1
|
Afriza D, Arma U, Faslah R, Suriyah WH. Anticancer Potential of Quercetin on Oral Squamous Cell Carcinoma: A Scoping Review and Molecular Docking. Eur J Dent 2025; 19:15-23. [PMID: 39348855 DOI: 10.1055/s-0044-1789016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a type of cancer that has a low survival rate and high recurrence and metastasis rates. To date, there is still no effective treatment for OSCC. Various types of cancer, including OSCC, have reported quercetin to act as an anticancer agent, but there is no clear research data on how it may affect OSCC. To determine the anticancer potential of quercetin in OSCC, we conducted a scoping review, and to determine the interaction of quercetin with one of the proteins that plays a role in carcinogenesis, namely, BCL-2, we conducted molecular docking. The scoping review process was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews. The scoping review was searched by collecting articles related to the research topic in Google Scholar, PubMed, ScienceDirect, Cochrane, and EBSCOhost databases. All of the literature records found during the search were imported into the Mendeley software to remove duplication. Nine studies were generated after the titles and abstracts were reviewed according to the inclusion and exclusion criteria. After the full-text screening, no studies were excluded, leaving nine publications determined to be eligible for inclusion in the scoping review. Quercetin showed effects on inhibiting cancer invasion, migration, proliferation, and many protein expressions, as well as increasing cell apoptosis. Molecular docking was done for quercetin and BCl-2 protein. Doxorubicin was utilized as a comparison ligand. The in silico study was utilized using AutoDock Vina, AutoDock Tools 1.5.6, Biovia Discovery Studio 2021, and PyMol. Molecular docking indicated quercetin has a strong binding affinity with BCl-2 protein (ΔG -7.2 kcal/mol). Both scoping review and molecular docking revealed that quercetin is a promising candidate for anticancer agent.
Collapse
Affiliation(s)
- Dhona Afriza
- Department of Oral Biology, Faculty of Dentistry, Baiturrahmah University, Kota Padang, Sumatera Barat, Indonesia
| | - Utmi Arma
- Department of Oral Medicine, Faculty of Dentistry, Baiturrahmah University, Kota Padang, Sumatera Barat, Indonesia
| | - Raefany Faslah
- Department of Oral Medicine, Faculty of Dentistry, Baiturrahmah University, Kota Padang, Sumatera Barat, Indonesia
| | | |
Collapse
|
2
|
Bhati A, Wan S, Coveney PV. Equilibrium and Nonequilibrium Ensemble Methods for Accurate, Precise and Reproducible Absolute Binding Free Energy Calculations. J Chem Theory Comput 2025; 21:440-462. [PMID: 39680850 PMCID: PMC11736689 DOI: 10.1021/acs.jctc.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Free energy calculations for protein-ligand complexes have become widespread in recent years owing to several conceptual, methodological and technological advances. Central among these is the use of ensemble methods which permits accurate, precise and reproducible predictions and is necessary for uncertainty quantification. Absolute binding free energies (ABFEs) are challenging to predict using alchemical methods and their routine application in drug discovery has remained out of reach until now. Here, we apply ensemble alchemical ABFE methods to a large data set comprising 219 ligand-protein complexes and obtain statistically robust results with high accuracy (<1 kcal/mol). We compare equilibrium and nonequilibrium methods for ABFE predictions at large scale and provide a systematic critical assessment of each method. The equilibrium method is more accurate, precise, faster, computationally more cost-effective and requires a much simpler protocol, making it preferable for large scale and blind applications. We find that the calculated free energy distributions are non-normal and discuss the consequences. We recommend a definitive protocol to perform ABFE calculations optimally. Using this protocol, it is possible to perform thousands of ABFE calculations within a few hours on modern exascale machines.
Collapse
Affiliation(s)
- Agastya
P. Bhati
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Shunzhou Wan
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Peter V. Coveney
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Computational
Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam 1012, The Netherlands
- Advanced
Research Computing Centre, University College
London, London WC1H 9BT, United Kingdom
| |
Collapse
|
3
|
Oliveira JC, Negreiro JM, Nunes FM, Barbosa FG, Mafezoli J, Mattos MC, Fernandes MCR, Pessoa C, Furtado CLM, Zanatta G, Oliveira MCF. In Silico Study of the Anti-MYC Potential of Lanostane-Type Triterpenes. ACS OMEGA 2024; 9:50844-50858. [PMID: 39741863 PMCID: PMC11683602 DOI: 10.1021/acsomega.4c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025]
Abstract
One of the most investigated molecular targets for anticancer therapy is the proto-oncogene MYC, which is amplified and thus overexpressed in many types of cancer. Due to its structural characteristics, developing inhibitors for the target has proven to be challenging. In this study, the anti-MYC potential of lanostane-type triterpenes was investigated for the first time, using computational approaches that involved ensemble docking, prediction of structural properties and pharmacokinetic parameters, molecular dynamics (MD), and binding energy calculation using the molecular mechanics-generalized born surface area (MM-GBSA) method. The analysis of physicochemical properties, druglikeness, and pharmacokinetic parameters showed that ligands ganoderic acid E (I), ganoderlactone D (II), ganoderic acid Y (III), ganoderic acid Df (IV), lucidenic acid F (V), ganoderic acid XL4 (VI), mariesiic acid A (VII), and phellinol E (VIII) presented properties within the filter used. These eight ligands, in general, could interact with the molecular target favorably, with interaction energy values between -8.3 and -8.6 kcal mol-1. In MD, the results of RMSD, RMSF, radius of gyration, and hydrogen bonds of the complexes revealed that ligands I, IV, VI, and VII interacted satisfactorily with the protein during the simulations and assisted in its conformational and energetic stabilization. The binding energy calculation using the MM-GBSA method showed better results for the MYC-VII and MYC-I complexes (-44.98 and -41.96 kcal mol-1, respectively). These results support the hypothesis that such molecules can interact with MYC for a considerable period, which would be an essential condition for them to exert their inhibitory activity effectively.
Collapse
Affiliation(s)
- José
A. C. Oliveira
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Jonatas M. Negreiro
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Fátima M. Nunes
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Francisco G. Barbosa
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Jair Mafezoli
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Marcos C. Mattos
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Maria C. R. Fernandes
- Drug Research
and Development Center, Federal University
of Ceará, Rua Coronel Nunes de Melo, 1000, Fortaleza, CE 60430-275, Brazil
| | - Claudia Pessoa
- Drug Research
and Development Center, Federal University
of Ceará, Rua Coronel Nunes de Melo, 1000, Fortaleza, CE 60430-275, Brazil
| | - Cristiana L. M. Furtado
- Drug Research
and Development Center, Federal University
of Ceará, Rua Coronel Nunes de Melo, 1000, Fortaleza, CE 60430-275, Brazil
- Graduate
Program in Medical Sciences, University
of Fortaleza, Rua Francisco
Segundo da Costa, 23-57, Fortaleza, CE 60811-650, Brazil
| | - Geancarlo Zanatta
- Department
of Biophysics, Bioscience Institute, Federal
University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Building 43422, Laboratory
204, Porto Alegre, RS 91501-970, Brazil
| | - Maria C. F. Oliveira
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| |
Collapse
|
4
|
Lindahl E, Friedman R. Exploring the Impact of Protein Chain Selection in Binding Energy Calculations with DFT. Chemphyschem 2024; 25:e202400119. [PMID: 39188152 PMCID: PMC11648830 DOI: 10.1002/cphc.202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/24/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Calculation of binding free energies between a protein and a ligand are highly desired for computer-aided drug design. Here we approximate the binding energies of ABL1, an enzyme which is the target for drugs used in the treatment of chronic myeloid leukaemia, with minimal models and density functional theory (DFT). Starting from the crystal structures of protein-drug complexes, we estimated the binding free energies having used all available individual molecules (protein chains) within each structure, not only a single one as commonly used, in order to see if the choice of the protein chain is important in such calculations. Differences were observed between chains in the same file. Energy decomposition analysis (EDA) revealed that the most important factors for binding were exchange, repulsion and electrostatics. The desolvation term varied dramatically between the inhibitors (between 4.2 and 92.3 kcal/mol). All functionals showed similar patterns in the EDA and in discriminating between the ligands. Non-covalent interactions (NCI) analysis was used to further explain the differences between protein chains and functionals. Overall, it is shown that small minimal models of a drug binding site can be useful to infer on the suitability of an initial crystal structure for further analysis such as EDA.
Collapse
Affiliation(s)
- Erik Lindahl
- Department of Chemistry and Biomedical SciencesLinnæus UniversityKalmarSE-391 82Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical SciencesLinnæus UniversityKalmarSE-391 82Sweden
| |
Collapse
|
5
|
Zu X, Zhao Q, Liu W, Guo L, Liao T, Cai J, Li H. Sturgeon (Acipenser schrenckii) spinal cord peptides: Antioxidative and acetylcholinesterase inhibitory efficacy and mechanisms. Food Chem 2024; 461:140834. [PMID: 39153375 DOI: 10.1016/j.foodchem.2024.140834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Providing antioxidants and targeting acetylcholinesterase (AChE) are key strategies in treating neurocognitive dysfunction. In this study, bioactive sturgeon (Acipenser schrenckii) spinal cord peptides (SSCPs) with antioxidant and AChE inhibitory potency were extracted and separated from sturgeon spinal cord by enzymatic hydrolysis and ultrafiltration, and targeted peptide PGGW was screened via computer simulated molecular docking. Further, the molecular dynamic interactions of the PGGW with superoxide dismutase (SOD) and AChE were analyzed, and the protective effect of PGGW on glutamate-induced PC12 cells in vitro was evaluated. The <3 kDa fraction of SSCPs displays the most potent antioxidative efficacy (1 mg/mL, DPPH•: 89.07%, ABTS+: 76.35%). Molecular dynamics simulation showed that PGGW was stable within AChE and tightly bound to residues SER203, PHE295, ILE294 and TRP236. When combined with SOD, the indole group of PGGW was stuck inside SOD, but the tail chain PGG fluctuated greatly outside. Surface plasmon resonance demonstrated that PGGW has a high binding affinity for AChE (KD = 1.4 mM) and 0.01 mg/mL PGGW provided good protection against glutamate-induced apoptosis. The findings suggest a promising strategy for drug research on neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Zu
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qing Zhao
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430000, China
| | - Wenbo Liu
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China; School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lu Guo
- School of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jun Cai
- School of Life and Health Sciences, Hubei University of Technology, Wuhan 430000, China.
| | - Hailan Li
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
6
|
Lee S, Wong AR, Mehmet H, Yang AWH, Hung A. Elucidating the mechanisms of a herbal compound fumarine and its modulation on the estrogen receptor 1. J Biomol Struct Dyn 2024:1-14. [PMID: 39663629 DOI: 10.1080/07391102.2024.2438357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/15/2024] [Indexed: 12/13/2024]
Abstract
Stroke-related numbness and weakness (SRNW) are resultant disabilities following a stroke episode and may present with muscle weakness, numbness, tightness, spasticity, and pain in up to 85% of patients. Huangqi Guizhi Wuwu Decoction (HGWD) has been widely investigated to manage the sensorimotor deficiencies at the herb and formula level. However, detailed molecular mechanisms of its constituents are presently lacking. This project employed computational molecular modelling and docking methods to identify candidate compounds of HGWD which may serve as effective modulators of target proteins involved in SRNW. Estrogen Receptor 1 was identified as a promising target for HGWD compounds, while the herbal compound fumarine, a constituent of Jujubae Fructus, was predicted to exhibit high binding affinity and favourable ligand-receptor interactions with ESR1. There is currently a lack of scientific evidence for specific atomic-level interactions between ESR1 and this compound. Therefore, molecular docking and molecular dynamics simulations were used to elucidate the interaction mechanisms of fumarine with ESR1; and the molecular-level structural and functional consequences of ligand binding. Ligand-receptor contact analysis and free energy decomposition calculations identified Glu419 and Leu38 as stable hydrogen bond partners, while favourable contributions to the binding free energy include in Met421 (-10.74 kJ/mol) and Leu525 (-10.02 kJ/mol). This work provides the basis for further studies on discovering lead compounds which modulate the activity of ESR1.
