1
|
Su S, Liu J, Chen B, Wang W, Xiao J, Li Y, Du J, Kang J, Hu W, Zhang J. Distribution Shifts of Acanthaster solaris Under Climate Change and the Impact on Coral Reef Habitats. Animals (Basel) 2025; 15:858. [PMID: 40150387 PMCID: PMC11939250 DOI: 10.3390/ani15060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Pacific crown-of-thorns starfish (Acanthaster solaris) outbreaks pose a significant threat to coral reef ecosystems, with climate change potentially exacerbating their distribution and impact. However, there remains only a small number of predictive studies on how climate change drives changes in the distribution patterns of A. solaris, and relevant assessments of the impact of these changes on coral reef areas are lacking. To address this issue, this study investigated potential changes in the distribution of A. solaris under climate change and its impact on Acropora coral habitats. Using a novel two-step framework, we integrated both abiotic and biological (Acropora distribution) predictors into species distribution modeling to project future shifts in A. solaris habitats. We created the first reliable set of current and future global distribution maps for A. solaris using a comprehensive dataset and machine learning approach. The results showed significant distribution shifts under three climate change scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5), with expanded ranges under all scenarios, and the greatest expansion occurring near 10° S. Asymmetry in the latitudinal shifts in habitat boundaries suggests that the Southern Hemisphere may face a more severe expansion of A. solaris. Regions previously unsuitable for A. solaris, such as parts of New Zealand, might experience new invasions. Additionally, our findings highlight the potential increase in predatory pressure on coral reefs under SSP2-4.5 and SSP5-8.5 scenarios, particularly in the Western Coral Triangle and Northeast Australian Shelf, where an overlap between A. solaris and Acropora habitats is significant. This study provides critical insights into the ecological dynamics of A. solaris in the context of climate change, and the results have important implications for coral reef management. These findings highlight the need for targeted conservation efforts and the development of mitigation strategies to protect coral reefs from the growing threat posed by A. solaris.
Collapse
Affiliation(s)
- Shangke Su
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (S.S.); (J.L.); (B.C.); (J.D.); (J.K.)
| | - Jinquan Liu
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (S.S.); (J.L.); (B.C.); (J.D.); (J.K.)
| | - Bin Chen
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (S.S.); (J.L.); (B.C.); (J.D.); (J.K.)
| | - Wei Wang
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (W.W.); (J.X.); (Y.L.)
| | - Jiaguang Xiao
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (W.W.); (J.X.); (Y.L.)
| | - Yuan Li
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (W.W.); (J.X.); (Y.L.)
| | - Jianguo Du
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (S.S.); (J.L.); (B.C.); (J.D.); (J.K.)
- APEC Marine Sustainable Development Center, Xiamen 361005, China
| | - Jianhua Kang
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (S.S.); (J.L.); (B.C.); (J.D.); (J.K.)
| | - Wenjia Hu
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (S.S.); (J.L.); (B.C.); (J.D.); (J.K.)
| | - Junpeng Zhang
- Ocean Dynamics Laboratory, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
2
|
Wolfe K, Byrne M. Dead foundation species create coral rubble habitat that benefits a resilient pest species. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106740. [PMID: 39255629 DOI: 10.1016/j.marenvres.2024.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Critical loss of habitat is the greatest threat to biodiversity, yet some species are inherently plastic to and may even benefit from changes in ecosystem states. The crown-of-thorns sea star (CoTS; Acanthaster spp.) may be one such organism. CoTS are large corallivores native to the tropical Indo-Pacific and in unexplained high densities, can adversely affect entire coral reefs. Proximal causes of CoTS outbreaks remain elusive, so this phenomenon remains a daunting and costly challenge for reef conservation and management. Amplifying anthropogenic impacts and new empirical data point to the degraded reef hypothesis to explain the episodic nature of CoTS population outbreaks. We posit that loss of live coral paradoxically benefits CoTS juveniles, which accumulate in their rubble nursery habitat before conditions trigger their pulsed emergence as coral-eaters. We review trait plasticity across the CoTS life cycle and present the degraded reef hypothesis in an integrative understanding of their propensity to outbreak.
Collapse
Affiliation(s)
- Kennedy Wolfe
- School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Maria Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
3
|
Rouzé H, Knowlton N, Anker A, Hurt C, Wirshing HH, Van Wormhoudt A, Leray M. An integrative phylogeography for inferring cryptic speciation in the Alpheus lottini species complex, an important coral mutualist. iScience 2024; 27:111034. [PMID: 39474063 PMCID: PMC11519463 DOI: 10.1016/j.isci.2024.111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/26/2024] [Accepted: 09/23/2024] [Indexed: 12/20/2024] Open
Abstract
We use molecular analyses, color patterns, and records of distribution of mating pairs to reconstruct the global phylogeography of Alpheus lottini, a complex of cryptic coral-associated snapping shrimp species. Molecular data support the delineation of ancestral clades A, B, and C, and suggest five additional subdivisions within clades A and B. Clades A, B1, B2, and C exhibit color pattern differences and/or evidence of assortative mating, and thus merit species-level recognition. There is no evidence for assortative mating within clades A and B1, with likely reproductive compatibility (i.e., fertile clutches) in areas of sympatry. The clade diversity peaks in the Mariana Islands and the early branching clade C is restricted to the northern periphery of the Central and Western Pacific suggesting a Pacific origin of this group outside of the Coral Triangle. These findings underscore the prevalence of allopatric processes with possible ecological or microallopatric speciation in areas where clades overlap.
Collapse
Affiliation(s)
- Héloïse Rouzé
- University of Guam, Marine Laboratory, Mangilao 96923, Guam
| | - Nancy Knowlton
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Arthur Anker
- Universidade Federal de Pelotas (UFPEL), Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Campus Universitário Capão do Leão, Capão do Leão, RS 96010-610, Brazil
| | - Carla Hurt
- Department of Biology, Tennessee Tech University, Cookeville, TN 38505, USA
| | - Herman H. Wirshing
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Alain Van Wormhoudt
- Station de Biologie Marine du Muséum National d’Histoire Naturelle, EPHE, Laboratoire Évolution Moléculaire et Adaptation 29900 Concarneau, France
| | - Matthieu Leray
- Smithsonian Tropical Research Institute, Smithsonian Institution, Panama City, Panama
| |
Collapse
|
4
|
Paramonov AS, Shulepko MA, Makhonin AM, Bychkov ML, Kulbatskii DS, Chernikov AM, Myshkin MY, Shabelnikov SV, Shenkarev ZO, Kirpichnikov MP, Lyukmanova EN. New Three-Finger Protein from Starfish Asteria rubens Shares Structure and Pharmacology with Human Brain Neuromodulator Lynx2. Mar Drugs 2022; 20:md20080503. [PMID: 36005506 PMCID: PMC9410279 DOI: 10.3390/md20080503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Three-finger proteins (TFPs) are small proteins with characteristic three-finger β-structural fold stabilized by the system of conserved disulfide bonds. These proteins have been found in organisms from different taxonomic groups and perform various important regulatory functions or act as components of snake venoms. Recently, four TFPs (Lystars 1–4) with unknown function were identified in the coelomic fluid proteome of starfish A. rubens. Here we analyzed the genomes of A. rubens and A. planci starfishes and predicted additional five and six proteins containing three-finger domains, respectively. One of them, named Lystar5, is expressed in A. rubens coelomocytes and has sequence homology to the human brain neuromodulator Lynx2. The three-finger structure of Lystar5 close to the structure of Lynx2 was confirmed by NMR. Similar to Lynx2, Lystar5 negatively modulated α4β2 nicotinic acetylcholine receptors (nAChRs) expressed in X. laevis oocytes. Incubation with Lystar5 decreased the expression of acetylcholine esterase and α4 and α7 nAChR subunits in the hippocampal neurons. In summary, for the first time we reported modulator of the cholinergic system in starfish.
Collapse
Affiliation(s)
- Alexander S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Mikhail A. Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Alexey M. Makhonin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- AI Centre, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Andrey M. Chernikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Mikhail Yu. Myshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Sergey V. Shabelnikov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Prospect 4, 194064 St. Petersburg, Russia;
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- Moscow Institute of Physics and Technology, State University, Institutskiy Per. 9, 141701 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Ekaterina N. Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
- Moscow Institute of Physics and Technology, State University, Institutskiy Per. 9, 141701 Moscow, Russia
- Correspondence:
| |
Collapse
|
5
|
Keesing JK. Optimal Foraging Theory Explains Feeding Preferences in the Western Pacific Crown-of-Thorns Sea Star Acanthaster sp. THE BIOLOGICAL BULLETIN 2021; 241:303-329. [PMID: 35015624 DOI: 10.1086/718141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractThe selectivity of crown-of-thorns sea stars (Acanthaster sp.) for different coral prey types was quantified in the field and laboratory and compared with a range of nutritional and food quality parameters as well as the growth performance of sea stars fed on different types of coral. Growth rates of small juvenile Acanthaster sp. without previous exposure to coral fed for 6.6 months on 15 individual species of corals showed that the highest rates of growth were achieved on the same types of corals for which adult sea stars show the strongest preference, both in the field and in controlled aquarium conditions. Small Acanthaster sp. (ca. 20 mm, 0.5 g) fed on Acropora formosa, Stylophora pistillata, Seriatopora hystrix, and Pocillopora damicornis increased in size by an average of 9.2-10.7 mm (4.2-5.6 g) per month, compared with 0.1-0.4 mm (0.004-0.028 g) per month on coralline algae fed controls and species such as Porites lutea, Porites lichen, Lobophyllia hemprichii, and Turbinaria mesenterina. Field studies on the same reef where the parents of these juvenile sea stars were collected demonstrated a strong sequential preference for acroporid and then pocilloporid corals, with faviid, merulinid, and poritid corals selected significantly less frequently than other corals when their relative abundance was taken into account. This order of preference by adult field-collected sea stars was confirmed and exhibited even more emphatically in aquarium experiments, where the relative abundance of prey species could be controlled. The growth experiments and measurements of comparative food value between preferred and non-preferred coral prey suggest that feeding preferences in Acanthaster sp. for Acropora and pocilloporids arose consistent with optimal foraging theory and evolved in response to this species being able to feed successfully and efficiently. The high abundance and, therefore, encounter rate of Acropora and pocilloporids is not considered to be an important factor in the evolution of feeding preferences, although relative abundance of alternative prey does affect selectivity. Individual growth and population fitness and reproductive output of Acanthaster sp. will be enhanced by preferential feeding on acroporid and pocilloporid corals, reinforcing the importance of optimal foraging theory in the evolution of feeding preferences.
