1
|
McCutchin CA, Edgar KJ, Chen CL, Dove PM. Silica-Biomacromolecule Interactions: Toward a Mechanistic Understanding of Silicification. Biomacromolecules 2024. [PMID: 39382567 DOI: 10.1021/acs.biomac.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Silica-organic composites are receiving renewed attention for their versatility and environmentally benign compositions. Of particular interest is how macromolecules interact with aqueous silica to produce functional materials that confer remarkable physical properties to living organisms. This Review first examines silicification in organisms and the biomacromolecule properties proposed to modulate these reactions. We then highlight findings from silicification studies organized by major classes of biomacromolecules. Most investigations are qualitative, using disparate experimental and analytical methods and minimally characterized materials. Many findings are contradictory and, altogether, demonstrate that a consistent picture of biomacromolecule-Si interactions has not emerged. However, the collective evidence shows that functional groups, rather than molecular classes, are key to understanding macromolecule controls on mineralization. With recent advances in biopolymer chemistry, there are new opportunities for hypothesis-based studies that use quantitative experimental methods to decipher how macromolecule functional group chemistry and configuration influence thermodynamic and kinetic barriers to silicification. Harnessing the principles of silica-macromolecule interactions holds promise for biocomposites with specialized applications from biomedical and clean energy industries to other material-dependent industries.
Collapse
Affiliation(s)
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Patricia M Dove
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Zexer N, Kumar S, Elbaum R. Silica deposition in plants: scaffolding the mineralization. ANNALS OF BOTANY 2023; 131:897-908. [PMID: 37094329 PMCID: PMC10332400 DOI: 10.1093/aob/mcad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Silicon and aluminium oxides make the bulk of agricultural soils. Plants absorb dissolved silicon as silicic acid into their bodies through their roots. The silicic acid moves with transpiration to target tissues in the plant body, where it polymerizes into biogenic silica. Mostly, the mineral forms on a matrix of cell wall polymers to create a composite material. Historically, silica deposition (silicification) was supposed to occur once water evaporated from the plant surface, leaving behind an increased concentration of silicic acid within plant tissues. However, recent publications indicate that certain cell wall polymers and proteins initiate and control the extent of plant silicification. SCOPE Here we review recent publications on the polymers that scaffold the formation of biogenic plant silica, and propose a paradigm shift from spontaneous polymerization of silicic acid to dedicated active metabolic processes that control both the location and the extent of the mineralization. CONCLUSION Protein activity concentrates silicic acid beyond its saturation level. Polymeric structures at the cell wall stabilize the supersaturated silicic acid and allow its flow with the transpiration stream, or bind it and allow its initial condensation. Silica nucleation and further polymerization are enabled on a polymeric scaffold, which is embedded within the mineral. Deposition is terminated once free silicic acid is consumed or the chemical moieties for its binding are saturated.
