1
|
Franks VR, Thorogood R, Brekke P. Parental breeding decisions and genetic quality predict social structure of independent offspring. Mol Ecol 2023; 32:4898-4910. [PMID: 37395642 DOI: 10.1111/mec.17066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/28/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
Across the animal kingdom, newly independent juveniles form social associations that influence later fitness, mate choice and gene flow, but little is known about the ontogeny of social environments, particularly in wild populations. Here we test whether associations among young animals form randomly or are influenced by environmental or genetic conditions established by parents. Parents' decisions determine natal birth sites, which could affect who independent young initially encounter; secondly, mate choice determines genetic condition (e.g. inbreeding) of young and the parental care they receive, which can affect sociability. However, genetic and environmental factors are confounded unless related offspring experience different natal environments. Therefore, we used a long-term genetic pedigree, breeding records and social network data from three cohorts of a songbird with high extra-pair paternity (hihi, Notiomystis cincta) to disentangle (1) how nest location and relatedness contribute to association structure once juveniles disperse away from birth sites, and (2) if juvenile and/or parental inbreeding predicts individual sociability. We detected positive spatial autocorrelation: hihi that fledged closer by were more likely to associate even after dispersing, irrespective of genetic relatedness. Juvenile inbreeding did not predict sociability, but those raised by more inbred fathers formed more, stronger, associations, which did not depend on whether that male was the genetic parent or not. These results suggest that the natal environment created by parents, rather than focal genetic condition, establishes the foundation for social associations. Overall, we highlight how social inheritance may play an important role in population dynamics and evolutionary potential in wild animals.
Collapse
Affiliation(s)
- Victoria R Franks
- Department of Biological Sciences, University of Chester, Chester, UK
| | - Rose Thorogood
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, London, UK
| |
Collapse
|
2
|
Braga Goncalves I, Radford AN. Experimental evidence that chronic outgroup conflict reduces reproductive success in a cooperatively breeding fish. eLife 2022; 11:72567. [PMID: 36102799 PMCID: PMC9473690 DOI: 10.7554/elife.72567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Conflicts with conspecific outsiders are common in group-living species, from ants to primates, and are argued to be an important selective force in social evolution. However, whilst an extensive empirical literature exists on the behaviour exhibited during and immediately after interactions with rivals, only very few observational studies have considered the cumulative fitness consequences of outgroup conflict. Using a cooperatively breeding fish, the daffodil cichlid (Neolamprologus pulcher), we conducted the first experimental test of the effects of chronic outgroup conflict on reproductive investment and output. ‘Intruded’ groups received long-term simulated territorial intrusions by neighbours that generated consistent group-defence behaviour; matched ‘Control’ groups (each the same size and with the same neighbours as an Intruded group) received no intrusions in the same period. Intruded groups had longer inter-clutch intervals and produced eggs with increasingly less protein than Control groups. Despite the lower egg investment, Intruded groups provided more parental care and achieved similar hatching success to Control groups. Ultimately, however, Intruded groups had fewer and smaller surviving offspring than Control groups at 1-month post-hatching. We therefore provide experimental evidence that outgroup conflict can decrease fitness via cumulative effects on reproductive success, confirming the selective potential of this empirically neglected aspect of sociality.
Collapse
Affiliation(s)
| | - Andrew N Radford
- School of Biological Sciences/Life Sciences, University of Bristol
| |
Collapse
|
3
|
Schausberger P, Rendon D. Transgenerational effects of grandparental and parental diets combine with early-life learning to shape adaptive foraging phenotypes in Amblyseius swirskii. Commun Biol 2022; 5:246. [PMID: 35314761 PMCID: PMC8938427 DOI: 10.1038/s42003-022-03200-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Transgenerational effects abound in animals. While a great deal of research has been dedicated to the effects of maternal stressors such as diet deficiency, social deprivation or predation risk on offspring phenotypes, we have a poor understanding of the adaptive value of transgenerational effects spanning across multiple generations under benign conditions and the relative weight of multigenerational effects. Here we show that grandparental and parental diet experiences combine with personal early-life learning to form adaptive foraging phenotypes in adult plant-inhabiting predatory mites Amblyseius swirskii. Our findings provide insights into transgenerational plasticity caused by persistent versus varying conditions in multiple ancestral generations and show that transgenerational effects may be adaptive in non-matching ancestor and offspring environments.
Collapse
Affiliation(s)
- Peter Schausberger
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Dalila Rendon
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| |
Collapse
|
4
|
Naug D, Tait C. Slow-Fast Cognitive Phenotypes and Their Significance for Social Behavior: What Can We Learn From Honeybees? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.766414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognitive variation is proposed to be the fundamental underlying factor that drives behavioral variation, yet it is still to be fully integrated with the observed variation at other phenotypic levels that has recently been unified under the common pace-of-life framework. This cognitive and the resulting behavioral diversity is especially significant in the context of a social group, the performance of which is a collective outcome of this diversity. In this review, we argue about the utility of classifying cognitive traits along a slow-fast continuum in the larger context of the pace-of-life framework. Using Tinbergen’s explanatory framework for different levels of analyses and drawing from the large body of knowledge about honeybee behavior, we discuss the observed interindividual variation in cognitive traits and slow-fast cognitive phenotypes from an adaptive, evolutionary, mechanistic and developmental perspective. We discuss the challenges in this endeavor and suggest possible next steps in terms of methodological, statistical and theoretical approaches to move the field forward for an integrative understanding of how slow-fast cognitive differences, by influencing collective behavior, impact social evolution.
Collapse
|
5
|
Abstract
Explaining how animals respond to an increasingly urbanised world is a major challenge for evolutionary biologists. Urban environments often present animals with novel problems that differ from those encountered in their evolutionary past. To navigate these rapidly changing habitats successfully, animals may need to adjust their behaviour flexibly over relatively short timescales. These behavioural changes, in turn, may be facilitated by an ability to acquire, store and process information from the environment. The question of how cognitive abilities allow animals to avoid threats and exploit resources (or constrain their ability to do so) is attracting increasing research interest, with a growing number of studies investigating cognitive and behavioural differences between urban-dwelling animals and their non-urban counterparts. In this review we consider why such differences might arise, focusing on the informational challenges faced by animals living in urban environments, and how different cognitive abilities can assist in overcoming these challenges. We focus largely on birds, as avian taxa have been the subject of most research to date, but discuss work in other species where relevant. We also address the potential consequences of cognitive variation at the individual and species level. For instance, do urban environments select for, or influence the development of, particular cognitive abilities? Are individuals or species with particular cognitive phenotypes more likely to become established in urban habitats? How do other factors, such as social behaviour and individual personality, interact with cognition to influence behaviour in urban environments? The aim of this review is to synthesise current knowledge and identify key avenues for future research, in order to improve our understanding of the ecological and evolutionary consequences of urbanisation.
