1
|
van Bavel B, Berrang-Ford L, Moon K, Gudda F, Thornton AJ, Robinson RFS, King R. Intersections between climate change and antimicrobial resistance: a systematic scoping review. Lancet Planet Health 2024; 8:e1118-e1128. [PMID: 39674199 DOI: 10.1016/s2542-5196(24)00273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 12/16/2024]
Abstract
Climate change and antimicrobial resistance (AMR) present crucial challenges for the health and wellbeing of people, animals, plants, and ecosystems worldwide, yet the two are largely treated as separate and unrelated challenges. The aim of this systematic scoping Review is to understand the nature of the growing evidence base linking AMR and climate change and to identify knowledge gaps and areas for further research. We conducted a systematic search of the peer-reviewed literature in Scopus, Web of Science, and PubMed on 27 June, 2022. Our search strategy identified and screened 1687 unique results. Data were extracted and analysed from 574 records meeting our inclusion criteria. 222 (39%) of these reviewed articles discussed harmful synergies in which both climate change and AMR exist independently and can interact synergistically, resulting in negative outcomes. Just over a quarter (n=163; 28%) of the literature contained general or broad references to AMR and climate change, whereas a fifth (n=111; 19%) of articles referred to climate change influencing the emergence and evolution of AMR. 12% of articles (n=70) presented positive synergies between approaches aimed at addressing climate change and interventions targeting the management and control of AMR. The remaining literature focused on the shared drivers of AMR and climate change, the trade-offs between climate actions that have unanticipated negative outcomes for AMR (or vice versa), and, finally, the pathways through which AMR can negatively influence climate change. Our findings indicate multiple intersections through which climate change and AMR can and do connect. Research in this area is still nascent, disciplinarily isolated, and only beginning to converge, with few documents primarily focused on the equal intersection of both topics. Greater empirical and evidence-based attention is needed to investigate knowledge gaps related to specific climate change hazards and antimicrobial resistant fungi, helminths, protists, and viruses.
Collapse
Affiliation(s)
- Bianca van Bavel
- Priestley Centre for Climate Futures, School of Earth and Environment, University of Leeds, Leeds, UK; School of Health Sciences, Insight SFI Research Centre for Data Analytics, University of Galway, Galway, Ireland.
| | - Lea Berrang-Ford
- Priestley Centre for Climate Futures, School of Earth and Environment, University of Leeds, Leeds, UK; Centre for Climate and Health Security, UK Health Security Agency, London, UK
| | - Kelly Moon
- Priestley Centre for Climate Futures, School of Earth and Environment, University of Leeds, Leeds, UK; Nuffield Centre for International Health and Development, University of Leeds, Leeds, UK
| | - Fredrick Gudda
- International Livestock Research Institute, Nairobi, Kenya
| | | | | | - Rebecca King
- Nuffield Centre for International Health and Development, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Krücken J, Ehnert P, Fiedler S, Horn F, Helm CS, Ramünke S, Bartmann T, Kahl A, Neubert A, Weiher W, Daher R, Terhalle W, Klabunde-Negatsch A, Steuber S, von Samson-Himmelstjerna G. Faecal egg count reduction tests and nemabiome analysis reveal high frequency of multi-resistant parasites on sheep farms in north-east Germany involving multiple strongyle parasite species. Int J Parasitol Drugs Drug Resist 2024; 25:100547. [PMID: 38733882 PMCID: PMC11097076 DOI: 10.1016/j.ijpddr.2024.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Anthelmintic resistance in sheep parasitic gastrointestinal nematodes is widespread and a severe health and economic issue but prevalence of resistance and involved parasite species are unknown in Germany. Here, the faecal egg count reduction test (FECRT) was performed on eight farms using fenbendazole, ivermectin and moxidectin and on four farms using only moxidectin. A questionnaire was used to obtain data on management practices to potentially identify risk factors for presence of resistance. All requirements of the recently revised WAAVP guideline for diagnosing anthelmintic resistance using the FECRT were applied. Nematode species composition in pre- and post-treatment samples was analysed with the nemabiome approach. Using the eggCounts statistic package, resistance against fenbendazole, ivermectin and moxidectin was found on 7/8, 8/8 and 8/12 farms, respectively. No formal risk factor analysis was conducted since resistance was present on most farms. Comparison with the bayescount R package results revealed substantial agreement between methods (Cohen's κ = 0.774). In contrast, interpretation of data comparing revised and original WAAVP guidelines resulted in moderate agreement (Cohen's κ = 0.444). The FECR for moxidectin was significantly higher than for ivermectin and fenbendazole. Nemabiome data identified 4 to 12 species in pre-treatment samples and treatments caused a small but significant decrease in species diversity (inverse Simpson index). Non-metric multidimensional scaling and k-means clustering were used to identify common patterns in pre- and post-treatment samples. However, post-treatment samples were scattered among the pre-treatment samples. Resistant parasite species differed between farms. In conclusion, the revised FECRT guideline allows robust detection of anthelmintic resistance. Resistance was widespread and involved multiple parasite species. Resistance against both drug classes on the same farm was common. Further studies including additional drugs (levamisole, monepantel, closantel) should combine sensitive FECRTs with nemabiome data to comprehensively characterise the anthelmintic susceptibility status of sheep nematodes in Germany.
