22 years lagged impact on the NAO-plague correlation in different European regions. The NAO-plague correlation in Atlantic-Central Europe primarily remained positive, while the correlation in Mediterranean Europe switched between positive and negative alternately. The modulating effect of temperature over the NAO-plague correlation increases exponentially with the magnitude of the temperature anomaly, but the effect is negligible between 0.3 and -0.3 °C anomaly. Our findings show that a lagged influence from the temperature extremes dominantly controls the correlation between NAO and plague incidence. A forecast from our study suggests that large-scale plague outbreaks are unlikely to happen in Europe if NAO remains at its current positive phase during the earth's future warming.
Collapse
Affiliation(s)
- Ricci P H Yue
- Department of Public Policy, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong.
| | - Harry F Lee
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
13
|
Factors influencing the re-emergence of plague in Madagascar. Emerg Top Life Sci 2020; 4:411-421. [PMID: 33258957 PMCID: PMC7733672 DOI: 10.1042/etls20200334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022]
Abstract
Plague is an infectious disease found worldwide and has been responsible for pandemics throughout history. Yersinia pestis, the causative bacterium, survives in rodent hosts with flea vectors that also transmit it to humans. It has been endemic in Madagascar for a century but the 1990s saw major outbreaks and in 2006 the WHO described the plague as re-emerging in Madagascar and the world. This review highlights the variety of factors leading to plague re-emergence in Madagascar, including climate events, insecticide resistance, and host and human behaviour. It also addresses areas of concern for future epidemics and ways to mitigate these. Pinpointing and addressing current and future drivers of plague re-emergence in Madagascar will be essential to controlling future outbreaks both in Madagascar and worldwide.
Collapse
|
14
|
Tennant WSD, Tildesley MJ, Spencer SEF, Keeling MJ. Climate drivers of plague epidemiology in British India, 1898-1949. Proc Biol Sci 2020; 287:20200538. [PMID: 32517609 PMCID: PMC7341932 DOI: 10.1098/rspb.2020.0538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 01/14/2023] Open
Abstract
Plague, caused by Yersinia pestis infection, continues to threaten low- and middle-income countries throughout the world. The complex interactions between rodents and fleas with their respective environments challenge our understanding of human plague epidemiology. Historical long-term datasets of reported plague cases offer a unique opportunity to elucidate the effects of climate on plague outbreaks in detail. Here, we analyse monthly plague deaths and climate data from 25 provinces in British India from 1898 to 1949 to generate insights into the influence of temperature, rainfall and humidity on the occurrence, severity and timing of plague outbreaks. We find that moderate relative humidity levels of between 60% and 80% were strongly associated with outbreaks. Using wavelet analysis, we determine that the nationwide spread of plague was driven by changes in humidity, where, on average, a one-month delay in the onset of rising humidity translated into a one-month delay in the timing of plague outbreaks. This work can inform modern spatio-temporal predictive models for the disease and aid in the development of early-warning strategies for the deployment of prophylactic treatments and other control measures.
Collapse
Affiliation(s)
- Warren S. D. Tennant
- The Zeeman Institute: SBIDER, University of Warwick, Coventry CV4 7AL, UK
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Mike J. Tildesley
- The Zeeman Institute: SBIDER, University of Warwick, Coventry CV4 7AL, UK
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Simon E. F. Spencer
- The Zeeman Institute: SBIDER, University of Warwick, Coventry CV4 7AL, UK
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Matt J. Keeling
- The Zeeman Institute: SBIDER, University of Warwick, Coventry CV4 7AL, UK
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
15
|
El-Sayed A, Kamel M. Climatic changes and their role in emergence and re-emergence of diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22336-22352. [PMID: 32347486 PMCID: PMC7187803 DOI: 10.1007/s11356-020-08896-w] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/14/2020] [Indexed: 05/11/2023]
Abstract
Global warming and the associated climate changes are predictable. They are enhanced by burning of fossil fuels and the emission of huge amounts of CO2 gas which resulted in greenhouse effect. It is expected that the average global temperature will increase with 2-5 °C in the next decades. As a result, the earth will exhibit marked climatic changes characterized by extremer weather events in the coming decades, such as the increase in temperature, rainfall, summertime, droughts, more frequent and stronger tornadoes and hurricanes. Epidemiological disease cycle includes host, pathogen and in certain cases intermediate host/vector. A complex mixture of various environmental conditions (e.g. temperature and humidity) determines the suitable habitat/ecological niche for every vector host. The availability of suitable vectors is a precondition for the emergence of vector-borne pathogens. Climate changes and global warming will have catastrophic effects on human, animal and environmental ecosystems. Pathogens, especially neglected tropical disease agents, are expected to emerge and re-emerge in several countries including Europe and North America. The lives of millions of people especially in developing countries will be at risk in direct and indirect ways. In the present review, the role of climate changes in the spread of infectious agents and their vectors is discussed. Examples of the major emerging viral, bacterial and parasitic diseases are also summarized.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
16
|
Yue RPH, Lee HF. Drought-induced spatio-temporal synchrony of plague outbreak in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134138. [PMID: 31505345 DOI: 10.1016/j.scitotenv.2019.134138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Plague synchronously swept across separated regions in Europe throughout history. However, the spatio-temporal synchrony of plague and its driving mechanism have not been thoroughly investigated. In this study, we transformed the historical European plague database spanned 1347-1800 CE into country-level time-series that differentiated large-scale plague outbreak from counted data. We found that there are 74 years in which two or more countries in our study region (UK, France, Germany, Spain, and Italy) experienced large-scale plague outbreak in the same year. Our Multivariate Ripley's K-function results showed that the onset year and the cessation year of large-scale plague outbreak are synchronized at the 0-23-year and 0-20-year windows, respectively. The temporal association between such synchrony and climatic forcing was further investigated using the Superposed Epoch Analysis, and drought was found to be responsible for the synchrony. Integrating our results with a literature survey, we suggested that prior to the peak of plague, the occurrence of drought and the subsequent reintroduced rainfall dampened both the rodent community and human society and boosted the number of fleas that carried plague. Such a synthesis facilitated the outbreak of plague. At the same time, high temperature associated with such drought also confined the geographic diffusion of the plague. Hence, although continental mega-drought could initiate the synchrony of plague outbreak, the synchrony actually consisted of a number of localized plague outbreak events scattering across different regions in Europe. According to the projected rising trend of drought in terms of its magnitude, duration, and geographic extent, the risk of synchrony of rodent-borne diseases in Europe will be significantly elevated, especially in France, Italy, and Spain.
