1
|
Ahn S, Redman EM, Gavriliuc S, Bellaw J, Gilleard JS, McLoughlin PD, Poissant J. Mixed strongyle parasite infections vary across host age and space in a population of feral horses. Parasitology 2024:1-18. [PMID: 39663810 DOI: 10.1017/s0031182024001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Identifying factors that drive among-individual variation in mixed parasitic infections is fundamental to understanding the ecology and evolution of host–parasite interactions. However, a lack of non-invasive diagnostic tools to quantify mixed infections has restricted their investigation for host populations in the wild. This study applied DNA metabarcoding on parasite larvae cultured from faecal samples to characterize mixed strongyle infections of 320 feral horses on Sable Island, Nova Scotia, Canada, in 2014 to test for the influence of host (age, sex and reproductive/social status) and environmental (location, local density and social group membership) factors on variation. Twenty-five strongyle species were identified, with individual infections ranging from 3 to 18 species with a mean richness (±1 s.d.) of 10.8 ± 3.1. Strongyle eggs shed in faeces were dominated by small strongyle (cyathostomins) species in young individuals, transitioning to large strongyles (Strongylus spp.) in adults. Egg counts were highest in young individuals and in the west or centre of the island for most species. Individuals in the same social group had similar parasite communities, supporting the hypothesis that shared environment may drive parasite assemblages. Other factors such as local horse density, sex, date and reproductive/social status had minimal impacts on infection patterns. This study demonstrates that mixed infections can be dynamic across host ontogeny and space and emphasizes the need to consider species-specific infection patterns when investigating mixed infections.
Collapse
Affiliation(s)
- Sangwook Ahn
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Elizabeth M Redman
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Stefan Gavriliuc
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer Bellaw
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - John S Gilleard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Jocelyn Poissant
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Bolnick DI, Arruda S, Polania C, Simonse L, Padhiar A, Rodgers ML, Roth-Monzón AJ. The Dominance of Coinfecting Parasites' Indirect Genetic Effects on Host Traits. Am Nat 2024; 204:482-500. [PMID: 39486034 DOI: 10.1086/732256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractIndirect genetic effects (IGEs) exist when there is heritable variation in one organism's ability to alter a second organism's traits. For example, parasites have antigens that can induce a host immune response, as well as disparate strategies to evade or suppress host immunity; among-parasite genetic variation in these antigens generates among-host variation in immune traits. Here, we experimentally show that the cestode parasite Schistocephalus solidus exerts an IGE on an immune trait (peritoneal fibrosis) in its threespine stickleback host: stickleback developed strong fibrosis after exposure to some parasite genotypes but not others. A complication arises during coinfection, when two or more parasite genotypes may impose conflicting IGEs on the same host trait. What parasite-controlled trait will the host express? Will the host trait reflect the more immune-stimulatory parasite genotype or the more immune-evasive genotype? These alternatives can be quantified by estimating the dominance coefficient, as if a coinfected host were a heterozygote. We experimentally estimated the dominance of S. solidus IGEs by coinjecting antigens from different parasite genotypes. Contrary to our a priori hypotheses, coinjected antigens induced an overdominant effect, stronger than either parasite's antigens alone. We present a mathematical model showing that the value of this IGE dominance is biologically important, affecting the evolutionary dynamics of parasites in a density- and frequency-dependent manner. The model indicates that overdominance would be detrimental to immigrants when resident prevalence is high. This combination of experimental data and modeling provides an example of a parasite IGE on host traits and the evolutionary significance of IGE dominance.
Collapse
|
3
|
Powell-Romero F, Wells K, Clark NJ. A systematic review and guide for using multi-response statistical models in co-infection research. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231589. [PMID: 39371046 PMCID: PMC11451405 DOI: 10.1098/rsos.231589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 10/08/2024]
Abstract
The simultaneous infection of organisms with two or more co-occurring pathogens, otherwise known as co-infections, concomitant infections or multiple infections, plays a significant role in the dynamics and consequences of infectious diseases in both humans and animals. To understand co-infections, ecologists and epidemiologists rely on models capable of accommodating multiple response variables. However, given the diversity of available approaches, choosing a model that is suitable for drawing meaningful conclusions from observational data is not a straightforward task. To provide clearer guidance for statistical model use in co-infection research, we conducted a systematic review to (i) understand the breadth of study goals and host-pathogen systems being pursued with multi-response models and (ii) determine the degree of crossover of knowledge among disciplines. In total, we identified 69 peer-reviewed primary studies that jointly measured infection patterns with two or more pathogens of humans or animals in natural environments. We found stark divisions in research objectives and methods among different disciplines, suggesting that cross-disciplinary insights into co-infection patterns and processes for different human and animal contexts are currently limited. Citation network analysis also revealed limited knowledge exchange between ecology and epidemiology. These findings collectively highlight the need for greater interdisciplinary collaboration for improving disease management.