Collapse
Affiliation(s)
- Nerya Zexer
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Santosh Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, K. K. Birla Goa Campus, Zuarinagar 403726, Goa, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Rivka Elbaum
- R. H. Smith Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Li N, Lin Z, Yu P, Zeng Y, Du S, Huang LJ. The multifarious role of callose and callose synthase in plant development and environment interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1183402. [PMID: 37324665 PMCID: PMC10264662 DOI: 10.3389/fpls.2023.1183402] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Callose is an important linear form of polysaccharide synthesized in plant cell walls. It is mainly composed of β-1,3-linked glucose residues with rare amount of β-1,6-linked branches. Callose can be detected in almost all plant tissues and are widely involved in various stages of plant growth and development. Callose is accumulated on plant cell plates, microspores, sieve plates, and plasmodesmata in cell walls and is inducible upon heavy metal treatment, pathogen invasion, and mechanical wounding. Callose in plant cells is synthesized by callose synthases located on the cell membrane. The chemical composition of callose and the components of callose synthases were once controversial until the application of molecular biology and genetics in the model plant Arabidopsis thaliana that led to the cloning of genes encoding synthases responsible for callose biosynthesis. This minireview summarizes the research progress of plant callose and its synthetizing enzymes in recent years to illustrate the important and versatile role of callose in plant life activities.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China
| | - Zeng Lin
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Peiyao Yu
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yanling Zeng
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Shenxiu Du
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
4
|
Verma M, Dar AI, Acharya A. Facile synthesis of biogenic silica nanomaterial loaded transparent tragacanth gum hydrogels with improved physicochemical properties and inherent anti-bacterial activity. NANOSCALE 2022; 14:11635-11654. [PMID: 35904404 DOI: 10.1039/d2nr02051c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this report, biogenic, crystalline (∼60.5 ± 2%) bowknot structured silica nanoparticles (BSNPs) of length ∼ 274 ± 7 nm and width ∼ 36 ± 2 nm were isolated from invasive species viz. Lantana camara. These were then chemically modified using nitrogen containing moieties viz. APTES and CTAB. These modified BSNPs were then used as electrostatic cross-linking agents for the formation of tragacanth gum (TG) hydrogels. The cytocompatible CTAB@BSNP-TG hydrogels documented ∼10-12 fold enhancement in anti-bacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa when compared with TG hydrogels. Disruption of the bacterial membrane by ROS generation and protein leakage were responsible for anti-bacterial activity. A cell migration assay suggested that CTAB@BSNP-TG augmented the cell proliferation of NIH-3T3 cells compared to other TG hydrogels. The present study will pave the path for the development of organic-inorganic hybrid nanocomposite-based hydrogels for anti-bacterial and cell migration applications.
Collapse
Affiliation(s)
- Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Möller SR, Lancefield CS, Oates NC, Simister R, Dowle A, Gomez LD, McQueen-Mason SJ. CRISPR/Cas9 suppression of OsAT10, a rice BAHD acyltransferase, reduces p-coumaric acid incorporation into arabinoxylan without increasing saccharification. FRONTIERS IN PLANT SCIENCE 2022; 13:926300. [PMID: 35937377 PMCID: PMC9355400 DOI: 10.3389/fpls.2022.926300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/05/2022] [Indexed: 06/01/2023]
Abstract
Ester-linked hydroxycinnamic acids ferulic acid (FA) and para-coumaric acid (p-CA) play important roles in crosslinking within cell wall arabinoxylans (AX) and between AX and lignin in grass cell walls. The addition of hydroxycinnamates to AX, is mediated by the Mitchell clade of BAHD acyl-coenzyme A-utilizing transferases. Overexpression of OsAT10 (a Mitchell clade BAHD acyl transferase) in rice, has previously been shown to increase p-CA content in AX in leaves and stems, leading to increased cell wall digestibility, potentially associated with a concomitant decrease in FA content. To investigate the physiological role of OsAT10 we established CRISPR/Cas9 rice knock-out mutants devoid of OsAT10. Our analysis of hydroxycinnamic acid content in wild type plants revealed that AX associated p-CA is found almost exclusively in rice husks, with very little found in other tissues. Mutant plants were essentially devoid of ester-linked p-CA associated with AX, indicating that OsAT10 represents the major enzyme responsible for the addition of p-CA to arabinoxylan in rice plants. We found no change in the digestibility of rice husk lacking AX-associated p-CA, suggesting that the changes in digestibility seen in OsAT10 overexpressing plants were solely due to compensatory decreases in AX-associated FA.