Collapse
|
6
|
Sill SR, Dawson TP. Climate change impacts on the ecological dynamics of two coral reef species, the humphead wrasse (Cheilinus undulatus) and crown-of-thorns starfish (Ancanthaster planci). ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Yuasa H, Kajitani R, Nakamura Y, Takahashi K, Okuno M, Kobayashi F, Shinoda T, Toyoda A, Suzuki Y, Thongtham N, Forsman Z, Bronstein O, Seveso D, Montalbetti E, Taquet C, Eyal G, Yasuda N, Itoh T. Elucidation of the speciation history of three sister species of crown-of-thorns starfish (Acanthaster spp.) based on genomic analysis. DNA Res 2021; 28:6350483. [PMID: 34387305 DOI: 10.1093/dnares/dsab012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
The crown-of-thorns starfish (COTS) is a coral predator that is widely distributed in Indo-Pacific Oceans. A previous phylogenetic study using partial mitochondrial sequences suggested that COTS had diverged into four distinct species, but a nuclear genome-based analysis to confirm this was not conducted. To address this, COTS species nuclear genome sequences were analysed here, sequencing Northern Indian Ocean (NIO) and Red Sea (RS) species genomes for the first time, followed by a comparative analysis with the Pacific Ocean (PO) species. Phylogenetic analysis and ADMIXTURE analysis revealed clear divergences between the three COTS species. Furthermore, within the PO species, the phylogenetic position of the Hawaiian sample was further away from the other Pacific-derived samples than expected based on the mitochondrial data, suggesting that it may be a PO subspecies. The pairwise sequentially Markovian coalescent model showed that the trajectories of the population size diverged by region during the Mid-Pleistocene transition when the sea-level was dramatically decreased, strongly suggesting that the three COTS species experienced allopatric speciation. Analysis of the orthologues indicated that there were remarkable genes with species-specific positive selection in the genomes of the PO and RS species, which suggested that there may be local adaptations in the COTS species.
Collapse
Affiliation(s)
- Hideaki Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuta Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Kazuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Miki Okuno
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Fumiya Kobayashi
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Takahiro Shinoda
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima City, Shizuoka 411-8540, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba 272-8562, Japan
| | | | - Zac Forsman
- Hawai'i Institute of Marine Biology, School of Ocean & Earth Sciences & Technology, University of Hawai'i at Mānoa, Coconut Island, Kāne'ohe, HI, USA
| | - Omri Bronstein
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel.,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, 20126 Milan, Italy.,Marine Research and High Education Center (MaRHE Center), 12030 Faafu Magoodhoo, Republic of Maldives
| | - Enrico Montalbetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, 20126 Milan, Italy.,Marine Research and High Education Center (MaRHE Center), 12030 Faafu Magoodhoo, Republic of Maldives
| | | | - Gal Eyal
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.,The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Nina Yasuda
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki 889-2192, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
8
|
Population genetics of the brooding coral Seriatopora hystrix reveals patterns of strong genetic differentiation in the Western Indian Ocean. Heredity (Edinb) 2020; 126:351-365. [PMID: 33122855 DOI: 10.1038/s41437-020-00379-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/08/2022] Open
Abstract
Coral reefs provide essential goods and services but are degrading at an alarming rate due to local and global anthropogenic stressors. The main limitation that prevents the implementation of adequate conservation measures is that connectivity and genetic structure of populations are poorly known. Here, the genetic diversity and connectivity of the brooding scleractinian coral Seriatopora hystrix were assessed at two scales by genotyping ten microsatellite markers for 356 individual colonies. S. hystrix showed high differentiation, both at large scale between the Red Sea and the Western Indian Ocean (WIO), and at smaller scale along the coast of East Africa. As such high levels of differentiation might indicate the presence of more than one species, a haploweb analysis was conducted with the nuclear marker ITS2, confirming that the Red Sea populations are genetically distinct from the WIO ones. Based on microsatellite analyses three groups could be distinguished within the WIO: (1) northern Madagascar, (2) south-west Madagascar together with one site in northern Mozambique (Nacala) and (3) all other sites in northern Mozambique, Tanzania and Kenya. These patterns of restricted connectivity could be explained by the short pelagic larval duration of S. hystrix, and/or by oceanographic factors, such as eddies in the Mozambique Channel (causing larval retention in northern Madagascar but facilitating dispersal from northern Mozambique towards south-west Madagascar). This study provides an additional line of evidence supporting the conservation priority status of the Northern Mozambique Channel and should inform coral reef management decisions in the region.
Collapse
|
9
|
Wada N, Yuasa H, Kajitani R, Gotoh Y, Ogura Y, Yoshimura D, Toyoda A, Tang SL, Higashimura Y, Sweatman H, Forsman Z, Bronstein O, Eyal G, Thongtham N, Itoh T, Hayashi T, Yasuda N. A ubiquitous subcuticular bacterial symbiont of a coral predator, the crown-of-thorns starfish, in the Indo-Pacific. MICROBIOME 2020; 8:123. [PMID: 32831146 PMCID: PMC7444263 DOI: 10.1186/s40168-020-00880-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Population outbreaks of the crown-of-thorns starfish (Acanthaster planci sensu lato; COTS), a primary predator of reef-building corals in the Indo-Pacific Ocean, are a major threat to coral reefs. While biological and ecological knowledge of COTS has been accumulating since the 1960s, little is known about its associated bacteria. The aim of this study was to provide fundamental information on the dominant COTS-associated bacteria through a multifaceted molecular approach. METHODS A total of 205 COTS individuals from 17 locations throughout the Indo-Pacific Ocean were examined for the presence of COTS-associated bacteria. We conducted 16S rRNA metabarcoding of COTS to determine the bacterial profiles of different parts of the body and generated a full-length 16S rRNA gene sequence from a single dominant bacterium, which we designated COTS27. We performed phylogenetic analysis to determine the taxonomy, screening of COTS27 across the Indo-Pacific, FISH to visualize it within the COTS tissues, and reconstruction of the bacterial genome from the hologenome sequence data. RESULTS We discovered that a single bacterium exists at high densities in the subcuticular space in COTS forming a biofilm-like structure between the cuticle and the epidermis. COTS27 belongs to a clade that presumably represents a distinct order (so-called marine spirochetes) in the phylum Spirochaetes and is universally present in COTS throughout the Indo-Pacific Ocean. The reconstructed genome of COTS27 includes some genetic traits that are probably linked to adaptation to marine environments and evolution as an extracellular endosymbiont in subcuticular spaces. CONCLUSIONS COTS27 can be found in three allopatric COTS species, ranging from the northern Red Sea to the Pacific, implying that the symbiotic relationship arose before the speciation events (approximately 2 million years ago). The universal association of COTS27 with COTS and nearly mono-specific association at least with the Indo-Pacific COTS provides a useful model system for studying symbiont-host interactions in marine invertebrates and may have applications for coral reef conservation. Video Abstract.
Collapse
Affiliation(s)
- Naohisa Wada
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki, 889-2192, Japan
- Biodiversity Research Center, Academia Sinica, No.128, Sec 2, Academia Rd, Nangang, Taipei, 11529, Taiwan
| | - Hideaki Yuasa
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dai Yoshimura
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, No.128, Sec 2, Academia Rd, Nangang, Taipei, 11529, Taiwan
| | - Yukihiro Higashimura
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki, 889-2192, Japan
| | - Hugh Sweatman
- Australian Institute of Marine Science, PMB No.3, Townsville, QLD, 4810, Australia
| | - Zac Forsman
- Hawai'i Institute of Marine Biology, School of Ocean & Earth Sciences & Technology, University of Hawai'i at Mānoa, Coconut Island, Kāne'ohe, HI, USA
| | - Omri Bronstein
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Gal Eyal
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | | | - Takehiko Itoh
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Nina Yasuda
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
10
|
Deaker DJ, Mos B, Lin HA, Lawson C, Budden C, Dworjanyn SA, Byrne M. Diet flexibility and growth of the early herbivorous juvenile crown-of-thorns sea star, implications for its boom-bust population dynamics. PLoS One 2020; 15:e0236142. [PMID: 32687524 PMCID: PMC7371202 DOI: 10.1371/journal.pone.0236142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
The ecology of the early herbivorous juvenile stage of the crown-of-thorns sea star (COTS, Acanthaster spp.) is poorly understood, yet the success of this life stage is key to generating population outbreaks that devastate coral reefs. Crustose coralline algae (CCA) has been considered to be the main diet of herbivorous juveniles. In this study, we show that COTS can avail of a range of algal food. Juveniles were reared on CCA, Amphiroa sp., and biofilm, and survived for 10 months on all three diets. The juveniles fed CCA and Amphiroa sp. reached 15–16.5 mm diameter at ~ 6 months and maintained this size for the rest the experiment (an additional ~4 months). Juveniles fed biofilm grew more slowly and to a smaller maximum size (~3 mm diameter). However, when juveniles were switched from biofilm to CCA they resumed growth to a new asymptotic size (~13.5 mm, 13–20 months). In diet choice experiments, juveniles did not show a preference between Amphiroa sp. and CCA, but generally avoided biofilm. Our results show that juvenile COTS grew equally well on CCA and Amphiroa sp. and can subsist on biofilm for months. Some juveniles, mostly from the biofilm diet treatment, decreased in size for a time and this was followed by recovery. Flexibility in diet, growth, and prolonged maintenance of asymptotic size indicates capacity for growth plasticity in herbivorous juvenile COTS. There is potential for juvenile COTS to persist for longer than anticipated and increase in number as they wait for the opportunity to avail of coral prey. These findings complicate our ability to predict recruitment to the corallivorous stage and population outbreaks following larval settlement and the ability to understand the age structure of COTS populations.
Collapse
Affiliation(s)
- Dione J. Deaker
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| | - Benjamin Mos
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Huang-An Lin
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Corinne Lawson
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Claire Budden
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Symon A. Dworjanyn
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Maria Byrne
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Burn D, Matthews S, Caballes CF, Chandler JF, Pratchett MS. Biogeographical variation in diurnal behaviour of Acanthaster planci versus Acanthaster cf. solaris. PLoS One 2020; 15:e0228796. [PMID: 32078663 PMCID: PMC7032693 DOI: 10.1371/journal.pone.0228796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/22/2020] [Indexed: 11/24/2022] Open
Abstract
Crown-of-thorns starfish (CoTS; Acanthaster spp.) are among the most extensively studied coral reef taxa, largely owing to their devastating impacts on live coral cover during population outbreaks. Much of this research has however, been conducted in the western Pacific, although it is now apparent that there are several distinct species of Acanthaster spp. across the Indo-Pacific. The purpose of this study was to test for biogeographical variation in behaviour, comparing between Acanthaster planci at Lankanfushi Island in the Maldives and Acanthaster cf. solaris at Rib Reef on Australia's Great Barrier Reef. The extent to which CoTS were exposed (cf. concealed within or beneath coral substrates) was substantially higher (63.14%) for A. planci at Lankanfushi Island, compared to 28.55% for A. cf. solaris at Rib Reef, regardless of time of day. More importantly, only 52% of individuals were exposed at night at Rib Reef compared to >97% at reefs around Lankanfushi Island. Biogeographic variation in the behaviour of Acanthaster spp. was independent of differences in the size structure of starfish and coral cover at specific study sites, but may be attributable to other environmental factors such as habitat complexity or prey availability. This is the first study to explicitly test for biogeographical differences in the biology and behaviour of Acanthaster spp., potentially linked to species-specific differences in the causes and explanations of population outbreaks. However, we did not find evidence at this stage of differences in behavior among regions, rather behavioural differences observed were most likely products of different environments.