Collapse
Affiliation(s)
- Victoria E Lee
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, UK
| |
Collapse
|
6
|
Franks VR, Ewen JG, McCready M, Thorogood R. Foraging behaviour alters with social environment in a juvenile songbird. Proc Biol Sci 2020; 287:20201878. [PMID: 33234077 DOI: 10.1098/rspb.2020.1878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Early independence from parents is a critical period where social information acquired vertically may become outdated, or conflict with new information. However, across natural populations, it is unclear if newly independent young persist in using information from parents, or if group-level effects of conformity override previous behaviours. Here, we test if wild juvenile hihi (Notiomystis cincta, a New Zealand passerine) retain a foraging behaviour from parents, or if they change in response to the behaviour of peers. We provided feeding stations to parents during chick-rearing to seed alternative access routes, and then tracked their offspring's behaviour. Once independent, juveniles formed mixed-treatment social groups, where they did not retain preferences from their time with parents. Instead, juvenile groups converged over time to use one access route- per group, and juveniles that moved between groups switched to copy the locally favoured option. Juvenile hihi did not copy specific individuals, even if they were more familiar with the preceding bird. Our study shows that early social experiences with parents affect initial foraging decisions, but social environments encountered later on can update transmission of arbitrary behaviours. This suggests that conformity may be widespread in animal groups, with potential cultural, ecological and evolutionary consequences.
Collapse
Affiliation(s)
- Victoria R Franks
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Mhairi McCready
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK.,Hihi Conservation Charitable Trust, Rotorua, New Zealand
| | - Rose Thorogood
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland.,Research program in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
7
|
Harris BN. Stress hypothesis overload: 131 hypotheses exploring the role of stress in tradeoffs, transitions, and health. Gen Comp Endocrinol 2020; 288:113355. [PMID: 31830473 DOI: 10.1016/j.ygcen.2019.113355] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Stress is ubiquitous and thus, not surprisingly, many hypotheses and models have been created to better study the role stress plays in life. Stress spans fields and is found in the literature of biology, psychology, psychophysiology, sociology, economics, and medicine, just to name a few. Stress, and the hypothalamic-pituitaryadrenal/interrenal (HPA/I) axis and sympathetic nervous system (SNS), are involved in a multitude of behaviors and physiological processes, including life-history and ecological tradeoffs, developmental transitions, health, and survival. The goal of this review is to highlight and summarize the large number of available hypotheses and models, to aid in comparative and interdisciplinary thinking, and to increase reproducibility by a) discouraging hypothesizing after results are known (HARKing) and b) encouraging a priori hypothesis testing. For this review I collected 214 published hypotheses or models dealing broadly with stress. In the main paper, I summarized and categorized 131 of those hypotheses and models which made direct connections among stress and/or HPA/I and SNS, tradeoffs, transitions, and health. Of those 131, the majority made predictions about reproduction (n = 43), the transition from health to disease (n = 38), development (n = 23), and stress coping (n = 18). Additional hypotheses were classified as stage-spanning or models (n = 37). The additional 83 hypotheses found during searches were tangentially related, or pertained to immune function or oxidative stress, and these are listed separately. Many of the hypotheses share underlying rationale and suggest similar, if not identical, predictions, and are thus not mutually exclusive; some hypotheses spanned classification categories. Some of the hypotheses have been tested multiple times, whereas others have only been examined a few times. It is the hope that multi-disciplinary stress researchers will begin to harmonize their naming of hypotheses in the literature so as to build a clearer picture of how stress impacts various outcomes across fields. The paper concludes with some considerations and recommendations for robust testing of stress hypotheses.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
8
|
Abstract
Baumard's perspective asserts that "opportunity is the mother of innovation," in contrast to the adage ascribing this role to necessity. Drawing on behavioral ecology and cognition, we propose that both extremes - affluence and scarcity - can drive innovation. We suggest that the types of innovations at these two extremes differ and that both rely on mechanisms operating on different time scales.
Collapse
|
9
|
Franks VR, McCready M, Savage JL, Thorogood R. Time Spent With Parents Varies With Early-Life Condition, but Does Not Predict Survival or Sociality of Juvenile Hihi. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
|
11
|
Walker DJ, Zimmer C, Larriva M, Healy SD, Spencer KA. Early-life adversity programs long-term cytokine and microglia expression within the HPA axis in female Japanese quail. J Exp Biol 2019; 222:jeb.187039. [DOI: 10.1242/jeb.187039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022]
Abstract
Stress exposure during pre and post-natal development can have persistent and often dysfunctional effects on several physiological systems, including immune function, affecting the ability to combat infection. The neuro-immune response is inextricably linked to the action of the Hypothalamic Pituitary Adrenal (HPA) axis. Cytokines released from neuro-immune cells, including microglia, activate the HPA axis while glucocorticoids in turn regulate cytokine release from microglia. Because of the close links between these two physiological systems, coupled with potential for persistent changes to HPA axis activity following developmental stress, components of the neuro-immune system could be targets for developmental programming. However, little is known of any programming effects of developmental stress on neuro-immune function. We investigated whether developmental stress exposure via elevated pre-natal corticosterone (CORT) or post-natal unpredictable food availability, had long-term effects on pro (IL-1β) and anti-inflammatory (IL-10) cytokine and microglia-dependent gene (CSF1R) expression within HPA axis tissues in a precocial bird, the Japanese quail (Coturnix japonica). Following post-natal stress, we observed increased IL-1β expression in the pituitary gland, reduced IL-10 expression in the amygdala and hypothalamus and reduced CSF1R expression within the hypothalamus and pituitary gland. Post-natal stress disrupted the ratio of IL-1β:IL-10 expression within the hippocampus and hypothalamus. Pre-natal stress only increased IL-1β expression in the pituitary gland. We found no evidence for interactive or cumulative effects across life stages on basal cytokine and glia expression in adulthood. We show that post-natal stress may have a larger impact than elevated pre-natal CORT on basal immunity in HPA axis specific brain regions, with changes in cytokine homeostasis and microglia abundance. These results provide evidence for post-natal programming of a pro-inflammatory neuro-immune phenotype at the expense of reduced microglia, which could have implications for CNS health and subsequent neuro-immune responses.