Collapse
Affiliation(s)
- Sanghyun Lee
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ann Rann Wong
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Hanife Mehmet
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Angela Wei Hong Yang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Zhang D, Meng Q, Guo F. Incorporating Water Molecules into Highly Accurate Binding Affinity Prediction for Proteins and Ligands. Int J Mol Sci 2024; 25:12676. [PMID: 39684398 DOI: 10.3390/ijms252312676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/16/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
In the binding process between proteins and ligand molecules, water molecules play a pivotal role by forming hydrogen bonds that enable proteins and ligand molecules to bind more strongly. However, current methodologies for predicting binding affinity overlook the importance of water molecules. Therefore, we developed a model called GraphWater-Net, specifically designed for predicting protein-ligand binding affinity, by incorporating water molecules. GraphWater-Net employs topological structures to represent protein atoms, ligand atoms and water molecules, and their interactions. Leveraging the Graphormer network, the model extracts interaction features between nodes within the topology, alongside the interaction features of edges and nodes. Subsequently, it generates embeddings with attention weights, inputs them into a Softmax function for regression prediction, and ultimately outputs the predicted binding affinity value. Experimental results on the Comparative Assessment of Scoring Functions (CASF) 2016 test set show that the introduction of water molecules into the complex significantly improves the prediction performance of the proposed model for protein and ligand binding affinity. Specifically, the Pearson correlation coefficient (Rp) exceeds that of current state-of-the-art methods by a margin of 0.022 to 0.129. By integrating water molecules, GraphWater-Net has the potential to facilitate the rational design of protein-ligand interactions and aid in drug discovery.
Collapse
Affiliation(s)
- Diya Zhang
- School of Computer Science and Engineering, Central South University, Changsha 410000, China
| | - Qiaozhen Meng
- School of Computer Science, Xiangtan University, Xiangtan 411105, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha 410000, China
| |
Collapse
|
8
|
Oancea OL, Gâz ȘA, Marc G, Lungu IA, Rusu A. In Silico Evaluation of Some Computer-Designed Fluoroquinolone-Glutamic Acid Hybrids as Potential Topoisomerase II Inhibitors with Anti-Cancer Effect. Pharmaceuticals (Basel) 2024; 17:1593. [PMID: 39770435 PMCID: PMC11679884 DOI: 10.3390/ph17121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Fluoroquinolones (FQs) are topoisomerase II inhibitors with antibacterial activity, repositioned recently as anti-cancer agents. Glutamic acid (GLA) is an amino acid that affects human metabolism. Since an anti-cancer mechanism of FQs is human topoisomerase II inhibition, it is expected that FQ-GLA hybrids can act similarly. Methods: We designed 27 hypothetical hybrids of 6 FQs and GLA through amide bonds at the 3- and 7-position groups of FQs or via ethylenediamine/ethanolamine linkers at the carboxyl group of the FQ. Hydroxamic acid derivatives were also theoretically formulated. Computational methods were used to predict their physicochemical, pharmacokinetic, or toxicological properties and their anti-cancer activity. For comparison, etoposide was used as an anti-cancer agent inhibiting topoisomerase II. Molecular docking assessed whether the hybrids could interact with the human topoisomerase II beta in the same binding site and interaction sites as etoposide. Results: All the hybrids acted as potential topoisomerase II inhibitors, demonstrating possible anti-cancer activity on several cancer cell lines. Among all the proposed hybrids, MF-7-GLA would be the ideal candidate as a lead compound. The hybrid OF-3-EDA-GLA and the hydroxamic acid derivatives also stood out. Conclusions: Both FQs and GLA have advantageous structures for obtaining hybrids with favourable properties. Improvements in the hybrids' structure could lead to promising results.
Collapse
Affiliation(s)
- Octavia-Laura Oancea
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Șerban Andrei Gâz
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Gabriel Marc
- Organic Chemistry Department, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
9
|
Lungu IA, Oancea OL, Rusu A. In Silico Study of the Potential Inhibitory Effects on Escherichia coli DNA Gyrase of Some Hypothetical Fluoroquinolone-Tetracycline Hybrids. Pharmaceuticals (Basel) 2024; 17:1540. [PMID: 39598450 PMCID: PMC11597511 DOI: 10.3390/ph17111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Despite the discovery of antibiotics, bacterial infections persist globally, exacerbated by rising antimicrobial resistance that results in millions of cases, increased healthcare costs, and more extended hospital stays. The urgent need for new antibacterial drugs continues as resistance evolves. Fluoroquinolones and tetracyclines are versatile antibiotics that are effective against various bacterial infections. A hybrid antibiotic combines two or more molecules to enhance antimicrobial effectiveness and combat resistance better than monotherapy. Fluoroquinolones are ideal candidates for hybridization due to their potent bactericidal effects, ease of synthesis, and ability to form combinations with other molecules. METHODS This study explored the mechanisms of action for 40 hypothetical fluoroquinolone-tetracycline hybrids, all of which could be obtained using a simple, eco-friendly synthesis method. Their interaction with Escherichia coli DNA Gyrase and similarity to albicidin were evaluated using the FORECASTER platform. RESULTS Hybrids such as Do-Ba, Mi-Fi, and Te-Ba closely resembled albicidin in physicochemical properties and FITTED Scores, while Te-De surpassed it with a better score. Similar to fluoroquinolones, these hybrids likely inhibit DNA synthesis by binding to enzyme-DNA complexes. CONCLUSIONS These hybrids could offer broad-spectrum activity and help mitigate bacterial resistance, though further in vitro and in vivo studies are needed to validate their potential.
Collapse
Affiliation(s)
- Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Octavia-Laura Oancea
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
10
|
Pathak RK, Kim JM. A computational assay for identifying millet-derived compounds that antagonize the interaction between bisphenols and estrogen-related receptor gamma. Front Pharmacol 2024; 15:1435254. [PMID: 39545070 PMCID: PMC11560427 DOI: 10.3389/fphar.2024.1435254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
The use of Bisphenol A (BPA) and its analogs in industries, as well as the products made from them, is becoming a significant concern for human health. Scientific studies have revealed that BPA functions as an endocrine disruptor. While some analogs of BPA (bisphenols) have been used for a longer time, it was later discovered that they are toxic, similar to BPA. Their widespread use ensures their presence in the environment, and thus, everyone is exposed to them. Scientific research has shown that BPA interacts with estrogen-related receptor gamma (ERRγ), affecting its normal function. ERRγ is involved in biological processes including energy metabolism and mitochondrial function. Therefore, continuous exposure to bisphenols increases the risk of various diseases. In our previous study, we observed that some analogs of BPA had a higher binding affinity to ERRγ compared to BPA itself and analyzed the amino acid residues involved in this interaction. We hypothesized that by antagonizing the interaction between bisphenols and ERRγ, we could neutralize their toxic effects. Taking into account the health benefits of millets and their toxin removal properties, virtual screening of millet-derived compounds was conducted along with prediction of their ADMET profiles. Top five candidates were prioritized for Density Functional Theory (DFT) calculations and further analyses. Long-term molecular dynamics simulation (1 µs) were utilized to evaluate their binding, stability, and antagonizing abilities. Furthermore, reevaluation of their binding energy was conducted using the MM-PBSA method. This study reports millet-derived compounds, namely, Tricin 7-rutinoside, Tricin 7-glucoside, Glucotricin, Kaempferol, and Setarin. These compounds are predicted to be potent competitive inhibitors that can antagonize the interactions between bisphenols and ERRγ. These compounds could potentially assist in the development of future therapeutics. They may also be considered for use as food supplements, although further investigations, including wet-lab experiments and clinical studies, are needed.
Collapse
Affiliation(s)
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| |
Collapse
|
11
|
Qian R, Xue J, Xu Y, Huang J. Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery. J Chem Inf Model 2024; 64:7214-7237. [PMID: 39360948 DOI: 10.1021/acs.jcim.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Computational methods constitute efficient strategies for screening and optimizing potential drug molecules. A critical factor in this process is the binding affinity between candidate molecules and targets, quantified as binding free energy. Among various estimation methods, alchemical transformation methods stand out for their theoretical rigor. Despite challenges in force field accuracy and sampling efficiency, advancements in algorithms, software, and hardware have increased the application of free energy perturbation (FEP) calculations in the pharmaceutical industry. Here, we review the practical applications of FEP in drug discovery projects since 2018, covering both ligand-centric and residue-centric transformations. We show that relative binding free energy calculations have steadily achieved chemical accuracy in real-world applications. In addition, we discuss alternative physics-based simulation methods and the incorporation of deep learning into free energy calculations.
Collapse
Affiliation(s)
- Runtong Qian
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Xue
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - You Xu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
12
|
Xu X, Yang H, Dong H, Li X, Liu Q, Feng Y. Characterization of argonaute nucleases from mesophilic bacteria Pseudobutyrivibrio ruminis. BIORESOUR BIOPROCESS 2024; 11:94. [PMID: 39373873 PMCID: PMC11458871 DOI: 10.1186/s40643-024-00797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
Mesophilic Argonautes (Agos) from microbial resources have received significant attention due to their potential applications in genome editing and molecular diagnostics. This study characterizes a novel Ago from Pseudobutyrivibrio ruminis (PrAgo), which can cleave single-stranded DNA using guide DNA (gDNA). PrAgo, functioning as a multi-turnover enzyme, effectively cleaves DNA using 5'-phosphate gDNA, 14-30 nucleotides in length, in the presence of both Mn2+ and Mg2+ ions. PrAgo demonstrates DNA cleavage activity over a broad pH range (pH 4-12), with optimal activity at pH 11. As a mesophilic enzyme, PrAgo cleaves efficiently DNA at temperatures ranging from 25 to 65 °C, particularly at 65 °C. PrAgo does not show strong preferences for the 5'-nucleotide in gDNA. It shows high tolerance for single-base mismatches, except at positions 13 and 15 of gDNA. Continuous double-nucleotide mismatches at positions 10-16 of gDNA significantly reduce cleavage activity. Furthermore, PrAgo mediates DNA-guided DNA cleavage of AT-rich double stranded DNA at 65 °C. Additionally, molecular dynamic simulations suggest that interactions between the PAZ domain and different nucleic acids strongly influence cleavage efficiency. These findings expand our understanding of Protokaryotic Agos and their potential applications in biotechnology.