Collapse
Affiliation(s)
- Deborah Burn
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Samuel Matthews
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Ciemon F. Caballes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Ultra Coral Australia, Paget, Queensland, Australia
| | - Josie F. Chandler
- Gili Lankanfushi Resort, Lankanfushi Island, North Male Atoll, Maldives
| | - Morgan S. Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
12
|
Lowe EK, Garm AL, Ullrich-Lüter E, Cuomo C, Arnone MI. The crowns have eyes: multiple opsins found in the eyes of the crown-of-thorns starfish Acanthaster planci. BMC Evol Biol 2018; 18:168. [PMID: 30419810 PMCID: PMC6233551 DOI: 10.1186/s12862-018-1276-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 10/18/2018] [Indexed: 01/01/2023] Open
Abstract
Background Opsins are G protein-coupled receptors used for both visual and non-visual photoreception, and these proteins evolutionarily date back to the base of the bilaterians. In the current sequencing age, phylogenomic analysis has proven to be a powerful tool, facilitating the increase in knowledge about diversity within the opsin subclasses and, so far, at least nine types of opsins have been identified. Within echinoderms, opsins have been studied in Echinoidea and Ophiuroidea, which do not possess proper image forming eyes, but rather widely dispersed dermal photoreceptors. However, most species of Asteroidea, the starfish, possess true eyes and studying them will shed light on the diversity of opsin usage within echinoderms and help resolve the evolutionary history of opsins. Results Using high-throughput RNA sequencing, we have sequenced and analyzed the transcriptomes of different Acanthaster planci tissue samples: eyes, radial nerve, tube feet and a mixture of tissues from other organs. At least ten opsins were identified, and eight of them were found significantly differentially expressed in both eyes and radial nerve, with R-opsin being the most highly expressed in the eye. Conclusion This study provides new important insight into the involvement of opsins in visual and nonvisual photoreception. Of relevance, we found the first indication of an r-opsin photopigment expressed in a well-developed visual eye in a deuterostome animal. Additionally, we provided tissue specific A. planci transcriptomes that will aid in future Evo Devo studies. Electronic supplementary material The online version of this article (10.1186/s12862-018-1276-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elijah K Lowe
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80122, Naples, Italy
| | - Anders L Garm
- Marine Biological Section, University of Copenhagen, Copenhagen, Denmark
| | | | - Claudia Cuomo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80122, Naples, Italy
| | - Maria I Arnone
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80122, Naples, Italy.
| |
Collapse
|
13
|
Addison JA, Kim JH. Cryptic species diversity and reproductive isolation among sympatric lineages of Strongylocentrotus sea urchins in the northwest Atlantic. Facets (Ott) 2018. [DOI: 10.1139/facets-2017-0081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Distinguishing between intra- and inter-specific variation in genetic studies is critical to understanding evolution because the mechanisms driving change among populations are expected to be different than those that shape reproductive isolation among lineages. Genetic studies of north Atlantic green sea urchins Strongylocentrotus droebachiensis (Müller, 1776) have detected significant population substructure and asymmetric gene flow from Europe to Atlantic Canada and interspecific hybridization between S. droebachiensis and Strongylocentrotus pallidus (Sars, 1871). However, combined with patterns of divergence at mtDNA sequences, morphological divergence at gamete traits suggests that the European and North American lineages of S. droebachiensis may be cryptic species. Here, we use a combination of cytochrome c oxidase subunit I ( COI) sequences and single nucleotide polymorphisms (SNPs) to test for cryptic species within Strongylocentrotus sea urchins and hybrids between S. droebachiensis and S. pallidus populations. We detect striking patterns of habitat and reproductive isolation between two S. droebachiensis lineages, with offshore deep-water collections consisting of S. pallidus in addition to a cryptic lineage sharing genetic similarity with previously published sequences from eastern Atlantic S. droebachiensis. We detected only limited hybridization among all three lineages of sea urchins, suggesting that shared genetic differences previously reported may be a result of historical introgression or incomplete lineage sorting.
Collapse
Affiliation(s)
- Jason A. Addison
- Department of Biology, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada
| | - Jin-Hong Kim
- Department of Biology, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
14
|
Heery EC, Hoeksema BW, Browne NK, Reimer JD, Ang PO, Huang D, Friess DA, Chou LM, Loke LHL, Saksena-Taylor P, Alsagoff N, Yeemin T, Sutthacheep M, Vo ST, Bos AR, Gumanao GS, Syed Hussein MA, Waheed Z, Lane DJW, Johan O, Kunzmann A, Jompa J, Taira D, Bauman AG, Todd PA. Urban coral reefs: Degradation and resilience of hard coral assemblages in coastal cities of East and Southeast Asia. MARINE POLLUTION BULLETIN 2018; 135:654-681. [PMID: 30301085 DOI: 10.1016/j.marpolbul.2018.07.041] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 05/28/2023]
Abstract
Given predicted increases in urbanization in tropical and subtropical regions, understanding the processes shaping urban coral reefs may be essential for anticipating future conservation challenges. We used a case study approach to identify unifying patterns of urban coral reefs and clarify the effects of urbanization on hard coral assemblages. Data were compiled from 11 cities throughout East and Southeast Asia, with particular focus on Singapore, Jakarta, Hong Kong, and Naha (Okinawa). Our review highlights several key characteristics of urban coral reefs, including "reef compression" (a decline in bathymetric range with increasing turbidity and decreasing water clarity over time and relative to shore), dominance by domed coral growth forms and low reef complexity, variable city-specific inshore-offshore gradients, early declines in coral cover with recent fluctuating periods of acute impacts and rapid recovery, and colonization of urban infrastructure by hard corals. We present hypotheses for urban reef community dynamics and discuss potential of ecological engineering for corals in urban areas.
Collapse
Affiliation(s)
- Eliza C Heery
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Bert W Hoeksema
- Taxonomy and Systematics Group, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands.
| | - Nicola K Browne
- Molecular and Life Sciences, Faculty of Science and Engineering, Bentley Campus, Curtin University, Perth, WA 6102, Australia; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - James D Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan; Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Put O Ang
- Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore
| | - Daniel A Friess
- Department of Geography, National University of Singapore, Singapore 117570, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Loke Ming Chou
- Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore
| | - Lynette H L Loke
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Poonam Saksena-Taylor
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Nadia Alsagoff
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Thamasak Yeemin
- Marine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand
| | - Makamas Sutthacheep
- Marine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand
| | - Si Tuan Vo
- Institute of Oceanography, Vietnam Academy of Science and Technology, 1 Cau Da, Nha Trang, Khanh Hoa, Viet Nam
| | - Arthur R Bos
- Department of Biology, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; Taxonomy and Systematics Group, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands
| | - Girley S Gumanao
- Marine Biology Department, Davao del Norte State College, New Visayas, 8105 Panabo City, the Philippines
| | - Muhammad Ali Syed Hussein
- Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Zarinah Waheed
- Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - David J W Lane
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Ofri Johan
- Research Institute for Ornamental Fish Culture, Jl. Perikanan No. 13, Pancoran Mas, Kota Depok, Jawa Barat 16436, Indonesia
| | - Andreas Kunzmann
- Leibniz Center for Tropical Marine Research (ZMT), Fahrenheitstr. 6, 28359 Bremen, Germany
| | - Jamaluddin Jompa
- Department of Marine Science, Hasanuddin University, Makassar, Indonesia
| | - Daisuke Taira
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Andrew G Bauman
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Peter A Todd
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
15
|
Wilmes JC, Caballes CF, Cowan ZL, Hoey AS, Lang BJ, Messmer V, Pratchett MS. Contributions of pre- versus post-settlement processes to fluctuating abundance of crown-of-thorns starfishes (Acanthaster spp.). MARINE POLLUTION BULLETIN 2018; 135:332-345. [PMID: 30301045 DOI: 10.1016/j.marpolbul.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Numerous hypotheses have been put forward to account for population outbreaks of crown-of-thorns starfishes (CoTS, Acanthaster spp.), which place specific importance on either pre- or post-settlement mechanisms. The purpose of this review is to specifically assess the contributions of pre- versus post-settlement processes in the population dynamics of CoTS. Given the immense reproductive potential of CoTS (>100 million eggs per female), persistent high densities would appear inevitable unless there were significant constraints on larval development, settlement success, and/or early post-settlement growth and survival. In terms of population constraints, pre- and post-settlement processes are both important and have additive effects to suppress densities of juvenile and adult CoTS within reef ecosystems. It is difficult, however, to assess the relative contributions of pre- versus post-settlement processes to population outbreaks, especially given limited data on settlement rates, as well as early post-settlement growth and mortality. Prioritising this research is important to resolve potential effects of anthropogenic activities (e.g., fishing) and habitat degradation on changing population dynamics of CoTS, and will also improve management effectiveness.
Collapse
Affiliation(s)
- Jennifer C Wilmes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Red Fish Blue Fish Marine, Cairns, QLD 4870, Australia
| | - Ciemon F Caballes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Ultra Coral Australia, Paget, QLD 4740, Australia
| | - Zara-Louise Cowan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Bethan J Lang
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Vanessa Messmer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Morgan S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
16
|
Putra ING, Syamsuni YF, Subhan B, Pharmawati M, Madduppa H. Strong genetic differentiation in tropical seagrass Enhalus acoroides (Hydrocharitaceae) at the Indo-Malay Archipelago revealed by microsatellite DNA. PeerJ 2018; 6:e4315. [PMID: 29576933 PMCID: PMC5855881 DOI: 10.7717/peerj.4315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/11/2018] [Indexed: 11/20/2022] Open
Abstract
The Indo-Malay Archipelago is regarded as a barrier that separates organisms of the Indian and Pacific Oceans. Previous studies of marine biota from this region have found a variety of biogeographic barriers, seemingly dependent on taxon and methodology. Several hypotheses, such as emergence of the Sunda Shelf and recent physical oceanography, have been proposed to account for the genetic structuring of marine organisms in this region. Here, we used six microsatellite loci to infer genetic diversity, population differentiation and phylogeographic patterns of Enhalus acoroides across the Indo-Malay Archipelago. Heterozygosities were consistently high, and significant isolation-by-distance, consistent with restricted gene flow, was observed. Both a neighbour joining tree based on DA distance and Bayesian clustering revealed three major clusters of E. acoroides. Our results indicate that phylogeographic patterns of E. acoroides have possibly been influenced by glaciation and deglaciation during the Pleistocene. Recent physical oceanography such as the South Java Current and the Seasonally Reversing Current may also play a role in shaping the genetic patterns of E. acoroides.