Collapse
Affiliation(s)
- David J. Walker
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| | - Cédric Zimmer
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Maria Larriva
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| | - Susan D. Healy
- School of Biology, Harold Mitchell Building, University of St Andrews, KY16 9TH, UK
| | - Karen A. Spencer
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| |
Collapse
|
12
|
Boogert NJ, Lachlan RF, Spencer KA, Templeton CN, Farine DR. Stress hormones, social associations and song learning in zebra finches. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170290. [PMID: 30104435 PMCID: PMC6107560 DOI: 10.1098/rstb.2017.0290] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 11/12/2022] Open
Abstract
The use of information provided by others is a common short-cut adopted to inform decision-making. However, instead of indiscriminately copying others, animals are often selective in what, when and whom they copy. How do they decide which 'social learning strategy' to use? Previous research indicates that stress hormone exposure in early life may be important: while juvenile zebra finches copied their parents' behaviour when solving novel foraging tasks, those exposed to elevated levels of corticosterone (CORT) during development copied only unrelated adults. Here, we tested whether this switch in social learning strategy generalizes to vocal learning. In zebra finches, juvenile males often copy their father's song; would CORT-treated juveniles in free-flying aviaries switch to copying songs of other males? We found that CORT-treated juveniles copied their father's song less accurately as compared to control juveniles. We hypothesized that this could be due to having weaker social foraging associations with their fathers, and found that sons that spent less time foraging with their fathers produced less similar songs. Our findings are in line with a novel hypothesis linking early-life stress and social learning: early-life CORT exposure may affect social learning indirectly as a result of the way it shapes social affiliations.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Neeltje J Boogert
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Robert F Lachlan
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Karen A Spencer
- School of Psychology and Neuroscience, University of St. Andrews, St Andrews KY16 9JP, UK
| | | | - Damien R Farine
- Department of Collective Behaviour, Max Planck Institute for Ornithology, Radolfzell 78315, Germany
- Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz, Konstanz 78464, Germany
| |
Collapse
|
13
|
Davidson GL, Cooke AC, Johnson CN, Quinn JL. The gut microbiome as a driver of individual variation in cognition and functional behaviour. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170286. [PMID: 30104431 PMCID: PMC6107574 DOI: 10.1098/rstb.2017.0286] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 12/30/2022] Open
Abstract
Research into proximate and ultimate mechanisms of individual cognitive variation in animal populations is a rapidly growing field that incorporates physiological, behavioural and evolutionary investigations. Recent studies in humans and laboratory animals have shown that the enteric microbial community plays a central role in brain function and development. The 'gut-brain axis' represents a multi-directional signalling system that encompasses neurological, immunological and hormonal pathways. In particular it is tightly linked with the hypothalamic-pituitary-adrenal axis (HPA), a system that regulates stress hormone release and influences brain development and function. Experimental examination of the microbiome through manipulation of diet, infection, stress and exercise, suggests direct effects on cognition, including learning and memory. However, our understanding of these processes in natural populations is extremely limited. Here, we outline how recent advances in predominantly laboratory-based microbiome research can be applied to understanding individual differences in cognition. Experimental manipulation of the microbiome across natal and adult environments will help to unravel the interplay between cognitive variation and the gut microbial community. Focus on individual variation in the gut microbiome and cognition in natural populations will reveal new insight into the environmental and evolutionary constraints that drive individual cognitive variation.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Gabrielle L Davidson
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland T12 XF62
| | - Amy C Cooke
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland T12 XF62
| | - Crystal N Johnson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland P61 C996
| | - John L Quinn
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland T12 XF62
| |
Collapse
|
14
|
Kendal RL, Boogert NJ, Rendell L, Laland KN, Webster M, Jones PL. Social Learning Strategies: Bridge-Building between Fields. Trends Cogn Sci 2018; 22:651-665. [PMID: 29759889 DOI: 10.1016/j.tics.2018.04.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 01/13/2023]
Abstract
While social learning is widespread, indiscriminate copying of others is rarely beneficial. Theory suggests that individuals should be selective in what, when, and whom they copy, by following 'social learning strategies' (SLSs). The SLS concept has stimulated extensive experimental work, integrated theory, and empirical findings, and created impetus to the social learning and cultural evolution fields. However, the SLS concept needs updating to accommodate recent findings that individuals switch between strategies flexibly, that multiple strategies are deployed simultaneously, and that there is no one-to-one correspondence between psychological heuristics deployed and resulting population-level patterns. The field would also benefit from the simultaneous study of mechanism and function. SLSs provide a useful vehicle for bridge-building between cognitive psychology, neuroscience, and evolutionary biology.
Collapse
Affiliation(s)
- Rachel L Kendal
- Centre for Coevolution of Biology & Culture, Durham University, Anthropology Department, Durham, DH1 3LE, UK.
| | - Neeltje J Boogert
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9EZ, UK
| | - Luke Rendell
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, KY16 9TS, UK
| | - Kevin N Laland
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, KY16 9TS, UK
| | - Mike Webster
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, KY16 9TS, UK
| | - Patricia L Jones
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
15
|
Podmokła E, Drobniak SM, Rutkowska J. Chicken or egg? Outcomes of experimental manipulations of maternally transmitted hormones depend on administration method - a meta-analysis. Biol Rev Camb Philos Soc 2018; 93:1499-1517. [PMID: 29573376 DOI: 10.1111/brv.12406] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 01/28/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
Steroid hormones are important mediators of prenatal maternal effects in animals. Despite a growing number of studies involving experimental manipulation of these hormones, little is known about the impact of methodological differences among experiments on the final results expressed as offspring traits. Using a meta-analytical approach and a representative sample of experimental studies performed on birds, we tested the effect of two types of direct hormonal manipulations: manipulation of females (either by implantation of hormone pellets or injection of hormonal solutions) and manipulation of eggs by injection. In both types of manipulation we looked at the effects of two groups of hormones: corticosterone and androgens in the form of testosterone and androstenedione. We found that the average effect on offspring traits differed between the manipulation types, with a well-supported positive effect of egg manipulation and lack of a significant effect of maternal manipulation. The observed average positive effect for egg manipulation was driven mainly by androgen manipulations, while corticosterone manipulations exerted no overall effect, regardless of manipulation type. Detailed analyses revealed effects of varying size and direction depending on the specific offspring traits; e.g., egg manipulation positively affected physiology and behaviour (androgens), and negatively affected future reproduction (corticosterone). Effect size was negatively related to the dose of androgen injected into the eggs, but unrelated to timing of manipulation, offspring developmental stage at the time of measuring their traits, solvent type, the site of egg injection and maternal hormone delivery method. Despite the generally acknowledged importance of maternal hormones for offspring development in birds, the overall effect of their experimental elevation is rather weak, significantly heterogeneous and dependent on the hormone and type of manipulation. We conclude by providing general recommendations as to how hormonal manipulations should be performed in order to standardize their impact and the results achieved. We also emphasize the need for research on free-living birds with a focus on fitness-related and other long-term effects of maternal hormones.