Collapse
Affiliation(s)
| | - Christopher S. Lancefield
- School of Chemistry and Biomedical Science Research Complex, University of St. Andrews, St.Andrews, United Kingdom
| | - Nicola C. Oates
- CNAP, Biology Department, University of York, York, United Kingdom
| | - Rachael Simister
- CNAP, Biology Department, University of York, York, United Kingdom
| | - Adam Dowle
- Biology Department, Bioscience Technology Facility, University of York, York, United Kingdom
| | | | | |
Collapse
|
6
|
Guevara-Lora I, Wronski N, Bialas A, Osip H, Czosnek C. Efficient Adsorption of Chromium Ions from Aqueous Solutions by Plant-Derived Silica. Molecules 2022; 27:molecules27134171. [PMID: 35807417 PMCID: PMC9268362 DOI: 10.3390/molecules27134171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Nowadays, there is great interest in the use of plant waste to obtain materials for environmental protection. In this study, silica powders were prepared with a simple and low-cost procedure from biomass materials such as horsetail and common reed, as well as wheat and rye straws. The starting biomass materials were leached in a boiling HCl solution. After washing and drying, the samples were incinerated at 700 °C for 1 h in air. The organic components of the samples were burned leaving final white powders. These powders were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), and low-temperature nitrogen sorption. The amorphous powders (biosilica) contained mainly SiO2, as indicated by FTIR analysis. Horsetail-derived silica was chosen for testing the removal of dichromate ions from water solutions. This biosilica had a good ability to adsorb Cr(VI) ions, which increased after modification of the powder with the dodecylamine surfactant. It can be concluded that the applied procedure allowed obtaining high purity biosilica from plant waste with good efficiency. The produced biosilica was helpful in removing chromium ions and showed low cytotoxicity to human endothelial cells, suggesting that it can be safely used in environmental remediation.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland; (I.G.-L.); (N.W.)
| | - Norbert Wronski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland; (I.G.-L.); (N.W.)
| | - Anna Bialas
- Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; (A.B.); (H.O.)
| | - Honorata Osip
- Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; (A.B.); (H.O.)
| | - Cezary Czosnek
- Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; (A.B.); (H.O.)
- Correspondence:
| |
Collapse
|
7
|
Yadav V, Arif N, Singh VP, Guerriero G, Berni R, Shinde S, Raturi G, Deshmukh R, Sandalio LM, Chauhan DK, Tripathi DK. Histochemical Techniques in Plant Science: More Than Meets the Eye. PLANT & CELL PHYSIOLOGY 2021; 62:1509-1527. [PMID: 33594421 DOI: 10.1093/pcp/pcab022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/31/2021] [Indexed: 05/12/2023]
Abstract
Histochemistry is an essential analytical tool interfacing extensively with plant science. The literature is indeed constellated with examples showing its use to decipher specific physiological and developmental processes, as well as to study plant cell structures. Plant cell structures are translucent unless they are stained. Histochemistry allows the identification and localization, at the cellular level, of biomolecules and organelles in different types of cells and tissues, based on the use of specific staining reactions and imaging. Histochemical techniques are also widely used for the in vivo localization of promoters in specific tissues, as well as to identify specific cell wall components such as lignin and polysaccharides. Histochemistry also enables the study of plant reactions to environmental constraints, e.g. the production of reactive oxygen species (ROS) can be traced by applying histochemical staining techniques. The possibility of detecting ROS and localizing them at the cellular level is vital in establishing the mechanisms involved in the sensitivity and tolerance to different stress conditions in plants. This review comprehensively highlights the additional value of histochemistry as a complementary technique to high-throughput approaches for the study of the plant response to environmental constraints. Moreover, here we have provided an extensive survey of the available plant histochemical staining methods used for the localization of metals, minerals, secondary metabolites, cell wall components, and the detection of ROS production in plant cells. The use of recent technological advances like CRISPR/Cas9-based genome-editing for histological application is also addressed. This review also surveys the available literature data on histochemical techniques used to study the response of plants to abiotic stresses and to identify the effects at the tissue and cell levels.