Collapse
Affiliation(s)
- Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Paula Ehnert
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Stefan Fiedler
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Fabian Horn
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Christina S Helm
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Sabrina Ramünke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Tanja Bartmann
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Alexandra Kahl
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Ann Neubert
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Wiebke Weiher
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Ricarda Daher
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Werner Terhalle
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | | | - Stephan Steuber
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Lalthanpuii PB, Lalchhandama K. Antiparasitic activity of the steroid-rich extract of Schima wallichii against poultry cestode. Vet World 2024; 17:1299-1306. [PMID: 39077457 PMCID: PMC11283620 DOI: 10.14202/vetworld.2024.1299-1306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/23/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim Schima wallichii Korth., commonly known as the needlewood tree (family Theaceae) has therapeutic uses in traditional Mizo medicine for human helminthiasis and serves as a balm against ectoparasites in animals. Although the medicinal properties have been studied experimentally, its use as a traditional anthelmintic remains unexplored. This study aimed to analyze the chemical components and antiparasitic activity of S. wallichii. Materials and Methods The chemical analysis of S. wallichi bark extracts was conducted focusing on the secondary metabolites using petroleum ether, chloroform, and methanol. Gas chromatography-mass spectrometry (GC-MS) was used to identify the specific compounds. An anthelmintic susceptibility test was carried out against Raillietina tetragona, intestinal cestode parasite of fowl. Results The methanol extract yielded the highest concentrations of alkaloids, carbohydrates, glycosides, sterols, saponins, and tannins among all the extracts. Sterols were the most abundant compounds in all extracts, with flavonoids being absent. Secondary metabolites were largely absent in the petroleum ether and chloroform extracts. The GC-MS data identified cholest-22-ene-21-ol as the major steroid component. The cestode parasite was inhibited in a concentration-dependent manner by the plant extract. The plant extract's anthelmintic activity was evident through observable damage to the parasite's outer structure. Conclusion Phytosterols in S. wallichii bark are responsible for its anthelmintic properties. The mechanism and pharmaceutical properties of the anthelmintic molecule require further exploration.
Collapse
Affiliation(s)
- Pawi Bawitlung Lalthanpuii
- DBT-BUILDER National Laboratory, Department of Life Sciences, Pachhunga University College, Aizawl, Mizoram, India
| | - Kholhring Lalchhandama
- DBT-BUILDER National Laboratory, Department of Life Sciences, Pachhunga University College, Aizawl, Mizoram, India
| |
Collapse
|
4
|
Brown TL, Morgan ER. Helminth Prevalence in European Deer with a Focus on Abomasal Nematodes and the Influence of Livestock Pasture Contact: A Meta-Analysis. Pathogens 2024; 13:378. [PMID: 38787230 PMCID: PMC11123710 DOI: 10.3390/pathogens13050378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Deer are susceptible to infection with parasitic helminths, including species which are of increasing economic concern to the livestock industry due to anthelmintic drug resistance. This paper systematically collates helminth prevalence data from deer across Europe and explores patterns in relation to host and parasite species, as well as landscape factors. A livestock pasture contact index (LPCI) is developed to predict epidemiological overlap between deer and livestock, and hence to examine deer helminth fauna in the context of their surrounding environment. Fifty-eight studies comprising fallow (Dama dama), red (Cervus elaphus), roe (Capreolus capreolus) and sika (Cervus nippon) deer were identified. Deer populations in "likely" contact with livestock pasture had a higher mean prevalence of the abomasal nematodes Haemonchus contortus, Ostertagia ostertagi, Teladorsagia circumcincta and Trichostrongylus axei (p = 0.01), which are common in livestock and not primarily associated with deer. Roe deer populations had a higher prevalence of T. circumcincta (p = 0.02) and T. axei (p = 0.01) than fallow deer and a higher prevalence of H. contortus than both red (p = 0.01) and fallow deer (p = 0.02). Liver fluke and lungworm species were present sporadically at low prevalence, while the abomasal nematode Ashworthius sidemi occurred locally at high prevalence. Insights from this research suggest that deer helminth fauna is reflective of their surrounding environment, including the livestock species which inhabit areas of shared grazing. This is explored from an epidemiological perspective, and the prospect of helminth transmission between wild and domestic hosts is discussed, including drug-resistant strains, alongside the role of helminths as indicators relevant to the transmission of other pathogens at the wildlife-livestock interface.