Collapse
Affiliation(s)
- Edyta Podmokła
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Szymon M Drobniak
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
16
|
|
17
|
Ellis BJ, Bianchi J, Griskevicius V, Frankenhuis WE. Beyond Risk and Protective Factors: An Adaptation-Based Approach to Resilience. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2017; 12:561-587. [DOI: 10.1177/1745691617693054] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
How does repeated or chronic childhood adversity shape social and cognitive abilities? According to the prevailing deficit model, children from high-stress backgrounds are at risk for impairments in learning and behavior, and the intervention goal is to prevent, reduce, or repair the damage. Missing from this deficit approach is an attempt to leverage the unique strengths and abilities that develop in response to high-stress environments. Evolutionary-developmental models emphasize the coherent, functional changes that occur in response to stress over the life course. Research in birds, rodents, and humans suggests that developmental exposures to stress can improve forms of attention, perception, learning, memory, and problem solving that are ecologically relevant in harsh-unpredictable environments (as per the specialization hypothesis). Many of these skills and abilities, moreover, are primarily manifest in currently stressful contexts where they would provide the greatest fitness-relevant advantages (as per the sensitization hypothesis). This perspective supports an alternative adaptation-based approach to resilience that converges on a central question: “What are the attention, learning, memory, problem-solving, and decision-making strategies that are enhanced through exposures to childhood adversity?” At an applied level, this approach focuses on how we can work with, rather than against, these strengths to promote success in education, employment, and civic life.
Collapse
|
18
|
Transgenerational transmission of a stress-coping phenotype programmed by early-life stress in the Japanese quail. Sci Rep 2017; 7:46125. [PMID: 28387355 PMCID: PMC5384203 DOI: 10.1038/srep46125] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
An interesting aspect of developmental programming is the existence of transgenerational effects that influence offspring characteristics and performance later in life. These transgenerational effects have been hypothesized to allow individuals to cope better with predictable environmental fluctuations and thus facilitate adaptation to changing environments. Here, we test for the first time how early-life stress drives developmental programming and transgenerational effects of maternal exposure to early-life stress on several phenotypic traits in their offspring in a functionally relevant context using a fully factorial design. We manipulated pre- and/or post-natal stress in both Japanese quail mothers and offspring and examined the consequences for several stress-related traits in the offspring generation. We show that pre-natal stress experienced by the mother did not simply affect offspring phenotype but resulted in the inheritance of the same stress-coping traits in the offspring across all phenotypic levels that we investigated, shaping neuroendocrine, physiological and behavioural traits. This may serve mothers to better prepare their offspring to cope with later environments where the same stressors are experienced.
Collapse
|
19
|
Crino OL, Klaassen van Oorschot B, Crandell KE, Breuner CW, Tobalske BW. Flight performance in the altricial zebra finch: Developmental effects and reproductive consequences. Ecol Evol 2017; 7:2316-2326. [PMID: 28405295 PMCID: PMC5383492 DOI: 10.1002/ece3.2775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 01/21/2023] Open
Abstract
The environmental conditions animals experience during development can have sustained effects on morphology, physiology, and behavior. Exposure to elevated levels of stress hormones (glucocorticoids, GCs) during development is one such condition that can have long‐term effects on animal phenotype. Many of the phenotypic effects of GC exposure during development (developmental stress) appear negative. However, there is increasing evidence that developmental stress can induce adaptive phenotypic changes. This hypothesis can be tested by examining the effect of developmental stress on fitness‐related traits. In birds, flight performance is an ideal metric to assess the fitness consequences of developmental stress. As fledglings, mastering takeoff is crucial to avoid bodily damage and escape predation. As adults, takeoff can contribute to mating and foraging success as well as escape and, thus, can affect both reproductive success and survival. We examined the effects of developmental stress on flight performance across life‐history stages in zebra finches (Taeniopygia guttata). Specifically, we examined the effects of oral administration of corticosterone (CORT, the dominant avian glucocorticoid) during development on ground‐reaction forces and velocity during takeoff. Additionally, we tested for associations between flight performance and reproductive success in adult male zebra finches. Developmental stress had no effect on flight performance at all ages. In contrast, brood size (an unmanipulated variable) had sustained, negative effects on takeoff performance across life‐history stages with birds from small broods performing better than birds from large broods. Flight performance at 100 days posthatching predicted future reproductive success in males; the best fliers had significantly higher reproductive success. Our results demonstrate that some environmental factors experienced during development (e.g. clutch size) have stronger, more sustained effects than others (e.g. GC exposure). Additionally, our data provide the first link between flight performance and a direct measure of reproductive success.