Collapse
Affiliation(s)
- Francisca Powell-Romero
- School of Veterinary Science, The University of Queensland, 5391 Warrego Hwy, Gatton, Queensland4343, Australia
| | - Konstans Wells
- Department of Biosciences, Swansea University, Singleton Park, SwanseaSA2 8PP, UK
| | - Nicholas J. Clark
- School of Veterinary Science, The University of Queensland, 5391 Warrego Hwy, Gatton, Queensland4343, Australia
| |
Collapse
|
4
|
Godinho DP, Rodrigues LR, Lefèvre S, Magalhães S, Duncan AB. Coinfection accelerates transmission to new hosts despite no effects on virulence and parasite growth. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230139. [PMID: 38913066 PMCID: PMC11391289 DOI: 10.1098/rstb.2023.0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024] Open
Abstract
One of the fundamental aims of ecological, epidemiological and evolutionary studies of host-parasite interactions is to unravel which factors affect parasite virulence. Theory predicts that virulence and transmission are correlated by a trade-off, as too much virulence is expected to hamper transmission owing to excessive host damage. Coinfections may affect each of these traits and/or their correlation. Here, we used inbred lines of the spider mite Tetranychus urticae to test how coinfection with T. evansi impacted virulence-transmission relationships at different conspecific densities. The presence of T. evansi on a shared host did not change the relationship between virulence (leaf damage) and the number of transmitting stages (i.e. adult daughters). The relationship between these traits was hump-shaped across densities, both in single and coinfections, which corresponds to a trade-off. Moreover, transmission to adjacent hosts increased in coinfection, but only at low T. urticae densities. Finally, we tested whether virulence and the number of daughters were correlated with measures of transmission to adjacent hosts, in single and coinfections at different conspecific densities. Traits were mostly independent, meaning that interspecific competitors may increase transmission without affecting virulence. Thus, coinfections may impact epidemiology and parasite trait evolution, but not necessarily the virulence-transmission trade-off.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Diogo P Godinho
- cE3c: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences; CHANGE - Global Change and Sustainability Institute, University of Lisbon, Lisboa, Portugal
- Current address, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Leonor R Rodrigues
- cE3c: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences; CHANGE - Global Change and Sustainability Institute, University of Lisbon, Lisboa, Portugal
| | - Sophie Lefèvre
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences; CHANGE - Global Change and Sustainability Institute, University of Lisbon, Lisboa, Portugal
| | - Alison B Duncan
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
5
|
Belluccini G, Lin Q, Williams B, Lou Y, Vatansever Z, López-García M, Lythe G, Leitner T, Romero-Severson E, Molina-París C. A story of viral co-infection, co-transmission and co-feeding in ticks: how to compute an invasion reproduction number. ARXIV 2024:arXiv:2403.15282v1. [PMID: 38562445 PMCID: PMC10983997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
With a single circulating vector-borne virus, the basic reproduction number incorporates contributions from tick-to-tick (co-feeding), tick-to-host and host-to-tick transmission routes. With two different circulating vector-borne viral strains, resident and invasive, and under the assumption that co-feeding is the only transmission route in a tick population, the invasion reproduction number depends on whether the model system of ordinary differential equations possesses the property of neutrality. We show that a simple model, with two populations of ticks infected with one strain, resident or invasive, and one population of co-infected ticks, does not have Alizon's neutrality property. We present model alternatives that are capable of representing the invasion potential of a novel strain by including populations of ticks dually infected with the same strain. The invasion reproduction number is analysed with the next-generation method and via numerical simulations.
Collapse
Affiliation(s)
- Giulia Belluccini
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
| | - Qianying Lin
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | | | - Yijun Lou
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zati Vatansever
- Department of Parasitology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| | | | - Grant Lythe
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
| | - Thomas Leitner
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - Ethan Romero-Severson
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - Carmen Molina-París
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| |
Collapse
|
6
|
Schlosser-Brandenburg J, Midha A, Mugo RM, Ndombi EM, Gachara G, Njomo D, Rausch S, Hartmann S. Infection with soil-transmitted helminths and their impact on coinfections. FRONTIERS IN PARASITOLOGY 2023; 2:1197956. [PMID: 39816832 PMCID: PMC11731630 DOI: 10.3389/fpara.2023.1197956] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 01/18/2025]
Abstract
The most important soil-transmitted helminths (STHs) affecting humans are roundworms, whipworms, and hookworms, with a large proportion of the world's population infected with one or more of these intestinal parasites. On top of that, concurrent infections with several viruses, bacteria, protozoa, and other helminths such as trematodes are common in STH-endemic areas. STHs are potent immunomodulators, but knowledge about the effects of STH infection on the direction and extent of coinfections with other pathogens and vice versa is incomplete. By focusing on Kenya, a country where STH infections in humans are widespread, we provide an exemplary overview of the current prevalence of STH and co-occurring infections (e.g. with Human Immunodeficiency Virus, Plasmodium falciparum, Giardia duodenalis and Schistosoma mansoni). Using human data and complemented by experimental studies, we outline the immunomechanistic interactions of coinfections in both acutely STH transmigrated and chronically infected tissues, also highlighting their systemic nature. Depending on the coinfecting pathogen and immunological readout, STH infection may restrain, support, or even override the immune response to another pathogen. Furthermore, the timing of the particular infection and host susceptibility are decisive for the immunopathological consequences. Some examples demonstrated positive outcomes of STH coinfections, where the systemic effects of these helminths mitigate the damage caused by other pathogens. Nevertheless, the data available to date are rather unbalanced, as only a few studies have considered the effects of coinfection on the worm's life cycle and associated host immunity. These interactions are complex and depend largely on the context and biology of the coinfection, which can act in either direction, both to the benefit and detriment of the infected host.