Collapse
Affiliation(s)
- Xiaoyi Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hao Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Huarong Dong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiao Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
13
|
Wang T, Bo N, Sha G, Guan Y, Yang D, Shan X, Lv Z, Chen Q, Yang G, Gong S, Ma Y, Zhao M. Identification and molecular mechanism of novel hypoglycemic peptide in ripened pu-erh tea: Molecular docking, dynamic simulation, and cell experiments. Food Res Int 2024; 194:114930. [PMID: 39232541 DOI: 10.1016/j.foodres.2024.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Ripened pu-erh tea is known to have beneficial hypoglycemic properties. However, it remains unclear whether the bioactive peptides produced during fermentation are also related to hypoglycemic potential. This study aimed to identify hypoglycemic peptides in ripened pu-erh tea and to elucidate their bioactive mechanisms using physicochemical property prediction, molecular docking, molecular dynamics simulations, and cell experiments. Thirteen peptides were identified by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Among them, AADTDYRFS (AS-9) and AGDGTPYVR (AR-9) exhibited high α-glucosidase inhibitory activity, with half-maximal inhibitory concentration (IC50) values of 0.820 and 3.942 mg/mL, respectively. Molecular docking and dynamics simulations revealed that hydrogen bonding, hydrophobic interactions, and van der Waals forces assist peptides AS-9 and AR-9 in forming stable and tight complexes with α-glucosidase. An insulin-resistance (IR)-HepG2 cell model was established. AS-9 was non-toxic to IR-HepG2 cells and significantly increased the glucose consumption capacity, hexokinase, and pyruvate kinase activities of IR-HepG2 cells (p < 0.05). AS-9 alleviated glucose metabolism disorders and ameliorated IR by activating the IRS-1/PI3K/Akt signaling pathway and increasing the expression levels of MDM2, IRS-1, Akt, PI3K, GLUT4, and GSK3β genes. In addition, no hemolysis of mice red blood cells red blood cells occurred at concentrations below 1 mg/mL. This work first explored hypoglycemic peptides in ripened pu-erh tea, providing novel insights for enhancing its functional value.
Collapse
Affiliation(s)
- Teng Wang
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, China
| | - Nianguo Bo
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, China
| | - Gen Sha
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, China
| | - Yiqing Guan
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, China
| | - Dihan Yang
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, China
| | - Xunyuan Shan
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, China
| | - Zheng Lv
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, China
| | - Qiuyue Chen
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, China
| | - Guoqin Yang
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, China
| | - Sili Gong
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, China
| | - Yan Ma
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| | - Ming Zhao
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650201, China.
| |
Collapse
|
14
|
Liu W, Liu R, Qin Q, Wang H, Zhang X, Meng G. Molecular docking and molecular dynamics simulation of wheat gluten-derived antioxidant peptides acting through the Keap1-Nrf2 pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8150-8161. [PMID: 38837798 DOI: 10.1002/jsfa.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND In our previous study, we successfully identified five peptides from wheat gluten: Ala-Pro-Ser-Tyr (APSY), Leu-Tyr (LY), Pro-Tyr (PY), Arg-Gly-Gly-Tyr (RGGY) and Tyr-Gln (YQ). Molecular docking and molecular dynamics simulation methods were employed to investigate the interaction between these antioxidant peptides and the Kelch-like ECH-associated protein 1 (Keap1 protein), revealing the molecular mechanism of their non-competitive binding. In addition, the total antioxidant capacity of the five peptides was determined using the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) method. RESULTS The affinities of APSY, LY, PY, RGGY and YQ were -8.9, -8.3, -8.5, -9.1 and - 7.9 kcal mol-1, respectively. The five peptides effectively bound to Keap1 protein through hydrogen, π-σ, π-alkyl and alkyl interactions. Significant roles were observed for the P1 pocket residue ARG-415 and the P3 pocket residue ALA-556 in the interactions of the Keap1-peptide complexes. Molecular dynamics simulations further elucidated the dynamic process of peptide binding to the Keap1 protein. All five peptides formed stable complexes with Keap1 protein, with van der Waals forces playing crucial roles in these complex systems, indicative of the peptides' strong binding ability to Keap1 protein. The van der Waals forces were -178.74, -123.11, -134.36, -132.59, and -121.44 kJ mol-1 for the Keap1-APSY, Keap1-LY, Keap1-PY, Keap1-RGGY and Keap1-YQ complexes, respectively. These peptides exhibited excellent antioxidant effects. Among them, the YQ peptide exhibited the highest total antioxidant capacity, with an activity value of 1.18 ± 0.06 mmol Trolox equivalent (TE) L-1 at a concentration of 0.10 mg mL-1. The RGGY, PY, LY and APSY peptides followed in descending order, with activity values of 0.91 ± 0.05, 0.72 ± 0.06, 0.62 ± 0.04 and 0.60 ± 0.05 mmol TE L-1, respectively. CONCLUSION These results unveiled the molecular mechanism by which the five antioxidant peptides act on active pockets through the Keap1-Nrf2 signaling pathway, providing a theoretical basis for the development of antioxidants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenying Liu
- Engineering Laboratory for Agro Biomass Recycling and Valorizing, College of Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Rui Liu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, People's Republic of China
| | - Qingyu Qin
- Engineering Laboratory for Agro Biomass Recycling and Valorizing, College of Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Hualei Wang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, People's Republic of China
| | - Xinxue Zhang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, People's Republic of China
| | - Ganlu Meng
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, People's Republic of China
| |
Collapse
|
15
|
Loeffler HH, Wan S, Klähn M, Bhati AP, Coveney PV. Optimal Molecular Design: Generative Active Learning Combining REINVENT with Precise Binding Free Energy Ranking Simulations. J Chem Theory Comput 2024; 20. [PMID: 39225482 PMCID: PMC11428133 DOI: 10.1021/acs.jctc.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Active learning (AL) is a specific instance of sequential experimental design and uses machine learning to intelligently choose the next data point or batch of molecular structures to be evaluated. In this sense, it closely mimics the iterative design-make-test-analysis cycle of laboratory experiments to find optimized compounds for a given design task. Here, we describe an AL protocol which combines generative molecular AI, using REINVENT, and physics-based absolute binding free energy molecular dynamics simulation, using ESMACS, to discover new ligands for two different target proteins, 3CLpro and TNKS2. We have deployed our generative active learning (GAL) protocol on Frontier, the world's only exa-scale machine. We show that the protocol can find higher-scoring molecules compared to the baseline, a surrogate ML docking model for 3CLpro and compounds with experimentally determined binding affinities for TNKS2. The ligands found are also chemically diverse and occupy a different chemical space than the baseline. We vary the batch sizes that are put forward for free energy assessment in each GAL cycle to assess the impact on their efficiency on the GAL protocol and recommend their optimal values in different scenarios. Overall, we demonstrate a powerful capability of the combination of physics-based and AI methods which yields effective chemical space sampling at an unprecedented scale and is of immediate and direct relevance to modern, data-driven drug discovery.
Collapse
Affiliation(s)
- Hannes H. Loeffler
- Molecular
AI, Discovery Sciences, R&D, AstraZeneca, Mölndal 431 83, Sweden
| | - Shunzhou Wan
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Marco Klähn
- Molecular
AI, Discovery Sciences, R&D, AstraZeneca, Mölndal 431 83, Sweden
| | - Agastya P. Bhati
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Peter V. Coveney
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
- Advanced
Research Computing Centre, University College
London, London WC1H 0AJ, U.K.
- Institute
for Informatics, Faculty of Science, University
of Amsterdam, Amsterdam 1098XH, The Netherlands
| |
Collapse
|
16
|
Wu Y, Zhang S, York DM, Wang L. Adsorption of Flavonoids in a Transcriptional Regulator TtgR: Relative Binding Free Energies and Intermolecular Interactions. J Phys Chem B 2024; 128:6529-6541. [PMID: 38935925 PMCID: PMC11542679 DOI: 10.1021/acs.jpcb.4c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Antimicrobial resistance in bacteria often arises from their ability to actively identify and expel toxic compounds. The bacterium strain Pseudomonas putida DOT-T1E utilizes its TtgABC efflux pump to confer robust resistance against antibiotics, flavonoids, and organic solvents. This resistance mechanism is intricately regulated at the transcriptional level by the TtgR protein. Through molecular dynamics and alchemical free energy simulations, we systematically examine the binding of seven flavonoids and their derivatives with the TtgR transcriptional regulator. Our simulations reveal distinct binding geometries and free energies for the flavonoids in the active site of the protein, which are driven by a range of noncovalent forces encompassing van der Waals, electrostatic, and hydrogen bonding interactions. The interplay of molecular structures, substituent patterns, and intermolecular interactions effectively stabilizes the bound flavonoids, confining their movements within the TtgR binding pocket. These findings yield valuable insights into the molecular determinants that govern ligand recognition in TtgR and shed light on the mechanism of antimicrobial resistance in P. putida DOT-T1E.
Collapse
Affiliation(s)
- Yuxuan Wu
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Laboratory for Biomolecular Simulation Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Shi Zhang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Laboratory for Biomolecular Simulation Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M. York
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Laboratory for Biomolecular Simulation Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Laboratory for Biomolecular Simulation Research, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Chaves EJF, Coêlho DF, Cruz CHB, Moreira EG, Simões JCM, Nascimento-Filho MJ, Lins RD. Structure-based computational design of antibody mimetics: challenges and perspectives. FEBS Open Bio 2024. [PMID: 38925955 DOI: 10.1002/2211-5463.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
The design of antibody mimetics holds great promise for revolutionizing therapeutic interventions by offering alternatives to conventional antibody therapies. Structure-based computational approaches have emerged as indispensable tools in the rational design of those molecules, enabling the precise manipulation of their structural and functional properties. This review covers the main classes of designed antigen-binding motifs, as well as alternative strategies to develop tailored ones. We discuss the intricacies of different computational protein-protein interaction design strategies, showcased by selected successful cases in the literature. Subsequently, we explore the latest advancements in the computational techniques including the integration of machine and deep learning methodologies into the design framework, which has led to an augmented design pipeline. Finally, we verse onto the current challenges that stand in the way between high-throughput computer design of antibody mimetics and experimental realization, offering a forward-looking perspective into the field and the promises it holds to biotechnology.