Collapse
Affiliation(s)
- Ricci P H Yue
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Harry F Lee
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
17
|
van Bavel BJP, Curtis DR, Hannaford MJ, Moatsos M, Roosen J, Soens T. Climate and society in long-term perspective: Opportunities and pitfalls in the use of historical datasets. WILEY INTERDISCIPLINARY REVIEWS. CLIMATE CHANGE 2019; 10:e611. [PMID: 31762795 PMCID: PMC6852122 DOI: 10.1002/wcc.611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Recent advances in paleoclimatology and the growing digital availability of large historical datasets on human activity have created new opportunities to investigate long-term interactions between climate and society. However, noncritical use of historical datasets can create pitfalls, resulting in misleading findings that may become entrenched as accepted knowledge. We demonstrate pitfalls in the content, use and interpretation of historical datasets in research into climate and society interaction through a systematic review of recent studies on the link between climate and (a) conflict incidence, (b) plague outbreaks and (c) agricultural productivity changes. We propose three sets of interventions to overcome these pitfalls, which involve a more critical and multidisciplinary collection and construction of historical datasets, increased specificity and transparency about uncertainty or biases, and replacing inductive with deductive approaches to causality. This will improve the validity and robustness of interpretations on the long-term relationship between climate and society. This article is categorized under: Climate, History, Society, Culture > Disciplinary Perspectives.
Collapse
Affiliation(s)
| | - Daniel R. Curtis
- Erasmus School of History, Culture and CommunicationErasmus University RotterdamRotterdamNetherlands
| | | | - Michail Moatsos
- Department of History and Art HistoryUtrecht UniversityUtrechtNetherlands
| | - Joris Roosen
- Department of History and Art HistoryUtrecht UniversityUtrechtNetherlands
| | - Tim Soens
- Department of HistoryUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
18
|
Xu L, Stige LC, Leirs H, Neerinckx S, Gage KL, Yang R, Liu Q, Bramanti B, Dean KR, Tang H, Sun Z, Stenseth NC, Zhang Z. Historical and genomic data reveal the influencing factors on global transmission velocity of plague during the Third Pandemic. Proc Natl Acad Sci U S A 2019; 116:11833-11838. [PMID: 31138696 PMCID: PMC6584904 DOI: 10.1073/pnas.1901366116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Quantitative knowledge about which natural and anthropogenic factors influence the global spread of plague remains sparse. We estimated the worldwide spreading velocity of plague during the Third Pandemic, using more than 200 years of extensive human plague case records and genomic data, and analyzed the association of spatiotemporal environmental factors with spreading velocity. Here, we show that two lineages, 2.MED and 1.ORI3, spread significantly faster than others, possibly reflecting differences among strains in transmission mechanisms and virulence. Plague spread fastest in regions with low population density and high proportion of pasture- or forestland, findings that should be taken into account for effective plague monitoring and control. Temperature exhibited a nonlinear, U-shaped association with spread speed, with a minimum around 20 °C, while precipitation showed a positive association. Our results suggest that global warming may accelerate plague spread in warm, tropical regions and that the projected increased precipitation in the Northern Hemisphere may increase plague spread in relevant regions.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, 100084 Beijing, China
| | - Leif C Stige
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Simon Neerinckx
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Kenneth L Gage
- Bacterial Diseases Branch, Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, CO 80523
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071 Beijing, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Katharine R Dean
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Hui Tang
- Department of Geosciences, University of Oslo, N-0316 Oslo, Norway
| | - Zhe Sun
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, 100084 Beijing, China
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, 100084 Beijing, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China;
| |
Collapse
|
19
|
Anyamba A, Chretien JP, Britch SC, Soebiyanto RP, Small JL, Jepsen R, Forshey BM, Sanchez JL, Smith RD, Harris R, Tucker CJ, Karesh WB, Linthicum KJ. Global Disease Outbreaks Associated with the 2015-2016 El Niño Event. Sci Rep 2019; 9:1930. [PMID: 30760757 PMCID: PMC6374399 DOI: 10.1038/s41598-018-38034-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
Interannual climate variability patterns associated with the El Niño-Southern Oscillation phenomenon result in climate and environmental anomaly conditions in specific regions worldwide that directly favor outbreaks and/or amplification of variety of diseases of public health concern including chikungunya, hantavirus, Rift Valley fever, cholera, plague, and Zika. We analyzed patterns of some disease outbreaks during the strong 2015-2016 El Niño event in relation to climate anomalies derived from satellite measurements. Disease outbreaks in multiple El Niño-connected regions worldwide (including Southeast Asia, Tanzania, western US, and Brazil) followed shifts in rainfall, temperature, and vegetation in which both drought and flooding occurred in excess (14-81% precipitation departures from normal). These shifts favored ecological conditions appropriate for pathogens and their vectors to emerge and propagate clusters of diseases activity in these regions. Our analysis indicates that intensity of disease activity in some ENSO-teleconnected regions were approximately 2.5-28% higher during years with El Niño events than those without. Plague in Colorado and New Mexico as well as cholera in Tanzania were significantly associated with above normal rainfall (p < 0.05); while dengue in Brazil and southeast Asia were significantly associated with above normal land surface temperature (p < 0.05). Routine and ongoing global satellite monitoring of key climate variable anomalies calibrated to specific regions could identify regions at risk for emergence and propagation of disease vectors. Such information can provide sufficient lead-time for outbreak prevention and potentially reduce the burden and spread of ecologically coupled diseases.
Collapse
Affiliation(s)
- Assaf Anyamba
- Universities Space Research Association, Columbia, Maryland, USA.
- NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, Maryland, USA.
| | - Jean-Paul Chretien
- Department of Defense, Armed Forces Health Surveillance Branch, Silver Spring, Maryland, USA
- National Center for Medical Intelligence, Fort Detrick, Maryland, USA
| | - Seth C Britch
- USDA-Agricultural Research Service Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, Florida, USA
| | - Radina P Soebiyanto
- Universities Space Research Association, Columbia, Maryland, USA
- NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, Maryland, USA
| | - Jennifer L Small
- NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, Maryland, USA
- Science Systems and Applications, Inc., Lanham, Maryland, USA
| | - Rikke Jepsen
- NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, Maryland, USA
- Science Systems and Applications, Inc., Lanham, Maryland, USA
- Interstate Commission on the Potomac River Basin, Rockville, Maryland, USA
| | - Brett M Forshey
- Department of Defense, Armed Forces Health Surveillance Branch, Silver Spring, Maryland, USA
- Cherokee Nation Technology Solutions, Silver Spring, Maryland, USA
| | - Jose L Sanchez
- Department of Defense, Armed Forces Health Surveillance Branch, Silver Spring, Maryland, USA
| | - Ryan D Smith
- United States Air Force, 14th Weather Squadron - DoD Climate Services, Asheville, North Carolina, USA
| | - Ryan Harris
- United States Air Force, 14th Weather Squadron - DoD Climate Services, Asheville, North Carolina, USA
| | - Compton J Tucker
- NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, Maryland, USA
| | | | - Kenneth J Linthicum
- USDA-Agricultural Research Service Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, Florida, USA
| |
Collapse
|
20
|
Rabaan AA, Al-Ahmed SH, Alsuliman SA, Aldrazi FA, Alfouzan WA, Haque S. The rise of pneumonic plague in Madagascar: current plague outbreak breaks usual seasonal mould. J Med Microbiol 2019; 68:292-302. [PMID: 30632956 DOI: 10.1099/jmm.0.000915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Madagascar has just emerged from the grip of an acute urban pneumonic plague outbreak, which began in August 2017, before the usual plague season of October-April and outside the traditional plague foci in the northern and central highlands. The World Health Organization reported a total of 2417 confirmed, probable and suspected cases, including 209 deaths between 1 August and 26 November 2017. The severity and scope of this outbreak, which has affected those in higher socioeconomic groups as well as those living in poverty, along with factors including the potential for use of multi-drug-resistant strains of plague in bioterrorism, highlights the ongoing threat posed by this ancient disease. Factors likely to have contributed to transmission include human behaviour, including burial practices and movement of people, poor urban planning leading to overcrowding and ready transmission by airborne droplets, climatic factors and genomic subtypes. The outbreak demonstrates the importance of identifying targeted pneumonic plague therapies and of developing vaccines that can be administered in planned programmes in developing countries such as Madagascar where plague is endemic. The dominance of pneumonic plague in this outbreak suggests that we need to focus more urgently on the danger of person-to-person transmission, as well as the problem of transmission of plague from zoonotic sources.