Collapse
Affiliation(s)
- I Nyoman Giri Putra
- Department of Marine Science and Technology, Faculty Fisheries and Marine Sciences, Bogor Agricultural University (IPB), Bogor, Indonesia.,Department of Marine Science, Faculty of Marine Science and Fisheries, Udayana University, Bukit Jimbaran, Bali, Indonesia
| | | | - Beginer Subhan
- Department of Marine Science and Technology, Faculty Fisheries and Marine Sciences, Bogor Agricultural University (IPB), Bogor, Indonesia
| | - Made Pharmawati
- Biology Department, Faculty of Mathematics and Natural Sciences, Udayana University, Bukit Jimbaran, Bali, Indonesia
| | - Hawis Madduppa
- Department of Marine Science and Technology, Faculty Fisheries and Marine Sciences, Bogor Agricultural University (IPB), Bogor, Indonesia.,Center for Coastal and Marine Resources Studies, Bogor Agricultural University (IPB), Bogor, Indonesia
| |
Collapse
|
17
|
Loeza-Quintana T, Adamowicz SJ. Iterative Calibration: A Novel Approach for Calibrating the Molecular Clock Using Complex Geological Events. J Mol Evol 2018; 86:118-137. [DOI: 10.1007/s00239-018-9831-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/02/2018] [Indexed: 01/04/2023]
|
18
|
Uthicke S, Liddy M, Patel F, Logan M, Johansson C, Lamare M. Effects of larvae density and food concentration on Crown-of-Thorns seastar (Acanthaster cf. solaris) development in an automated flow-through system. Sci Rep 2018; 8:642. [PMID: 29330503 PMCID: PMC5766623 DOI: 10.1038/s41598-017-19132-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/21/2017] [Indexed: 02/01/2023] Open
Abstract
Coral-eating Crown-of-Thorns Sea stars (Acanthaster spp.) are major contributors to coral reef loss in the Indo-Pacific region. A release from food limitation of their planktotrophic larvae through enhanced pelagic productivity is one of the main hypothesis explaining population outbreaks (‘nutrient limitation hypothesis’). To improve the understanding of these outbreaks we developed an automated flow- through larvae rearing system that maintained food (microalgae) at set levels over the course of four 15d experiments. This resulted in stable food concentrations in experimental tanks. Increased algae concentrations had a significant positive effect on larval development and size at 10 and 15 days post fertilization (dpf). Larvae densities had no effect at 10 dpf. At 15 dpf greater larvae densities were associated with declines in larvae size. Larval development was slowed under higher larvae densities. Thus, the effects of algae concentration and larvae density were additive at 15 dpf, with larvae under low densities at a given algae concentration being further developed than those under higher densities. The development of a flow-through system gives greater insight into the effect of algae and larvae concentrations on Acanthaster development, and the system can be applied to further test the nutrient-limitation hypothesis for present and future outbreaks.
Collapse
Affiliation(s)
- S Uthicke
- Australian Institute of Marine Science, PMB No 3, Townsville, Queensland, 4810, Australia.
| | - M Liddy
- Department of Marine Science, University of Otago, 9016, Dunedin, New Zealand
| | - F Patel
- Australian Institute of Marine Science, PMB No 3, Townsville, Queensland, 4810, Australia
| | - M Logan
- Australian Institute of Marine Science, PMB No 3, Townsville, Queensland, 4810, Australia
| | - C Johansson
- Australian Institute of Marine Science, PMB No 3, Townsville, Queensland, 4810, Australia
| | - M Lamare
- Department of Marine Science, University of Otago, 9016, Dunedin, New Zealand
| |
Collapse
|
19
|
Thirty Years of Research on Crown-of-Thorns Starfish (1986–2016): Scientific Advances and Emerging Opportunities. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040041] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Persistent Gaps of Knowledge for Naming and Distinguishing Multiple Species of Crown-of-Thorns-Seastar in the Acanthaster planci Species Complex. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9020022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Medina M. Biocontrol: Crown-of-thorns no more. Nature 2017; 544:168-170. [PMID: 28379946 DOI: 10.1038/nature21905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mónica Medina
- Department of Biology, Eberly College of Science, Pennsylvania State University, State College, Pennsylvania 16802, USA
| |
Collapse
|
22
|
Larval Survivorship and Settlement of Crown-of-Thorns Starfish (Acanthaster cf. solaris) at Varying Algal Cell Densities. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9010002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Layton KKS, Corstorphine EA, Hebert PDN. Exploring Canadian Echinoderm Diversity through DNA Barcodes. PLoS One 2016; 11:e0166118. [PMID: 27870868 PMCID: PMC5117606 DOI: 10.1371/journal.pone.0166118] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 10/24/2016] [Indexed: 11/19/2022] Open
Abstract
DNA barcoding has proven an effective tool for species identification in varied groups of marine invertebrates including crustaceans, molluscs, polychaetes and echinoderms. In this study, we further validate its utility by analyzing almost half of the 300 species of Echinodermata known from Canadian waters. COI sequences from 999 specimens were assigned to 145 BINs. In most cases, species discrimination was straightforward due to the large difference (25-fold) between mean intra- (0.48%) and inter- (12.0%) specific divergence. Six species were flagged for further taxonomic investigation because specimens assigned to them fell into two or three discrete sequence clusters. The potential influence of larval dispersal capacity and glacial events on patterns of genetic diversity is discussed for 19 trans-oceanic species. Although additional research is needed to clarify biogeographic patterns and resolve taxonomic questions, this study represents an important step in the assembly of a DNA barcode library for all Canadian echinoderms, a valuable resource for future biosurveillance programs.
Collapse
Affiliation(s)
- Kara K. S. Layton
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, N1G 2W1, Canada
- * E-mail:
| | - Erin A. Corstorphine
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
24
|
Otwoma LM, Kochzius M. Genetic Population Structure of the Coral Reef Sea Star Linckia laevigata in the Western Indian Ocean and Indo-West Pacific. PLoS One 2016; 11:e0165552. [PMID: 27798700 PMCID: PMC5087890 DOI: 10.1371/journal.pone.0165552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/13/2016] [Indexed: 11/18/2022] Open
Abstract
The coral reef sea star Linckia laevigata is common on shallow water coral reefs of the Indo-West Pacific. Its large geographic distribution and comprehensive data from previous studies makes it suitable to examine genetic differentiation and connectivity over large geographical scales. Based on partial sequences of the mitochondrial cytochrome oxidase I (COI) gene this study investigates the genetic population structure and connectivity of L. laevigata in the Western Indian Ocean (WIO) and compares it to previous studies in the Indo-Malay-Philippines Archipelago (IMPA). A total of 138 samples were collected from nine locations in the WIO. AMOVA revealed a low but significant ΦST-value of 0.024 for the WIO populations. In the hierarchical AMOVA, the following grouping rejected the hypothesis of panmixia: (1) Kenya (Watamu, Mombasa, Diani) and Tanzanian Island populations (Misali and Jambiani) and (2) the rest of the WIO sites (mainland Tanzania and Madagascar; ΦCT = 0.03). The genetic population structure was stronger and more significant (ΦST = 0.13) in the comparative analysis of WIO and IMPA populations. Three clades were identified in the haplotype network. The strong genetic differentiation (ΦCT = 0.199, P < 0.001) suggests that Indo-West Pacific populations of L. laevigata can be grouped into four biogeographic regions: (1) WIO (2) Eastern Indian Ocean (3) IMPA and (4) Western Pacific. The findings of this study support the existence of a genetic break in the Indo-West Pacific consistent with the effect of lowered sea level during the Pleistocene, which limited gene flow between the Pacific and Indian Ocean.
Collapse
Affiliation(s)
- Levy Michael Otwoma
- Kenya Marine and Fisheries Research Institute, P.O. BOX 81651, Mombasa, Kenya
- Marine Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Marc Kochzius
- Marine Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
25
|
Crown-of-Thorns Starfish Larvae Can Feed on Organic Matter Released from Corals. DIVERSITY 2016. [DOI: 10.3390/d8040018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Garcia-Cisneros A, Palacín C, Ben Khadra Y, Pérez-Portela R. Low genetic diversity and recent demographic expansion in the red starfish Echinaster sepositus (Retzius 1816). Sci Rep 2016; 6:33269. [PMID: 27627860 PMCID: PMC5024105 DOI: 10.1038/srep33269] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/23/2016] [Indexed: 12/31/2022] Open
Abstract
Understanding the phylogeography and genetic structure of populations and the processes responsible of patterns therein is crucial for evaluating the vulnerability of marine species and developing management strategies. In this study, we explore how past climatic events and ongoing oceanographic and demographic processes have shaped the genetic structure and diversity of the Atlanto-Mediterranean red starfish Echinaster sepositus. The species is relatively abundant in some areas of the Mediterranean Sea, but some populations have dramatically decreased over recent years due to direct extraction for ornamental aquariums and souvenir industries. Analyses across most of the distribution range of the species based on the mitochondrial cytochrome c oxidase subunit I gene and eight microsatellite loci revealed very low intraspecific genetic diversity. The species showed a weak genetic structure within marine basins despite the a priori low dispersal potential of its lecithotrophic larva. Our results also revealed a very recent demographic expansion across the distribution range of the species. The genetic data presented here indicate that the species might be highly vulnerable, due to its low intraspecific genetic diversity.