Collapse
Affiliation(s)
| | - Eric R. Morgan
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
5
|
Boughton CJ, Lancaster LT, Morgan ER. Biotic interactions in soil and dung shape parasite transmission in temperate ruminant systems: An integrative framework. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2956. [PMID: 38426805 PMCID: PMC11476215 DOI: 10.1002/eap.2956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 03/02/2024]
Abstract
Gastrointestinal helminth parasites undergo part of their life cycle outside their host, such that developmental stages interact with the soil and dung fauna. These interactions are capable of affecting parasite transmission on pastures yet are generally ignored in current models, empirical studies and practical management. Dominant methods of parasite control, which rely on anthelmintic medications for livestock, are becoming increasingly ineffective due to the emergence of drug-resistant parasite populations. Furthermore, consumer and regulatory pressure on decreased chemical use in agriculture and the consequential disruption of biological processes in the dung through nontarget effects exacerbates issues with anthelmintic reliance. This presents a need for the application and enhancement of nature-based solutions and biocontrol methods. However, successfully harnessing these options relies on advanced understanding of the ecological system and interacting effects among biotic factors and with immature parasite stages. Here, we develop a framework linking three key groups of dung and soil fauna-fungi, earthworms, and dung beetles-with each other and developmental stages of helminths parasitic in farmed cattle, sheep, and goats in temperate grazing systems. We populate this framework from existing published studies and highlight the interplay between faunal groups and documented ecological outcomes. Of 1756 papers addressing abiotic drivers of populations of these organisms and helminth parasites, only 112 considered interactions between taxa and 36 presented data on interactions between more than two taxonomic groups. Results suggest that fungi reduce parasite abundance and earthworms may enhance fungal communities, while competition between dung taxa may reduce their individual effect on parasite transmission. Dung beetles were found to impact fungal populations and parasite transmission variably, possibly tied to the prevailing climate within a specific ecological context. By exploring combinations of biotic factors, we consider how interactions between species may be fundamental to the ecological consequences of biocontrol strategies and nontarget impacts of anthelmintics on dung and soil fauna and how pasture management alterations to promote invertebrates might help limit parasite transmission. With further development and parameterization the framework could be applied quantitatively to guide, prioritize, and interpret hypothesis-driven experiments and integrate biotic factors into established models of parasite transmission dynamics.
Collapse
Affiliation(s)
| | | | - Eric R. Morgan
- School of Biological Sciences, Queen's University BelfastBelfastUK
| |
Collapse
|
6
|
Sibula MS, Nyagura I, Malatji MP, Mukaratirwa S. Prevalence and geographical distribution of amphistomes of African wild ruminants: A scoping review. Int J Parasitol Parasites Wildl 2024; 23:100906. [PMID: 38298202 PMCID: PMC10827595 DOI: 10.1016/j.ijppaw.2024.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
This review summarizes published records on the prevalence, species diversity, geographical distribution, mixed infections, co-infections with other trematodes and intermediate hosts (IHs) of amphistomes (rumen flukes) of wild ruminants in Africa. Literature search was conducted on Google Scholar, PubMed and JSTOR, using a combination of predetermined search terms and Boolean operators. Of the 54 African countries searched, results showed that occurrence of amphistome infections in wild ruminants have only been reported in 23 countries. A total of 38 amphistome species consisting of the following 11 genera were recorded, viz Bilatorchis, Calicophoron, Carmyerius, Choerecotyloides, Cotylophoron, Explanatum, Gastrothylax, Gigantocotyle, Leiperocotyle, Paramphistomum and Stephanopharynx. These were recorded in 39 wild ruminant species, belonging to the Bovidae family. The genus Carmyerius recorded the highest number of species (n = 13) across nine countries Africa. However, Calicophoron species (n = 9) were more widely distributed, occurring in 17 countries across all regions of Africa. Species of this genus collectively infected 27 wild ruminant species. However, at a species level, Cotylophoron cotylophorum infected the highest number of wild ruminant species. Prevalence of infection based on post-mortem examination ranged from 1.89% in African Buffalo to 100% in Defassa waterbuck from Egypt and Zambia, respectively. The most common mixed infections recorded were those between amphistomes of the same or different genus. Snail intermediate hosts (IHs) were described for 10/38 amphistome species, and these were predominantly species from Plarnobidae family. Despite the richness in diversity of amphistomes infecting wild ruminants in Africa, there is need to further confirm identity of snail IHs and the amphistome species using both morphological and molecular techniques. Furthermore, more studies are recommended to assess the burden of amphistomosis in commercially reared wildlife/game farming, mixed game and livestock farming systems in Africa.