Collapse
Affiliation(s)
| | - Ankur Midha
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert M. Mugo
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eric M. Ndombi
- Department of Medical Microbiology and Parasitology, Kenyatta University, Nairobi, Kenya
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - George Gachara
- Department of Medical Laboratory Science, Kenyatta University, Nairobi, Kenya
| | - Doris Njomo
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Sebastian Rausch
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Imrie RM, Walsh SK, Roberts KE, Lello J, Longdon B. Investigating the outcomes of virus coinfection within and across host species. PLoS Pathog 2023; 19:e1011044. [PMID: 37216391 DOI: 10.1371/journal.ppat.1011044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Interactions between coinfecting pathogens have the potential to alter the course of infection and can act as a source of phenotypic variation in susceptibility between hosts. This phenotypic variation may influence the evolution of host-pathogen interactions within host species and interfere with patterns in the outcomes of infection across host species. Here, we examine experimental coinfections of two Cripaviruses-Cricket Paralysis Virus (CrPV), and Drosophila C Virus (DCV)-across a panel of 25 Drosophila melanogaster inbred lines and 47 Drosophilidae host species. We find that interactions between these viruses alter viral loads across D. melanogaster genotypes, with a ~3 fold increase in the viral load of DCV and a ~2.5 fold decrease in CrPV in coinfection compared to single infection, but we find little evidence of a host genetic basis for these effects. Across host species, we find no evidence of systematic changes in susceptibility during coinfection, with no interaction between DCV and CrPV detected in the majority of host species. These results suggest that phenotypic variation in coinfection interactions within host species can occur independently of natural host genetic variation in susceptibility, and that patterns of susceptibility across host species to single infections can be robust to the added complexity of coinfection.
Collapse
Affiliation(s)
- Ryan M Imrie
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Sarah K Walsh
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Katherine E Roberts
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Joanne Lello
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ben Longdon
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| |
Collapse
|
8
|
Vanalli C, Mari L, Casagrandi R, Boag B, Gatto M, Cattadori IM. Modeling the contribution of antibody attack rates to single and dual helminth infections in a natural system. Math Biosci 2023; 360:109010. [PMID: 37088125 DOI: 10.1016/j.mbs.2023.109010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Within-host models of infection can provide important insights into the processes that affect parasite spread and persistence in host populations. However, modeling can be limited by the availability of empirical data, a problem commonly encountered in natural systems. Here, we used six years of immune-infection observations of two gastrointestinal helminths (Trichostrongylus retortaeformis and Graphidium strigosum) from a population of European rabbits (Oryctolagus cuniculus) to develop an age-dependent, mathematical model that explicitly included species-specific and cross-reacting antibody (IgA and IgG) responses to each helminth in hosts with single or dual infections. Different models of single infection were formally compared to test alternative mechanisms of parasite regulation. The two models that best described single infections of each helminth species were then coupled through antibody cross-immunity to examine how the presence of one species could alter the host immune response to, and the within-host dynamics of, the other species. For both single infections, model selection suggested that either IgA or IgG responses could equally explain the observed parasite intensities by host age. However, the antibody attack rate and affinity level changed between the two helminths, it was stronger against T. retortaeformis than against G. strigosum and caused contrasting age-intensity profiles. When the two helminths coinfect the same host, we found variation of the species-specific antibody response to both species together with an asymmetric cross-immune response driven by IgG. Lower attack rate and affinity of antibodies in dual than single infections contributed to the significant increase of both helminth intensities. By combining mathematical modeling with immuno-infection data, our work provides a tractable model framework for disentangling some of the complexities generated by host-parasite and parasite-parasite interactions in natural systems.
Collapse
Affiliation(s)
- Chiara Vanalli
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, 16802 PA, USA.
| | - Lorenzo Mari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | - Renato Casagrandi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | - Brian Boag
- The James Hutton Institute, DD2 5DA Invergowrie, UK
| | - Marino Gatto
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | - Isabella M Cattadori
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, 16802 PA, USA
| |
Collapse
|
9
|
Bolnick DI, Arruda S, Polania C, Simonse L, Padhiar A, Roth A, Rodgers ML. The dominance of coinfecting parasites' indirect effects on host traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528182. [PMID: 36798170 PMCID: PMC9934634 DOI: 10.1101/2023.02.12.528182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Indirect genetic effects (IGEs) exist when there is heritable variation in one species' ability to alter a second species' traits. For example, parasites can evolve disparate strategies to manipulate host immune response, whether by evading detection or suppressing immunity. A complication arises during coinfection, when two or more parasite genotypes may try to impose distinct IGEs on the same host trait: which parasite's IGE will be dominant? Here, we apply the notion of dominance to IGEs during coinfection. Using a mathematical model we show that the dominance of IGEs can alter the evolutionary dynamics of parasites. We consider a resident parasite population receiving rare immigrants with a different immune manipulation trait. These immigrants' relative fitness depends on resident prevalence (e.g., the probability immigrants are alone in a host, or coinfecting with a native), and the dominance of the immigrant's IGE on host immunity. Next, we show experimentally that the cestode Schistocephalus solidus exerts an IGE on a host immune trait: parasite antigens from different populations produced different intensities of fibrosis. We then evaluated IGE dominance, finding evidence for overdominance (coinjected antigens induced an even stronger host immune response) which would be detrimental to immigrants when resident prevalence is high. This combination of experimental and modeling results shows that parasites do exhibit IGEs on host traits, and that the dominance of these IGEs during coinfection can substantially alter parasite evolution.