Collapse
Affiliation(s)
- Elton J F Chaves
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Danilo F Coêlho
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Brazil
| | - Carlos H B Cruz
- Institute of Structural and Molecular Biology, University College London, UK
| | | | - Júlio C M Simões
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Brazil
| | - Manassés J Nascimento-Filho
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Brazil
| | - Roberto D Lins
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Brazil
- Fiocruz Genomics Network, Brazil
| |
Collapse
|
18
|
Roy A, Ray S. Traversing DNA-Protein Interactions Between Mesophilic and Thermophilic Bacteria: Implications from Their Cold Shock Response. Mol Biotechnol 2024; 66:824-844. [PMID: 36905463 DOI: 10.1007/s12033-023-00711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
Cold shock proteins (CSPs) are small, acidic proteins which contain a conserved nucleic acid-binding domain. These perform mRNA translation acting as "RNA chaperones" when triggered by low temperatures initiating their cold shock response. CSP- RNA interactions have been predominantly studied. Our focus will be CSP-DNA interaction examination, to analyse the diverse interaction patterns such as electrostatic, hydrogen and hydrophobic bonding in both thermophilic and mesophilic bacteria. The differences in the molecular mechanism of these contrasting bacterial proteins are studied. Computational techniques such as modelling, energy refinement, simulation and docking were operated to obtain data for comparative analysis. The thermostability factors which stabilise a thermophilic bacterium and their effect on their molecular regulation is investigated. Conformational deviation, atomic residual fluctuations, binding affinity, Electrostatic energy and Solvent Accessibility energy were determined during stimulation along with their conformational study. The study revealed that mesophilic bacteria E. coli CSP have higher binding affinity to DNA than thermophilic G. stearothermophilus. This was further evident by low conformation deviation and atomic fluctuations during simulation.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
19
|
Pathak RK, Kim JM. Structural insight into the mechanisms and interacting features of endocrine disruptor Bisphenol A and its analogs with human estrogen-related receptor gamma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123549. [PMID: 38350536 DOI: 10.1016/j.envpol.2024.123549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Bisphenol A (BPA) is a very important chemical from the commercial perspective. Many useful products are made from it, so its production is increasing day by day. It is widely known that Bisphenol A (BPA) and its analogs are present in the environment and that they enter our body through various routes on a daily basis as we use things made of this chemical in our daily lives. BPA has already been reported to be an endocrine disruptor. Studies have shown that BPA binds strongly to the human estrogen-related receptor gamma (ERRγ) and is an important target of it. This study seeks to understand how it interacts with ERRγ. Molecular docking of BPA and its analogs with ERRγ was performed, and estradiol was taken as a reference. Then, physico-chemical and toxicological analysis of BPA compounds was performed. Subsequently, the dynamic behavior of ERRγ and ERRγ-BPA compound complexes was studied by molecular dynamics simulations over 500 ns, and using this simulated data, their binding energies were again calculated using the MM-PBSA method. We observed that the binding affinity of BPA and its analogs was much higher than that of estradiol, and apart from being toxic, they can be easily absorbed in our body as their physicochemical properties are similar to those of oral medicines. Therefore, this study facilitates the understanding of the structure-activity relationship of ERRγ and BPA compounds and provides information about the key amino acid residues of ERRγ that interact with BPA compounds, which can be helpful to design competitive inhibitors so that we can interrupt the interaction of BPA with ERRγ. In addition, it provides information on BPA and its analogs and will also be helpful in developing new therapeutics.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
20
|
Nigam A, Hurley MFD, Li F, Konkoľová E, Klíma M, Trylčová J, Pollice R, Çinaroğlu SS, Levin-Konigsberg R, Handjaya J, Schapira M, Chau I, Perveen S, Ng HL, Ümit Kaniskan H, Han Y, Singh S, Gorgulla C, Kundaje A, Jin J, Voelz VA, Weber J, Nencka R, Boura E, Vedadi M, Aspuru-Guzik A. Drug Discovery in Low Data Regimes: Leveraging a Computational Pipeline for the Discovery of Novel SARS-CoV-2 Nsp14-MTase Inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560722. [PMID: 37873443 PMCID: PMC10592886 DOI: 10.1101/2023.10.03.560722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.
Collapse
Affiliation(s)
- AkshatKumar Nigam
- Department of Computer Science, Stanford University
- Department of Genetics, Stanford University
| | | | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Eva Konkoľová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Klíma
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Trylčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Pollice
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Current affiliation: Stratingh Institute for Chemistry, University of Groningen, The Netherlands
| | - Süleyman Selim Çinaroğlu
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | - Jasemine Handjaya
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ho-Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - H. Ümit Kaniskan
- Department of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Yulin Han
- Department of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Sukrit Singh
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center
| | - Christoph Gorgulla
- St. Jude Children’s Research Hospital, Department of Structural Biology, Memphis, TN, USA
- Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University
- Department of Genetics, Stanford University
| | - Jian Jin
- Department of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincent A. Voelz
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Alán Aspuru-Guzik
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Canada
- Department of Materials Science & Engineering, University of Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
- Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Heifetz A. Accelerating COVID-19 Drug Discovery with High-Performance Computing. Methods Mol Biol 2024; 2716:405-411. [PMID: 37702951 DOI: 10.1007/978-1-0716-3449-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The recent COVID-19 pandemic has served as a timely reminder that the existing drug discovery is a laborious, expensive, and slow process. Never has there been such global demand for a therapeutic treatment to be identified as a matter of such urgency. Unfortunately, this is a scenario likely to repeat itself in future, so it is of interest to explore ways in which to accelerate drug discovery at pandemic speed. Computational methods naturally lend themselves to this because they can be performed rapidly if sufficient computational resources are available. Recently, high-performance computing (HPC) technologies have led to remarkable achievements in computational drug discovery and yielded a series of new platforms, algorithms, and workflows. The application of artificial intelligence (AI) and machine learning (ML) approaches is also a promising and relatively new avenue to revolutionize the drug design process and therefore reduce costs. In this review, I describe how molecular dynamics simulations (MD) were successfully integrated with ML and adapted to HPC to form a powerful tool to study inhibitors for four of the COVID-19 target proteins. The emphasis of this review is on the strategy that was used with an explanation of each of the steps in the accelerated drug discovery workflow. For specific technical details, the reader is directed to the relevant research publications.
Collapse
|
22
|
Zheng P, Pan C, Zhou C, Liu B, Wang L, Duan S, Ding Y. Contribution of Nischarin/IRAS in CNS development, injury and diseases. J Adv Res 2023; 54:43-57. [PMID: 36716956 DOI: 10.1016/j.jare.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/28/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Murine Nischarin and its human homolog IRAS are scaffold proteins highly expressed in the central nervous system (CNS). Nischarin was initially discovered as a tumor suppressor protein, and recent studies have also explored its potential value in the CNS. Research on IRAS has largely focused on its effect on opioid dependence. Although the role of Nischarin/IRAS in the physiological function and pathological process of the CNS has gradually attracted attention and the related research results are expected to be applied in clinical practice, there is no systematic review of the role and mechanisms of Nischarin/IRAS in the CNS so far. AIM OF REVIEW This review will systematically analyze the role and mechanism of Nischarin/IRAS in the CNS, and provide necessary references and possible targets for the treatment of neurological diseases, thereby broadening the direction of Nischarin/IRAS research and facilitating clinical translation. KEY SCIENTIFIC CONCEPTS OF REVIEW The pathophysiological processes affected by dysregulation of Nischarin/IRAS expression in the CNS are mainly introduced, including spinal cord injury (SCI), opioid dependence, anxiety, depression, and autism. The molecular mechanisms such as factors regulating Nischarin/IRAS expression and signal transduction pathways regulated by Nischarin/IRAS are systematically summarized. Finally, the clinical application of Nischarin/IRAS has been prospected.
Collapse
Affiliation(s)
- Peijie Zheng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chenshu Pan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chuntao Zhou
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Bin Liu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Zhejiang University City College, Hangzhou 310015, China.
| | - Yuemin Ding
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
23
|
Wan S, Bhati AP, Wade AD, Coveney PV. Ensemble-Based Approaches Ensure Reliability and Reproducibility. J Chem Inf Model 2023; 63:6959-6963. [PMID: 37965695 PMCID: PMC10685440 DOI: 10.1021/acs.jcim.3c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 11/16/2023]
Abstract
It is increasingly widely recognized that ensemble-based approaches are required to achieve reliability, accuracy, and precision in molecular dynamics calculations. The purpose of the present article is to address a frequently raised question: what is the optimal way to perform ensemble simulation to calculate quantities of interest?
Collapse
Affiliation(s)
- Shunzhou Wan
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U. K
| | - Agastya P. Bhati
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U. K
| | - Alexander D. Wade
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U. K
| | - Peter V. Coveney
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U. K
- Advanced
Research Computing Centre, University College
London, London WC1H 0AJ, U.K.
- Institute
for Informatics, Faculty of Science, University
of Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
24
|
Wan S, Bhati AP, Coveney PV. Comparison of Equilibrium and Nonequilibrium Approaches for Relative Binding Free Energy Predictions. J Chem Theory Comput 2023; 19:7846-7860. [PMID: 37862058 PMCID: PMC10653111 DOI: 10.1021/acs.jctc.3c00842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Indexed: 10/21/2023]
Abstract
Alchemical relative binding free energy calculations have recently found important applications in drug optimization. A series of congeneric compounds are generated from a preidentified lead compound, and their relative binding affinities to a protein are assessed in order to optimize candidate drugs. While methods based on equilibrium thermodynamics have been extensively studied, an approach based on nonequilibrium methods has recently been reported together with claims of its superiority. However, these claims pay insufficient attention to the basis and reliability of both methods. Here we report a comparative study of the two approaches across a large data set, comprising more than 500 ligand transformations spanning in excess of 300 ligands binding to a set of 14 diverse protein targets. Ensemble methods are essential to quantify the uncertainty in these calculations, not only for the reasons already established in the equilibrium approach but also to ensure that the nonequilibrium calculations reside within their domain of validity. If and only if ensemble methods are applied, we find that the nonequilibrium method can achieve accuracy and precision comparable to those of the equilibrium approach. Compared to the equilibrium method, the nonequilibrium approach can reduce computational costs but introduces higher computational complexity and longer wall clock times. There are, however, cases where the standard length of a nonequilibrium transition is not sufficient, necessitating a complete rerun of the entire set of transitions. This significantly increases the computational cost and proves to be highly inconvenient during large-scale applications. Our findings provide a key set of recommendations that should be adopted for the reliable implementation of nonequilibrium approaches to relative binding free energy calculations in ligand-protein systems.
Collapse
Affiliation(s)
- Shunzhou Wan
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Agastya P. Bhati
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Peter V. Coveney
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
- Advanced
Research Computing Centre, University College
London, London WC1H 0AJ, U.K.