Collapse
Affiliation(s)
- Madeline Siyazisiwe Sibula
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- National University of Science and Technology, P. Bag AC939, Ascot, Bulawayo, Zimbabwe
| | - Ignore Nyagura
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mokgadi Pulane Malatji
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Samson Mukaratirwa
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- One Health Centre for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
7
|
Lyons M, Brown TL, Lahuerta-Marin A, Morgan ER, Airs PM. A molecular assessment of Ostertagia leptospicularis and Spiculopteragia asymmetrica among wild fallow deer in Northern Ireland and implications for false detection of livestock-associated species. Parasit Vectors 2024; 17:141. [PMID: 38500187 PMCID: PMC10949651 DOI: 10.1186/s13071-024-06147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/18/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Wild deer populations utilizing livestock grazing areas risk cross-species transmission of gastrointestinal nematode parasites (GINs), including GINs with anthelmintic resistance (AR) traits. Wild deer have been shown to carry problematic GIN species such as Haemonchus contortus and Trichostrongylus species in the UK, but the presence of livestock GINs in Northern Ireland deer populations is unknown. Also, is it not known whether AR traits exist among GINs of deer such as Ostertagia leptospicularis and Spiculopteragia asymmetrica in pastureland where anthelmintics are heavily used. METHODS Adult-stage GIN samples were retrieved from Northern Irish wild fallow deer abomasa. Individual specimens were subject to a species-specific PCR analysis for common sheep and cattle GIN species with ITS-2 sequence analysis to validate species identities. In addition, the beta-tubulin gene was subject to sequencing to identify benzimidazole (BZ) resistance markers. RESULTS ITS-2 sequencing revealed O. leptospicularis and S. asymmetrica, but species-specific PCR yielded false-positive hits for H. contortus, Teladorsagia circimcincta, Trichostrongylus axei, T. colubriformis, T. vitrinus and Ostertagia ostertagi. For beta-tubulin, O. leptospicularis and S. asymmetrica yielded species-specific sequences at the E198 codon, but no resistance markers were identified in either species at positions 167, 198 or 200 of the coding region. DISCUSSION From this report, no GIN species of significance in livestock were identified among Northern Ireland fallow deer. However, false-positive PCR hits for sheep and cattle-associated GINs is concerning as the presence of deer species in livestock areas could impact both deer and livestock diagnostics and lead to overestimation of both GIN burden in deer and the role as of deer as drivers of these pathogens. ITS-2 sequences from both O. leptospicularis and S. asymmetrica show minor sequence variations to geographically distinct isolates. AR has been noted among GINs of deer but molecular analyses are lacking for GINs of wildlife. In producing the first beta-tubulin sequences for both O. leptospicularis and S. asymmetrica, we report no BZ resistance in this cohort. CONCLUSIONS This work contributes to genetic resources for wildlife species and considers the implications of such species when performing livestock GIN diagnostics.
Collapse
Affiliation(s)
- Maggie Lyons
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Agri-Food and Biosciences Institute Northern Ireland, 12 Stoney Road, Belfast, Co Antrim, BT4 3SD, UK
| | - Tony L Brown
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Angela Lahuerta-Marin
- Agri-Food and Biosciences Institute Northern Ireland, 12 Stoney Road, Belfast, Co Antrim, BT4 3SD, UK
| | - Eric R Morgan
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Paul M Airs
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| |
Collapse
|
8
|
Dickinson ER, McFarland C, Toïgo C, Michael Scantlebury D, Stephens PA, Marks NJ, Morgan ER. Host movement dominates the predicted effects of climate change on parasite transmission between wild and domestic mountain ungulates. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230469. [PMID: 38179074 PMCID: PMC10762430 DOI: 10.1098/rsos.230469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Climate change is shifting the transmission of parasites, which is determined by host density, ambient temperature and moisture. These shifts can lead to increased pressure from parasites, in wild and domestic animals, and can impact the effectiveness of parasite control strategies. Understanding the interactive effects of climate on host movement and parasite life histories will enable targeted parasite management, to ensure livestock productivity and avoid additional stress on wildlife populations. To assess complex outcomes under climate change, we applied a gastrointestinal nematode transmission model to a montane wildlife-livestock system, based on host movement and changes in abiotic factors due to elevation, comparing projected climate change scenarios with the historic climate. The wildlife host, Alpine ibex (Capra ibex ibex), undergoes seasonal elevational migration, and livestock are grazed during the summer for eight weeks. Total parasite infection pressure was more sensitive to host movement than to the direct effect of climatic conditions on parasite availability. Extended livestock grazing is predicted to increase parasite exposure for wildlife. These results demonstrate that movement of different host species should be considered when predicting the effects of climate change on parasite transmission, and can inform decisions to support wildlife and livestock health.
Collapse
Affiliation(s)
- Eleanor R. Dickinson
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Christopher McFarland
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Carole Toïgo
- Office Français de la Biodiversité, 5 allée de Bethléem, ZI Mayencin 38610, Gières, France
| | - D. Michael Scantlebury
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Philip A. Stephens
- Conservation Ecology Group, Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Nikki J. Marks
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Eric R. Morgan
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|
9
|
Titcomb G, Hulke J, Mantas JN, Gituku B, Young H. Cattle aggregations at shared resources create potential parasite exposure hotspots for wildlife. Proc Biol Sci 2023; 290:20232239. [PMID: 38052242 DOI: 10.1098/rspb.2023.2239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Globally rising livestock populations and declining wildlife numbers are likely to dramatically change disease risk for wildlife and livestock, especially at resources where they congregate. However, limited understanding of interspecific transmission dynamics at these hotspots hinders disease prediction or mitigation. In this study, we combined gastrointestinal nematode density and host foraging activity measurements from our prior work in an East African tropical savannah system with three estimates of parasite sharing capacity to investigate how interspecific exposures alter the relative riskiness of an important resource - water - among cattle and five dominant herbivore species. We found that due to their high parasite output, water dependence and parasite sharing capacity, cattle greatly increased potential parasite exposures at water sources for wild ruminants. When untreated for parasites, cattle accounted for over two-thirds of total potential exposures around water for wild ruminants, driving 2-23-fold increases in relative exposure levels at water sources. Simulated changes in wildlife and cattle ratios showed that water sources become increasingly important hotspots of interspecific transmission for wild ruminants when relative abundance of cattle parasites increases. These results emphasize that livestock have significant potential to alter the level and distribution of parasite exposures across the landscape for wild ruminants.