Collapse
Affiliation(s)
- Alex Garcia-Cisneros
- Animal Biology Department and Biodiversity Research Institute (IRBIO), Barcelona University, Avda. Diagonal, 643, Barcelona, Spain.,Center of Advanced Studies of Blanes (CSIC-CEAB), Accès cala St. Francesc, 14, Blanes, Spain
| | - Creu Palacín
- Animal Biology Department and Biodiversity Research Institute (IRBIO), Barcelona University, Avda. Diagonal, 643, Barcelona, Spain
| | - Yousra Ben Khadra
- Laboratoire de Recherche Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Av. Tahar Haddad, 5000, Monastir, Tunisia
| | - Rocío Pérez-Portela
- Center of Advanced Studies of Blanes (CSIC-CEAB), Accès cala St. Francesc, 14, Blanes, Spain
| |
Collapse
|
27
|
Tam JC, Link JS, Large SI, Bogstad B, Bundy A, Cook AM, Dingsør GE, Dolgov AV, Howell D, Kempf A, Pinnegar JK, Rindorf A, Schückel S, Sell AF, Smith BE. A trans-Atlantic examination of haddock Melanogrammus aeglefinus food habits. JOURNAL OF FISH BIOLOGY 2016; 88:2203-2218. [PMID: 27145075 DOI: 10.1111/jfb.12983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
The food habits of Melanogrammus aeglefinus were explored and contrasted across multiple north-eastern and north-western Atlantic Ocean ecosystems, using databases that span multiple decades. The results show that among all ecosystems, echinoderms are a consistent part of M. aeglefinus diet, but patterns emerge regarding where and when M. aeglefinus primarily eat fishes v. echinoderms. Melanogrammus aeglefinus does not regularly exhibit the increase in piscivory with ontogeny that other gadoids often show, and in several ecosystems there is a lower occurrence of piscivory. There is an apparent inverse relationship between the consumption of fishes and echinoderms in M. aeglefinus over time, where certain years show high levels of one prey item and low levels of the other. This apparent binary choice can be viewed as part of a gradient of prey options, contingent upon a suite of factors external to M. aeglefinus dynamics. The energetic consequences of this prey choice are discussed, noting that in some instances it may not be a choice at all.
Collapse
Affiliation(s)
- J C Tam
- NOAA-Fisheries, 166 Water Street, Woods Hole, MA, 02543, U.S.A
| | - J S Link
- NOAA-Fisheries, 166 Water Street, Woods Hole, MA, 02543, U.S.A
| | - S I Large
- NOAA-Fisheries, 166 Water Street, Woods Hole, MA, 02543, U.S.A
- International Council for the Exploration of the Seas (ICES), Copenhagen, V 1553, Denmark
| | - B Bogstad
- Institute of Marine Research (IMR), 5817, Bergen, Norway
| | - A Bundy
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, B2Y 4A2, Canada
| | - A M Cook
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, B2Y 4A2, Canada
| | - G E Dingsør
- Institute of Marine Research (IMR), 5817, Bergen, Norway
| | - A V Dolgov
- Polar Research Institute of Marine Fisheries and Oceanography (PINRO), 6, Knipovich-Street, Murmansk, 183038, Russia
| | - D Howell
- Institute of Marine Research (IMR), 5817, Bergen, Norway
| | - A Kempf
- Thünen Institute of Sea Fisheries, Palmaille 9, 22767, Hamburg, Germany
| | - J K Pinnegar
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, U.K
| | - A Rindorf
- National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund Slot, DK-2920, Charlottenlund, Denmark
| | - S Schückel
- BioConsult Schuchardt & Scholle GbR, Reeder-Bischoff-Str. 54, 28757, Bremen, Germany
| | - A F Sell
- Thünen Institute of Sea Fisheries, Palmaille 9, 22767, Hamburg, Germany
| | - B E Smith
- NOAA-Fisheries, 166 Water Street, Woods Hole, MA, 02543, U.S.A
| |
Collapse
|
28
|
Tusso S, Morcinek K, Vogler C, Schupp PJ, Caballes CF, Vargas S, Wörheide G. Genetic structure of the crown-of-thorns seastar in the Pacific Ocean, with focus on Guam. PeerJ 2016; 4:e1970. [PMID: 27168979 PMCID: PMC4860296 DOI: 10.7717/peerj.1970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 04/04/2016] [Indexed: 11/20/2022] Open
Abstract
Population outbreaks of the corallivorous crown-of-thorns seastar (COTS), Acanthaster 'planci' L., are among the most important biological disturbances of tropical coral reefs. Over the past 50 years, several devastating outbreaks have been documented around Guam, an island in the western Pacific Ocean. Previous analyses have shown that in the Pacific Ocean, COTS larval dispersal may be geographically restricted to certain regions. Here, we assess the genetic structure of Pacific COTS populations and compared samples from around Guam with a number of distant localities in the Pacific Ocean, and focused on determining the degree of genetic structure among populations previously considered to be isolated. Using microsatellites, we document substantial genetic structure between 14 localities from different geographical regions in the Pacific Ocean. Populations from the 14 locations sampled were found to be structured in three significantly differentiated groups: (1) all locations immediately around Guam, as well as Kingman Reef and Swains Island; (2) Japan, Philippines, GBR and Vanuatu; and (3) Johnston Atoll, which was significantly different from all other localities. The lack of genetic differentiation between Guam and extremely distant populations from Kingman Reef and Swains Island suggests potential long-distance dispersal of COTS in the Pacific.
Collapse
Affiliation(s)
- Sergio Tusso
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München , München , Germany
| | - Kerstin Morcinek
- Department of Anatomy (Neuroanatomy), University of Cologne , Köln , Germany
| | - Catherine Vogler
- Environment Department, Pöyry Switzerland Ltd. , Zurich , Switzerland
| | - Peter J Schupp
- Environmental Biochemistry, Carl-von-Ossietzky University Oldenburg, ICBM-Terramare , Wilhelmshaven , Germany
| | - Ciemon F Caballes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University , Townsville, Queensland , Australia
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München , München , Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany; SNSB-Bavarian State Collections of Palaeontology and Geology, München, Germany; GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
29
|
Vaughan GO, Burt JA. The changing dynamics of coral reef science in Arabia. MARINE POLLUTION BULLETIN 2016; 105:441-458. [PMID: 26621575 DOI: 10.1016/j.marpolbul.2015.10.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/17/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Six percent of the world's coral reefs occur around the Arabian Peninsula, providing a valuable ecological, economic and scientific resource for the nations bordering its shores. We provide the first region-wide assessment of the current status and historical trends in coral reef research, focusing on research in the Red Sea, Arabian Sea, and Arabian Gulf. In total, 633 regional reef publications have been produced since the 1930s, covering a wide variety of themes and taxa. Our results show a great deal of commonality in regional reef research, but also highlight important differences in research among the various seas as well as knowledge gaps that represent opportunities for future research. A regionally-integrated approach to future research is essential. There is a growing need for large-scale research to guide management of reefs and their stressors, as these operate at much larger scales than the national borders within which most research currently occurs.
Collapse
Affiliation(s)
- Grace O Vaughan
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - John A Burt
- Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
30
|
Coleman RR, Eble JA, DiBattista JD, Rocha LA, Randall JE, Berumen ML, Bowen BW. Regal phylogeography: Range-wide survey of the marine angelfish Pygoplites diacanthus reveals evolutionary partitions between the Red Sea, Indian Ocean, and Pacific Ocean. Mol Phylogenet Evol 2016; 100:243-253. [PMID: 27068838 DOI: 10.1016/j.ympev.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/27/2022]
Abstract
The regal angelfish (Pygoplites diacanthus; family Pomacanthidae) occurs on reefs from the Red Sea to the central Pacific, with an Indian Ocean/Rea Sea color morph distinct from a Pacific Ocean morph. To assess population differentiation and evaluate the possibility of cryptic evolutionary partitions in this monotypic genus, we surveyed mtDNA cytochrome b and two nuclear introns (S7 and RAG2) in 547 individuals from 15 locations. Phylogeographic analyses revealed four mtDNA lineages (d=0.006-0.015) corresponding to the Pacific Ocean, the Red Sea, and two admixed lineages in the Indian Ocean, a pattern consistent with known biogeographic barriers. Christmas Island in the eastern Indian Ocean had both Indian and Pacific lineages. Both S7 and RAG2 showed strong population-level differentiation between the Red Sea, Indian Ocean, and Pacific Ocean (ΦST=0.066-0.512). The only consistent population sub-structure within these three regions was at the Society Islands (French Polynesia), where surrounding oceanographic conditions may reinforce isolation. Coalescence analyses indicate the Pacific (1.7Ma) as the oldest extant lineage followed by the Red Sea lineage (1.4Ma). Results from a median-joining network suggest radiations of two lineages from the Red Sea that currently occupy the Indian Ocean (0.7-0.9Ma). Persistence of a Red Sea lineage through Pleistocene glacial cycles suggests a long-term refuge in this region. The affiliation of Pacific and Red Sea populations, apparent in cytochrome b and S7 (but equivocal in RAG2) raises the hypothesis that the Indian Ocean was recolonized from the Red Sea, possibly more than once. Assessing the genetic architecture of this widespread monotypic genus reveals cryptic evolutionary diversity that merits subspecific recognition. We recommend P.d. diacanthus and P.d. flavescens for the Pacific and Indian Ocean/Red Sea forms.
Collapse
Affiliation(s)
- Richard R Coleman
- Hawai'i Institute of Marine Biology, University of Hawai'i, PO Box 1346, Kāne'ohe, HI 96744, USA; Department of Biology, University of Hawai'i, Mānoa, 2500 Campus Rd, Honolulu, HI 96822, USA.
| | - Jeffrey A Eble
- University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Joseph D DiBattista
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia; Department of Environment and Agriculture, Curtin University, PO Box U1987, Perth, WA 6845, Australia
| | - Luiz A Rocha
- Section of Ichthyology, California Academy of Sciences, 55 Music Concourse Dr, San Francisco, CA 94118, USA
| | - John E Randall
- Bernice Pauahi Bishop Museum, 1525 Bernice St, Honolulu, HI 96817, USA
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Brian W Bowen
- Hawai'i Institute of Marine Biology, University of Hawai'i, PO Box 1346, Kāne'ohe, HI 96744, USA
| |
Collapse
|
31
|
Wilson NG, Kirkendale LA. Putting the ‘Indo’ back into the Indo-Pacific: resolving marine phylogeographic gaps. INVERTEBR SYST 2016. [DOI: 10.1071/is15032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Indo-Pacific is an extremely large marine realm that unites two oceans via a restricted Coral Triangle corridor, which was historically subjected to lowered sea levels during global glaciation. Although a strong phylogeographic focus on the Central and West Pacific has produced a large body of research, the Indian Ocean has been largely neglected. This may have serious consequences, because the Indian Ocean hosts a large number of marine centres of endemism, yet a large number of nations rely on its marine resources. We examine reasons for this neglect and review what is known about this region and its connectivity to the Indo-West Pacific. We draw attention to the ‘Leeuwin Effect’, a phenomenon where the southward flow of the Leeuwin Current is responsible for transporting larval propagules from the Coral Triangle region down the coast of Western Australia, resulting in broader Indo-West Pacific rather than Indian Ocean affinities. Given challenges in accessing infrastructure and samples, collaboration will inevitably be key to resolving data gaps. We challenge the assumption that the peak of shallow-water marine biodiversity is solely centred in the Coral Triangle, and raise awareness of a seemingly forgotten hypothesis promoting a secondary peak of biodiversity in the western Indian Ocean.