- Computational
Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam 1012 WP, Netherlands
| |
Collapse
|
25
|
Pathak RK, Kim JM. Identification of histidine kinase inhibitors through screening of natural compounds to combat mastitis caused by Streptococcus agalactiae in dairy cattle. J Biol Eng 2023; 17:59. [PMID: 37752501 PMCID: PMC10523694 DOI: 10.1186/s13036-023-00378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Mastitis poses a major threat to dairy farms globally; it results in reduced milk production, increased treatment costs, untimely compromised genetic potential, animal deaths, and economic losses. Streptococcus agalactiae is a highly virulent bacteria that cause mastitis. The administration of antibiotics for the treatment of this infection is not advised due to concerns about the emergence of antibiotic resistance and potential adverse effects on human health. Thus, there is a critical need to identify new therapeutic approaches to combat mastitis. One promising target for the development of antibacterial therapies is the transmembrane histidine kinase of bacteria, which plays a key role in signal transduction pathways, secretion systems, virulence, and antibiotic resistance. RESULTS In this study, we aimed to identify novel natural compounds that can inhibit transmembrane histidine kinase. To achieve this goal, we conducted a virtual screening of 224,205 natural compounds, selecting the top ten based on their lowest binding energy and favorable protein-ligand interactions. Furthermore, molecular docking of eight selected antibiotics and five histidine kinase inhibitors with transmembrane histidine kinase was performed to evaluate the binding energy with respect to top-screened natural compounds. We also analyzed the ADMET properties of these compounds to assess their drug-likeness. The top two compounds (ZINC000085569031 and ZINC000257435291) and top-screened antibiotics (Tetracycline) that demonstrated a strong binding affinity were subjected to molecular dynamics simulations (100 ns), free energy landscape, and binding free energy calculations using the MM-PBSA method. CONCLUSION Our results suggest that the selected natural compounds have the potential to serve as effective inhibitors of transmembrane histidine kinase and can be utilized for the development of novel antibacterial veterinary medicine for mastitis after further validation through clinical studies.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
26
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
27
|
Mohiuddin A, Mondal S. Advancement of Computational Design Drug Delivery System in COVID-19: Current Updates and Future Crosstalk- A Critical update. Infect Disord Drug Targets 2023; 23:IDDT-EPUB-133706. [PMID: 37584349 PMCID: PMC11348471 DOI: 10.2174/1871526523666230816151614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023]
Abstract
Positive strides have been achieved in developing vaccines to combat the coronavirus-2019 infection (COVID-19) pandemic. Still, the outline of variations, particularly the most current delta divergent, has posed significant health encounters for people. Therefore, developing strong treatment strategies, such as an anti-COVID-19 medicine plan, may help deal with the pandemic more effectively. During the COVID-19 pandemic, some drug design techniques were effectively used to develop and substantiate relevant critical medications. Extensive research, both experimental and computational, has been dedicated to comprehending and characterizing the devastating COVID-19 disease. The urgency of the situation has led to the publication of over 130,000 COVID-19-related research papers in peer-reviewed journals and preprint servers. A significant focus of these efforts has been the identification of novel drug candidates and the repurposing of existing drugs to combat the virus. Many projects have utilized computational or computer-aided approaches to facilitate their studies. In this overview, we will explore the key computational methods and their applications in the discovery of small-molecule therapeutics for COVID-19, as reported in the research literature. We believe that the true effectiveness of computational tools lies in their ability to provide actionable and experimentally testable hypotheses, which in turn facilitate the discovery of new drugs and combinations thereof. Additionally, we recognize that open science and the rapid sharing of research findings are vital in expediting the development of much-needed therapeutics for COVID-19.
Collapse
Affiliation(s)
- Abu Mohiuddin
- Department of Pharmaceutical Science, GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam-530045, A.P., India
| | - Sumanta Mondal
- Department of Pharmaceutical Science, GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam-530045, A.P., India
| |
Collapse
|
28
|
Lockhart C, Luo X, Olson A, Delfing BM, Laracuente XE, Foreman KW, Paige M, Kehn-Hall K, Klimov DK. Can Free Energy Perturbation Simulations Coupled with Replica-Exchange Molecular Dynamics Study Ligands with Distributed Binding Sites? J Chem Inf Model 2023; 63:4791-4802. [PMID: 37531558 PMCID: PMC10947611 DOI: 10.1021/acs.jcim.3c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Free energy perturbation coupled with replica exchange with solute tempering (FEP/REST) offers a rigorous approach to compute relative free energy changes for ligands. To determine the applicability of FEP/REST for the ligands with distributed binding poses, we considered two alchemical transformations involving three putative inhibitors I0, I1, and I2 of the Venezuelan equine encephalitis virus nuclear localization signal sequence binding to the importin-α (impα) transporter protein. I0 → I1 and I0 → I2 transformations, respectively, increase or decrease the polarity of the parent molecule. Our objective was three-fold─(i) to verify FEP/REST technical performance and convergence, (ii) to estimate changes in binding free energy ΔΔG, and (iii) to determine the utility of FEP/REST simulations for conformational binding analysis. Our results are as follows. First, our FEP/REST implementation properly follows FEP/REST formalism and produces converged ΔΔG estimates. Due to ligand inherent unbinding, the better FEP/REST strategy lies in performing multiple independent trajectories rather than extending their length. Second, I0 → I1 and I0 → I2 transformations result in overall minor changes in inhibitor binding free energy, slightly strengthening the affinity of I1 and weakening that of I2. Electrostatic interactions dominate binding interactions, determining the enthalpic changes. The two transformations cause opposite entropic changes, which ultimately govern binding affinities. Importantly, we confirm the validity of FEP/REST free energy estimates by comparing them with our previous REST simulations, directly probing binding of three ligands to impα. Third, we established that FEP/REST simulations can sample binding ensembles of ligands. Thus, FEP/REST can be applied (i) to study the energetics of the ligand binding without defined poses and showing minor differences in affinities |ΔΔG| ≲ 0.5 kcal/mol and (ii) to collect ligand binding conformational ensembles.
Collapse
Affiliation(s)
| | - Xingyu Luo
- School of Systems Biology, George Mason University, Manassas, VA 20110
| | - Audrey Olson
- School of Systems Biology, George Mason University, Manassas, VA 20110
| | - Bryan M. Delfing
- School of Systems Biology, George Mason University, Manassas, VA 20110
| | | | - Kenneth W. Foreman
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030
| | - Mikell Paige
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Dmitri K. Klimov
- School of Systems Biology, George Mason University, Manassas, VA 20110
| |
Collapse
|
29
|
Ahmad K, Javed A, Lanphere C, Coveney PV, Orlova EV, Howorka S. Structure and dynamics of an archetypal DNA nanoarchitecture revealed via cryo-EM and molecular dynamics simulations. Nat Commun 2023; 14:3630. [PMID: 37336895 DOI: 10.1038/s41467-023-38681-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/11/2023] [Indexed: 06/21/2023] Open
Abstract
DNA can be folded into rationally designed, unique, and functional materials. To fully realise the potential of these DNA materials, a fundamental understanding of their structure and dynamics is necessary, both in simple solvents as well as more complex and diverse anisotropic environments. Here we analyse an archetypal six-duplex DNA nanoarchitecture with single-particle cryo-electron microscopy and molecular dynamics simulations in solvents of tunable ionic strength and within the anisotropic environment of biological membranes. Outside lipid bilayers, the six-duplex bundle lacks the designed symmetrical barrel-type architecture. Rather, duplexes are arranged in non-hexagonal fashion and are disorted to form a wider, less elongated structure. Insertion into lipid membranes, however, restores the anticipated barrel shape due to lateral duplex compression by the bilayer. The salt concentration has a drastic impact on the stability of the inserted barrel-shaped DNA nanopore given the tunable electrostatic repulsion between the negatively charged duplexes. By synergistically combining experiments and simulations, we increase fundamental understanding into the environment-dependent structural dynamics of a widely used nanoarchitecture. This insight will pave the way for future engineering and biosensing applications.
Collapse
Affiliation(s)
- Katya Ahmad
- Centre for Computational Science, University College London, London, WC1H 0AJ, UK
| | - Abid Javed
- Department of Biological Sciences, Birkbeck, University of London, London, WC1E 7HX, UK
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Conor Lanphere
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H0AJ, UK
| | - Peter V Coveney
- Centre for Computational Science, University College London, London, WC1H 0AJ, UK.
- Advanced Research Computing Centre, University College London, London, WC1H 0AJ, UK.
- Informatics Institute, University of Amsterdam, Amsterdam, 1090 GH, The Netherlands.
| | - Elena V Orlova
- Department of Biological Sciences, Birkbeck, University of London, London, WC1E 7HX, UK.
| | - Stefan Howorka
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H0AJ, UK.
| |
Collapse
|
30
|
Pinto ÉSM, Krause MJ, Dorn M, Feltes BC. The nucleotide excision repair proteins through the lens of molecular dynamics simulations. DNA Repair (Amst) 2023; 127:103510. [PMID: 37148846 DOI: 10.1016/j.dnarep.2023.103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Mutations that affect the proteins responsible for the nucleotide excision repair (NER) pathway can lead to diseases such as xeroderma pigmentosum, trichothiodystrophy, Cockayne syndrome, and Cerebro-oculo-facio-skeletal syndrome. Hence, understanding their molecular behavior is needed to elucidate these diseases' phenotypes and how the NER pathway is organized and coordinated. Molecular dynamics techniques enable the study of different protein conformations, adaptable to any research question, shedding light on the dynamics of biomolecules. However, as important as they are, molecular dynamics studies focused on DNA repair pathways are still becoming more widespread. Currently, there are no review articles compiling the advancements made in molecular dynamics approaches applied to NER and discussing: (i) how this technique is currently employed in the field of DNA repair, focusing on NER proteins; (ii) which technical setups are being employed, their strengths and limitations; (iii) which insights or information are they providing to understand the NER pathway or NER-associated proteins; (iv) which open questions would be suited for this technique to answer; and (v) where can we go from here. These questions become even more crucial considering the numerous 3D structures published regarding the NER pathway's proteins in recent years. In this work, we tackle each one of these questions, revising and critically discussing the results published in the context of the NER pathway.
Collapse
Affiliation(s)
| | - Mathias J Krause
- Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Márcio Dorn
- Center for Biotechnology, Federal University of Rio Grande do Sul, RS, Brazil; Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institute of Science and Technology - Forensic Science, Porto Alegre, RS, Brazil
| | - Bruno César Feltes
- Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Pathak RK, Kim WI, Kim JM. Targeting the PEDV 3CL protease for identification of small molecule inhibitors: an insight from virtual screening, ADMET prediction, molecular dynamics, free energy landscape, and binding energy calculations. J Biol Eng 2023; 17:29. [PMID: 37072787 PMCID: PMC10112315 DOI: 10.1186/s13036-023-00342-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/13/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The porcine epidemic diarrhea virus (PEDV) represents a major health issue for piglets worldwide and does significant damage to the pork industry. Thus, new therapeutic approaches are urgently needed to manage PEDV infections. Due to the current lack of a reliable remedy, this present study aims to identify novel compounds that inhibit the 3CL protease of the virus involved in replication and pathogenesis. RESULTS To identify potent antiviral compounds against the 3CL protease, a virtual screening of natural compounds (n = 97,999) was conducted. The top 10 compounds were selected based on the lowest binding energy and the protein-ligand interaction analyzed. Further, the top five compounds that demonstrated a strong binding affinity were subjected to drug-likeness analysis using the ADMET prediction, which was followed by molecular dynamics simulations (500 ns), free energy landscape, and binding free energy calculations using the MM-PBSA method. Based on these parameters, four putative lead (ZINC38167083, ZINC09517223, ZINC04339983, and ZINC09517238) compounds were identified that represent potentially effective inhibitors of the 3CL protease. CONCLUSION Therefore, these can be utilized for the development of novel antiviral drugs against PEDV. However, this requires further validation through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
32
|
Pereira GRC, Abrahim-Vieira BDA, de Mesquita JF. In Silico Analyses of a Promising Drug Candidate for the Treatment of Amyotrophic Lateral Sclerosis Targeting Superoxide Dismutase I Protein. Pharmaceutics 2023; 15:pharmaceutics15041095. [PMID: 37111580 PMCID: PMC10143751 DOI: 10.3390/pharmaceutics15041095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 04/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disorder in adults, which is associated with a highly disabling condition. To date, ALS remains incurable, and the only drugs approved by the FDA for its treatment confer a limited survival benefit. Recently, SOD1 binding ligand 1 (SBL-1) was shown to inhibit in vitro the oxidation of a critical residue for SOD1 aggregation, which is a central event in ALS-related neurodegeneration. In this work, we investigated the interactions between SOD1 wild-type and its most frequent variants, i.e., A4V (NP_000445.1:p.Ala5Val) and D90A (NP_000445.1:p.Asp91Val), with SBL-1 using molecular dynamics (MD) simulations. The pharmacokinetics and toxicological profile of SBL-1 were also characterized in silico. The MD results suggest that the complex SOD1-SBL-1 remains relatively stable and interacts within a close distance during the simulations. This analysis also suggests that the mechanism of action proposed by SBL-1 and its binding affinity to SOD1 may be preserved upon mutations A4V and D90A. The pharmacokinetics and toxicological assessments suggest that SBL-1 has drug-likeness characteristics with low toxicity. Our findings, therefore, suggested that SBL-1 may be a promising strategy to treat ALS based on an unprecedented mechanism, including for patients with these frequent mutations.