Collapse
Affiliation(s)
- Daniel I. Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Sophia Arruda
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Christian Polania
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Lauren Simonse
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Arshad Padhiar
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Andrea Roth
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Maria L. Rodgers
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
- Present address: Department of Biological Sciences, North Carolina State University, Morehead City NC 28557, USA
| |
Collapse
|
10
|
Dagostin F, Vanalli C, Boag B, Casagrandi R, Gatto M, Mari L, Cattadori IM. The enemy of my enemy is my friend: Immune-mediated facilitation contributes to fitness of co-infecting helminths. J Anim Ecol 2023; 92:477-491. [PMID: 36478135 DOI: 10.1111/1365-2656.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The conceptual understanding of immune-mediated interactions between parasites is rooted in the theory of community ecology. One of the limitations of this approach is that most of the theory and empirical evidence has focused on resource or immune-mediated competition between parasites and yet there is ample evidence of positive interactions that could be generated by immune-mediated facilitation. We developed an immuno-epidemiological model and applied it to long-term data of two gastrointestinal helminths in two rabbit populations to investigate, through model testing, how immune-mediated mechanisms of parasite regulation could explain the higher intensities of both helminths in rabbits with dual than single infections. The model framework was selected and calibrated on rabbit population A and then validated on the nearby rabbit population B to confirm the consistency of the findings and the generality of the mechanisms. Simulations suggested that the higher intensities in rabbits with dual infections could be explained by a weakened or low species-specific IgA response and an asymmetric IgA cross-reaction. Simulations also indicated that rabbits with dual infections shed more free-living stages that survived for longer in the environment, implying greater transmission than stages from hosts with single infections. Temperature and humidity selectively affected the free-living stages of the two helminths. These patterns were comparable in the two rabbit populations and support the hypothesis that immune-mediated facilitation can contribute to greater parasite fitness and local persistence.
Collapse
Affiliation(s)
- Francesca Dagostin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chiara Vanalli
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian Boag
- The James Hutton Institute, Invergowrie, UK
| | - Renato Casagrandi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Marino Gatto
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Lorenzo Mari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Isabella M Cattadori
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Nguyen NTD, Pathak AK, Cattadori IM. Gastrointestinal helminths increase Bordetella bronchiseptica shedding and host variation in supershedding. eLife 2022; 11:e70347. [PMID: 36346138 PMCID: PMC9642997 DOI: 10.7554/elife.70347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Co-infected hosts, individuals that carry more than one infectious agent at any one time, have been suggested to facilitate pathogen transmission, including the emergence of supershedding events. However, how the host immune response mediates the interactions between co-infecting pathogens and how these affect the dynamics of shedding remains largely unclear. We used laboratory experiments and a modeling approach to examine temporal changes in the shedding of the respiratory bacterium Bordetella bronchiseptica in rabbits with one or two gastrointestinal helminth species. Experimental data showed that rabbits co-infected with one or both helminths shed significantly more B. bronchiseptica, by direct contact with an agar petri dish, than rabbits with bacteria alone. Co-infected hosts generated supershedding events of higher intensity and more frequently than hosts with no helminths. To explain this variation in shedding an infection-immune model was developed and fitted to rabbits of each group. Simulations suggested that differences in the magnitude and duration of shedding could be explained by the effect of the two helminths on the relative contribution of neutrophils and specific IgA and IgG to B. bronchiseptica neutralization in the respiratory tract. However, the interactions between infection and immune response at the scale of analysis that we used could not capture the rapid variation in the intensity of shedding of every rabbit. We suggest that fast and local changes at the level of respiratory tissue probably played a more important role. This study indicates that co-infected hosts are important source of variation in shedding, and provides a quantitative explanation into the role of helminths to the dynamics of respiratory bacterial infections.
Collapse
Affiliation(s)
- Nhat TD Nguyen
- Center for Infectious Disease Dynamics, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Ashutosh K Pathak
- Center for Infectious Disease Dynamics, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Infectious Diseases, University of GeorgiaAthensUnited States
| | - Isabella M Cattadori
- Center for Infectious Disease Dynamics, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
12
|
Hananeh WM, Radhi A, Mukbel RM, Ismail ZB. Effects of parasites coinfection with other pathogens on animal host: A literature review. Vet World 2022; 15:2414-2424. [DOI: 10.14202/vetworld.2022.2414-2424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
A parasite-host relationship is complicated and largely remained poorly understood, especially when mixed infections involving pathogenic bacteria and viruses are present in the same host. It has been found that most parasites are able to manipulate the host's immune responses to evade or overcome its defense systems. Several mechanisms have been postulated that may explain this phenomenon in different animal species. Recent evidence suggests that coinfections involving many parasitic species alter the host's vulnerability to other microorganisms, hinder diagnostic accuracy, and may negatively impact vaccination by altering the host's immune responsiveness. The objective of this review was to provide a comprehensive summary of the current understanding of how parasites interact with other pathogens in different animal species. A better understanding of this complex relationship will aid in the improvement efforts of disease diagnosis, treatment, and control measures such as novel and effective vaccines and therapeutics for infectious diseases.