Collapse
|
32
|
Keith I, Dawson TP, Collins KJ, Campbell ML. Marine invasive species: establishing pathways, their presence and potential threats in the Galapagos Marine Reserve. ACTA ACUST UNITED AC 2016. [DOI: 10.1071/pc15020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Worldwide, marine biological invasions of non-native species have increased significantly in recent years due to a rapid rise in global trade, transport and tourism. Invasions occur when non-native species are transported from one region to another and establish, often resulting in competition displacing native species and changing ecosystems. Historic literature searches were conducted along with dive surveys of the main ports and in sites around the archipelago in order to produce a baseline of which non-native species are present in the Galapagos Marine Reserve at this time. Confounding processes of anthropogenic and natural activities are increasing the potential spread of marine invasive species in the Eastern Tropical Pacific and the Galapagos Marine Reserve. We discuss the potential vectors facilitating marine invasions with the suggestion that marine traffic could be the most influential vector in the transport of marine non-natives to the Galapagos Marine Reserve. The challenge for marine park authorities is to identify those species that are likely to cause negative impacts on native biodiversity and ecosystems before they establish in the Galapagos, and to develop pre-emptive strategies that would likely include prevention as well as risk-based management strategies to remove them or to mitigate their harmful effects.
Collapse
|
33
|
Outbreak of coral-eating Crown-of-Thorns creates continuous cloud of larvae over 320 km of the Great Barrier Reef. Sci Rep 2015; 5:16885. [PMID: 26592431 PMCID: PMC4655354 DOI: 10.1038/srep16885] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/21/2015] [Indexed: 01/11/2023] Open
Abstract
Coral reefs are in decline worldwide due to a combination of local and global causes. Over 40% of the recent coral loss on Australia's Great Barrier Reef (GBR) has been attributed to outbreaks of the coral-eating Crown-of-Thorns Seastar (CoTS). Testing of the hypotheses explaining these outbreaks is hampered by an inability to investigate the spatio-temporal distribution of larvae because they resemble other planktotrophic echinoderm larvae. We developed a genetic marker and tested it on 48 plankton samples collected during the 2014 spawning season in the northern GBR, and verified the method by PCR amplification of single larva. Surprisingly, most samples collected contained CoTS larvae. Larvae were detected 100 km south of current outbreaks of adult seastars, highlighting the potential for rapid expansion of the outbreak. A minimum estimate suggested that larvae numbers in the outbreak area (>10(10)) are about 4 orders of magnitude higher than adults (~10(6)) in the same area, implying that attempts to halt outbreaks by removing adults may be futile.
Collapse
|
34
|
McKeon CS, Moore JM. Species and size diversity in protective services offered by coral guard-crabs. PeerJ 2014; 2:e574. [PMID: 25289176 PMCID: PMC4183949 DOI: 10.7717/peerj.574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/22/2014] [Indexed: 11/20/2022] Open
Abstract
Coral guard-crabs in the genus Trapezia are well-documented defenders of their pocilloporid coral hosts against coral predators such as the Crown-of-Thorns seastar (Acanthaster planci complex). The objectives of this study were to examine the protective services of six species of Trapezia against corallivory, and the extent of functional diversity among these Trapezia species. Studies conducted in Mo'orea, French Polynesia showed the Trapezia-coral mutualism protected the host corals from multiple predators through functional diversity in the assemblage of crab symbionts. Species differed in their defensive efficacy, but species within similar size classes shared similar abilities. Smaller-size Trapezia species, which were previously thought to be ineffective guards, play important defensive roles against small corallivores. We also measured the benefits of this mutualism to corals in the midst of an Acanthaster outbreak that reduced the live coral cover on the fore reef to less than 4%. The mutualism may positively affect the reef coral demography and potential for recovery during adverse predation events through shelter of multiple species of small corals near the host coral. Our results show that while functional diversity is supported within the genus, some Trapezia species may be functionally equivalent within the same size class, decreasing the threat of gaps in coral protection caused by absence or replacement of any single Trapezia species.
Collapse
Affiliation(s)
- C. Seabird McKeon
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Smithsonian Institution Marine Science Network, Smithsonian Marine Station, Fort Pierce, FL, USA
| | - Jenna M. Moore
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Huelsken T, Keyse J, Liggins L, Penny S, Treml EA, Riginos C. A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean. PLoS One 2013; 8:e80858. [PMID: 24278333 PMCID: PMC3835327 DOI: 10.1371/journal.pone.0080858] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022] Open
Abstract
Giant clams (genus Tridacna) are iconic coral reef animals of the Indian and Pacific Oceans, easily recognizable by their massive shells and vibrantly colored mantle tissue. Most Tridacna species are listed by CITES and the IUCN Redlist, as their populations have been extensively harvested and depleted in many regions. Here, we survey Tridacna crocea and Tridacna maxima from the eastern Indian and western Pacific Oceans for mitochondrial (COI and 16S) and nuclear (ITS) sequence variation and consolidate these data with previous published results using phylogenetic analyses. We find deep intraspecific differentiation within both T. crocea and T. maxima. In T. crocea we describe a previously undocumented phylogeographic division to the east of Cenderawasih Bay (northwest New Guinea), whereas for T. maxima the previously described, distinctive lineage of Cenderawasih Bay can be seen to also typify western Pacific populations. Furthermore, we find an undescribed, monophyletic group that is evolutionarily distinct from named Tridacna species at both mitochondrial and nuclear loci. This cryptic taxon is geographically widespread with a range extent that minimally includes much of the central Indo-Pacific region. Our results reinforce the emerging paradigm that cryptic species are common among marine invertebrates, even for conspicuous and culturally significant taxa. Additionally, our results add to identified locations of genetic differentiation across the central Indo-Pacific and highlight how phylogeographic patterns may differ even between closely related and co-distributed species.
Collapse
Affiliation(s)
- Thomas Huelsken
- The University of Queensland, School of Biological Sciences, St Lucia, Australia
| | - Jude Keyse
- The University of Queensland, School of Biological Sciences, St Lucia, Australia
| | - Libby Liggins
- The University of Queensland, School of Biological Sciences, St Lucia, Australia
| | - Shane Penny
- Charles Darwin University, Research Institute for Environment and Livelihoods, Casuarina, Australia
| | - Eric A. Treml
- The University of Queensland, School of Biological Sciences, St Lucia, Australia
- University of Melbourne, Department of Zoology, Melbourne, Australia
| | - Cynthia Riginos
- The University of Queensland, School of Biological Sciences, St Lucia, Australia
- * E-mail:
| |
Collapse
|
36
|
Janzen DH, Hallwachs W, Blandin P, Burns JM, Cadiou JM, Chacon I, Dapkey T, Deans AR, Epstein ME, Espinoza B, Franclemont JG, Haber WA, Hajibabaei M, Hall JPW, Hebert PDN, Gauld ID, Harvey DJ, Hausmann A, Kitching IJ, Lafontaine D, Landry JF, Lemaire C, Miller JY, Miller JS, Miller L, Miller SE, Montero J, Munroe E, Green SR, Ratnasingham S, Rawlins JE, Robbins RK, Rodriguez JJ, Rougerie R, Sharkey MJ, Smith MA, Solis MA, Sullivan JB, Thiaucourt P, Wahl DB, Weller SJ, Whitfield JB, Willmott KR, Wood DM, Woodley NE, Wilson JJ. Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Mol Ecol Resour 2013; 9 Suppl s1:1-26. [PMID: 21564960 DOI: 10.1111/j.1755-0998.2009.02628.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inventory of the caterpillars, their food plants and parasitoids began in 1978 for today's Area de Conservacion Guanacaste (ACG), in northwestern Costa Rica. This complex mosaic of 120 000 ha of conserved and regenerating dry, cloud and rain forest over 0-2000 m elevation contains at least 10 000 species of non-leaf-mining caterpillars used by more than 5000 species of parasitoids. Several hundred thousand specimens of ACG-reared adult Lepidoptera and parasitoids have been intensively and extensively studied morphologically by many taxonomists, including most of the co-authors. DNA barcoding - the use of a standardized short mitochondrial DNA sequence to identify specimens and flush out undisclosed species - was added to the taxonomic identification process in 2003. Barcoding has been found to be extremely accurate during the identification of about 100 000 specimens of about 3500 morphologically defined species of adult moths, butterflies, tachinid flies, and parasitoid wasps. Less than 1% of the species have such similar barcodes that a molecularly based taxonomic identification is impossible. No specimen with a full barcode was misidentified when its barcode was compared with the barcode library. Also as expected from early trials, barcoding a series from all morphologically defined species, and correlating the morphological, ecological and barcode traits, has revealed many hundreds of overlooked presumptive species. Many but not all of these cryptic species can now be distinguished by subtle morphological and/or ecological traits previously ascribed to 'variation' or thought to be insignificant for species-level recognition. Adding DNA barcoding to the inventory has substantially improved the quality and depth of the inventory, and greatly multiplied the number of situations requiring further taxonomic work for resolution.
Collapse
Affiliation(s)
- Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Capa M, Pons J, Hutchings P. Cryptic diversity, intraspecific phenetic plasticity and recent geographical translocations inBranchiomma(Sabellidae, Annelida). ZOOL SCR 2013. [DOI: 10.1111/zsc.12028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Maria Capa
- Australian Museum; Sydney; NSW; 2010; Australia
| | - Joan Pons
- Instituto Mediterráneo de Estudios Avanzados; c/-Miquel Marquès, 21; 07190-Esporles; Balearic Islands; Spain
| | | |
Collapse
|
38
|
Abstract
Land is not the only barrier to dispersal encountered by marine organisms. For sedentary shallow water species, there is an additional, marine barrier, 5000 km of uninterrupted deep-water stretch between the central and the eastern Pacific. This expanse of water, known as the ‘Eastern Pacific Barrier’, has been separating faunas of the two oceanic regions since the beginning of the Cenozoic. Species with larvae that cannot stay in the plankton for the time it takes to cross between the two sides have been evolving independently. That the eastern Pacific does not share species with the rest of the Pacific was obvious to naturalists two centuries ago (Darwin 1860). Yet, this rule has exceptions. A small minority of species are known to straddle the Eastern Pacific Barrier. One such exception is the scleractinian coral Porites lobata (Fig. 1). This species is spread widely throughout the Indo-Pacific, where it is one of the major reef-builders, but it is also encountered in the eastern Pacific. Are eastern and central Pacific populations of this coral connected by gene flow? In this issue of Molecular Ecology, Baums et al. (2012) use microsatellite data to answer this question. They show that P. lobata populations in the eastern Pacific are cut off from genetic influx from the rest of the Pacific. Populations within each of the two oceanic regions are genetically connected (though those in the Hawaiian islands are also isolated). Significantly, the population in the Clipperton Atoll, the westernmost island in the eastern Pacific, genetically groups with populations from the central Pacific, suggesting that crossing the Eastern Pacific Barrier by P. lobata propagules does occasionally occur.