Collapse
|
33
|
Chowdhury S, Ghosh P, Nandi N. Computational Methods for Molecular Understanding of the Antibiotic-Aminoacyl tRNA Synthetase Interaction. Curr Protoc 2023; 3:e699. [PMID: 36892286 DOI: 10.1002/cpz1.699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Developing an understanding of the interactions between an antibiotic and its binding site in a pathogen cell is the key to antibiotic design-an important cost-saving methodology compared to the costly and time-consuming random trial-and-error approach. The rapid development of antibiotic resistance provides an impetus for such studies. Recent years have witnessed the beginning of the use of combined computational techniques, including computer simulations and quantum mechanical computations, to understand how antibiotics bind at the active site of aminoacyl tRNA synthetases (aaRSs) from pathogens. Such computational protocols assist the knowledge-based design of antibiotics targeting aaRSs, which are their validated targets. After the ideas behind the protocols and their strategic planning are discussed, the protocols are described along with their major outcomes. This is followed by an integration of results from the different basic protocols. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Analysis of active-site residues from primary sequence of synthetase and transfer RNAs Basic Protocol 2: Molecular dynamics simulation-based protocol to study the structure and dynamics of the aaRS active site:antibiotic complex Basic Protocol 3: Quantum mechanical method-based protocol to study the structure and dynamics of the aaRS active site:antibiotic complex.
Collapse
Affiliation(s)
- Shilpi Chowdhury
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India
| | - Poulami Ghosh
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India
| | - Nilashis Nandi
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India
| |
Collapse
|
34
|
Garg A, Goel N, Abhinav N, Varma T, Achari A, Bhattacharjee P, Kamal IM, Chakrabarti S, Ravichandiran V, Reddy AM, Gupta S, Jaisankar P. Virtual screening of natural products inspired in-house library to discover potential lead molecules against the SARS-CoV-2 main protease. J Biomol Struct Dyn 2023; 41:2033-2045. [PMID: 35043750 DOI: 10.1080/07391102.2022.2027271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2, a new coronavirus emerged in 2019, causing a global healthcare epidemic. Although a variety of drug targets have been identified as potential antiviral therapies, and effective candidate against SARS-CoV-2 remains elusive. One of the most promising targets for combating COVID-19 is SARS-CoV-2 Main protease (Mpro, a protein responsible for viral replication. In this work, an in-house curated library was thoroughly evaluated for druggability against Mpro. We identified four ligands (FG, Q5, P5, and PJ4) as potential inhibitors based on docking scores, predicted binding energies (MMGBSA), in silico ADME, and RMSD trajectory analysis. Among the selected ligands, FG, a natural product from Andrographis nallamalayana, exhibited the highest binding energy of -10.31 kcal/mol close to the docking score of clinical candidates Boceprevir and GC376. Other ligands (P5, natural product from cardiospermum halicacabum and two synthetic molecules Q5 and PJ4) have shown comparable docking scores ranging -7.65 kcal/mol to -7.18 kcal/mol. Interestingly, we found all four top ligands had Pi bond interaction with the main amino acid residues HIS41 and CYS145 (catalytic dyad), H-bonding interactions with GLU166, ARG188, and GLN189, and hydrophobic interactions with MET49 and MET165 in the binding site of Mpro. According to the ADME analysis, Q5 and P5 are within the acceptable range of drug likeliness, compared to FG and PJ4. The interaction stability of the lead molecules with viral protease was verified using replicated MD simulations. Thus, the present study opens up the opportunity of developing drug candidates targeting SARS-CoV-2 main protease (Mpro) to mitigate the disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aakriti Garg
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Narender Goel
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nipun Abhinav
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tanmay Varma
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | - Anushree Achari
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pinaki Bhattacharjee
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Izaz Monir Kamal
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Chakrabarti
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | | | - Sreya Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | - Parasuraman Jaisankar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
35
|
Identifying Drug Candidates for COVID-19 with Large-Scale Drug Screening. Int J Mol Sci 2023; 24:ijms24054397. [PMID: 36901828 PMCID: PMC10002104 DOI: 10.3390/ijms24054397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Papain-like protease (PLpro) is critical to COVID-19 infection. Therefore, it is a significant target protein for drug development. We virtually screened a 26,193 compound library against the PLpro of SARS-CoV-2 and identified several drug candidates with convincing binding affinities. The three best compounds all had better estimated binding energy than those of the drug candidates proposed in previous studies. By analyzing the docking results for the drug candidates identified in this and previous studies, we demonstrate that the critical interactions between the compounds and PLpro proposed by the computational approaches are consistent with those proposed by the biological experiments. In addition, the predicted binding energies of the compounds in the dataset showed a similar trend as their IC50 values. The predicted ADME and drug-likeness properties also suggested that these identified compounds can be used for COVID-19 treatment.
Collapse
|
36
|
Samarasinghe I, Attygalle AB. Impact of Ambient Vapors on Spectra of 4-Nitroaniline Recorded under Atmospheric Solids Analysis Probe (ASAP) Mass Spectrometric Conditions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:205-217. [PMID: 36689202 DOI: 10.1021/jasms.2c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Thermally desorbed 4-nitroaniline (4-NA), upon atmospheric pressure chemical ionization (APCI), generates gaseous ions for its protonated species. The APCI mass spectrum recorded under mild in-source ion-activating conditions from 4-NA showed a peak at m/z 139, whereas that acquired under high ion-activating conditions showed two additional peaks at m/z 122 (•OH loss) and 92 (•NO loss). The spectrum changed instantaneously when acetonitrile vapor was introduced to the source. In the new spectrum, both m/z 122 and 92 peaks were absent, while a new peak appeared at m/z 93. Ion-mobility separation carried out with the m/z 139 ion revealed that the initial ion represented the thermodynamically favored nitro-protonated tautomer. The ion population changed to an ensemble dominated by the less-favored amino-protomer when acetonitrile vapor was introduced to the ion source. The amino-protomer, upon collisional activation, loses •NO2 to generate an m/z 93 ion, which was confirmed to be the 4-dehydroanilinium ion. Ion mobility provided a practical way to monitor the changes secured by acetonitrile vapor because the two protomers showed different arrival times. Under spray-ionization conditions, the formation of the thermodynamically less favored protomer has been attributed to kinetic trapping. Our study demonstrated that the less favored amino-protomer could be generated by introducing acetonitrile vapor under nonspray conditions. Apparently, under APCI conditions, protonated water vapor attaches to the nitro group to generate a proton-bound heterodimer, which upon activation dissociates to yield the nitro-protomer. In contrast, protonated acetonitrile makes a tighter complex preferentially with the amino group, which upon activation breaks to the amino-protomer.
Collapse
Affiliation(s)
- Ishira Samarasinghe
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey07030, United States
| | - Athula B Attygalle
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey07030, United States
| |
Collapse
|
37
|
Bieniek M, Wade AD, Bhati AP, Wan S, Coveney PV. TIES 2.0: A Dual-Topology Open Source Relative Binding Free Energy Builder with Web Portal. J Chem Inf Model 2023; 63:718-724. [PMID: 36719676 PMCID: PMC9930115 DOI: 10.1021/acs.jcim.2c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Relative binding free energy (RBFE) calculations are widely used to aid the process of drug discovery. TIES, Thermodynamic Integration with Enhanced Sampling, is a dual-topology approach to RBFE calculations with support for NAMD and OpenMM molecular dynamics engines. The software has been thoroughly validated on publicly available datasets. Here we describe the open source software along with a web portal (https://ccs-ties.org) that enables users to perform such calculations correctly and rapidly.
Collapse
Affiliation(s)
- Mateusz
K. Bieniek
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom,School
of Natural and Environmental Sciences, Newcastle
University, Newcastle upon Tyne NE1 7RU, United
Kingdom
| | - Alexander D. Wade
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Agastya P. Bhati
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Shunzhou Wan
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Peter V. Coveney
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom,Advanced
Research Computing Centre, University College
London, London WC1H 0AJ, United
Kingdom,Institute
for Informatics, Faculty of Science, University
of Amsterdam, 1098XH Amsterdam, The Netherlands,E-mail:
| |
Collapse
|
38
|
Govind Kumar V, Polasa A, Agrawal S, Kumar TKS, Moradi M. Binding affinity estimation from restrained umbrella sampling simulations. NATURE COMPUTATIONAL SCIENCE 2023; 3:59-70. [PMID: 38177953 PMCID: PMC10766565 DOI: 10.1038/s43588-022-00389-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2024]
Abstract
The protein-ligand binding affinity quantifies the binding strength between a protein and its ligand. Computer modeling and simulations can be used to estimate the binding affinity or binding free energy using data- or physics-driven methods or a combination thereof. Here we discuss a purely physics-based sampling approach based on biased molecular dynamics simulations. Our proposed method generalizes and simplifies previously suggested stratification strategies that use umbrella sampling or other enhanced sampling simulations with additional collective-variable-based restraints. The approach presented here uses a flexible scheme that can be easily tailored for any system of interest. We estimate the binding affinity of human fibroblast growth factor 1 to heparin hexasaccharide based on the available crystal structure of the complex as the initial model and four different variations of the proposed method to compare against the experimentally determined binding affinity obtained from isothermal titration calorimetry experiments.