Collapse
Affiliation(s)
- Ali A Rabaan
- 1Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Shamsah H Al-Ahmed
- 2Specialty Paediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Shahab A Alsuliman
- 3Internal Medicine and Infectious Disease Department, Dammam Medical Complex, Dammam, Saudi Arabia
| | - Fatimah A Aldrazi
- 4Infection Control Department, Dammam Medical Complex, Dammam, Saudi Arabia
| | - Wadha A Alfouzan
- 5Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Shafiul Haque
- 6Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
21
|
Godsmark CN, Irlam J, van der Merwe F, New M, Rother HA. Priority focus areas for a sub-national response to climate change and health: A South African provincial case study. ENVIRONMENT INTERNATIONAL 2019; 122:31-51. [PMID: 30573189 DOI: 10.1016/j.envint.2018.11.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/26/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
INTRODUCTION The intersection of health and climate change is often absent or under-represented in sub-national government strategies. This analysis of the literature, using a new methodological framework, highlights priority focus areas for a sub-national government response to health and climate change, using the Western Cape (WC) province of South Africa as a case study. METHODS A methodological framework was created to conduct a review of priority focus areas relevant for sub-national governments. The framework encompassed the establishment of a Project Steering Group consisting of relevant, sub-national stakeholders (e.g. provincial officials, public and environmental health specialists and academics); an analysis of local climatic projections as well as an analysis of global, national and sub-national health risk factors and impacts. RESULTS Globally, the discussion of health and climate change adaptation strategies in sub-national, or provincial government is often limited. For the case study presented, multiple health risk factors were identified. WC climatic projections include a warmer and potentially drier future with an increased frequency and intensity of extreme weather events. WC government priority focus areas requiring further research on health risk factors include: population migration and environmental refugees, land use change, violence and human conflict and vulnerable groups. WC government priority focus areas for further research on health impacts include: mental ill-health, non-communicable diseases, injuries, poisonings (e.g. pesticides), food and nutrition insecurity-related diseases, water- and food-borne diseases and reproductive health. These areas are currently under-addressed, or not addressed at all, in the current provincial climate change strategy. CONCLUSIONS Sub-national government adaptation strategies often display limited discussion on the health and climate change intersect. The methodological framework presented in this case study can be globally utilized by other sub-national governments for decision-making and development of climate change and health adaptation strategies. Additionally, due to the broad range of sectoral issues identified, a primary recommendation from this study is that sub-national governments internationally should consider a "health and climate change in all policies" approach when developing adaptation and mitigation strategies to address climate change.
Collapse
Affiliation(s)
- Christie Nicole Godsmark
- Division of Environmental Health, School of Public Health and Family Medicine, University of Cape Town, South Africa
| | - James Irlam
- Division of Environmental Health, School of Public Health and Family Medicine, University of Cape Town, South Africa; Primary Health Care Directorate, University of Cape Town, South Africa
| | - Frances van der Merwe
- Department of Environmental Affairs and Development Planning, Western Cape Government, South Africa
| | - Mark New
- African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa; School of International Development, University of East Anglia, Norwich, UK
| | - Hanna-Andrea Rother
- Division of Environmental Health, School of Public Health and Family Medicine, University of Cape Town, South Africa.
| |
Collapse
|
22
|
Danforth M, Tucker J, Novak M. The Deer Mouse (Peromyscus maniculatus) as an Enzootic Reservoir of Plague in California. ECOHEALTH 2018; 15:566-576. [PMID: 29700709 DOI: 10.1007/s10393-018-1337-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 05/17/2023]
Abstract
It has long been theorized that deer mice (Peromyscus maniculatus) are a primary reservoir of Yersinia pestis in California. However, recent research from other parts of the western USA has implicated deer mice as spillover hosts during epizootic plague transmission. This retrospective study analyzed deer mouse data collected for plague surveillance by public health agencies in California from 1971 to 2016 to help elucidate the role of deer mice in plague transmission. The fleas most commonly found on deer mice were poor vectors of Y. pestis and occurred in insufficient numbers to maintain transmission of the pathogen, while fleas whose natural hosts are deer mice were rarely observed and even more rarely found infected with Y. pestis on other rodent hosts. Seroprevalence of Y. pestis antibodies in deer mice was significantly lower than that of several chipmunk and squirrel species. These analyses suggest that it is unlikely that deer mice play an important role in maintaining plague transmission in California. While they may not be primary reservoirs, results supported the premise that deer mice are occasionally exposed to and infected by Y. pestis and instead may be spillover hosts.
Collapse
Affiliation(s)
- Mary Danforth
- California Department of Public Health, Vector-Borne Disease Section, 8633 Bond Rd, Elk Grove, CA, 95624, USA.