Collapse
Affiliation(s)
- Ondi L Crino
- Centre for Integrative Ecology Deakin University Geelong Vic. Australia; Division of Biological Sciences University of Montana Missoula MT USA
| | | | - Kristen E Crandell
- Division of Biological Sciences University of Montana Missoula MT USA; Department of Zoology University of Cambridge Cambridge UK
| | - Creagh W Breuner
- Division of Biological Sciences University of Montana Missoula MT USA
| | - Bret W Tobalske
- Division of Biological Sciences University of Montana Missoula MT USA
| |
Collapse
|
20
|
Nunome M, Nakano M, Tadano R, Kawahara-Miki R, Kono T, Takahashi S, Kawashima T, Fujiwara A, Nirasawa K, Mizutani M, Matsuda Y. Genetic Divergence in Domestic Japanese Quail Inferred from Mitochondrial DNA D-Loop and Microsatellite Markers. PLoS One 2017; 12:e0169978. [PMID: 28107483 PMCID: PMC5249226 DOI: 10.1371/journal.pone.0169978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 12/25/2016] [Indexed: 12/25/2022] Open
Abstract
To assess the genetic diversity of domestic Japanese quail (Coturnix japonica) populations, and their genetic relationships, we examined mitochondrial DNA (mtDNA) D-loop sequences and microsatellite markers for 19 Japanese quail populations. The populations included nine laboratory lines established in Japan (LWC, Quv, RWN, WE, AWE, AMRP, rb-TKP, NIES-L, and W), six meat-type quail lines reimported from Western countries (JD, JW, Estonia, NIES-Br, NIES-Fr, and NIES-Hn), one commercial population in Japan, and three wild quail populations collected from three Asian areas. The phylogenetic tree of mtDNA D-loop sequences revealed two distinct haplotype groups, Dloop-Group1 and Dloop-Group2. Dloop-Group1 included a dominant haplotype representing most of the quail populations, including wild quail. Dloop-Group2 was composed of minor haplotypes found in several laboratory lines, two meat-type lines, and a few individuals in commercial and wild quail populations. Taking the breeding histories of domestic populations into consideration, these results suggest that domestic quail populations may have derived from two sources, i.e., domestic populations established before and after World War II in Japan. A discriminant analysis of principal components and a Bayesian clustering analysis with microsatellite markers indicated that the domestic populations are clustered into four genetic groups. The two major groups were Microsat-Group1, which contained WE, and four WE-derived laboratory lines (LWC, Quv, RWN, and AWE), and Microsat-Group2 consisting of NIES-L, JD, JW, Estonia, NIES-Br, NIES-Fr, NIES-Hn, W, and commercial and wild populations. The remaining two lines (AMRP and rb-TKP) were each clustered into a separate clade. This hierarchical genetic difference between domestic quail populations is attributed to the genetic background derived from two different genetic sources-the pre-war and post-war populations-which is well supported by their breeding histories.
Collapse
Affiliation(s)
- Mitsuo Nunome
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mikiharu Nakano
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ryo Tadano
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Ryoka Kawahara-Miki
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shinji Takahashi
- General Affairs Department, National Institute for Environmental Studies, Tsukuba, Japan
| | - Takaharu Kawashima
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba 305–8506, Japan
| | - Akira Fujiwara
- Laboratory Animal Research Station, Nippon Institute for Biological Science, Hokuto, Japan
| | - Keijiro Nirasawa
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Makoto Mizutani
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoichi Matsuda
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Laboratory of Animal Genetics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
21
|
Templeton CN, Philp K, Guillette LM, Laland KN, Benson-Amram S. Sex and pairing status impact how zebra finches use social information in foraging. Behav Processes 2016; 139:38-42. [PMID: 28013062 DOI: 10.1016/j.beproc.2016.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Many factors, including the demonstrator's sex, status, and familiarity, shape the nature and magnitude of social learning. Given the important role of pair bonds in socially-monogamous animals, we predicted that these intimate relationships would promote the use of social information, and tested this hypothesis in zebra finches (Taeniopygia guttata). Observer birds witnessed either their mate or another familiar, opposite-sex bird eat from one, but not a second novel food source, before being allowed to feed from both food sources themselves. Birds used social information to make foraging decisions, but not all individuals used this information in the same way. While most individuals copied the foraging choice of the demonstrator as predicted, paired males did not, instead avoiding the feeder demonstrated by their mate. Our findings reveal that sex and pairing status interact to influence the use of social information and suggest that paired males might use social information to avoid competing with their mate.
Collapse
Affiliation(s)
- Christopher N Templeton
- School of Biology, University of St Andrews, St Andrews, Fife, KY169TH, UK; Biology Department, Pacific University, Forest Grove, OR, 97116, USA.
| | - Katharine Philp
- School of Biology, University of St Andrews, St Andrews, Fife, KY169TH, UK
| | - Lauren M Guillette
- School of Biology, University of St Andrews, St Andrews, Fife, KY169TH, UK
| | - Kevin N Laland
- School of Biology, University of St Andrews, St Andrews, Fife, KY169TH, UK
| | - Sarah Benson-Amram
- School of Biology, University of St Andrews, St Andrews, Fife, KY169TH, UK; Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
22
|
Snijders L, Naguib M, van Oers K. Dominance rank and boldness predict social attraction in great tits. Behav Ecol 2016. [DOI: 10.1093/beheco/arw158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Pasquaretta C, Battesti M, Klenschi E, Bousquet CAH, Sueur C, Mery F. How social network structure affects decision-making in Drosophila melanogaster. Proc Biol Sci 2016; 283:20152954. [PMID: 26936247 DOI: 10.1098/rspb.2015.2954] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Animals use a number of different mechanisms to acquire crucial information. During social encounters, animals can pass information from one to another but, ideally, they would only use information that benefits survival and reproduction. Therefore, individuals need to be able to determine the value of the information they receive. One cue can come from the behaviour of other individuals that are already using the information. Using a previous extended dataset, we studied how individual decision-making is influenced by the behaviour of conspecifics in Drosophila melanogaster. We analysed how uninformed flies acquire and later use information about oviposition site choice they learn from informed flies. Our results suggest that uninformed flies adjust their future choices based on how coordinated the behaviours of the informed individuals they encounter are. Following social interaction, uninformed flies tended either to collectively follow the choice of the informed flies or to avoid it. Using social network analysis, we show that this selective information use seems to be based on the level of homogeneity of the social network. In particular, we found that the variance of individual centrality parameters among informed flies was lower in the case of a 'follow' outcome compared with the case of an 'avoid' outcome.
Collapse
Affiliation(s)
- Cristian Pasquaretta
- Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche Scientifique, Strasbourg, France Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Marine Battesti
- Evolution, Génomes, Comportement and Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris Saclay, 91198 Gif-sur-Yvette, France
| | - Elizabeth Klenschi
- Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche Scientifique, Strasbourg, France Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Christophe A H Bousquet
- Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche Scientifique, Strasbourg, France Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Cedric Sueur
- Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche Scientifique, Strasbourg, France Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Frederic Mery
- Evolution, Génomes, Comportement and Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
24
|
Greggor AL, Thornton A, Clayton NS. Harnessing learning biases is essential for applying social learning in conservation. Behav Ecol Sociobiol 2016; 71:16. [PMID: 28018026 PMCID: PMC5143356 DOI: 10.1007/s00265-016-2238-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 11/05/2022]
Abstract
Social learning can influence how animals respond to anthropogenic changes in the environment, determining whether animals survive novel threats and exploit novel resources or produce maladaptive behaviour and contribute to human-wildlife conflict. Predicting where social learning will occur and manipulating its use are, therefore, important in conservation, but doing so is not straightforward. Learning is an inherently biased process that has been shaped by natural selection to prioritize important information and facilitate its efficient uptake. In this regard, social learning is no different from other learning processes because it too is shaped by perceptual filters, attentional biases and learning constraints that can differ between habitats, species, individuals and contexts. The biases that constrain social learning are not understood well enough to accurately predict whether or not social learning will occur in many situations, which limits the effective use of social learning in conservation practice. Nevertheless, we argue that by tapping into the biases that guide the social transmission of information, the conservation applications of social learning could be improved. We explore the conservation areas where social learning is highly relevant and link them to biases in the cues and contexts that shape social information use. The resulting synthesis highlights many promising areas for collaboration between the fields and stresses the importance of systematic reviews of the evidence surrounding social learning practices.