Collapse
Affiliation(s)
- Vivek Govind Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
39
|
Dolezal R. Accuracy and precision of binding free energy prediction for a tacrine related lead inhibitor of acetylcholinesterase with an arsenal of supercomputerized molecular modelling methods: a comparative study. J Biomol Struct Dyn 2022; 40:11291-11319. [PMID: 34323654 DOI: 10.1080/07391102.2021.1957716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nowadays, advanced computational chemistry methods offer various strategies for revealing prospective hit structures in drug development essentially through accurate binding free energy predictions. After the era of molecular docking and quantitative structure-activity relationships, much interest has been lately oriented to perturbed molecular dynamic approaches like replica exchange with solute tempering and free energy perturbation (REST/FEP) and the potential of the mean force with adaptive biasing and accelerated weight histograms (PMF/AWH). Both of these receptor-based techniques can exploit exascale CPU&GPU supercomputers to achieve high throughput performance. In this fundamental study, we have compared the predictive power of a panel of supercomputerized molecular modelling methods to distinguish the major binding modes and the corresponding binding free energies of a promising tacrine related potential antialzheimerics in human acetylcholinesterase. The binding free energies were estimated using flexible molecular docking, molecular mechanics/generalized Born surface area/Poisson-Boltzmann surface area (MM/GBSA/PBSA), transmutation REST/FEP with 12 x 5 ns/λ windows, annihilation FEP with 20 x 5 ns/λ steps, PMF with weight histogram analysis method (WHAM) and 40 x 5 ns samples, and PMF/AWH with 10 x 100 ns replicas. Confrontation of the classical approaches such as canonical molecular dynamics and molecular docking with alchemical calculations and steered molecular dynamics enabled us to show how large errors in ΔG predictions can be expected if these in silico methods are employed in the elucidation of a common case of enzyme inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rafael Dolezal
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
40
|
McBride JM, Eckmann JP, Tlusty T. General Theory of Specific Binding: Insights from a Genetic-Mechano-Chemical Protein Model. Mol Biol Evol 2022; 39:msac217. [PMID: 36208205 PMCID: PMC9641994 DOI: 10.1093/molbev/msac217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteins need to selectively interact with specific targets among a multitude of similar molecules in the cell. However, despite a firm physical understanding of binding interactions, we lack a general theory of how proteins evolve high specificity. Here, we present such a model that combines chemistry, mechanics, and genetics and explains how their interplay governs the evolution of specific protein-ligand interactions. The model shows that there are many routes to achieving molecular discrimination-by varying degrees of flexibility and shape/chemistry complementarity-but the key ingredient is precision. Harder discrimination tasks require more collective and precise coaction of structure, forces, and movements. Proteins can achieve this through correlated mutations extending far from a binding site, which fine-tune the localized interaction with the ligand. Thus, the solution of more complicated tasks is enabled by increasing the protein size, and proteins become more evolvable and robust when they are larger than the bare minimum required for discrimination. The model makes testable, specific predictions about the role of flexibility and shape mismatch in discrimination, and how evolution can independently tune affinity and specificity. Thus, the proposed theory of specific binding addresses the natural question of "why are proteins so big?". A possible answer is that molecular discrimination is often a hard task best performed by adding more layers to the protein.
Collapse
Affiliation(s)
- John M McBride
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, South Korea
| | - Jean-Pierre Eckmann
- Département de Physique Théorique and Section de Mathématiques, University of Geneva, Geneva, Switzerland
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, South Korea
- Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
41
|
Zhang B, Liu J, Wen H, Jiang F, Wang E, Zhang T. Structural requirements and interaction mechanisms of ACE inhibitory peptides: molecular simulation and thermodynamics studies on LAPYK and its modified peptides. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
42
|
Botti V, Cannistraro S, Bizzarri AR. Interaction of miR-155 with Human Serum Albumin: An Atomic Force Spectroscopy, Fluorescence, FRET, and Computational Modelling Evidence. Int J Mol Sci 2022; 23:ijms231810728. [PMID: 36142640 PMCID: PMC9504641 DOI: 10.3390/ijms231810728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the interaction between Human Serum Albumin (HSA) and microRNA 155 (miR-155) through spectroscopic, nanoscopic and computational methods. Atomic force spectroscopy together with static and time-resolved fluorescence demonstrated the formation of an HSA/miR-155 complex characterized by a moderate affinity constant (KA in the order of 104 M−1). Förster Resonance Energy Transfer (FRET) experiments allowed us to measure a distance of (3.9 ± 0.2) nm between the lone HSA Trp214 and an acceptor dye bound to miR-155 within such a complex. This structural parameter, combined with computational docking and binding free energy calculations, led us to identify two possible models for the structure of the complex, both characterized by a topography in which miR-155 is located within two positively charged pockets of HSA. These results align with the interaction found for HSA and miR-4749, reinforcing the thesis that native HSA is a suitable miRNA carrier under physiological conditions for delivering to appropriate targets.
Collapse
|
43
|
Alshabrawy AK, Cui Y, Sylvester C, Yang D, Petito ES, Barratt KR, Sawyer RK, Heatlie JK, Polara R, Sykes MJ, Atkins GJ, Hickey SM, Wiese MD, Stringer AM, Liu Z, Anderson PH. Therapeutic Potential of a Novel Vitamin D3 Oxime Analogue, VD1-6, with CYP24A1 Enzyme Inhibitory Activity and Negligible Vitamin D Receptor Binding. Biomolecules 2022; 12:biom12070960. [PMID: 35883516 PMCID: PMC9312876 DOI: 10.3390/biom12070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
The regulation of vitamin D3 actions in humans occurs mainly through the Cytochrome P450 24-hydroxylase (CYP24A1) enzyme activity. CYP24A1 hydroxylates both 25-hydroxycholecalciferol (25(OH)D3) and 1,25-dihydroxycholecalciferol (1,25(OH)2D3), which is the first step of vitamin D catabolism. An abnormal status of the upregulation of CYP24A1 occurs in many diseases, including chronic kidney disease (CKD). CYP24A1 upregulation in CKD and diminished activation of vitamin D3 contribute to secondary hyperparathyroidism (SHPT), progressive bone deterioration, and soft tissue and cardiovascular calcification. Previous studies have indicated that CYP24A1 inhibition may be an effective strategy to increase endogenous vitamin D activity and decrease SHPT. This study has designed and synthesized a novel C-24 O-methyloxime analogue of vitamin D3 (VD1-6) to have specific CYP24A1 inhibitory properties. VD1-6 did not bind to the vitamin D receptor (VDR) in concentrations up to 10−7 M, assessed by a VDR binding assay. The absence of VDR binding by VD1-6 was confirmed in human embryonic kidney HEK293T cultures through the lack of CYP24A1 induction. However, in silico docking experiments demonstrated that VD1-6 was predicted to have superior binding to CYP24A1, when compared to that of 1,25(OH)2D3. The inhibition of CYP24A1 by VD1-6 was also evident by the synergistic potentiation of 1,25(OH)2D3-mediated transcription and reduced 1,25(OH)2D3 catabolism over 24 h. A further indication of CYP24A1 inhibition by VD1-6 was the reduced accumulation of the 24,25(OH)D3 , the first metabolite of 25(OH)D catabolism by CYP24A1. Our findings suggest the potent CYP24A1 inhibitory properties of VD1-6 and its potential for testing as an alternative therapeutic candidate for treating SHPT.
Collapse
Affiliation(s)
- Ali K. Alshabrawy
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5001, Australia; (A.K.A.); (C.S.); (E.S.P.); (K.R.B.); (R.K.S.); (J.K.H.); (R.P.); (M.J.S.); (S.M.H.); (M.D.W.); (A.M.S.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Yingjie Cui
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.C.); (Z.L.)
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Cyan Sylvester
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5001, Australia; (A.K.A.); (C.S.); (E.S.P.); (K.R.B.); (R.K.S.); (J.K.H.); (R.P.); (M.J.S.); (S.M.H.); (M.D.W.); (A.M.S.)
| | - Dongqing Yang
- Centre for Orthopaedic and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (D.Y.); (G.J.A.)
| | - Emilio S. Petito
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5001, Australia; (A.K.A.); (C.S.); (E.S.P.); (K.R.B.); (R.K.S.); (J.K.H.); (R.P.); (M.J.S.); (S.M.H.); (M.D.W.); (A.M.S.)
| | - Kate R. Barratt
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5001, Australia; (A.K.A.); (C.S.); (E.S.P.); (K.R.B.); (R.K.S.); (J.K.H.); (R.P.); (M.J.S.); (S.M.H.); (M.D.W.); (A.M.S.)
| | - Rebecca K. Sawyer
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5001, Australia; (A.K.A.); (C.S.); (E.S.P.); (K.R.B.); (R.K.S.); (J.K.H.); (R.P.); (M.J.S.); (S.M.H.); (M.D.W.); (A.M.S.)
| | - Jessica K. Heatlie
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5001, Australia; (A.K.A.); (C.S.); (E.S.P.); (K.R.B.); (R.K.S.); (J.K.H.); (R.P.); (M.J.S.); (S.M.H.); (M.D.W.); (A.M.S.)
| | - Ruhi Polara
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5001, Australia; (A.K.A.); (C.S.); (E.S.P.); (K.R.B.); (R.K.S.); (J.K.H.); (R.P.); (M.J.S.); (S.M.H.); (M.D.W.); (A.M.S.)
| | - Matthew J. Sykes
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5001, Australia; (A.K.A.); (C.S.); (E.S.P.); (K.R.B.); (R.K.S.); (J.K.H.); (R.P.); (M.J.S.); (S.M.H.); (M.D.W.); (A.M.S.)
| | - Gerald J. Atkins
- Centre for Orthopaedic and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (D.Y.); (G.J.A.)
| | - Shane M. Hickey
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5001, Australia; (A.K.A.); (C.S.); (E.S.P.); (K.R.B.); (R.K.S.); (J.K.H.); (R.P.); (M.J.S.); (S.M.H.); (M.D.W.); (A.M.S.)
| | - Michael D. Wiese
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5001, Australia; (A.K.A.); (C.S.); (E.S.P.); (K.R.B.); (R.K.S.); (J.K.H.); (R.P.); (M.J.S.); (S.M.H.); (M.D.W.); (A.M.S.)
| | - Andrea M. Stringer
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5001, Australia; (A.K.A.); (C.S.); (E.S.P.); (K.R.B.); (R.K.S.); (J.K.H.); (R.P.); (M.J.S.); (S.M.H.); (M.D.W.); (A.M.S.)
| | - Zhaopeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.C.); (Z.L.)
| | - Paul H. Anderson
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5001, Australia; (A.K.A.); (C.S.); (E.S.P.); (K.R.B.); (R.K.S.); (J.K.H.); (R.P.); (M.J.S.); (S.M.H.); (M.D.W.); (A.M.S.)
- Correspondence:
| |
Collapse
|
44
|
The performance of ensemble-based free energy protocols in computing binding affinities to ROS1 kinase. Sci Rep 2022; 12:10433. [PMID: 35729177 PMCID: PMC9211793 DOI: 10.1038/s41598-022-13319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Optimization of binding affinities for compounds to their target protein is a primary objective in drug discovery. Herein we report on a collaborative study that evaluates a set of compounds binding to ROS1 kinase. We use ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) and TIES (thermodynamic integration with enhanced sampling) protocols to rank the binding free energies. The predicted binding free energies from ESMACS simulations show good correlations with experimental data for subsets of the compounds. Consistent binding free energy differences are generated for TIES and ESMACS. Although an unexplained overestimation exists, we obtain excellent statistical rankings across the set of compounds from the TIES protocol, with a Pearson correlation coefficient of 0.90 between calculated and experimental activities.