Collapse
Affiliation(s)
- Vaishali Yadav
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Namira Arif
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Hautcharage, Luxembourg
| | - Roberto Berni
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Suhas Shinde
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Gaurav Raturi
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rupesh Deshmukh
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Luisa M Sandalio
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada 18008, Spain
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida 201313, India
| |
Collapse
|
8
|
Anderson AJ, Kim YC. The Plant-Stress Metabolites, Hexanoic Aacid and Melatonin, Are Potential "Vaccines" for Plant Health Promotion. THE PLANT PATHOLOGY JOURNAL 2021; 37:415-427. [PMID: 34847628 PMCID: PMC8632612 DOI: 10.5423/ppj.rw.01.2021.0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
A plethora of compounds stimulate protective mechanisms in plants against microbial pathogens and abiotic stresses. Some defense activators are synthetic compounds and trigger responses only in certain protective pathways, such as activation of defenses under regulation by the plant regulator, salicylic acid (SA). This review discusses the potential of naturally occurring plant metabolites as primers for defense responses in the plant. The production of the metabolites, hexanoic acid and melatonin, in plants means they are consumed when plants are eaten as foods. Both metabolites prime stronger and more rapid activation of plant defense upon subsequent stress. Because these metabolites trigger protective measures in the plant they can be considered as "vaccines" to promote plant vigor. Hexanoic acid and melatonin instigate systemic changes in plant metabolism associated with both of the major defense pathways, those regulated by SA- and jasmonic acid (JA). These two pathways are well studied because of their induction by different microbial triggers: necrosis-causing microbial pathogens induce the SA pathway whereas colonization by beneficial microbes stimulates the JA pathway. The plant's responses to the two metabolites, however, are not identical with a major difference being a characterized growth response with melatonin but not hexanoic acid. As primers for plant defense, hexanoic acid and melatonin have the potential to be successfully integrated into vaccination-like strategies to protect plants against diseases and abiotic stresses that do not involve man-made chemicals.
Collapse
Affiliation(s)
- Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | - Young Cheol Kim
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
9
|
Nakamura E, Ozaki N, Oaki Y, Imai H. Cellulose intrafibrillar mineralization of biological silica in a rice plant. Sci Rep 2021; 11:7886. [PMID: 33846494 PMCID: PMC8042044 DOI: 10.1038/s41598-021-87144-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/17/2021] [Indexed: 11/09/2022] Open
Abstract
The essence of morphological design has been a fascinating scientific problem with regard to understanding biological mineralization. Particularly shaped amorphous silicas (plant opals) play an important role in the vital activity in rice plants. Although various organic matters are associated with silica accumulation, their detailed functions in the shape-controlled mineralization process have not been sufficiently clarified. In the present study, cellulose nanofibers (CNFs) were found to be essential as a scaffold for silica accumulation in rice husks and leaf blades. Prior to silicification, CNFs ~ 10 nm wide are sparsely stacked in a space between the epidermal cell wall and the cuticle layer. Silica nanoparticles 20-50 nm in diameter are then deposited in the framework of the CNFs. The shape-controlled plant opals are formed through the intrafibrillar mineralization of silica nanoparticles on the CNF scaffold.