Collapse
Affiliation(s)
- H A Lessios
- Smithsonian Tropical Research Institute, Balboa, Panama.
| |
Collapse
|
39
|
Obura D. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS One 2012; 7:e45013. [PMID: 23028737 PMCID: PMC3446983 DOI: 10.1371/journal.pone.0045013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/15/2012] [Indexed: 11/24/2022] Open
Abstract
This study assesses the biogeographic classification of the Western Indian Ocean (WIO) on the basis of the species diversity and distribution of reef-building corals. Twenty one locations were sampled between 2002 and 2011. Presence/absence of scleractinian corals was noted on SCUBA, with the aid of underwater digital photographs and reference publications for species identification. Sampling effort varied from 7 to 37 samples per location, with 15 to 45 minutes per dive allocated to species observations, depending on the logistics on each trip. Species presence/absence was analyzed using the Bray-Curtis similarity coefficient, followed by cluster analysis and multi-dimensional scaling. Total (asymptotic) species number per location was estimated using the Michaelis-Menten equation. Three hundred and sixty nine coral species were named with stable identifications and used for analysis. At the location level, estimated maximum species richness ranged from 297 (Nacala, Mozambique) to 174 (Farquhar, Seychelles). Locations in the northern Mozambique Channel had the highest diversity and similarity, forming a core region defined by its unique oceanography of variable meso-scale eddies that confer high connectivity within this region. A distinction between mainland and island fauna was not found; instead, diversity decreased radially from the northern Mozambique Channel. The Chagos archipelago was closely related to the northern Mozambique Channel region, and analysis of hard coral data in the IUCN Red List found Chagos to be more closely related to the WIO than to the Maldives, India and Sri Lanka. Diversity patterns were consistent with primary oceanographic drivers in the WIO, reflecting inflow of the South Equatorial Current, maintenance of high diversity in the northern Mozambique Channel, and export from this central region to the north and south, and to the Seychelles and Mascarene islands.
Collapse
|
40
|
Phylogeography of the crown-of-thorns starfish in the Indian Ocean. PLoS One 2012; 7:e43499. [PMID: 22927975 PMCID: PMC3424128 DOI: 10.1371/journal.pone.0043499] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/24/2012] [Indexed: 01/01/2023] Open
Abstract
Background Understanding the limits and population dynamics of closely related sibling species in the marine realm is particularly relevant in organisms that require management. The crown-of-thorns starfish Acanthaster planci, recently shown to be a species complex of at least four closely related species, is a coral predator infamous for its outbreaks that have devastated reefs throughout much of its Indo-Pacific distribution. Methodology/Principal Findings In this first Indian Ocean-wide genetic study of a marine organism we investigated the genetic structure and inferred the paleohistory of the two Indian Ocean sister-species of Acanthaster planci using mitochondrial DNA sequence analyses. We suggest that the first of two main diversification events led to the formation of a Southern and Northern Indian Ocean sister-species in the late Pliocene-early Pleistocene. The second led to the formation of two internal clades within each species around the onset of the last interglacial. The subsequent demographic history of the two lineages strongly differed, the Southern Indian Ocean sister-species showing a signature of recent population expansion and hardly any regional structure, whereas the Northern Indian Ocean sister-species apparently maintained a constant size with highly differentiated regional groupings that were asymmetrically connected by gene flow. Conclusions/Significance Past and present surface circulation patterns in conjunction with ocean primary productivity were identified as the processes most likely to have shaped the genetic structure between and within the two Indian Ocean lineages. This knowledge will help to understand the biological or ecological differences of the two sibling species and therefore aid in developing strategies to manage population outbreaks of this coral predator in the Indian Ocean.
Collapse
|
41
|
Mah CL, Blake DB. Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS One 2012; 7:e35644. [PMID: 22563389 PMCID: PMC3338738 DOI: 10.1371/journal.pone.0035644] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
Members of the Asteroidea (phylum Echinodermata), popularly known as starfish or sea stars, are ecologically important and diverse members of marine ecosystems in all of the world's oceans. We present a comprehensive overview of diversity and phylogeny as they have figured into the evolution of the Asteroidea from Paleozoic to the living fauna. Living post-Paleozoic asteroids, the Neoasteroidea, are morphologically separate from those in the Paleozoic. Early Paleozoic asteroid faunas were diverse and displayed morphology that foreshadowed later living taxa. Preservation presents significant difficulties, but fossil occurrence and current accounts suggests a diverse Paleozoic fauna, which underwent extinction around the Permian-Triassic interval was followed by re-diversification of at least one surviving lineage. Ongoing phylogenetic classification debates include the status of the Paxillosida and the Concentricycloidea. Fossil and molecular evidence has been and continues to be part of the ongoing evolution of asteroid phylogenetic research. The modern lineages of asteroids include the Valvatacea, the Forcipulatacea, the Spinlosida, and the Velatida. We present an overview of diversity in these taxa, as well as brief notes on broader significance, ecology, and functional morphology of each. Although much asteroid taxonomy is stable, many new taxa remain to be discovered with many new species currently awaiting description. The Goniasteridae is currently one of the most diverse families within the Asteroidea. New data from molecular phylogenetics and the advent of global biodiversity databases, such as the World Asteroidea Database (http://www.marinespecies.org/Asteroidea/) present important new springboards for understanding the global biodiversity and evolution of asteroids.
Collapse
Affiliation(s)
- Christopher L Mah
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, United States of America.
| | | |
Collapse
|
42
|
SHEPPARD CRC, ATEWEBERHAN M, BOWEN BW, CARR P, CHEN CA, CLUBBE C, CRAIG MT, EBINGHAUS R, EBLE J, FITZSIMMONS N, GAITHER MR, GAN CH, GOLLOCK M, GUZMAN N, GRAHAM NAJ, HARRIS A, JONES R, KESHAVMURTHY S, KOLDEWEY H, LUNDIN CG, MORTIMER JA, OBURA D, PFEIFFER M, PRICE ARG, PURKIS S, RAINES P, READMAN JW, RIEGL B, ROGERS A, SCHLEYER M, SEAWARD MRD, SHEPPARD ALS, TAMELANDER J, TURNER JR, VISRAM S, VOGLER C, VOGT S, WOLSCHKE H, YANG JMC, YANG SY, YESSON C. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world's largest no-take marine protected area. AQUATIC CONSERVATION : MARINE AND FRESHWATER ECOSYSTEMS 2012; 22:232-261. [PMID: 25505830 PMCID: PMC4260629 DOI: 10.1002/aqc.1248] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Chagos Archipelago was designated a no-take marine protected area (MPA) in 2010; it covers 550 000 km2, with more than 60 000 km2 shallow limestone platform and reefs. This has doubled the global cover of such MPAs.It contains 25-50% of the Indian Ocean reef area remaining in excellent condition, as well as the world's largest contiguous undamaged reef area. It has suffered from warming episodes, but after the most severe mortality event of 1998, coral cover was restored after 10 years.Coral reef fishes are orders of magnitude more abundant than in other Indian Ocean locations, regardless of whether the latter are fished or protected.Coral diseases are extremely low, and no invasive marine species are known.Genetically, Chagos marine species are part of the Western Indian Ocean, and Chagos serves as a 'stepping-stone' in the ocean.The no-take MPA extends to the 200 nm boundary, and. includes 86 unfished seamounts and 243 deep knolls as well as encompassing important pelagic species.On the larger islands, native plants, coconut crabs, bird and turtle colonies were largely destroyed in plantation times, but several smaller islands are in relatively undamaged state.There are now 10 'important bird areas', coconut crab density is high and numbers of green and hawksbill turtles are recovering.Diego Garcia atoll contains a military facility; this atoll contains one Ramsar site and several 'strict nature reserves'. Pollutant monitoring shows it to be the least polluted inhabited atoll in the world. Today, strict environmental regulations are enforced.Shoreline erosion is significant in many places. Its economic cost in the inhabited part of Diego Garcia is very high, but all islands are vulnerable.Chagos is ideally situated for several monitoring programmes, and use is increasingly being made of the archipelago for this purpose.