Collapse
|
45
|
Pathak RK, Kim DY, Lim B, Kim JM. Investigating Multi-Target Antiviral Compounds by Screening of Phytochemicals From Neem (Azadirachta indica) Against PRRSV: A Vetinformatics Approach. Front Vet Sci 2022; 9:854528. [PMID: 35782555 PMCID: PMC9244183 DOI: 10.3389/fvets.2022.854528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a global health problem for pigs. PRRSV is highly destructive and responsible for significant losses to the swine industry. Vaccines are available but incapable of providing adequate and long-term protection. As a result, effective and safe strategies are urgently needed to combat the virus. The scavenger receptor cysteine-rich domain 5 (SRCR5) in porcine CD163, non-structural protein 4 (Nsp4), and Nsp10 are known to play significant roles in PRRSV infection and disease development. Therefore, we targeted these proteins to identify multi-target antiviral compounds. To identify potent inhibitors, molecular docking of neem phytochemicals was conducted; three compounds [7-deacetyl-7-oxogedunin (CID:1886), Kulactone (CID:15560423), and Nimocin (CASID:104522-76-1)] were selected based on the lowest binding energy and multi-target inhibitory nature. The efficacy and safety of the selected compounds were revealed through the pharmacokinetics analysis and toxicity assessment. Moreover, 100 ns molecular dynamics (MD) simulation was performed to evaluate the stability and dynamic behavior of target proteins and their docked complexes with selected compounds. Besides, molecular mechanics Poisson–Boltzmann surface area method was used to estimate the binding free energy of each protein-ligand complex obtained from the MD simulations and validate the affinities of selected compounds to target proteins. Based on our analysis, we concluded that the identified multi-target compounds can be utilized as lead compounds for the development of natural drugs against PRRSV. If further validated in clinical studies, these compounds can be used individually or in combination against the virus.
Collapse
|
46
|
Wade A, Bhati AP, Wan S, Coveney PV. Alchemical Free Energy Estimators and Molecular Dynamics Engines: Accuracy, Precision, and Reproducibility. J Chem Theory Comput 2022; 18:3972-3987. [PMID: 35609233 PMCID: PMC9202356 DOI: 10.1021/acs.jctc.2c00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/28/2022]
Abstract
The binding free energy between a ligand and its target protein is an essential quantity to know at all stages of the drug discovery pipeline. Assessing this value computationally can offer insight into where efforts should be focused in the pursuit of effective therapeutics to treat a myriad of diseases. In this work, we examine the computation of alchemical relative binding free energies with an eye for assessing reproducibility across popular molecular dynamics packages and free energy estimators. The focus of this work is on 54 ligand transformations from a diverse set of protein targets: MCL1, PTP1B, TYK2, CDK2, and thrombin. These targets are studied with three popular molecular dynamics packages: OpenMM, NAMD2, and NAMD3 alpha. Trajectories collected with these packages are used to compare relative binding free energies calculated with thermodynamic integration and free energy perturbation methods. The resulting binding free energies show good agreement between molecular dynamics packages with an average mean unsigned error between them of 0.50 kcal/mol. The correlation between packages is very good, with the lowest Spearman's, Pearson's and Kendall's tau correlation coefficients being 0.92, 0.91, and 0.76, respectively. Agreement between thermodynamic integration and free energy perturbation is shown to be very good when using ensemble averaging.
Collapse
Affiliation(s)
- Alexander
D. Wade
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Agastya P. Bhati
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Shunzhou Wan
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Peter V. Coveney
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK
- Informatics
Institute, University of Amsterdam, Amsterdam 1098XH, The Netherlands
- Advanced
Research Computing Centre, University College
London, London WC1H 0AJ, UK
| |
Collapse
|
47
|
Reif MM, Zacharias M. Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications. J Chem Theory Comput 2022; 18:3873-3893. [PMID: 35653503 DOI: 10.1021/acs.jctc.1c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an approach combining alchemical modifications and physical-pathway methods to calculate absolute binding free energies. The employed physical-pathway method is either a stratified umbrella sampling to calculate a potential of mean force or nonequilibrium pulling. We devised two basic approaches: the simultaneous approach (S-approach), where, along the physical unbinding pathway, an alchemical transformation of ligand-protein interactions is installed and deinstalled, and the prior-plus-simultaneous approach (PPS-approach), where, prior to the physical-pathway simulation, an alchemical transformation of ligand-protein interactions is installed in the binding site and deinstalled during the physical-pathway simulation. Using a mutant of T4 lysozyme with a benzene ligand as an example, we show that installation and deinstallation of soft-core interactions concurrent with physical ligand unbinding (S-approach) allow successful potential of mean force calculations and nonequilibrium pulling simulations despite the problems posed by the occluded nature of the lysozyme binding pocket. Good agreement between the potential of the mean-force-based S-approach and double decoupling simulations as well as a remarkable efficiency and accuracy of the nonequilibrium-pulling-based S-approach is found. The latter turned out to be more compute-efficient than the potential of mean force calculation by approximately 70%. Furthermore, we illustrate the merits of reducing ligand-protein interactions prior to potential of mean force calculations using the murine double minute homologue protein MDM2 with a p53-derived peptide ligand (PPS-approach). Here, the problem of breaking strong interactions in the binding pocket is transferred to a prior alchemical transformation that reduces the free-energy barrier between the bound and unbound state in the potential of mean force. Besides, disentangling physical ligand displacement from the deinstallation of ligand-protein interactions was seen to allow a more uniform sampling of distance histograms in the umbrella sampling. In the future, physical ligand unbinding combined with simultaneous alchemical modifications may prove useful in the calculation of protein-protein binding free energies, where sampling problems posed by multiple, possibly sticky interactions and potential steric clashes can thus be reduced.
Collapse
Affiliation(s)
- Maria M Reif
- Center for Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, Garching 85748, Germany
| | - Martin Zacharias
- Center for Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, Garching 85748, Germany
| |
Collapse
|
48
|
Zhou W, Xu C, Luo M, Wang P, Xu Z, Xue G, Jin X, Huang Y, Li Y, Nie H, Jiang Q, Anashkina AA. MutCov: A pipeline for evaluating the effect of mutations in spike protein on infectivity and antigenicity of SARS-CoV-2. Comput Biol Med 2022; 145:105509. [PMID: 35421792 PMCID: PMC8993498 DOI: 10.1016/j.compbiomed.2022.105509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing an outbreak of coronavirus disease 2019 (COVID-19), is a major threat to public health worldwide. Previous studies have shown that the spike protein of SARS-CoV-2 determines viral infectivity and major antigenicity. However, the spike protein has been undergoing various mutations, which bring a great challenge to the prevention and treatment of COVID-19. Here we present the MutCov, a pipeline for evaluating the effect of mutations in spike protein on infectivity and antigenicity of SARS-CoV-2 by calculating the binding free energy between spike protein and angiotensin-converting enzyme 2 (ACE2) or neutralizing monoclonal antibody (mAb). The predicted infectivity and antigenicity were highly consistent with biologically experimental results, and demonstrated that the MutCov achieved good prediction performance. In conclusion, the MutCov is of high importance for systematically evaluating the effect of novel mutations and improving the prevention and treatment of COVID-19. The source code and installation instruction of MutCov are freely available at http://jianglab.org.cn/MutCov.
Collapse
Affiliation(s)
- Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Guangfu Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Yan Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China.
| | - Anastasia A Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
49
|
Pereira GRC, Gonçalves LM, Abrahim-Vieira BDA, De Mesquita JF. In silico analyses of acetylcholinesterase (AChE) and its genetic variants in interaction with the anti-Alzheimer drug Rivastigmine. J Cell Biochem 2022; 123:1259-1277. [PMID: 35644025 DOI: 10.1002/jcb.30277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/14/2022] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Despite causing great social and economic impact, there is currently no cure for AD. The most effective therapy to manage AD symptoms is based on acetylcholinesterase inhibitors (AChEi), from which rivastigmine presented numerous benefits. However, mutations in AChE, which affect approximately 5% of the population, can modify protein structure and function, changing the individual response to Alzheimer's treatment. In this study, we performed computer simulations of AChE wild type and variants R34Q, P135A, V333E, and H353N, identified by one or more genome-wide association studies, to evaluate their effects on protein structure and interaction with rivastigmine. The functional effects of AChE variants were predicted using eight machine learning algorithms, while the evolutionary conservation of AChE residues was analyzed using the ConSurf server. Autodock4.2.6 was used to predict the binding modes for the hAChE-rivastigmine complex, which is still unknown. Molecular dynamics (MD) simulations were performed in triplicates for the AChE wild type and mutants using the GROMACS packages. Among the analyzed variants, P135A was classified as deleterious by all the functional prediction algorithms, in addition to occurring at highly conserved positions, which may have harmful consequences on protein function. The molecular docking results suggested that rivastigmine interacts with hAChE at the upper active-site gorge, which was further confirmed by MD simulations. Our MD findings also suggested that the complex hAChE-rivastigmine remains stable over time. The essential dynamics revealed flexibility alterations at the active-site gorge upon mutations P135A, V333E, and H353N, which may lead to strong and nonintuitive consequences to hAChE binding. Nonetheless, similar binding affinities were registered in the MMPBSA analysis for the hAChE wild type and variants when complexed to rivastigmine. Finally, our findings indicated that the rivastigmine binding to hAChE is an energetically favorable process mainly driven by negatively charged amino acids.
Collapse
Affiliation(s)
| | - Lucas Machado Gonçalves
- Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, Brazil
| | | | - Joelma Freire De Mesquita
- Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, Brazil
| |
Collapse
|
50
|
Wan S, Bhati AP, Wright DW, Wall ID, Graves AP, Green D, Coveney PV. Ensemble Simulations and Experimental Free Energy Distributions: Evaluation and Characterization of Isoxazole Amides as SMYD3 Inhibitors. J Chem Inf Model 2022; 62:2561-2570. [PMID: 35508076 PMCID: PMC9131449 DOI: 10.1021/acs.jcim.2c00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Optimization of binding affinities for ligands to their target protein is a primary objective in rational drug discovery. Herein, we report on a collaborative study that evaluates various compounds designed to bind to the SET and MYND domain-containing protein 3 (SMYD3). SMYD3 is a histone methyltransferase and plays an important role in transcriptional regulation in cell proliferation, cell cycle, and human carcinogenesis. Experimental measurements using the scintillation proximity assay show that the distributions of binding free energies from a large number of independent measurements exhibit non-normal properties. We use ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) and TIES (thermodynamic integration with enhanced sampling) protocols to predict the binding free energies and to provide a detailed chemical insight into the nature of ligand-protein binding. Our results show that the 1-trajectory ESMACS protocol works well for the set of ligands studied here. Although one unexplained outlier exists, we obtain excellent statistical ranking across the set of compounds from the ESMACS protocol and good agreement between calculations and experiments for the relative binding free energies from the TIES protocol. ESMACS and TIES are again found to be powerful protocols for the accurate comparison of the binding free energies.
Collapse
Affiliation(s)
- Shunzhou Wan
- Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Agastya P Bhati
- Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - David W Wright
- Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Ian D Wall
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Alan P Graves
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Darren Green
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Peter V Coveney
- Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, U.K.,Advanced Research Computing Centre, University College London, London WC1H 0AJ U.K.,Institute for Informatics, Faculty of Science, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|