Collapse
Affiliation(s)
- Eri Nakamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Noriaki Ozaki
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita, 010-0195, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
10
|
Pitaloka MK, Harrison EL, Hepworth C, Wanchana S, Toojinda T, Phetluan W, Brench RA, Narawatthana S, Vanavichit A, Gray JE, Caine RS, Arikit S. Rice Stomatal Mega-Papillae Restrict Water Loss and Pathogen Entry. FRONTIERS IN PLANT SCIENCE 2021; 12:677839. [PMID: 34149777 PMCID: PMC8213340 DOI: 10.3389/fpls.2021.677839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 05/16/2023]
Abstract
Rice (Oryza sativa) is a water-intensive crop, and like other plants uses stomata to balance CO2 uptake with water-loss. To identify agronomic traits related to rice stomatal complexes, an anatomical screen of 64 Thai and 100 global rice cultivars was undertaken. Epidermal outgrowths called papillae were identified on the stomatal subsidiary cells of all cultivars. These were also detected on eight other species of the Oryza genus but not on the stomata of any other plant species we surveyed. Our rice screen identified two cultivars that had "mega-papillae" that were so large or abundant that their stomatal pores were partially occluded; Kalubala Vee had extra-large papillae, and Dharia had approximately twice the normal number of papillae. These were most accentuated on the flag leaves, but mega-papillae were also detectable on earlier forming leaves. Energy dispersive X-Ray spectrometry revealed that silicon is the major component of stomatal papillae. We studied the potential function(s) of mega-papillae by assessing gas exchange and pathogen infection rates. Under saturating light conditions, mega-papillae bearing cultivars had reduced stomatal conductance and their stomata were slower to close and re-open, but photosynthetic assimilation was not significantly affected. Assessment of an F3 hybrid population treated with Xanthomonas oryzae pv. oryzicola indicated that subsidiary cell mega-papillae may aid in preventing bacterial leaf streak infection. Our results highlight stomatal mega-papillae as a novel rice trait that influences gas exchange, stomatal dynamics, and defense against stomatal pathogens which we propose could benefit the performance of future rice crops.
Collapse
Affiliation(s)
- Mutiara K. Pitaloka
- Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Emily L. Harrison
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Christopher Hepworth
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| | - Watchara Phetluan
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Robert A. Brench
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Supatthra Narawatthana
- Thailand Rice Science Institute, Rice Department, Ministry of Agriculture and Cooperatives (MOAC), Suphanburi, Thailand
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Julie E. Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Julie E. Gray,
| | - Robert S. Caine
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Robert S. Caine,
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- Siwaret Arikit,
| |
Collapse
|
11
|
Guerriero G, Piasecki E, Berni R, Xu X, Legay S, Hausman JF. Identification of Callose Synthases in Stinging Nettle and Analysis of Their Expression in Different Tissues. Int J Mol Sci 2020; 21:ijms21113853. [PMID: 32481765 PMCID: PMC7313033 DOI: 10.3390/ijms21113853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022] Open
Abstract
Callose is an important biopolymer of β-1,3-linked glucose units involved in different phases of plant development, reproduction and response to external stimuli. It is synthesized by glycosyltransferases (GTs) known as callose synthases (CalS) belonging to family 48 in the Carbohydrate-Active enZymes (CAZymes) database. These GTs are anchored to the plasma membrane via transmembrane domains. Several genes encoding CalS have been characterized in higher plants with 12 reported in the model organism Arabidopsis thaliana. Recently, the de novo transcriptome of a fibre-producing clone of stinging nettle (Urtica dioica L.) was published and here it is mined for CalS genes with the aim of identifying members differentially expressed in the core and cortical tissues of the stem. The goal is to understand whether specific CalS genes are associated with distinct developmental stages of the stem internodes (elongation, thickening). Nine genes, eight of which encoding full-length CalS, are identified in stinging nettle. The phylogenetic analysis with CalS proteins from other fibre crops, namely textile hemp and flax, reveals grouping into 6 clades. The expression profiles in nettle tissues (roots, leaves, stem internodes sampled at different heights) reveal differences that are most noteworthy in roots vs. leaves. Two CalS are differentially expressed in the internodes sampled at the top and middle of the stem. Implications of their role in nettle stem tissue development are discussed.