| | - James Tucker
- California Department of Public Health, Vector-Borne Disease Section, 8633 Bond Rd, Elk Grove, CA, 95624, USA
| | - Mark Novak
- California Department of Public Health, Vector-Borne Disease Section, 8633 Bond Rd, Elk Grove, CA, 95624, USA
| |
Collapse
|
23
|
Yue RPH, Lee HF. Pre-industrial plague transmission is mediated by the synergistic effect of temperature and aridity index. BMC Infect Dis 2018; 18:134. [PMID: 29554882 PMCID: PMC5859406 DOI: 10.1186/s12879-018-3045-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/13/2018] [Indexed: 01/14/2023] Open
Abstract
Background Although the linkage between climate change and plague transmission has been proposed in previous studies, the dominant approach has been to address the linkage with traditional statistical methods, while the possible non-linearity, non-stationarity and low frequency domain of the linkage has not been fully considered. We seek to address the above issue by investigating plague transmission in pre-industrial Europe (AD1347–1760) at both continental and country levels. Methods We apply Granger Causality Analysis to identify the casual relationship between climatic variables and plague outbreaks. We then apply Wavelet Analysis to explore the non-linear and non-stationary association between climate change and plague outbreaks. Results Our results show that 5-year lagged temperature and aridity index are the significant determinants of plague outbreaks in pre-industrial Europe. At the multi-decadal time scale, there are more frequent plague outbreaks in a cold and arid climate. The synergy of temperature and aridity index, rather than their individual effect, is more imperative in driving plague outbreaks, which is valid at both the continental and country levels. Conclusions Plague outbreaks come after cold and dry spells. The multi-decadal climate variability is imperative in driving the cycles of plague outbreaks in pre-industrial Europe. The lagged and multi-decadal effect of climate change on plague outbreaks may be attributable to the complexity of ecological, social, or climate systems, through which climate exerts its influence on plague dynamics. These findings may contribute to improve our understanding of the epidemiology of plague and other rodent-borne or flea-borne infectious diseases in human history. Electronic supplementary material The online version of this article (10.1186/s12879-018-3045-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ricci P H Yue
- Department of Geography, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Harry F Lee
- Department of Geography, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,International Center for China Development Studies, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
24
|
Sousa LLFD, Alencar CHMD, Almeida AMPD, Cavalcanti LPDG. Seroprevalence and spatial distribution dynamics of Yersinia pestis antibodies in dogs and cats from plague foci in the State of Ceará, Northeastern Brazil. Rev Soc Bras Med Trop 2018; 50:769-776. [PMID: 29340453 DOI: 10.1590/0037-8682-0278-2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/13/2017] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION In Brazil, the plague is established in several foci located mainly in the northeastern part of the country, where it alternates between active and quiescent periods. These foci in the State of Ceará have high epidemiological importance. In addition to other plague detection activities, plague areas can be monitored through serological surveys of dogs and cats (domestic carnivores), which, following feeding on plague-infected rodents, can develop mild to severe forms of the disease and produce long-lasting antibodies. This study aimed to characterize the circulation dynamics and spatial distribution of Yersinia pestis antibodies in dogs and cats in plague foci areas of Ceará. METHODS An ecological study was conducted to analyze the temporal series and spatial distribution of secondary data obtained from domestic carnivore serum surveillance in Ceará's plague areas from 1990 to 2014. RESULTS Joinpoint analysis revealed that the overall trend was a reduction in antibody-positive animals. The mean proportion of antibody-positivity during the whole study period was 1.5% (3,023/203,311) for dogs, and 0.7% (426/61,135) for cats, with more than 4% antibody-positivity in dogs in 1997 and 2002. Antibody titers ranging from 1/16 to 1/64 were frequent. Despite fluctuations and a significant reduction, in recent years, there were antibody-positive animals annually throughout the study period, and the localities containing antibody-positive animals increased in number. CONCLUSION Yersinia pestis is actively circulating in the study areas, posing a danger to the human population.
Collapse
Affiliation(s)
- Larissa Leão Ferrer de Sousa
- Secretaria da Saúde do Estado do Ceará, Fortaleza, CE, Brasil.,Departamento de Saúde Comunitária, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | | | | | |
Collapse
|
25
|
Philip NH, Zwack EE, Brodsky IE. Activation and Evasion of Inflammasomes by Yersinia. Curr Top Microbiol Immunol 2017; 397:69-90. [PMID: 27460805 DOI: 10.1007/978-3-319-41171-2_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The innate immune system plays an essential role in initiating the early response against microbial infection, as well as instructing and shaping subsequent responses. Microbial pathogens are enormously diverse in terms of the niches they occupy, their metabolic properties and requirements, and the cellular pathways that they target. Nevertheless, innate sensing of pathogens triggers a relatively stereotyped set of responses that involve transcriptional induction of key inflammatory mediators, as well as post-translational assembly and activation of a multiprotein inflammatory complex termed 'the inflammasome.' Along with classical Pattern Recognition Receptors, the inflammasome activation pathway has emerged as a key regulator of tissue homeostasis and immune defense. Components of the inflammasome generally exist within the cell in a soluble, monomeric state, and oligomerize in response to diverse enzymatic activities associated with infection or cellular stress. Inflammasome assembly triggers activation of the pro-enzyme caspase-1, resulting in the cleavage of caspase-1 targets. The most extensively studied targets are the cytokines of the IL-1 family, but the recent discovery of Gasdermin D as a novel target of caspase-1 and the related inflammatory caspase, caspase-11, has begun to mechanistically define the links between caspase-1 activation and cell death. Cell death is a hallmark of macrophage infection by many pathogens, including the gram-negative bacterial pathogens of the genus Yersinia. Intriguingly, the activities of the Yersinia-secreted effector proteins and the type III secretion system (T3SS) itself have been linked to both inflammasome activation and evasion during infection. The balance between these activating and inhibitory activities shapes the outcome of Yersinia infection. Here, we describe the current state of knowledge on interactions between Yersinia and the inflammasome system, with the goal of integrating these findings within the general framework of inflammasome responses to microbial pathogens.
Collapse
Affiliation(s)
- Naomi H Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Immunology Graduate Group, Philadelphia, PA, 19104, USA
| | - Erin E Zwack
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA.,Cell and Molecular Biology Graduate Group, Philadelphia, PA, 19104, USA
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA. .,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
26
|
Lewnard JA, Townsend JP. Climatic and evolutionary drivers of phase shifts in the plague epidemics of colonial India. Proc Natl Acad Sci U S A 2016; 113:14601-14608. [PMID: 27791071 PMCID: PMC5187705 DOI: 10.1073/pnas.1604985113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Immune heterogeneity in wild host populations indicates that disease-mediated selection is common in nature. However, the underlying dynamic feedbacks involving the ecology of disease transmission, evolutionary processes, and their interaction with environmental drivers have proven challenging to characterize. Plague presents an optimal system for interrogating such couplings: Yersinia pestis transmission exerts intense selective pressure driving the local persistence of disease resistance among its wildlife hosts in endemic areas. Investigations undertaken in colonial India after the introduction of plague in 1896 suggest that, only a decade after plague arrived, a heritable, plague-resistant phenotype had become prevalent among commensal rats of cities undergoing severe plague epidemics. To understand the possible evolutionary basis of these observations, we developed a mathematical model coupling environmentally forced plague dynamics with evolutionary selection of rats, capitalizing on extensive archival data from Indian Plague Commission investigations. Incorporating increased plague resistance among rats as a consequence of intense natural selection permits the model to reproduce observed changes in seasonal epidemic patterns in several cities and capture experimentally observed associations between climate and flea population dynamics in India. Our model results substantiate Victorian era claims of host evolution based on experimental observations of plague resistance and reveal the buffering effect of such evolution against environmental drivers of transmission. Our analysis shows that historical datasets can yield powerful insights into the transmission dynamics of reemerging disease agents with which we have limited contemporary experience to guide quantitative modeling and inference.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510;
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
27
|
Danforth M, Novak M, Petersen J, Mead P, Kingry L, Weinburke M, Buttke D, Hacker G, Tucker J, Niemela M, Jackson B, Padgett K, Liebman K, Vugia D, Kramer V. Investigation of and Response to 2 Plague Cases, Yosemite National Park, California, USA, 2015. Emerg Infect Dis 2016; 22. [PMID: 27870634 PMCID: PMC5189142 DOI: 10.3201/eid2212.160560] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In August 2015, plague was diagnosed for 2 persons who had visited Yosemite National Park in California, USA. One case was septicemic and the other bubonic. Subsequent environmental investigation identified probable locations of exposure for each patient and evidence of epizootic plague in other areas of the park. Transmission of Yersinia pestis was detected by testing rodent serum, fleas, and rodent carcasses. The environmental investigation and whole-genome multilocus sequence typing of Y. pestis isolates from the patients and environmental samples indicated that the patients had been exposed in different locations and that at least 2 distinct strains of Y. pestis were circulating among vector-host populations in the area. Public education efforts and insecticide applications in select areas to control rodent fleas probably reduced the risk for plague transmission to park visitors and staff.