Collapse
Affiliation(s)
| | - M. ATEWEBERHAN
- School of Life Sciences, University of Warwick, CV4 7AL, UK
| | - B. W. BOWEN
- Hawai’i Institute of Marine Biology, P.O. Box 1346, Kane’ohe, Hawai’i. 96744, USA
| | - P. CARR
- BF BIOT, Diego Garcia, BIOT, BFPO 485, UK
| | - C. A. CHEN
- Biodiversity Research Centre, Academia Sinica, 128 Academia Road, Nankang, Taipei, 115, Taiwan
| | - C. CLUBBE
- Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK
| | - M. T. CRAIG
- Department of Marine Sciences, University of Puerto Rico, Mayaguez, P.O. Box 9000, Mayaguez, PR 00681
| | - R. EBINGHAUS
- Department for Environmental Chemistry, Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max-Planck-Straße 1 I 21502, Geesthacht I, Germany
| | - J. EBLE
- Hawai’i Institute of Marine Biology, P.O. Box 1346, Kane’ohe, Hawai’i. 96744, USA
| | - N. FITZSIMMONS
- Institute for Applied Ecology, University of Canberra, ACT 2601, Australia
| | - M. R. GAITHER
- Hawai’i Institute of Marine Biology, P.O. Box 1346, Kane’ohe, Hawai’i. 96744, USA
| | - C-H. GAN
- Biodiversity Research Centre, Academia Sinica, 128 Academia Road, Nankang, Taipei, 115, Taiwan
| | - M. GOLLOCK
- Zoological Society of London, Regents Park, London, NW1 4RY, UK
| | - N. GUZMAN
- Nestor Guzman: NAVFACFE PWD DG Environmental, PSC 466 Box 5, FPO AP, 96595-0005
| | - N. A. J. GRAHAM
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - A. HARRIS
- School of Life Sciences, University of Warwick, CV4 7AL, UK
| | - R. JONES
- Zoological Society of London, Regents Park, London, NW1 4RY, UK
| | - S. KESHAVMURTHY
- Biodiversity Research Centre, Academia Sinica, 128 Academia Road, Nankang, Taipei, 115, Taiwan
| | - H. KOLDEWEY
- Zoological Society of London, Regents Park, London, NW1 4RY, UK
| | - C. G. LUNDIN
- IUCN Marine Programme, Rue Mauverney 28, Gland, 1196, Switzerland
| | - J. A. MORTIMER
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - D. OBURA
- CORDIO East Africa, #9 Kibaki Flats, Kenyatta Beach, Bamburi Beach, P.O.BOX 10135, Mombasa 80101, Kenya
| | - M. PFEIFFER
- RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
| | - A. R. G. PRICE
- School of Life Sciences, University of Warwick, CV4 7AL, UK
| | - S. PURKIS
- National Coral Reef Institute, Nova Southeastern University, Oceanographic Center, 8000 North Ocean Drive, Dania Beach, FL 33004, USA
| | - P. RAINES
- Coral Cay Conservation, Elizabeth House, 39 York Road, London SE1 7NQ, UK
| | - J. W. READMAN
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - B. RIEGL
- National Coral Reef Institute, Nova Southeastern University, Oceanographic Center, 8000 North Ocean Drive, Dania Beach, FL 33004, USA
| | - A. ROGERS
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| | - M. SCHLEYER
- Oceanographic Research Institute, PO Box 10712, Marine Parade, Durban, 4056, South Africa
| | - M. R. D SEAWARD
- Division of Archaeological, Geographical and Environmental Sciences, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK
| | | | - J. TAMELANDER
- UNEP Division of Environmental Policy Implementation, UN, Rajdamnern Nok Av., Bangkok, 10200, Thailand
| | - J. R. TURNER
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - S. VISRAM
- Biodiversity Research Centre, Academia Sinica, 128 Academia Road, Nankang, Taipei, 115, Taiwan
| | - C. VOGLER
- Department für Geo- und Umweltwissenschaften Paläontologie & Geobiologie, Ludwig- Maximilians-Universität, Richard-Wagner-Str.10, 80333, München, Germany
| | - S. VOGT
- Naval Facilities Engineering Command Far East, PSC 473, Box 1, FPO AP 96349, USA
| | - H. WOLSCHKE
- Department for Environmental Chemistry, Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max-Planck-Straße 1 I 21502, Geesthacht I, Germany
| | - J. M-C. YANG
- Biodiversity Research Centre, Academia Sinica, 128 Academia Road, Nankang, Taipei, 115, Taiwan
| | - S-Y. YANG
- Biodiversity Research Centre, Academia Sinica, 128 Academia Road, Nankang, Taipei, 115, Taiwan
| | - C. YESSON
- Zoological Society of London, Regents Park, London, NW1 4RY, UK
| |
Collapse
|
43
|
Timmers MA, Bird CE, Skillings DJ, Smouse PE, Toonen RJ. There's no place like home: crown-of-thorns outbreaks in the central pacific are regionally derived and independent events. PLoS One 2012; 7:e31159. [PMID: 22363570 PMCID: PMC3281911 DOI: 10.1371/journal.pone.0031159] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/03/2012] [Indexed: 11/18/2022] Open
Abstract
One of the most significant biological disturbances on a tropical coral reef is a population outbreak of the fecund, corallivorous crown-of-thorns sea star, Acanthaster planci. Although the factors that trigger an initial outbreak may vary, successive outbreaks within and across regions are assumed to spread via the planktonic larvae released from a primary outbreak. This secondary outbreak hypothesis is predominantly based on the high dispersal potential of A. planci and the assertion that outbreak populations (a rogue subset of the larger population) are genetically more similar to each other than they are to low-density non-outbreak populations. Here we use molecular techniques to evaluate the spatial scale at which A. planci outbreaks can propagate via larval dispersal in the central Pacific Ocean by inferring the location and severity of gene flow restrictions from the analysis of mtDNA control region sequence (656 specimens, 17 non-outbreak and six outbreak locations, six archipelagos, and three regions). Substantial regional, archipelagic, and subarchipelagic-scale genetic structuring of A. planci populations indicate that larvae rarely realize their dispersal potential and outbreaks in the central Pacific do not spread across the expanses of open ocean. On a finer scale, genetic partitioning was detected within two of three islands with multiple sampling sites. The finest spatial structure was detected at Pearl & Hermes Atoll, between the lagoon and forereef habitats (<10 km). Despite using a genetic marker capable of revealing subtle partitioning, we found no evidence that outbreaks were a rogue genetic subset of a greater population. Overall, outbreaks that occur at similar times across population partitions are genetically independent and likely due to nutrient inputs and similar climatic and ecological conditions that conspire to fuel plankton blooms.
Collapse
Affiliation(s)
- Molly A. Timmers
- Coral Reef Ecosystem Division, Joint Institute for Marine and Atmospheric Research, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA) Fisheries, Honolulu, Hawai'i, United States of America
- * E-mail:
| | - Christopher E. Bird
- School of Ocean and Earth Science and Technology, Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, Hawai'i, United States of America
| | - Derek J. Skillings
- School of Ocean and Earth Science and Technology, Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, Hawai'i, United States of America
- Department of Zoology, University of Hawai'I, Honolulu, Hawai'i, United States of America
| | - Peter E. Smouse
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Robert J. Toonen
- School of Ocean and Earth Science and Technology, Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, Hawai'i, United States of America
| |
Collapse
|
44
|
Klint LM, Jiang M, Law A, Delacy T, Filep S, Calgaro E, Dominey-Howes D, Harrison D. Dive Tourism in Luganville, Vanuatu: Shocks, Stressors, and Vulnerability to Climate Change. ACTA ACUST UNITED AC 2012. [DOI: 10.3727/154427312x13262430524225] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Luganville is a developing dive tourism destination region (DTDR) in Vanuatu, which relies on tourism. This article reports on the shocks and stressors faced by Luganville's dive tourism sector and climate change's exacerbation of these. The study's methodology was based on rapid rural
appraisal and case study principles, involving methods of semistructured interviews, group discussions, and personal observations. Data were analyzed using a thematic analysis approach. Key shocks identified include cyclones, earthquakes, effect on demand due to media footage, and changes
to international flights. Main stressors were starfish outbreaks and environmental degradation. Unlike the indigenous communities, expatriates show little concern for the potential impact of climate change, presenting response challenges that must incorporate different perspectives to develop
effective adaptation options.
Collapse
|
45
|
Muñoz AG, Baxter SW, Linares M, Jiggins CD. Deep mitochondrial divergence within a Heliconius butterfly species is not explained by cryptic speciation or endosymbiotic bacteria. BMC Evol Biol 2011; 11:358. [PMID: 22151691 PMCID: PMC3287262 DOI: 10.1186/1471-2148-11-358] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/12/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptic population structure can be an indicator of incipient speciation or historical processes. We investigated a previously documented deep break in the mitochondrial haplotypes of Heliconius erato chestertonii to explore the possibility of cryptic speciation, and also the possible presence of endosymbiont bacteria that might drive mitochondrial population structure. RESULTS Among a sample of 315 individuals from 16 populations of western Colombia, two principal mtDNA clades were detected with 2.15% divergence and we confirmed this structure was weakly associated with geography. The first mtDNA clade included 87% of individuals from northern populations and was the sister group of H. erato members of Andes western, while the second clade contained most individuals from southern populations (78%), which shared haplotypes with an Ecuadorian race of H. erato. In contrast, analysis using AFLP markers showed H. e. chestertonii to be a genetically homogeneous species with no association between mitochondrial divergence and AFLP structure. The lack of congruence between molecular markers suggests that cryptic speciation is not a plausible explanation for the deep mitochondrial divergence in H. e chestertonii. We also carried out the first tests for the presence of endosymbiontic bacteria in Heliconius, and identified two distinct lineages of Wolbachia within H. e. chestertonii. However, neither of the principal mitochondrial clades of H. e. chestertonii was directly associated with the patterns of infection. CONCLUSIONS We conclude that historical demographic processes are the most likely explanation for the high mitochondrial differentiation in H. e. chestertonii, perhaps due to gene flow between Cauca valley H. e. chestertonii and west Pacific slope populations of H. erato.
Collapse
Affiliation(s)
- Astrid G Muñoz
- Instituto de Genética, Departamento de Ciencias Biologicas-Facultad de Ciencias, Universidad de los Andes, Carrera 1 No 18A-70, Bogotá, DC, Colombia.
| | | | | | | |
Collapse
|
46
|
Boissin E, Stöhr S, Chenuil A. Did vicariance and adaptation drive cryptic speciation and evolution of brooding in Ophioderma longicauda (Echinodermata: Ophiuroidea), a common Atlanto-Mediterranean ophiuroid? Mol Ecol 2011; 20:4737-55. [PMID: 22008223 DOI: 10.1111/j.1365-294x.2011.05309.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over the last decade, cryptic speciation has been discovered in an increasing number of taxa. Species complexes are useful models for the understanding of speciation processes. Motivated by the discovery of brooding specimens in the common Atlanto-Mediterranean broadcast spawning brittle star, Ophioderma longicauda, a recent study revealed the occurrence of divergent mitochondrial lineages. We analysed 218 specimens from 23 locations spread over the geographic range of the species with partial Cytochrome c Oxidase subunit I (COI) sequences. A subset of this sample was also surveyed with the internal transcribed spacer of the ribosomal DNA cluster (nuclear ITS-1). Our study revealed six highly divergent mitochondrial lineages, and the ITS-1 data confirmed that they most likely represent a species complex. Geographic ranges, abundances and genetic structures are contrasted among the putative cryptic species. Lineages in which brooding specimens have been found form a monophyletic group and are restricted to the Eastern Mediterranean basin, an oligotrophic zone. A phylogeny-trait association analysis revealed a phylogenetic signal for low 'chlorophyll a' values (our proxy for oligotrophy). An ecological shift related to the hyper oligotrophy of the Eastern Mediterranean region is therefore likely to have played a role in the evolution of brooding. This study revealed that a complex mixture of vicariance, population expansion, adaptive divergence and possibly high local diversification rates resulting from brooding has shaped the evolution of this species complex. The dating analysis showed that these events probably occurred in the Pleistocene epoch.
Collapse
Affiliation(s)
- E Boissin
- CNRS UMR 6540 DIMAR, Centre d'Océanologie de Marseille, Aix-Marseille University, Station Marine d'Endoume, Rue de la batterie des Lions, Marseille 13007, France.
| | | | | |
Collapse
|
47
|
Hybridization, Mitochondrial DNA Phylogeography, and Prediction of the Early Stages of Reproductive Isolation: Lessons from New Zealand Cicadas (Genus Kikihia). Syst Biol 2011; 60:482-502. [DOI: 10.1093/sysbio/syr017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
48
|
|
49
|
MAH CHRISTOPHER, NIZINSKI MARTHA, LUNDSTEN LONNY. Phylogenetic revision of the Hippasterinae (Goniasteridae; Asteroidea): systematics of deep sea corallivores, including one new genus and three new species. Zool J Linn Soc 2010. [DOI: 10.1111/j.1096-3642.2010.00638.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
RAVAGO-GOTANCO RG, JUINIO-MEÑEZ MA. Phylogeography of the mottled spinefoot Siganus fuscescens: Pleistocene divergence and limited genetic connectivity across the Philippine archipelago. Mol Ecol 2010; 19:4520-34. [DOI: 10.1111/j.1365-294x.2010.04803.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|