Collapse
Affiliation(s)
- Wael M. Hananeh
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box, 3030, Irbid 22110, Jordan
| | - Asya Radhi
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box, 3030, Irbid 22110, Jordan
| | - Rami M. Mukbel
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Zuhair Bani Ismail
- Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
13
|
Stein RA, Bianchini EC. Bacterial-Viral Interactions: A Factor That Facilitates Transmission Heterogeneities. FEMS MICROBES 2022. [DOI: 10.1093/femsmc/xtac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The transmission of infectious diseases is characterized by heterogeneities that are shaped by the host, the pathogen, and the environment. Extreme forms of these heterogeneities are called super-spreading events. Transmission heterogeneities are usually identified retrospectively, but their contribution to the dynamics of outbreaks makes the ability to predict them valuable for science, medicine, and public health. Previous studies identified several factors that facilitate super-spreading; one of them is the interaction between bacteria and viruses within a host. The heightened dispersal of bacteria colonizing the nasal cavity during an upper respiratory viral infection, and the increased shedding of HIV-1 from the urogenital tract during a sexually transmitted bacterial infection, are among the most extensively studied examples of transmission heterogeneities that result from bacterial-viral interactions. Interrogating these transmission heterogeneities, and elucidating the underlying cellular and molecular mechanisms, are part of much-needed efforts to guide public health interventions, in areas that range from predicting or controlling the population transmission of respiratory pathogens, to limiting the spread of sexually transmitted infections, and tailoring vaccination initiatives with live attenuated vaccines.
Collapse
Affiliation(s)
- Richard A Stein
- NYU Tandon School of Engineering Department of Chemical and Biomolecular Engineering 6 MetroTech Center Brooklyn , NY 11201 USA
| | - Emilia Claire Bianchini
- NYU Tandon School of Engineering Department of Chemical and Biomolecular Engineering 6 MetroTech Center Brooklyn , NY 11201 USA
| |
Collapse
|
14
|
Prevalence, Intensity, and Risk Factors for Helminth Infections in Pigs in Menoua, Western Highlands of Cameroon, with Some Data on Protozoa. J Parasitol Res 2022; 2022:9151294. [PMID: 35592359 PMCID: PMC9113898 DOI: 10.1155/2022/9151294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Helminthes affect satisfactory pig farming by causing poor growth rate and infertility. The objective of this study was to investigate the occurrence of helminthes in pig production, as well as factors influencing their prevalence in Menoua, Western Highlands of Cameroon. Thus, 597 fecal samples from 100 farms of three production types (farrower, grower, and farrow-to-finish) were collected together with data on farmer and management characteristics. Samples were qualitatively and quantitatively analyzed. Eggs of eight helminthes were identified: Hyostrongylus rubidus (81.10%, 50-550 epg), Strongyloides ransomi (34.5%, 50-150 epg), Trichostrongylus sp. (28.1%, 50-650 epg), Ascaris suum (11.6%, 50-200 epg), Metastrongylus sp. (10.4%, 50-250 epg), Oesophagostomum dentatum (5.7%, 50-150 epg), Trichuris suis (4.0%, 50-150 epg), and Macracanthorhynchus hirudinaceus (0.2%, 50-50 epg). The overall prevalence was 89.3% (533 out of 597). Single infestations were 30.2%, while mixed infestations were 59.1%. A. suum, S. ransomi, and strongyles (H. rubidus, Trichostrongylus sp., Metastrongylus sp., and O. dentatum) were found in almost all age groups but the prevalence of A. suum increased with the growing age to drop in older animals. H. rubidus was found in all farm types followed by S. ransomi in farrower and farrow-to-finish farms. The other parasites were present only in farrow-to-finish farms. Coccidia parasites were also found including Isospora suis (26.30%, 50-12500 oocysts per gram of feces (opg)) and Eimeria spp. (1.40%, 100-100 opg). The risk of infestation for some parasites was lower with increasing herd size, high education level of farmers, and in wooden piggeries and semipermanent structures. The infestation risk was higher for all the investigated parasites for pigs escaping the pens. The overall significance of these parasites on growth and reproduction of the naturally infested pigs deserve assessment. Necropsy studies to confirm the worm burden are needed. Risk factors were identified, thus paving the way to design successful helminth control in pig production enterprises.