Collapse
|
28
|
Wilkening JL, Ray C, Ramsay N, Klingler K. Alpine biodiversity and assisted migration: the case of the American pika (Ochotona princeps). ACTA ACUST UNITED AC 2015. [DOI: 10.1080/14888386.2015.1112304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Dudley JP, Hoberg EP, Jenkins EJ, Parkinson AJ. Climate Change in the North American Arctic: A One Health Perspective. ECOHEALTH 2015; 12:713-25. [PMID: 26070525 DOI: 10.1007/s10393-015-1036-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 05/25/2023]
Abstract
Climate change is expected to increase the prevalence of acute and chronic diseases among human and animal populations within the Arctic and subarctic latitudes of North America. Warmer temperatures are expected to increase disease risks from food-borne pathogens, water-borne diseases, and vector-borne zoonoses in human and animal populations of Arctic landscapes. Existing high levels of mercury and persistent organic pollutant chemicals circulating within terrestrial and aquatic ecosystems in Arctic latitudes are a major concern for the reproductive health of humans and other mammals, and climate warming will accelerate the mobilization and biological amplification of toxic environmental contaminants. The adverse health impacts of Arctic warming will be especially important for wildlife populations and indigenous peoples dependent upon subsistence food resources from wild plants and animals. Additional research is needed to identify and monitor changes in the prevalence of zoonotic pathogens in humans, domestic dogs, and wildlife species of critical subsistence, cultural, and economic importance to Arctic peoples. The long-term effects of climate warming in the Arctic cannot be adequately predicted or mitigated without a comprehensive understanding of the interactive and synergistic effects between environmental contaminants and pathogens in the health of wildlife and human communities in Arctic ecosystems. The complexity and magnitude of the documented impacts of climate change on Arctic ecosystems, and the intimacy of connections between their human and wildlife communities, makes this region an appropriate area for development of One Health approaches to identify and mitigate the effects of climate warming at the community, ecosystem, and landscape scales.
Collapse
Affiliation(s)
- Joseph P Dudley
- Leidos, Inc., 20201 Century Boulevard, Suite 105, Germantown, MD, 20874, USA.
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA.
| | - Eric P Hoberg
- US National Parasite Collection, U.S. Department of Agriculture - Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Emily J Jenkins
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| | - Alan J Parkinson
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, AK, 99508, USA.
| |
Collapse
|
30
|
Kugeler KJ, Staples JE, Hinckley AF, Gage KL, Mead PS. Epidemiology of human plague in the United States, 1900-2012. Emerg Infect Dis 2015; 21:16-22. [PMID: 25529546 PMCID: PMC4285253 DOI: 10.3201/eid2101.140564] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epidemiologic changes reflect shifts in the populations at risk, the advent of effective therapy, and improved detection methods. We summarize the characteristics of 1,006 cases of human plague occurring in the United States over 113 years, beginning with the first documented case in 1900. Three distinct eras can be identified on the basis of the frequency, nature, and geographic distribution of cases. During 1900–1925, outbreaks were common but were restricted to populous port cities. During 1926–1964, the geographic range of disease expanded rapidly, while the total number of reported cases fell. During 1965–2012, sporadic cases occurred annually, primarily in the rural Southwest. Clinical and demographic features of human illness have shifted over time as the disease has moved from crowded cities to the rural West. These shifts reflect changes in the populations at risk, the advent of antibiotics, and improved detection of more clinically indistinct forms of infection. Overall, the emergence of human plague in the United States parallels observed patterns of introduction of exotic plants and animals.
Collapse
|
31
|
Nichols MC, Ettestad PJ, VinHatton ES, Melman SD, Onischuk L, Pierce EA, Aragon AS. Yersinia pestisinfection in dogs: 62 cases (2003–2011). J Am Vet Med Assoc 2014; 244:1176-80. [DOI: 10.2460/javma.244.10.1176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Redshaw CH, Stahl-Timmins WM, Fleming LE, Davidson I, Depledge MH. Potential changes in disease patterns and pharmaceutical use in response to climate change. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:285-320. [PMID: 23909463 PMCID: PMC3756629 DOI: 10.1080/10937404.2013.802265] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As climate change alters environmental conditions, the incidence and global patterns of human diseases are changing. These modifications to disease profiles and the effects upon human pharmaceutical usage are discussed. Climate-related environmental changes are associated with a rise in the incidence of chronic diseases already prevalent in the Northern Hemisphere, for example, cardiovascular disease and mental illness, leading to greater use of associated heavily used Western medications. Sufferers of respiratory diseases may exhibit exacerbated symptoms due to altered environmental conditions (e.g., pollen). Respiratory, water-borne, and food-borne toxicants and infections, including those that are vector borne, may become more common in Western countries, central and eastern Asia, and across North America. As new disease threats emerge, substantially higher pharmaceutical use appears inevitable, especially of pharmaceuticals not commonly employed at present (e.g., antiprotozoals). The use of medications for the treatment of general symptoms (e.g., analgesics) will also rise. These developments need to be viewed in the context of other major environmental changes (e.g., industrial chemical pollution, biodiversity loss, reduced water and food security) as well as marked shifts in human demographics, including aging of the population. To identify, prevent, mitigate, and adapt to potential threats, one needs to be aware of the major factors underlying changes in the use of pharmaceuticals and their subsequent release, deliberately or unintentionally, into the environment. This review explores the likely consequences of climate change upon the use of medical pharmaceuticals in the Northern Hemisphere.
Collapse
Affiliation(s)
- Clare H Redshaw
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, United Kingdom.
| | | | | | | | | |
Collapse
|
33
|
Moore SM, Monaghan A, Griffith KS, Apangu T, Mead PS, Eisen RJ. Improvement of disease prediction and modeling through the use of meteorological ensembles: human plague in Uganda. PLoS One 2012; 7:e44431. [PMID: 23024750 PMCID: PMC3443104 DOI: 10.1371/journal.pone.0044431] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/02/2012] [Indexed: 11/19/2022] Open
Abstract
Climate and weather influence the occurrence, distribution, and incidence of infectious diseases, particularly those caused by vector-borne or zoonotic pathogens. Thus, models based on meteorological data have helped predict when and where human cases are most likely to occur. Such knowledge aids in targeting limited prevention and control resources and may ultimately reduce the burden of diseases. Paradoxically, localities where such models could yield the greatest benefits, such as tropical regions where morbidity and mortality caused by vector-borne diseases is greatest, often lack high-quality in situ local meteorological data. Satellite- and model-based gridded climate datasets can be used to approximate local meteorological conditions in data-sparse regions, however their accuracy varies. Here we investigate how the selection of a particular dataset can influence the outcomes of disease forecasting models. Our model system focuses on plague (Yersinia pestis infection) in the West Nile region of Uganda. The majority of recent human cases have been reported from East Africa and Madagascar, where meteorological observations are sparse and topography yields complex weather patterns. Using an ensemble of meteorological datasets and model-averaging techniques we find that the number of suspected cases in the West Nile region was negatively associated with dry season rainfall (December-February) and positively with rainfall prior to the plague season. We demonstrate that ensembles of available meteorological datasets can be used to quantify climatic uncertainty and minimize its impacts on infectious disease models. These methods are particularly valuable in regions with sparse observational networks and high morbidity and mortality from vector-borne diseases.