Collapse
Affiliation(s)
- Georgia Titcomb
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins 80523-1019, CO, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Jenna Hulke
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Benard Gituku
- Ecological Monitoring Unit, Ol Pejeta Conservancy, Nanyuki, Kenya
| | - Hillary Young
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
10
|
Mukherjee A, Kar I, Patra AK. Understanding anthelmintic resistance in livestock using "omics" approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125439-125463. [PMID: 38015400 DOI: 10.1007/s11356-023-31045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Oklahoma, 73050, USA.
| |
Collapse
|
11
|
Liu H, Tao Z, Wang Y, Liu X, Wang C, Liu L, Hu M. A member of the CAP protein superfamily, Hc-CAP-15, is important for the parasitic-stage development of Haemonchus contortus. Parasit Vectors 2023; 16:290. [PMID: 37592312 PMCID: PMC10433639 DOI: 10.1186/s13071-023-05907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The CAP superfamily proteins are distributed widely in eukaryotes and play crucial roles in various biological processes. However, very little is known about their functions in parasitic nematodes, including Haemonchus contortus, a socioeconomically important parasitic nematode. We have therefore studied a member of the CAP protein family of H. contortus, named Hc-CAP-15, with the aim to explore its roles in regulating the parasitic developmental process. METHODS The conservation and phylogenetic relationships, spatial expression and temporal transcription profiles of Hc-CAP/cap-15, as well its biological function during parasite development were investigated using bioinformatics, immunofluorescence, real-time PCR and RNA interference (RNAi). RESULTS Hc-CAP-15 was found to be a single-domain CAP protein consisting of four conserved motifs that is localized in the cuticle, intestine and oocyte of adult worms. Hc-cap-15 was transcribed at all developmental stages of H. contortus, with the highest transcription level in parasitic fourth-stage larvae (L4s). Silencing of Hc-cap-15 resulted in a significant increase in the body length of L4s. CONCLUSIONS The results suggested that Hc-CAP-15 is important for the development of H. contortus. Our findings provide a basis for further study of the functions of the CAP family proteins in H. contortus and related parasitic nematodes.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuolin Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yifan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Francis EK, Šlapeta J. Refugia or reservoir? Feral goats and their role in the maintenance and circulation of benzimidazole-resistant gastrointestinal nematodes on shared pastures. Parasitology 2023; 150:672-682. [PMID: 37165895 PMCID: PMC10410396 DOI: 10.1017/s0031182023000380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Gastrointestinal nematodes threaten the productivity of grazing livestock and anthelmintic resistance has emerged globally. It is broadly understood that wild ruminants living in sympatry with livestock act as a positive source of refugia for anthelmintic-susceptible nematodes. However, they might also act as reservoirs of anthelmintic-resistant nematodes, contributing to the spread of anthelmintic resistance at a regional scale. Here, we sampled managed sheep and cattle together with feral goats within the same property in New South Wales, Australia. Internal transcribed spacer 2 (ITS-2) nemabiome metabarcoding identified 12 gastrointestinal nematodes (Cooperia oncophora, Cooperia punctata, Haemonchus contortus, Haemonchus placei, Nematodirus spathiger, Ostertagia ostertagi, Teladorsagia circumcincta, Oesophagostomum radiatum, Oesophagostomum venulosum, Trichostrongylus axei, Trichostrongylus colubriformis and Trichostrongylus rugatus). Isotype-1 β-tubulin metabarcoding targeting benzimidazole resistance polymorphisms identified 6 of these nematode species (C. oncophora, C. punctata, H. contortus, H. placei, O. ostertagi and T. circumcincta), with the remaining 3 genera unable to be identified to the species level (Nematodirus, Oesophagostomum, Trichostrongylus). Both ITS-2 and β-tubulin metabarcoding showed the presence of a cryptic species of T. circumcincta, known from domestic goats in France. Of the gastrointestinal nematodes detected via β-tubulin metabarcoding, H. contortus, T. circumcincta, Nematodirus and Trichostrongylus exhibited the presence of at least one resistance genotype. We found that generalist gastrointestinal nematodes in untreated feral goats had a similarly high frequency of the benzimidazole-resistant F200Y polymorphism as those nematodes in sheep and cattle. This suggests cross-transmission and maintenance of the resistant genotype within the wild ruminant population, affirming that wild ruminants should be considered potential reservoirs of anthelmintic resistance.