Collapse
|
15
|
Hundt PJ, White LA, Craft ME, Bajer PG. Social associations in common carp ( Cyprinus carpio): Insights from induced feeding aggregations for targeted management strategies. Ecol Evol 2022; 12:e8666. [PMID: 35309746 PMCID: PMC8901867 DOI: 10.1002/ece3.8666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 11/12/2022] Open
Abstract
Heterogeneity in social interactions can have important consequences for the spread of information and diseases and consequently conservation and invasive species management. Common carp (Cyprinus carpio) are a highly social, ubiquitous, and invasive freshwater fish. Management strategies targeting foraging carp may be ideal because laboratory studies have suggested that carp can learn, have individual personalities, a unique diet, and often form large social groups. To examine social feeding behaviors of wild carp, we injected 344 carp with passive integrated transponder (PIT) tags and continuously monitored their feeding behaviors at multiple sites in a natural lake in Minnesota, USA. The high-resolution, spatio-temporal data were analyzed using a Gaussian mixture model (GMM). Based on these associations, we analyzed group size, feeding bout duration, and the heterogeneity and connectivity of carp social networks at foraging sites. Wild carp responded quickly to bait, forming aggregations most active from dusk to dawn. During the 2020 baiting period (20 days), 133 unique carp were detected 616,593 times. There was some evidence that feeding at multiple sites was constrained by basin geography, but not distance alone. GMM results suggested that feeding bouts were short, with frequent turnover of small groups. Individual foraging behavior was highly heterogeneous with Gini coefficients of 0.79 in 2020 and 0.66 in 2019. "Superfeeders"-those contributing to 80% of total cumulative detections (top 18% and top 29% of foragers in 2020 and 2019 respectively)-were more likely to be detected earlier at feeding stations, had larger body sizes, and had higher network measures of degree, weighted degree, and betweenness than non-superfeeders. Overall, our results indicate that wild carp foraging is social, easily induced by bait, dominated by large-bodied individuals, and potentially predictable, which suggests social behaviors could be leveraged in management of carp, one of the world's most recognizable and invasive fish.
Collapse
Affiliation(s)
- Peter J. Hundt
- Department of Fisheries, Wildlife, and Conservation BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
- Minnesota Aquatic Invasive Species Research Center (MAISRC)St. PaulMinnesotaUSA
| | - Lauren A. White
- National Socio‐Environmental Synthesis CenterUniversity of MarylandAnnapolisMarylandUSA
| | - Meggan E. Craft
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Przemyslaw G. Bajer
- Department of Fisheries, Wildlife, and Conservation BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
- Minnesota Aquatic Invasive Species Research Center (MAISRC)St. PaulMinnesotaUSA
| |
Collapse
|
16
|
Middlebrook EA, Romero AT, Bett B, Nthiwa D, Oyola SO, Fair JM, Bartlow AW. Identification and distribution of pathogens coinfecting with Brucella spp., Coxiella burnetii and Rift Valley fever virus in humans, livestock and wildlife. Zoonoses Public Health 2022; 69:175-194. [PMID: 35034427 PMCID: PMC9303618 DOI: 10.1111/zph.12905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 01/20/2023]
Abstract
Zoonotic diseases, such as brucellosis, Q fever and Rift Valley fever (RVF) caused by Brucella spp., Coxiella burnetii and RVF virus, respectively, can have devastating effects on human, livestock, and wildlife health and cause economic hardship due to morbidity and mortality in livestock. Coinfection with multiple pathogens can lead to more severe disease outcomes and altered transmission dynamics. These three pathogens can alter host immune responses likely leading to increased morbidity, mortality and pathogen transmission during coinfection. Developing countries, such as those commonly afflicted by outbreaks of brucellosis, Q fever and RVF, have high disease burden and thus common coinfections. A literature survey provided information on case reports and studies investigating coinfections involving the three focal diseases. Fifty five studies were collected demonstrating coinfections of Brucella spp., C. burnetii or RVFV with 50 different pathogens, of which 64% were zoonotic. While the literature search criteria involved ‘coinfection’, only 24/55 studies showed coinfections with direct pathogen detection methods (microbiology, PCR and antigen test), while the rest only reported detection of antibodies against multiple pathogens, which only indicate a history of co‐exposure, not concurrent infection. These studies lack the ability to test whether coinfection leads to changes in morbidity, mortality or transmission dynamics. We describe considerations and methods for identifying ongoing coinfections to address this critical blind spot in disease risk management.
Collapse
Affiliation(s)
- Earl A Middlebrook
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Alicia T Romero
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | - Daniel Nthiwa
- International Livestock Research Institute, Nairobi, Kenya.,Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Samuel O Oyola
- International Livestock Research Institute, Nairobi, Kenya
| | - Jeanne M Fair
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Andrew W Bartlow
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
17
|
Delling C, Daugschies A. Literature Review: Coinfection in Young Ruminant Livestock- Cryptosporidium spp. and Its Companions. Pathogens 2022; 11:103. [PMID: 35056051 PMCID: PMC8777864 DOI: 10.3390/pathogens11010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The protozoan Cryptosporidium parvum is one of the major causative pathogens of diarrhoea in young ruminants; therefore, it causes economic losses and impairs animal welfare. Besides C. parvum, there are many other non-infectious and infectious factors, such as rotavirus, Escherichia coli, and Giardia duodenalis, which may lead to diarrhoeic disease in young livestock. Often, more than one infectious agent is detected in affected animals. Little is known about the interactions bet-ween simultaneously occurring pathogens and their potential effects on the course of disease. In this review, a brief overview about pathogens associated with diarrhoea in young ruminants is presented. Furthermore, information about coinfections involving Cryptosporidium is provided.