Collapse
Affiliation(s)
- Alison L. Greggor
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Biological Sciences, Dartmouth College, Hanover, NH USA
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | | |
Collapse
|
25
|
|
26
|
Kriengwatana B, Spierings MJ, ten Cate C. Auditory discrimination learning in zebra finches: effects of sex, early life conditions and stimulus characteristics. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
English S, Fawcett TW, Higginson AD, Trimmer PC, Uller T. Adaptive Use of Information during Growth Can Explain Long-Term Effects of Early Life Experiences. Am Nat 2016; 187:620-32. [DOI: 10.1086/685644] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Andrews C, Viviani J, Egan E, Bedford T, Brilot B, Nettle D, Bateson M. Early life adversity increases foraging and information gathering in European starlings, Sturnus vulgaris. Anim Behav 2015; 109:123-132. [PMID: 26566292 PMCID: PMC4615135 DOI: 10.1016/j.anbehav.2015.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Animals can insure themselves against the risk of starvation associated with unpredictable food availability by storing energy reserves or gathering information about alternative food sources. The former strategy carries costs in terms of mass-dependent predation risk, while the latter trades off against foraging for food; both trade-offs may be influenced by an individual's developmental history. Here, we consider a possible role of early developmental experience in inducing different mass regulation and foraging strategies in European starlings. We measured the body mass, body condition, foraging effort, food consumption and contrafreeloading (foraging for food hidden in sand when equivalent food is freely available) of adult birds (≥10 months old) that had previously undergone a subtle early life manipulation of food competition (cross-fostering into the highest or lowest ranks in the brood size hierarchy when 2–12 days of age). We found that developmentally disadvantaged birds were fatter in adulthood and differed in foraging behaviour compared with their advantaged siblings. Disadvantaged birds were hyperphagic compared with advantaged birds, but only following a period of food deprivation, and also spent more time contrafreeloading. Advantaged birds experienced a trade-off between foraging success and time spent contrafreeloading, whereas disadvantaged birds faced no such trade-off, owing to their greater foraging efficiency. Thus, developmentally disadvantaged birds appeared to retain a phenotypic memory of increased nestling food competition, employing both energy storage and information-gathering insurance strategies to a greater extent than their advantaged siblings. Our results suggest that subtle early life disadvantage in the form of psychosocial stress and/or food insecurity can leave a lasting legacy on foraging behaviour and mass regulation even in the absence of food insufficiency during development or adulthood. Starvation may be avoided by storing energy reserves or gathering information. Developmental history could impact these foraging decisions. Starlings disadvantaged in nestling competition were fatter in adulthood. Developmentally disadvantaged birds foraged faster and contrafreeloaded more. Early life stress has a lasting legacy on foraging behaviour and mass regulation.
Collapse
Affiliation(s)
- Clare Andrews
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K
| | - Jérémie Viviani
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K. ; Département de Biologie, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Emily Egan
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K
| | - Thomas Bedford
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K
| | - Ben Brilot
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K. ; School of Biological Sciences, Plymouth University, Plymouth, U.K
| | - Daniel Nettle
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K
| | - Melissa Bateson
- Centre for Behaviour and Evolution, Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, U.K
| |
Collapse
|
29
|
Farine DR, Spencer KA, Boogert NJ. Early-Life Stress Triggers Juvenile Zebra Finches to Switch Social Learning Strategies. Curr Biol 2015. [PMID: 26212879 PMCID: PMC4540255 DOI: 10.1016/j.cub.2015.06.071] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stress during early life can cause disease and cognitive impairment in humans and non-humans alike [1]. However, stress and other environmental factors can also program developmental pathways [2, 3]. We investigate whether differential exposure to developmental stress can drive divergent social learning strategies [4, 5] between siblings. In many species, juveniles acquire essential foraging skills by copying others: they can copy peers (horizontal social learning), learn from their parents (vertical social learning), or learn from other adults (oblique social learning) [6]. However, whether juveniles’ learning strategies are condition dependent largely remains a mystery. We found that juvenile zebra finches living in flocks socially learned novel foraging skills exclusively from adults. By experimentally manipulating developmental stress, we further show that social learning targets are phenotypically plastic. While control juveniles learned foraging skills from their parents, their siblings, exposed as nestlings to experimentally elevated stress hormone levels, learned exclusively from unrelated adults. Thus, early-life conditions triggered individuals to switch strategies from vertical to oblique social learning. This switch could arise from stress-induced differences in developmental rate, cognitive and physical state, or the use of stress as an environmental cue. Acquisition of alternative social learning strategies may impact juveniles’ fit to their environment and ultimately change their developmental trajectories. Juvenile zebra finches learn foraging skills from their parents Stress hormone exposure triggers juveniles to learn from unrelated adults instead Stress may be a cue juveniles use to inform their behavioral strategies Switching social learning strategy may alter developmental trajectories adaptively
Collapse
Affiliation(s)
- Damien R Farine
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK; Department of Anthropology, University of California, Davis, Davis, CA 95616, USA; Smithsonian Tropical Research Institute, Panamá 0843-03092, Panama.
| | - Karen A Spencer
- School of Psychology and Neuroscience, University of St. Andrews, St. Andrews KY16 9JP, UK
| | - Neeltje J Boogert
- School of Psychology and Neuroscience, University of St. Andrews, St. Andrews KY16 9JP, UK; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
30
|
Feng S, McGhee KE, Bell AM. Effect of maternal predator exposure on the ability of stickleback offspring to generalize a learned colour-reward association. Anim Behav 2015; 107:61-69. [PMID: 29046591 DOI: 10.1016/j.anbehav.2015.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Maternal stress can have long-term negative consequences for offspring learning performance. However, it is unknown whether these maternal effects extend to the ability of offspring to apply previously learned information to new situations. In this study, we first demonstrate that juvenile threespine sticklebacks, Gasterosteus aculeatus, are indeed capable of generalizing an association between a colour and a food reward learned in one foraging context to a new foraging context (i.e. they can apply previously learned knowledge to a new situation). Next, we examined whether this ability to generalize was affected by maternal predator stress. We manipulated whether mothers were repeatedly chased by a model predator while yolking eggs (i.e. before spawning) and then assessed the learning performance of their juvenile offspring in groups and pairs using a colour discrimination task that associated a colour with a food reward. We found that maternal predator exposure affected the tendency of offspring to use social cues: offspring of predator-exposed mothers were faster at copying a leader's behaviour towards the rewarded colour than offspring of unexposed mothers. However, once the colour-reward association had been learned, offspring of predator-exposed and unexposed mothers were equally able to generalize their learned association to a new foraging task. These results suggest that offspring of predator-exposed mothers might be able to overcome learning deficits caused by maternal stress by relying more on social cues.