Collapse
Affiliation(s)
- Emily Kate Francis
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia
- The University of Sydney Institute for Infectious Diseases, New South Wales 2006, Australia
| |
Collapse
|
13
|
Camas-Pereyra R, Bautista-García GA, Avila G, Alcala-Canto Y, Maza-Lopez J, Reyes-Guerrero DE, Higuera-Piedrahita RI, López-Arellano ME. In silico analysis of two Haemonchus spp. serine protease peptides (S28) and their immunomodulatory activity in vitro. Mol Biochem Parasitol 2023; 253:111545. [PMID: 36681328 DOI: 10.1016/j.molbiopara.2023.111545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
The aim of this study was to evaluate the in vitro immune modulation of two de novo peptides with hypothetical identity to the serine protease family (S28) from Haemonchus spp. Expression of mRNAs encoding these peptides was confirmed by RTqPCR in L3 and adult stage parasites. Antibodies from serum samples collected from an H. contortus-infected lamb at 60 days post infection detected both peptides, as assessed by indirect ELISA. Lamb peripheral blood mononuclear cells (PBMCs) were exposed to each peptide, as well as to the peptide mixture, and cell proliferation assays were performed at 24, 48 and 72 h. The relative expression of the IL4, IL5, IL6, IL13, CXCL8 and FCεR1A genes was quantified by RTqPCR from lamb PBMCs exposed to the peptide mixture at 24 and 48 h. With respect to immune gene expression, 15- and 3-fold upregulation at 24 h was observed with IL5 and CXCL8, respectively, and 2-fold upregulation of CXCL8 at 48 h. In contrast, downregulation of IL5 was stimulated at 48 h. These data suggest that these peptides (pep-hsp and pep-pcx), which show high identity with intestinal and excretion/secretion serine proteases, can trigger immunogenic activity, and suggest that they may be useful as potential parasite vaccines.
Collapse
Affiliation(s)
- René Camas-Pereyra
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México C.P. 04510, México; Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Carr. Fed. Cuernavaca-Cuautla Num. 8534, Jiutepec, Mor., C.P. 62574, México.
| | - Génesis A Bautista-García
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México C.P. 04510, México; Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Carr. Fed. Cuernavaca-Cuautla Num. 8534, Jiutepec, Mor., C.P. 62574, México.
| | - Guillermina Avila
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México C.P. 04510, México.
| | - Yazmin Alcala-Canto
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México C.P. 04510, México.
| | - Jocelyn Maza-Lopez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México C.P. 04510, México; Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Carr. Fed. Cuernavaca-Cuautla Num. 8534, Jiutepec, Mor., C.P. 62574, México.
| | - David E Reyes-Guerrero
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México C.P. 04510, México; Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Carr. Fed. Cuernavaca-Cuautla Num. 8534, Jiutepec, Mor., C.P. 62574, México.
| | - Rosa Isabel Higuera-Piedrahita
- Facultad de Medicina Veterinaria y Zootecnia, FESC-Universidad Nacional Autónoma de México, Carr. Cuautitlán-Teoloyucan Km. 2.5, Edo. de México 54714, México.
| | - María Eugenia López-Arellano
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Carr. Fed. Cuernavaca-Cuautla Num. 8534, Jiutepec, Mor., C.P. 62574, México.
| |
Collapse
|
14
|
Sargison N, Chambers A, Chaudhry U, Costa Júnior L, Doyle SR, Ehimiyein A, Evans M, Jennings A, Kelly R, Sargison F, Sinclair M, Zahid O. Faecal egg counts and nemabiome metabarcoding highlight the genomic complexity of equine cyathostomin communities and provide insight into their dynamics in a Scottish native pony herd. Int J Parasitol 2022; 52:763-774. [PMID: 36208676 DOI: 10.1016/j.ijpara.2022.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/05/2022]
Abstract
Understanding the composition of gastrointestinal nematode communities may help to mitigate or exploit parasite adaptations within their host. We have used nemabiome deep amplicon sequencing of internal transcribed spacer-2 (ITS-2) ribosomal DNA to describe the temporal and host species composition of gastrointestinal nematode communities following sampling of six Scottish ponies across 57 months. In the absence of parasite control, each horse showed seasonal trends of increases and decreases in faecal egg counts, consistent with the epidemiology of equine strongylid parasites, however, the composition of parasites within individuals changed over time. Sixteen presumptive strongylid species were identified in each of the horses, 13 of which were distributed in a complex clade together with small numbers of amplicon sequences which could not be classified beyond the Cyathostominae subfamily level. Egg shedding of seven trichostrongylid species, which had previously been identified in co-grazed Soay sheep, was identified during the early spring. Faecal egg counts and the percentage of amplicon sequences assigned to each gastrointestinal nematode species were combined to describe their relative abundance across both host and time. Significant differences in species diversity between horses and between months were observed, being greatest from March to May and least from October to December. The magnitude of the individual horse effect varied between months and, conversely, the magnitude of the seasonal effect varied between individual horses. The most abundant gastrointestinal nematode in each of the horses was Cylicostephanus longibursatus (46.6% overall), while the abundance of the other strongylid species varied between horses and relative to each other. Patent C. longibursatus infections over the winter months might represent a genetic adaptation towards longer adult worm survival, or a lower rate of developmental arrest in the autumn. This study provides insight into highly complex phylogenetic relationships between closely related cyathostomin species; and describes the dynamics of egg shedding and pasture contamination of co-infecting equine gastrointestinal nematode communities. The results could be applied to determine how climatic and management factors affect the equilibrium between hosts and their parasites, and to inform the development of sustainable gastrointestinal nematode control strategies for different host species.