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
- Correspondence: ; Tel.: +352-275-888-5096; Fax: +352-275-8885
| | - Emilie Piasecki
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
| | - Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100 Siena, Italy;
| | - Xuan Xu
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
| |
Collapse
|
12
|
Guerriero G, Stokes I, Valle N, Hausman JF, Exley C. Visualising Silicon in Plants: Histochemistry, Silica Sculptures and Elemental Imaging. Cells 2020; 9:cells9041066. [PMID: 32344677 PMCID: PMC7225990 DOI: 10.3390/cells9041066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
Silicon is a non-essential element for plants and is available in biota as silicic acid. Its presence has been associated with a general improvement of plant vigour and response to exogenous stresses. Plants accumulate silicon in their tissues as amorphous silica and cell walls are preferential sites. While several papers have been published on the mitigatory effects that silicon has on plants under stress, there has been less research on imaging silicon in plant tissues. Imaging offers important complementary results to molecular data, since it provides spatial information. Herein, the focus is on histochemistry coupled to optical microscopy, fluorescence and scanning electron microscopy of microwave acid extracted plant silica, techniques based on particle-induced X-ray emission, X-ray fluorescence spectrometry and mass spectrometry imaging (NanoSIMS). Sample preparation procedures will not be discussed in detail, as several reviews have already treated this subject extensively. We focus instead on the information that each technique provides by offering, for each imaging approach, examples from both silicifiers (giant horsetail and rice) and non-accumulators (Cannabis sativa L.).
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
- Correspondence: (G.G.); (C.E.); Tel.: +352-2758885096 (G.G.); +44-1782-734080 (C.E.)
| | - Ian Stokes
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele ST5 5BG, Staffordshire, UK;
| | - Nathalie Valle
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg;
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele ST5 5BG, Staffordshire, UK;
- Correspondence: (G.G.); (C.E.); Tel.: +352-2758885096 (G.G.); +44-1782-734080 (C.E.)
| |
Collapse
|
13
|
Lux A, Lukačová Z, Vaculík M, Švubová R, Kohanová J, Soukup M, Martinka M, Bokor B. Silicification of Root Tissues. PLANTS (BASEL, SWITZERLAND) 2020; 9:E111. [PMID: 31952260 PMCID: PMC7020167 DOI: 10.3390/plants9010111] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
Silicon (Si) is not considered an essential element, however, its tissue concentration can exceed that of many essential elements in several evolutionary distant plant species. Roots take up Si using Si transporters and then translocate it to aboveground organs. In some plant species, root tissues are also places where a high accumulation of Si can be found. Three basic modes of Si deposition in roots have been identified so far: (1) impregnation of endodermal cell walls (e.g., in cereals, such as Triticum (wheat)); (2) formation of Si-aggregates associated with endodermal cell walls (in the Andropogoneae family, which includes Sorghum and Saccharum (sugarcane)); (3) formation of Si aggregates in "stegmata" cells, which form a sheath around sclerenchyma fibers e.g., in some palm species (Phoenix (date palm)). In addition to these three major and most studied modes of Si deposition in roots, there are also less-known locations, such as deposits in xylem cells and intercellular deposits. In our research, the ontogenesis of individual root cells that accumulate Si is discussed. The documented and expected roles of Si deposition in the root is outlined mostly as a reaction of plants to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
- Institute of Chemistry, Slovak Academy of Sciences, 845 36 Bratislava, Slovakia
| | - Zuzana Lukačová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| | - Renáta Švubová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
| | - Jana Kohanová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
| | - Milan Soukup
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
- Institute of Chemistry, Slovak Academy of Sciences, 845 36 Bratislava, Slovakia
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (A.L.); (Z.L.); (M.V.); (R.Š.); (J.K.); (M.S.); (M.M.)