Collapse
Affiliation(s)
- Sally Feng
- School of Integrative Biology, University of Illinois, Urbana, IL, U.S.A
| | - Katie E McGhee
- School of Integrative Biology, University of Illinois, Urbana, IL, U.S.A.,Department of Zoology, University of Cambridge, Cambridge, U.K
| | - Alison M Bell
- School of Integrative Biology, University of Illinois, Urbana, IL, U.S.A.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, U.S.A
| |
Collapse
|
31
|
Abstract
The quantity and quality of social relationships, as captured by social network analysis, can have major fitness consequences. Various studies have shown that individual differences in social behaviour can be due to variation in exposure to developmental stress. However, whether these developmental differences translate to consistent differences in social network position is not known. We experimentally increased levels of the avian stress hormone corticosterone (CORT) in nestling zebra finches in a fully balanced design. Upon reaching nutritional independence, we released chicks and their families into two free-flying rooms, where we measured daily social networks over five weeks using passive integrated transponder tags. Developmental stress had a significant effect on social behaviour: despite having similar foraging patterns, CORT chicks had weaker associations to their parents than control chicks. Instead, CORT chicks foraged with a greater number of flock mates and were less choosy with whom they foraged, resulting in more central network positions. These findings highlight the importance of taking developmental history into account to understand the drivers of social organization in gregarious species.
Collapse
Affiliation(s)
- Neeltje J Boogert
- School of Psychology and Neuroscience, University of St. Andrews, St. Andrews KY16 9JP, UK
| | - Damien R Farine
- Edward Grey Institute of Field Ornithology, University of Oxford, Oxford OX1 3PS, UK Department of Anthropology, University of California, Davis, CA 95616, USA Smithsonian Tropical Research Institute, Ancon, Panama
| | - Karen A Spencer
- School of Psychology and Neuroscience, University of St. Andrews, St. Andrews KY16 9JP, UK
| |
Collapse
|
32
|
Zimmer C, Spencer KA. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress. Comp Biochem Physiol A Mol Integr Physiol 2015; 183:9-13. [DOI: 10.1016/j.cbpa.2014.12.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/03/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022]
|
33
|
Zimmer C, Spencer KA. Modifications of glucocorticoid receptors mRNA expression in the hypothalamic-pituitary-adrenal axis in response to early-life stress in female Japanese quail. J Neuroendocrinol 2014; 26:853-60. [PMID: 25303060 PMCID: PMC4260142 DOI: 10.1111/jne.12228] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 01/05/2023]
Abstract
Stress exposure during early-life development can programme individual brain and physiology. The hypothalamic-pituitary-adrenal (HPA) axis is one of the primary targets of this programming, which is generally associated with a hyperactive HPA axis, indicative of a reduced negative-feedback. This reduced feedback efficiency usually results from a reduced level of the glucocorticoid receptor (GR) and/or the mineralocorticoid receptor (MR) within the HPA axis. However, a few studies have shown that early-life stress exposure results in an attenuated physiological stress response, suggesting an enhance feedback efficiency. In the present study, we aimed to determine whether early-life stress had long-term consequences on GR and MR levels in quail and whether the effects on the physiological response to acute stress observed in prenatally stressed individuals were underpinned by changes in GR and/or MR levels in one or more HPA axis components. We determined GR and MR mRNA expression in the hippocampus, hypothalamus and pituitary gland in quail exposed to elevated corticosterone during prenatal development, postnatal development, or both, and in control individuals exposed to none of the stressors. We showed that prenatal stress increased the GR:MR ratio in the hippocampus, GR and MR expression in the hypothalamus and GR expression in the pituitary gland. Postnatal stress resulted in a reduced MR expression in the hippocampus. Both early-life treatments permanently affected the expression of both receptor types in HPA axis regions. The effects of prenatal stress are in accordance with a more efficient negative-feedback within the HPA axis and thus can explain the attenuated stress response observed in these birds. Therefore, these changes in receptor density or number as a consequence of early-life stress exposure might be the mechanism that allows an adaptive response to later-life stressful conditions.
Collapse
Affiliation(s)
- C Zimmer
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
34
|
Duval C, Zimmer C, Mikšík I, Cassey P, Spencer KA. Early life stress shapes female reproductive strategy through eggshell pigmentation in Japanese quail. Gen Comp Endocrinol 2014; 208:146-53. [PMID: 25169834 DOI: 10.1016/j.ygcen.2014.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/15/2014] [Accepted: 08/17/2014] [Indexed: 11/25/2022]
Abstract
Physiological constraints on colouration have been widely reported; especially in birds, which trade-off antioxidant responses against colourful costly signals. One female extended phenotypic trait, which might also highlight important physiological trade-offs, is the pigmentation of their eggshells. In ground-nesting species, producing eggs that are visually undetectable by predators is the best camouflage strategy. However, the condition-dependence of eggshell pigmentation, and the pigments role in oxidative stress, may constrain females to trade-off between their antioxidant capacity and maximising the camouflage of their eggs when they deposit eggshell pigments. Developmental stress is one factor that influences female antioxidant capacity, and could lead to variations in eggshell pigmentation that might have crucial consequences on individual fitness if egg crypsis is compromised especially under stressful conditions. We investigated the interaction between developmental and breeding conditions with respect to eggshell pigmentation in Japanese quail. We studied 30 females that bred under both control and stressful conditions, and were exposed to pre- and/or post-natal stress, or neither. Pre- and post-natal stress independently influenced eggshell pigmentation strategies under stressful breeding conditions. Under stressful reproduction, eggshell protoporphyrin concentration and maculation were affected by pre-natal stress, whereas eggshell reflectance and biliverdin concentration were influenced by post-natal stress. These changes may reflect potential adaptive strategies shaped by developmental stress, but additional data on the benefit of egg crypsis in quail, combined with studies on the role of both pigments on chick survival, will help to clarify whether early life stress can enhance fitness through eggshell pigmentation when developmental and reproductive environments match.