Collapse
Affiliation(s)
- Sean M Moore
- National Center for Atmospheric Research, Boulder, Colorado, United States of America.
| | | | | | | | | | | |
Collapse
|
34
|
MacMillan K, Monaghan AJ, Apangu T, Griffith KS, Mead PS, Acayo S, Acidri R, Moore SM, Mpanga JT, Enscore RE, Gage KL, Eisen RJ. Climate predictors of the spatial distribution of human plague cases in the West Nile region of Uganda. Am J Trop Med Hyg 2012; 86:514-23. [PMID: 22403328 DOI: 10.4269/ajtmh.2012.11-0569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
East Africa has been identified as a region where vector-borne and zoonotic diseases are most likely to emerge or re-emerge and where morbidity and mortality from these diseases is significant. Understanding when and where humans are most likely to be exposed to vector-borne and zoonotic disease agents in this region can aid in targeting limited prevention and control resources. Often, spatial and temporal distributions of vectors and vector-borne disease agents are predictable based on climatic variables. However, because of coarse meteorological observation networks, appropriately scaled and accurate climate data are often lacking for Africa. Here, we use a recently developed 10-year gridded meteorological dataset from the Advanced Weather Research and Forecasting Model to identify climatic variables predictive of the spatial distribution of human plague cases in the West Nile region of Uganda. Our logistic regression model revealed that within high elevation sites (above 1,300 m), plague risk was positively associated with rainfall during the months of February, October, and November and negatively associated with rainfall during the month of June. These findings suggest that areas that receive increased but not continuous rainfall provide ecologically conducive conditions for Yersinia pestis transmission in this region. This study serves as a foundation for similar modeling efforts of other vector-borne and zoonotic disease in regions with sparse observational meteorologic networks.
Collapse
Affiliation(s)
- Katherine MacMillan
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado 80522, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Williamson ED, Oyston PCF. The natural history and incidence of Yersinia pestis and prospects for vaccination. J Med Microbiol 2012; 61:911-918. [PMID: 22442294 DOI: 10.1099/jmm.0.037960-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Plague is an ancient, serious, infectious disease which is still endemic in regions of the modern world and is a potential biothreat agent. This paper discusses the natural history of the bacterium and its evolution into a flea-vectored bacterium able to transmit bubonic plague. It reviews the incidence of plague in the modern world and charts the history of vaccines which have been used to protect against the flea-vectored disease, which erupts as bubonic plague. Current approaches to vaccine development to protect against pneumonic, as well as bubonic, plague are also reviewed. The considerable challenges in achieving a vaccine which is licensed for human use and which will comprehensively protect against this serious human pathogen are assessed.
Collapse
Affiliation(s)
- E D Williamson
- Biomedical Sciences, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - P C F Oyston
- Biomedical Sciences, Dstl Porton Down, Salisbury SP4 0JQ, UK
| |
Collapse
|
36
|
Gage KL. Factors Affecting the Spread and Maintenance of Plague. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:79-94. [DOI: 10.1007/978-1-4614-3561-7_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Ben Ari T, Neerinckx S, Gage KL, Kreppel K, Laudisoit A, Leirs H, Stenseth NC. Plague and climate: scales matter. PLoS Pathog 2011; 7:e1002160. [PMID: 21949648 PMCID: PMC3174245 DOI: 10.1371/journal.ppat.1002160] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Plague is enzootic in wildlife populations of small mammals in central and eastern Asia, Africa, South and North America, and has been recognized recently as a reemerging threat to humans. Its causative agent Yersinia pestis relies on wild rodent hosts and flea vectors for its maintenance in nature. Climate influences all three components (i.e., bacteria, vectors, and hosts) of the plague system and is a likely factor to explain some of plague's variability from small and regional to large scales. Here, we review effects of climate variables on plague hosts and vectors from individual or population scales to studies on the whole plague system at a large scale. Upscaled versions of small-scale processes are often invoked to explain plague variability in time and space at larger scales, presumably because similar scale-independent mechanisms underlie these relationships. This linearity assumption is discussed in the light of recent research that suggests some of its limitations.
Collapse
Affiliation(s)
- Tamara Ben Ari
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
- Ecole Normale Supérieure, CNRS UMR 7625, Paris, France
| | - Simon Neerinckx
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Kenneth L. Gage
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Center of Control and Prevention, Fort Collins, Colorado, United States of America
| | - Katharina Kreppel
- Liverpool University Climate and Infectious Diseases of Animals Group (LUCINDA), Department of Veterinary Clinical Sciences, University of Liverpool, Leahurst, Great Britain
| | - Anne Laudisoit
- Evolutionary Ecology Group, Department of Biology, Universiteit Antwerpen, Antwerp, Belgium
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, Universiteit Antwerpen, Antwerp, Belgium
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
38
|
Abstract
Flea-borne zoonoses such as plague (Yersinia pestis) and murine typhus (Rickettsia typhi) caused significant numbers of human cases in the past and remain a public health concern. Other flea-borne human pathogens have emerged recently (e.g., Bartonella henselae, Rickettsia felis), and their mechanisms of transmission and impact on human health are not fully understood. Our review focuses on the ecology and epidemiology of the flea-borne bacterial zoonoses mentioned above with an emphasis on recent advancements in our understanding of how these organisms are transmitted by fleas, maintained in zoonotic cycles, and transmitted to humans. Emphasis is given to plague because of the considerable number of studies generated during the first decade of the twenty-first century that arose, in part, because of renewed interest in potential agents of bioterrorism, including Y. pestis.
Collapse
Affiliation(s)
- Rebecca J Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado 30333, USA.
| | | |
Collapse
|
39
|
Brown HE, Levy CE, Enscore RE, Schriefer ME, DeLiberto TJ, Gage KL, Eisen RJ. Annual seroprevalence of Yersinia pestis in coyotes as predictors of interannual variation in reports of human plague cases in Arizona, United States. Vector Borne Zoonotic Dis 2011; 11:1439-46. [PMID: 21756031 DOI: 10.1089/vbz.2010.0196] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although several health departments collect coyote blood samples for plague surveillance, the association between reported human cases and coyote seroprevalence rates remains anecdotal. Using data from an endemic region of the United States, we sought to quantify this association. From 1974 to 1998, about 2,276 coyote blood samples from four Arizona counties were tested for serological evidence of exposure to Yersinia pestis, the causative agent of plague. Using a titer threshold presumed to be indicative of recent infection (serum titers of ≥1:256), we found a statistically significant relationship between years with >17% sero-positive coyotes and years with two or more human cases reported. Moreover, when the annual coyote seroprevalence rates were dichotomized at 17%, 84% of the years were correctly classified using four biologically relevant meteorological variables in a linear regression. This is the first time a statistically significant temporal association between human plague cases and coyote seroprevalence rates has been shown. However, issues with data resolution and surveillance effort that potentially limit the public health utility of using coyote seroprevalence rates are discussed.