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| |
Collapse
|
14
|
Giannoutsou E, Sotiriou P, Nikolakopoulou TL, Galatis B, Apostolakos P. Callose and homogalacturonan epitope distribution in stomatal complexes of Zea mays and Vigna sinensis. PROTOPLASMA 2020; 257:141-156. [PMID: 31471650 DOI: 10.1007/s00709-019-01425-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 05/28/2023]
Abstract
This article deals with the distribution of callose and of the homogalacturonan (HG) epitopes recognized by LM20, JIM5, and 2F4 antibodies in cell walls of differentiating and functioning stomatal complexes of the monocotyledon Zea mays and the dicotyledon Vigna sinensis. The findings revealed that, during stomatal development, in these plant species, callose appears in an accurately spatially and timely controlled manner in cell walls of the guard cells (GCs). In functioning stomata of both plants, callose constitutes a dominant cell wall matrix material of the polar ventral cell wall ends and of the local GC cell wall thickenings. In Zea mays, the LM20, JIM5, or 2F4 antibody-recognized HG epitopes were mainly located in the expanding cell wall regions of the stomatal complexes, while in Vigna sinensis, they were deposited in the local cell wall thickenings of the GCs as well as at the ledges of the stomatal pore. Consideration of the presented data favors the view that in the stomatal complexes of the monocotyledon Z. mays and the dicotyledon V. sinensis, the esterified HGs contribute to the cell wall expansion taking place during GC morphogenesis and the opening of the stomatal pore. Besides, callose and the highly de-esterified HGs allow to GC cell wall regions to withstand the mechanical stresses exerted during stomatal function.
Collapse
Affiliation(s)
- E Giannoutsou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - P Sotiriou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - T L Nikolakopoulou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - B Galatis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - P Apostolakos
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
15
|
Guerriero G, Deshmukh R, Sonah H, Sergeant K, Hausman JF, Lentzen E, Valle N, Siddiqui KS, Exley C. Identification of the aquaporin gene family in Cannabis sativa and evidence for the accumulation of silicon in its tissues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110167. [PMID: 31481224 DOI: 10.1016/j.plantsci.2019.110167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 05/08/2023]
Abstract
Cannabis sativa is an economically important crop providing bast fibres for the textile and biocomposite sector. Length is a fundamental characteristic determining the properties of bast fibres. Aquaporins, channel-forming proteins facilitating the passage of water, urea, as well as elements such as boron and silicon, are known to play a role in the control of fibre length in other species, like cotton. By mining the available genome, we here identify, for the first time, the aquaporin gene family of C. sativa. The analysis of published RNA-Seq data and targeted qPCR on a textile variety reveal an organ-specific expression of aquaporin genes. Computational analyses, including homology-based search, phylogeny and protein modelling, identify two NOD26-like intrinsic proteins harbouring the Gly-Ser-Gly-Arg (GSGR) aromatic/Arg selectivity filter and 108 amino acid NPA (Asn-Pro-Ala) spacing, features reported to be associated with silicon permeability. SIMS nano-analysis and silica extraction coupled to fluorescence microscopy performed on hemp plantlets reveal the presence of silicon in the bast fibres of the hypocotyl and in leaves. The accumulation of silica in the distal cell walls of bast fibres and in the basal cells of leaf trichomes is indicative of a mechanical role.
Collapse
Affiliation(s)
- Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362, Esch/Alzette, Luxembourg.
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), P.O. Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), P.O. Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Kjell Sergeant
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362, Esch/Alzette, Luxembourg
| | - Jean-Francois Hausman
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362, Esch/Alzette, Luxembourg
| | - Esther Lentzen
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362, Esch/Alzette, Luxembourg
| | - Nathalie Valle
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362, Esch/Alzette, Luxembourg
| | - Khawar Sohail Siddiqui
- Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | - Christopher Exley
- The Birchall Centre, Lennard Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
16
|
Exley C, Guerriero G, Lopez X. Silicic acid: The omniscient molecule. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:432-437. [PMID: 30772574 DOI: 10.1016/j.scitotenv.2019.02.197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
We contend that silicic acid is a much under-valued molecule and specifically in the context of its role in establishing and maintaining life on Earth. Silicic acid can also be an ill-understood molecule with its chemistry all too often confused with that of either silicates or silica. Herein we (i) provide a working definition for silicic acid; (ii) identify its omnipresent role in biochemical evolution in excluding aluminium from biota and providing adventitious benefits through biological silicification and (iii) explain how the silicic acid cycle is intrinsic to climate change.
Collapse
Affiliation(s)
- Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire, United Kingdom.
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch/Alzette, Luxembourg.
| | - Xabier Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain.
| |
Collapse
|