Collapse
Affiliation(s)
- Camille Duval
- School of Psychology and Neuroscience, University of St Andrews, Westburn Lane, St Andrews, Fife KY169JP, United Kingdom.
| | - Cédric Zimmer
- School of Psychology and Neuroscience, University of St Andrews, Westburn Lane, St Andrews, Fife KY169JP, United Kingdom
| | - Ivan Mikšík
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Phillip Cassey
- School of Earth & Environmental Sciences, University of Adelaide, North Terrace SA 5005, Adelaide, Australia
| | - Karen A Spencer
- School of Psychology and Neuroscience, University of St Andrews, Westburn Lane, St Andrews, Fife KY169JP, United Kingdom
| |
Collapse
|
35
|
Botelho GG, Falbo MK, Ost PR, Czekoski ZM, Raviolo AE, Giotto FM, Goldoni EC, Morais RN. Physiological performance of quails that underwent dietary and pharmacological manipulation of cholesterol. J Anim Physiol Anim Nutr (Berl) 2014; 99:424-9. [PMID: 25272016 DOI: 10.1111/jpn.12257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/04/2014] [Indexed: 01/05/2023]
Abstract
The present work evaluated whether dietary and pharmacological interference on cholesterol synthesis were capable of inducing alterations in blood and yolk cholesterol levels and the secretion of corticosterone metabolites. Forty-five 40-day-old quails were divided into three experimental groups: vegetal fat diet, 2% beef fat (tallow) diet and vegetal fat diet with simvastatin administration (3.13 mg/kg/day). During all experiments, the animal weights and food consumption were recorded and blood and faecal samples (days 0, 15, 30, 45 and 60), as well as eggs (days 30, 45 and 60), were collected. Analysis of serum and yolk cholesterol was performed and faecal corticosterone levels were measured. No differences were observed on blood cholesterol or faecal corticosterone between all treatments, despite a tendency of increased cholesterol in the group with the animal fat diet. However, quails submitted to an animal fat diet displayed an increase in yolk cholesterol at day 30 of the treatment and the egg yolks of quails treated with simvastatin exhibited a decrease in cholesterol content by the end of the treatment at 60 days. These results improved the knowledge regarding the physiology of quails and offered support to other studies concerning the consequences of the pharmacological treatment and the dietary manipulation of cholesterol levels.
Collapse
Affiliation(s)
- G G Botelho
- Department of Veterinary Medicine, Unicentro, Guarapuava, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
van Leeuwen EJ, Haun DB. Conformity without majority? The case for demarcating social from majority influences. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
|
38
|
Guillette LM, Morgan KV, Hall ZJ, Bailey IE, Healy SD. Food preference and copying behaviour in zebra finches, Taeniopygia guttata. Behav Processes 2014; 109 Pt B:145-50. [PMID: 24797456 DOI: 10.1016/j.beproc.2014.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/06/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
As a social species zebra finches might be expected to copy the food choices of more experienced conspecifics. This prediction has been tested previously by presenting observers with two demonstrator birds that differ in some way (e.g., sex, familiarity), each feeding on a different colour food source. However, if the observer subsequently exhibits a preference, it is unclear whether it has copied the choice of one demonstrator or avoided the choice of the other. Furthermore, this choice may actually be influenced by pre-existing preferences, a potential bias that is rarely tested. Here we examine whether apparent copying or avoidance can be explained by pre-existing preferences. In Experiment 1, observers had the opportunity to watch a conspecific forage from one of the two differently coloured food hoppers. In Experiment 2, the observers did not have this opportunity. In both experiments observers were subsequently tested for their food hopper preference and all but one preferred one colour over the other. In Experiment 1 some observers showed evidence for copying, while others seemed to avoid the colour preferred by the demonstrator. In Experiment 2 females generally preferred the white hopper. Pre-existing colour preferences could, therefore, explain the apparent copying/avoidance we observed. This article is part of a Special Issue entitled: Cognition in the wild.
Collapse
Affiliation(s)
| | - Kate V Morgan
- School of Biology, University of St Andrews, St Andrews, UK
| | - Zachary J Hall
- School of Biology, University of St Andrews, St Andrews, UK
| | - Ida E Bailey
- School of Biology, University of St Andrews, St Andrews, UK
| | - Susan D Healy
- School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
39
|
Trompf L, Brown C. Personality affects learning and trade-offs between private and social information in guppies, Poecilia reticulata. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2013.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Marasco V, Spencer KA, Robinson J, Herzyk P, Costantini D. Developmental post-natal stress can alter the effects of pre-natal stress on the adult redox balance. Gen Comp Endocrinol 2013; 191:239-46. [PMID: 23867229 DOI: 10.1016/j.ygcen.2013.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 11/26/2022]
Abstract
Across diverse vertebrate taxa, stressful environmental conditions during development can shape phenotypic trajectories of developing individuals, which, while adaptive in the short-term, may impair health and survival in adulthood. Regardless, the long-lasting benefits or costs of early life stress are likely to depend on the conditions experienced across differing stages of development. Here, we used the Japanese quail (Coturnix coturnix japonica) to experimentally manipulate exposure to stress hormones in developing individuals. We tested the hypothesis that interactions occurring between pre- and post-natal developmental periods can induce long-term shifts on the adult oxidant phenotype in non-breeding sexually mature individuals. We showed that early life stress can induce long-term alterations in the basal antioxidant defences. The magnitude of these effects depended upon the timing of glucocorticoid exposure and upon interactions between the pre- and post-natal stressful stimuli. We also found differences among tissues with stronger effects in the erythrocytes than in the brain in which the long-term effects of glucocorticoids on antioxidant biomarkers appeared to be region-specific. Recent experimental work has demonstrated that early life exposure to stress hormones can markedly reduce adult survival (Monaghan et al., 2012). Our results suggest that long-term shifts in basal antioxidant defences might be one of the potential mechanisms driving such accelerated ageing processes and that post-natal interventions during development may be a potential tool to shape the effects induced by pre-natally glucococorticoid-exposed phenotypes.
Collapse
Affiliation(s)
- Valeria Marasco
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|