Collapse
Affiliation(s)
- Heidi E Brown
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Xu L, Liu Q, Stige LC, Ben Ari T, Fang X, Chan KS, Wang S, Stenseth NC, Zhang Z. Nonlinear effect of climate on plague during the third pandemic in China. Proc Natl Acad Sci U S A 2011; 108:10214-9. [PMID: 21646523 PMCID: PMC3121851 DOI: 10.1073/pnas.1019486108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Over the years, plague has caused a large number of deaths worldwide and subsequently changed history, not the least during the period of the Black Death. Of the three plague pandemics, the third is believed to have originated in China. Using the spatial and temporal human plague records in China from 1850 to 1964, we investigated the association of human plague intensity (plague cases per year) with proxy data on climate condition (specifically an index for dryness/wetness). Our modeling analysis demonstrates that the responses of plague intensity to dry/wet conditions were different in northern and southern China. In northern China, plague intensity generally increased when wetness increased, for both the current and the previous year, except for low intensity during extremely wet conditions in the current year (reflecting a dome-shaped response to current-year dryness/wetness). In southern China, plague intensity generally decreased when wetness increased, except for high intensity during extremely wet conditions of the current year. These opposite effects are likely related to the different climates and rodent communities in the two parts of China: In northern China (arid climate), rodents are expected to respond positively to high precipitation, whereas in southern China (humid climate), high precipitation is likely to have a negative effect. Our results suggest that associations between human plague intensity and precipitation are nonlinear: positive in dry conditions, but negative in wet conditions.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiyong Liu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing 102206, China
| | - Leif Chr. Stige
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Blindern, 0316 Oslo, Norway
| | - Tamara Ben Ari
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Blindern, 0316 Oslo, Norway
| | - Xiye Fang
- National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing 102206, China
| | - Kung-Sik Chan
- Department of Statistics and Actuarial Sciences, University of Iowa, Iowa City, IA 52242; and
| | - Shuchun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing 102206, China
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Blindern, 0316 Oslo, Norway
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
41
|
Mills JN, Gage KL, Khan AS. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1507-14. [PMID: 20576580 PMCID: PMC2974686 DOI: 10.1289/ehp.0901389] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 03/16/2010] [Accepted: 06/24/2010] [Indexed: 05/10/2023]
Abstract
BACKGROUND Because of complex interactions of climate variables at the levels of the pathogen, vector, and host, the potential influence of climate change on vector-borne and zoonotic diseases (VBZDs) is poorly understood and difficult to predict. Climate effects on the nonvector-borne zoonotic diseases are especially obscure and have received scant treatment. OBJECTIVE We described known and potential effects of climate change on VBZDs and proposed specific studies to increase our understanding of these effects. The nonvector-borne zoonotic diseases have received scant treatment and are emphasized in this paper. DATA SOURCES AND SYNTHESIS We used a review of the existing literature and extrapolations from observations of short-term climate variation to suggest potential impacts of climate change on VBZDs. Using public health priorities on climate change, published by the Centers for Disease Control and Prevention, we developed six specific goals for increasing understanding of the interaction between climate and VBZDs and for improving capacity for predicting climate change effects on incidence and distribution of VBZDs. CONCLUSIONS Climate change may affect the incidence of VBZDs through its effect on four principal characteristics of host and vector populations that relate to pathogen transmission to humans: geographic distribution, population density, prevalence of infection by zoonotic pathogens, and the pathogen load in individual hosts and vectors. These mechanisms may interact with each other and with other factors such as anthropogenic disturbance to produce varying effects on pathogen transmission within host and vector populations and to humans. Because climate change effects on most VBZDs act through wildlife hosts and vectors, understanding these effects will require multidisciplinary teams to conduct and interpret ecosystem-based studies of VBZD pathogens in host and vector populations and to identify the hosts, vectors, and pathogens with the greatest potential to affect human populations under climate change scenarios.
Collapse
Affiliation(s)
- James N Mills
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | |
Collapse
|
42
|
Ari TB, Gershunov A, Tristan R, Cazelles B, Gage K, Stenseth NC. Interannual variability of human plague occurrence in the Western United States explained by tropical and North Pacific Ocean climate variability. Am J Trop Med Hyg 2010; 83:624-32. [PMID: 20810830 PMCID: PMC2929061 DOI: 10.4269/ajtmh.2010.09-0775] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plague is a vector-borne, highly virulent zoonotic disease caused by the bacterium Yersinia pestis. It persists in nature through transmission between its hosts (wild rodents) and vectors (fleas). During epizootics, the disease expands and spills over to other host species such as humans living in or close to affected areas. Here, we investigate the effect of large-scale climate variability on the dynamics of human plague in the western United States using a 56-year time series of plague reports (1950-2005). We found that El Niño Southern Oscillation and Pacific Decadal Oscillation in combination affect the dynamics of human plague over the western United States. The underlying mechanism could involve changes in precipitation and temperatures that impact both hosts and vectors. It is suggested that snow also may play a key role, possibly through its effects on summer soil moisture, which is known to be instrumental for flea survival and development and sustained growth of vegetation for rodents.
Collapse
Affiliation(s)
- Tamara Ben Ari
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
43
|
Modeling the epidemiological history of plague in Central Asia: palaeoclimatic forcing on a disease system over the past millennium. BMC Biol 2010; 8:112. [PMID: 20799946 PMCID: PMC2944127 DOI: 10.1186/1741-7007-8-112] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/27/2010] [Indexed: 01/14/2023] Open
Abstract
Background Human cases of plague (Yersinia pestis) infection originate, ultimately, in the bacterium's wildlife host populations. The epidemiological dynamics of the wildlife reservoir therefore determine the abundance, distribution and evolution of the pathogen, which in turn shape the frequency, distribution and virulence of human cases. Earlier studies have shown clear evidence of climatic forcing on contemporary plague abundance in rodents and humans. Results We find that high-resolution palaeoclimatic indices correlate with plague prevalence and population density in a major plague host species, the great gerbil (Rhombomys opimus), over 1949-1995. Climate-driven models trained on these data predict independent data on human plague cases in early 20th-century Kazakhstan from 1904-1948, suggesting a consistent impact of climate on large-scale wildlife reservoir dynamics influencing human epidemics. Extending the models further back in time, we also find correspondence between their predictions and qualitative records of plague epidemics over the past 1500 years. Conclusions Central Asian climate fluctuations appear to have had significant influences on regional human plague frequency in the first part of the 20th century, and probably over the past 1500 years. This first attempt at ecoepidemiological reconstruction of historical disease activity may shed some light on how long-term plague epidemiology interacts with human activity. As plague activity in Central Asia seems to have followed climate fluctuations over the past centuries, we may expect global warming to have an impact upon future plague epidemiology, probably sustaining or increasing plague activity in the region, at least in the rodent reservoirs, in the coming decades. See commentary: http://www.biomedcentral.com/1741-7007/8/108
Collapse
|
44
|
Neerinckx S, Peterson AT, Gulinck H, Deckers J, Kimaro D, Leirs H. Predicting potential risk areas of human plague for the Western Usambara Mountains, Lushoto District, Tanzania. Am J Trop Med Hyg 2010; 82:492-500. [PMID: 20207880 DOI: 10.4269/ajtmh.2010.09-0426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A natural focus of plague exists in the Western Usambara Mountains of Tanzania. Despite intense research, questions remain as to why and how plague emerges repeatedly in the same suite of villages. We used human plague incidence data for 1986-2003 in an ecological-niche modeling framework to explore the geographic distribution and ecology of human plague. Our analyses indicate that plague occurrence is related directly to landscape-scale environmental features, yielding a predictive understanding of one set of environmental factors affecting plague transmission in East Africa. Although many environmental variables contribute significantly to these models, the most important are elevation and Enhanced Vegetation Index derivatives. Projections of these models across broader regions predict only 15.5% (under a majority-rule threshold) or 31,997 km(2) of East Africa as suitable for plague transmission, but they successfully anticipate most known foci in the region, making possible the development of a risk map of plague.