Collapse
Affiliation(s)
- Cora Delling
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany;
| | | |
Collapse
|
18
|
Guilhot R, Rombaut A, Xuéreb A, Howell K, Fellous S. Influence of bacteria on the maintenance of a yeast during Drosophila melanogaster metamorphosis. Anim Microbiome 2021; 3:68. [PMID: 34602098 PMCID: PMC8489055 DOI: 10.1186/s42523-021-00133-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Interactions between microorganisms associated with metazoan hosts are emerging as key features of symbiotic systems. Little is known about the role of such interactions on the maintenance of host-microorganism association throughout the host’s life cycle. We studied the influence of extracellular bacteria on the maintenance of a wild isolate of the yeast Saccharomyces cerevisiae through metamorphosis of the fly Drosophila melanogaster reared in fruit. Yeasts maintained through metamorphosis only when larvae were associated with extracellular bacteria isolated from D. melanogaster faeces. One of these isolates, an Enterobacteriaceae, favoured yeast maintenance during metamorphosis. Such bacterial influence on host-yeast association may have consequences for the ecology and evolution of insect-yeast-bacteria symbioses in the wild.
Collapse
Affiliation(s)
- Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | - Antoine Rombaut
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Anne Xuéreb
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Kate Howell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Simon Fellous
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
19
|
Wale N, Duffy MA. The Use and Underuse of Model Systems in Infectious Disease Ecology and Evolutionary Biology. Am Nat 2021; 198:69-92. [PMID: 34143716 DOI: 10.1086/714595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractEver since biologists began studying the ecology and evolution of infectious diseases (EEID), laboratory-based model systems have been important for developing and testing theory. Yet what EEID researchers mean by the term "model systems" and what they want from them is unclear. This uncertainty hinders our ability to maximally exploit these systems, identify knowledge gaps, and establish effective new model systems. Here, we borrow a definition of model systems from the biomolecular sciences to assess how EEID researchers are (and are not) using 10 key model systems. According to this definition, model systems in EEID are not being used to their fullest and, in fact, cannot even be considered model systems. Research using these systems consistently addresses only two of the three fundamental processes that underlie disease dynamics-transmission and disease, but not recovery. Furthermore, studies tend to focus on only a few scales of biological organization that matter for disease ecology and evolution. Moreover, the field lacks an infrastructure to perform comparative analyses. We aim to begin a discussion of what we want from model systems, which would further progress toward a thorough, holistic understanding of EEID.
Collapse
|
20
|
Siva-Jothy JA, Vale PF. Dissecting genetic and sex-specific sources of host heterogeneity in pathogen shedding and spread. PLoS Pathog 2021; 17:e1009196. [PMID: 33465160 PMCID: PMC7846003 DOI: 10.1371/journal.ppat.1009196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 11/18/2022] Open
Abstract
Host heterogeneity in disease transmission is widespread but precisely how different host traits drive this heterogeneity remains poorly understood. Part of the difficulty in linking individual variation to population-scale outcomes is that individual hosts can differ on multiple behavioral, physiological and immunological axes, which will together impact their transmission potential. Moreover, we lack well-characterized, empirical systems that enable the quantification of individual variation in key host traits, while also characterizing genetic or sex-based sources of such variation. Here we used Drosophila melanogaster and Drosophila C Virus as a host-pathogen model system to dissect the genetic and sex-specific sources of variation in multiple host traits that are central to pathogen transmission. Our findings show complex interactions between genetic background, sex, and female mating status accounting for a substantial proportion of variance in lifespan following infection, viral load, virus shedding, and viral load at death. Two notable findings include the interaction between genetic background and sex accounting for nearly 20% of the variance in viral load, and genetic background alone accounting for ~10% of the variance in viral shedding and in lifespan following infection. To understand how variation in these traits could generate heterogeneity in individual pathogen transmission potential, we combined measures of lifespan following infection, virus shedding, and previously published data on fly social aggregation. We found that the interaction between genetic background and sex explained ~12% of the variance in individual transmission potential. Our results highlight the importance of characterising the sources of variation in multiple host traits to understand the drivers of heterogeneity in disease transmission.
Collapse
Affiliation(s)
- Jonathon A. Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro F. Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Fielding HR, McKinley TJ, Delahay RJ, Silk MJ, McDonald RA. Characterization of potential superspreader farms for bovine tuberculosis: A review. Vet Med Sci 2020; 7:310-321. [PMID: 32937038 PMCID: PMC8025614 DOI: 10.1002/vms3.358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/22/2020] [Accepted: 08/29/2020] [Indexed: 11/24/2022] Open
Abstract
Background Variation in host attributes that influence their contact rates and infectiousness can lead some individuals to make disproportionate contributions to the spread of infections. Understanding the roles of such ‘superspreaders’ can be crucial in deciding where to direct disease surveillance and controls to greatest effect. In the epidemiology of bovine tuberculosis (bTB) in Great Britain, it has been suggested that a minority of cattle farms or herds might make disproportionate contributions to the spread of Mycobacterium bovis, and hence might be considered ‘superspreader farms’. Objectives and Methods We review the literature to identify the characteristics of farms that have the potential to contribute to exceptional values in the three main components of the farm reproductive number ‐ Rf: contact rate, infectiousness and duration of infectiousness, and therefore might characterize potential superspreader farms for bovine tuberculosis in Great Britain. Results Farms exhibit marked heterogeneity in contact rates arising from between‐farm trading of cattle. A minority of farms act as trading hubs that greatly augment connections within cattle trading networks. Herd infectiousness might be increased by high within‐herd transmission or the presence of supershedding individuals, or infectiousness might be prolonged due to undetected infections or by repeated local transmission, via wildlife or fomites. Conclusions Targeting control methods on putative superspreader farms might yield disproportionate benefits in controlling endemic bovine tuberculosis in Great Britain. However, real‐time identification of any such farms, and integration of controls with industry practices, present analytical, operational and policy challenges.