Collapse
Affiliation(s)
- Neil Sargison
- University of Edinburgh, Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK.
| | - Alex Chambers
- University of Edinburgh, Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| | - Umer Chaudhry
- University of Edinburgh, Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| | - Livio Costa Júnior
- Federal University of Maranhão, Pathology Department, São Luís, Maranhão, Brazil
| | - Stephen R Doyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ajoke Ehimiyein
- University of Edinburgh, Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| | - Mike Evans
- University of Edinburgh, Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| | - Amy Jennings
- University of Edinburgh, Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| | - Rob Kelly
- University of Edinburgh, Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| | - Fiona Sargison
- University of Edinburgh, Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| | | | - Osama Zahid
- University of Edinburgh, Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| |
Collapse
|
15
|
Beaumelle C, Redman E, Verheyden H, Jacquiet P, Bégoc N, Veyssière F, Benabed S, Cargnelutti B, Lourtet B, Poirel MT, de Rijke J, Yannic G, Gilleard JS, Bourgoin G. Generalist nematodes dominate the nemabiome of roe deer in sympatry with sheep at a regional level. Int J Parasitol 2022; 52:751-761. [PMID: 36183847 DOI: 10.1016/j.ijpara.2022.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/26/2022]
Abstract
The growth of livestock farming and the recent expansion of wild ungulate populations in Europe favor opportunities for direct and/or indirect cross-transmission of pathogens. Comparatively few studies have investigated the epidemiology of gastro-intestinal nematode parasites, an ubiquitous and important community of parasites of ungulates, at the wildlife/livestock interface. In this study, we aimed to assess the influence of livestock proximity on the gastrointestinal nematode community of roe deer in a rural landscape located in southern France. Using ITS-2 rDNA nemabiome metabarcoding on fecal larvae, we analysed the gastrointestinal nematode communities of roe deer and sheep. In addition, we investigated Haemonchus contortus nad4 mtDNA diversity to specifically test parasite circulation among domestic and wild host populations. The dominant gastrointestinal nematode species found in both the roe deer and sheep were generalist species commonly found in small ruminant livestock (e.g. H. contortus), whereas the more specialised wild cervid nematode species (e.g. Ostertagia leptospicularis) were only present at low frequencies. This is in marked contrast with previous studies that found the nemabiomes of wild cervid populations to be dominated by cervid specialist nematode species. In addition, the lack of genetic structure of the nad4 mtDNA of H. contortus populations between host species suggests circulation of gastrointestinal nematodes between roe deer and sheep. The risk of contact with livestock only has a small influence on the nemabiome of roe deer, suggesting the parasite population of roe deer has been displaced by generalist livestock parasites due to many decades of sheep farming, not only for deer grazing close to pastures, but also at a larger regional scale. We also observed some seasonal variation in the nemabiome composition of roe deer. Overall, our results demonstrate significant exchange of gastrointestinal nematodes between domestic and wild ungulates, with generalist species spilling over from domestic ungulates dominating wild cervid parasite communities.
Collapse
Affiliation(s)
- Camille Beaumelle
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69100 Villeurbanne, France; Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, F-69280 Marcy l'Etoile, France; Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Elizabeth Redman
- Faculty of Veterinary Medicine, Host-Parasite Interactions Program (HPI) University of Calgary, Calgary, Alberta, Canada
| | - Hélène Verheyden
- Université de Toulouse, INRAE, Comportement et Ecologie de la Faune Sauvage, F-31326 Castanet-Tolosan, France; LTSER ZA PYRénées GARonne, F-31326 Auzeville-Tolosane, France
| | - Philippe Jacquiet
- Université de Toulouse, UMT Pilotage de la Santé des Ruminants, Ecole Nationale Vétérinaire de Toulouse, France
| | - Noémie Bégoc
- Université de Toulouse, UMT Pilotage de la Santé des Ruminants, Ecole Nationale Vétérinaire de Toulouse, France
| | - Florence Veyssière
- Université de Toulouse, UMT Pilotage de la Santé des Ruminants, Ecole Nationale Vétérinaire de Toulouse, France
| | - Slimania Benabed
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69100 Villeurbanne, France; Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, F-69280 Marcy l'Etoile, France
| | - Bruno Cargnelutti
- Université de Toulouse, INRAE, Comportement et Ecologie de la Faune Sauvage, F-31326 Castanet-Tolosan, France; LTSER ZA PYRénées GARonne, F-31326 Auzeville-Tolosane, France
| | - Bruno Lourtet
- Université de Toulouse, INRAE, Comportement et Ecologie de la Faune Sauvage, F-31326 Castanet-Tolosan, France; LTSER ZA PYRénées GARonne, F-31326 Auzeville-Tolosane, France
| | - Marie-Thérèse Poirel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69100 Villeurbanne, France; Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, F-69280 Marcy l'Etoile, France
| | - Jill de Rijke
- Faculty of Veterinary Medicine, Host-Parasite Interactions Program (HPI) University of Calgary, Calgary, Alberta, Canada
| | - Glenn Yannic
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - John S Gilleard
- Faculty of Veterinary Medicine, Host-Parasite Interactions Program (HPI) University of Calgary, Calgary, Alberta, Canada.