Collapse
Affiliation(s)
- Simon Neerinckx
- Evolutionary Ecology Group, Universiteit Antwerpen, Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
45
|
Brown HE, Ettestad P, Reynolds PJ, Brown TL, Hatton ES, Holmes JL, Glass GE, Gage KL, Eisen RJ. Climatic predictors of the intra- and inter-annual distributions of plague cases in New Mexico based on 29 years of animal-based surveillance data. Am J Trop Med Hyg 2010; 82:95-102. [PMID: 20065002 DOI: 10.4269/ajtmh.2010.09-0247] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Within the United States, the majority of human plague cases are reported from New Mexico. We describe climatic factors involved in intra- and inter-annual plague dynamics using animal-based surveillance data from that state. Unlike the clear seasonal pattern observed at lower elevations, cases occur randomly throughout the year at higher elevations. Increasing elevation corresponded with delayed mean time in case presentation. Using local meteorological data (previous year mean annual precipitation, total degrees over 27 degrees C 3 years before and maximum winter temperatures 4 years before) we built a time-series model predicting annual case load that explained 75% of the variance in pet cases between years. Moreover, we found a significant correlation with observed annual human cases and predicted pet cases. Because covariates were time-lagged by at least 1 year, intensity of case loads can be predicted in advance of a plague season. Understanding associations between environmental and meteorological factors can be useful for anticipating future disease trends.
Collapse
Affiliation(s)
- Heidi E Brown
- Centers for Disease Control and Prevention (CDC), National Center for Zoonotic, Vector-Borne and Enteric Diseases, Division of Vector-Borne Infectious Diseases, 3150 Rampart Road, Foothills Campus, Fort Collins, CO 80522, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Landscape epidemiology describes how the temporal dynamics of host, vector, and pathogen populations interact spatially within a permissive environment to enable transmission. The spatially defined focus, or nidus, of transmission may be characterized by vegetation as well as by climate, latitude, elevation, and geology. The ecological complexity, dimensions, and temporal stability of the nidus are determined largely by pathogen natural history and vector bionomics. Host populations, transmission efficiency, and therefore pathogen amplification vary spatially, thereby creating a heterogeneous surface that may be defined by remote sensing and statistical tools. The current review describes the evolution of landscape epidemiology as a science and exemplifies selected aspects by contrasting the ecology of two different recent disease outbreaks in North America caused by West Nile virus, an explosive, highly virulent mosquito-borne virus producing ephemeral nidi, and Borrelia burgdorferi, a slowly amplifying chronic pathogen producing semipermanent nidi.
Collapse
Affiliation(s)
- William K Reisen
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, CA 95616, USA.
| |
Collapse
|
47
|
Holt AC, Salkeld DJ, Fritz CL, Tucker JR, Gong P. Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change. Int J Health Geogr 2009; 8:38. [PMID: 19558717 PMCID: PMC2716330 DOI: 10.1186/1476-072x-8-38] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 06/28/2009] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Plague, caused by the bacterium Yersinia pestis, is a public and wildlife health concern in California and the western United States. This study explores the spatial characteristics of positive plague samples in California and tests Maxent, a machine-learning method that can be used to develop niche-based models from presence-only data, for mapping the potential distribution of plague foci. Maxent models were constructed using geocoded seroprevalence data from surveillance of California ground squirrels (Spermophilus beecheyi) as case points and Worldclim bioclimatic data as predictor variables, and compared and validated using area under the receiver operating curve (AUC) statistics. Additionally, model results were compared to locations of positive and negative coyote (Canis latrans) samples, in order to determine the correlation between Maxent model predictions and areas of plague risk as determined via wild carnivore surveillance. RESULTS Models of plague activity in California ground squirrels, based on recent climate conditions, accurately identified case locations (AUC of 0.913 to 0.948) and were significantly correlated with coyote samples. The final models were used to identify potential plague risk areas based on an ensemble of six future climate scenarios. These models suggest that by 2050, climate conditions may reduce plague risk in the southern parts of California and increase risk along the northern coast and Sierras. CONCLUSION Because different modeling approaches can yield substantially different results, care should be taken when interpreting future model predictions. Nonetheless, niche modeling can be a useful tool for exploring and mapping the potential response of plague activity to climate change. The final models in this study were used to identify potential plague risk areas based on an ensemble of six future climate scenarios, which can help public managers decide where to allocate surveillance resources. In addition, Maxent model results were significantly correlated with coyote samples, indicating that carnivore surveillance programs will continue to be important for tracking the response of plague to future climate conditions.
Collapse
Affiliation(s)
- Ashley C Holt
- Environmental Science, Policy, and Management Department, University of California, Berkeley, CA, USA.
| | | | | | | | | |
Collapse
|
48
|
Panzner MJ, Deeraksa A, Smith A, Wright BD, Hindi KM, Kascatan-Nebioglu A, Torres AG, Judy BM, Hovis CE, Hilliard JK, Mallett RJ, Cope E, Estes DM, Cannon CL, Leid JG, Youngs WJ. Synthesis and in vitro Efficacy Studies of Silver Carbene Complexes on Biosafety Level 3 Bacteria. Eur J Inorg Chem 2009; 2009:1739-1745. [PMID: 20160993 DOI: 10.1002/ejic.200801159] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of N-heterocyclic carbene silver complexes have been synthesized and tested against the select group of bio-safety level 3 bacteria Burkholderia pseudomallei, Burkholderia mallei, Bacillus anthracis, methicillin-resistant Staphylococcus aureus and Yersinia pestis. Minimal inhibitory concentrations, minimal bactericidal and killing assays demonstrated the exceptional efficacy of the complexes against these potentially weaponizable pathogens.
Collapse
Affiliation(s)
- Matthew J Panzner
- Department of Chemistry, University of Akron, Akron, OH 44325-3601, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|