| | - Gilles Bourgoin
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69100 Villeurbanne, France; Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, F-69280 Marcy l'Etoile, France
| |
Collapse
|
16
|
Wang C, Liu L, Wang T, Liu X, Peng W, Srivastav RK, Zhu XQ, Gupta N, Gasser RB, Hu M. H11-induced immunoprotection is predominantly linked to N-glycan moieties during Haemonchus contortus infection. Front Immunol 2022; 13:1034820. [PMID: 36405717 PMCID: PMC9667387 DOI: 10.3389/fimmu.2022.1034820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Nematodes are one of the largest groups of animals on the planet. Many of them are major pathogens of humans, animals and plants, and cause destructive diseases and socioeconomic losses worldwide. Despite their adverse impacts on human health and agriculture, nematodes can be challenging to control, because anthelmintic treatments do not prevent re-infection, and excessive treatment has led to widespread drug resistance in nematode populations. Indeed, many nematode species of livestock animals have become resistant to almost all classes of anthelmintics used. Most efforts to develop commercial anti-nematode vaccines (native or recombinant) for use in animals and humans have not succeeded, although one effective (dead) vaccine (Barbervax) has been developed to protect animals against one of the most pathogenic parasites of livestock animals – Haemonchus contortus (the barber’s pole worm). This vaccine contains native molecules, called H11 and H-Gal-GP, derived from the intestine of this blood-feeding worm. In its native form, H11 alone consistently induces high levels (75-95%) of immunoprotection in animals against disease (haemonchosis), but recombinant forms thereof do not. Here, to test the hypothesis that post-translational modification (glycosylation) of H11 plays a crucial role in achieving such high immunoprotection, we explored the N-glycoproteome and N-glycome of H11 using the high-resolution mass spectrometry and assessed the roles of N-glycosylation in protective immunity against H. contortus. Our results showed conclusively that N-glycan moieties on H11 are the dominant immunogens, which induce high IgG serum antibody levels in immunised animals, and that anti-H11 IgG antibodies can confer specific, passive immunity in naïve animals. This work provides the first detailed account of the relevance and role of protein glycosylation in protective immunity against a parasitic nematode, with important implications for the design of vaccines against metazoan parasites.
Collapse
Affiliation(s)
- Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tianjiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xin Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Peng
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ratnesh Kumar Srivastav
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani (BITS-P), Hyderabad, India
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Nishith Gupta
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani (BITS-P), Hyderabad, India
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Robin B. Gasser
- Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Robin B. Gasser, ; Min Hu,
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Robin B. Gasser, ; Min Hu,
| |
Collapse
|
17
|
Halvarsson P, Baltrušis P, Kjellander P, Höglund J. Parasitic strongyle nemabiome communities in wild ruminants in Sweden. Parasit Vectors 2022; 15:341. [PMID: 36167594 PMCID: PMC9516825 DOI: 10.1186/s13071-022-05449-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Wildlife hosts may serve as reservoirs for strongyles, which can be transmitted to domestic livestock. Therefore, studies evaluating nemabiome compositions in wildlife ruminants are of great use in assessing the possibility of transmission of important nematode pathogens to domestic sheep in Sweden. Methods First, fecal samples were collected from roe deer (n = 125), fallow deer (n = 106), red deer (n = 18) and mouflon (n = 13) in south central Sweden during the hunting season in 2019. Second, after fecal examination samples were cultured and the larvae were harvested, followed by DNA extractions. Third, all samples were barcoded and processed for sequence analysis on the PacBio platform. Finally, bioinformatic sequence analysis was conducted with DADA2, while species diversity and richness, as well as interactions between the different hosts, were calculated and analyzed in R. Results Nematode ITS2 sequences were found in 225 of 262 (86%) samples. In total, 31 taxa were identified, among which 26 (86%) to the species level. These were found in different combinations, among which 24 (77%) occurred in roe deer, 19 (61%) in fallow deer, 20 (65%) in red deer and 10 (32%) in mouflon. Five of the species found are known to be associated with livestock (Chabertia ovina, Haemonchus contortus, Oesophagostomum venulosum, Teladorsagia circumcincta and Trichostrongylus axei). However, in the present study the relative abundance and prevalence of most of these species were low. The most striking exception was T. axei, which was relatively abundant in all wildlife hosts. Mostly a wide range of wildlife specific nematodes such as Ostertagia leptospicularis and Spiculopteragia spp. were identified including the invasive nematode Spiculopteragia houdemeri, which was found for the first time in red deer, fallow deer, and mouflon in Sweden. The difference in the number of shared species between mouflon and all cervids (n = 6) was less than among all three cervids (n = 8). Conclusion In this study, we investigated the community structure of parasitic intestinal nematodes in four wildlife hosts, and we found that the majority of the parasite species identified were wildlife specific. We also found a new, potentially invasive species not reported before. After comparing the nemabiome of the wildlife hosts in this study with a previous study in sheep from the same geographical region, we conclude that the horizontal transmission potential appears to be relatively low. Still, cross-infections of nematodes between game and sheep cannot be completely ignored. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Peter Halvarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 7036, 750 05, Uppsala, Sweden.
| | - Paulius Baltrušis
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 7036, 750 05, Uppsala, Sweden
| | - Petter Kjellander
- Department of Ecology, Swedish University of Agricultural Sciences, Grimsö Wildlife Research Station, 739 93, Riddarhyttan, Sweden
| | - Johan Höglund
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 7036, 750 05, Uppsala, Sweden
| |
Collapse
|