Collapse
Affiliation(s)
- Helen R Fielding
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | | | - Richard J Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Stonehouse, Gloucestershire, UK
| | - Matthew J Silk
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Robbie A McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| |
Collapse
|
22
|
Kinsley AC, Rossi G, Silk MJ, VanderWaal K. Multilayer and Multiplex Networks: An Introduction to Their Use in Veterinary Epidemiology. Front Vet Sci 2020; 7:596. [PMID: 33088828 PMCID: PMC7500177 DOI: 10.3389/fvets.2020.00596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
Contact network analysis has become a vital tool for conceptualizing the spread of pathogens in animal populations and is particularly useful for understanding the implications of heterogeneity in contact patterns for transmission. However, the transmission of most pathogens cannot be simplified to a single mode of transmission and, thus, a single definition of contact. In addition, host-pathogen interactions occur in a community context, with many pathogens infecting multiple host species and most hosts being infected by multiple pathogens. Multilayer networks provide a formal framework for researching host-pathogen systems in which multiple types of transmission-relevant interactions, defined as network layers, can be analyzed jointly. Here, we provide an overview of multilayer network analysis and review applications of this novel method to epidemiological research questions. We then demonstrate the use of this technique to analyze heterogeneity in direct and indirect contact patterns amongst swine farms in the United States. When contact among nodes can be defined in multiple ways, a multilayer approach can advance our ability to use networks in epidemiological research by providing an improved approach for defining epidemiologically relevant groups of interacting nodes and changing the way we identify epidemiologically important individuals such as superspreaders.
Collapse
Affiliation(s)
- Amy C Kinsley
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Gianluigi Rossi
- Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew J Silk
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, United Kingdom.,Environment and Sustainability Institute, University of Exeter, Penryn, United Kingdom
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
23
|
Hoarau AOG, Mavingui P, Lebarbenchon C. Coinfections in wildlife: Focus on a neglected aspect of infectious disease epidemiology. PLoS Pathog 2020; 16:e1008790. [PMID: 32881983 PMCID: PMC7470396 DOI: 10.1371/journal.ppat.1008790] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Axel O. G. Hoarau
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Saint Denis, Réunion Island, France
- * E-mail:
| | - Patrick Mavingui
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Saint Denis, Réunion Island, France
| | - Camille Lebarbenchon
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Saint Denis, Réunion Island, France
| |
Collapse
|
24
|
Milutinović B, Stock M, Grasse AV, Naderlinger E, Hilbe C, Cremer S. Social immunity modulates competition between coinfecting pathogens. Ecol Lett 2020; 23:565-574. [PMID: 31950595 DOI: 10.1111/ele.13458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 12/14/2019] [Indexed: 12/18/2022]
Abstract
Coinfections with multiple pathogens can result in complex within-host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants - their social immunity - influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different-species coinfections. Here, it decreased overall pathogen sporulation success while increasing co-sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast-germinating, thus less grooming-sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.
Collapse
Affiliation(s)
- Barbara Milutinović
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Miriam Stock
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Anna V Grasse
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Elisabeth Naderlinger
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Christian Hilbe
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| |
Collapse
|
25
|
Carvalho‐Pereira TSA, Souza FN, Santos LRDN, Pedra GG, Minter A, Bahiense TC, Reis MG, Ko AI, Childs JE, Silva EM, Costa F, Begon M. Coinfection modifies carriage of enzootic and zoonotic parasites in Norway rats from an urban slum. Ecosphere 2019. [DOI: 10.1002/ecs2.2887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Ticiana S. A. Carvalho‐Pereira
- Instituto de Biologia, Instituto de Ciências da Saúde, Faculdade de Medicina, Instituto de Saúde Coletiva Federal University of Bahia (UFBA) Salvador Brazil
- Instituto Gonçalo Moniz Fundação Oswaldo Cruz Ministério da Saúde Salvador Brazil
- Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Fábio Neves Souza
- Instituto de Biologia, Instituto de Ciências da Saúde, Faculdade de Medicina, Instituto de Saúde Coletiva Federal University of Bahia (UFBA) Salvador Brazil
- Instituto Gonçalo Moniz Fundação Oswaldo Cruz Ministério da Saúde Salvador Brazil
| | | | | | - Amanda Minter
- Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Thiago Campanharo Bahiense
- Instituto de Biologia, Instituto de Ciências da Saúde, Faculdade de Medicina, Instituto de Saúde Coletiva Federal University of Bahia (UFBA) Salvador Brazil
| | - Mitermayer Galvão Reis
- Instituto de Biologia, Instituto de Ciências da Saúde, Faculdade de Medicina, Instituto de Saúde Coletiva Federal University of Bahia (UFBA) Salvador Brazil
- Instituto Gonçalo Moniz Fundação Oswaldo Cruz Ministério da Saúde Salvador Brazil
- Department of Epidemiology of Microbial Disease Yale School of Public Health New Haven Connecticut USA
| | - Albert Icksang Ko
- Department of Epidemiology of Microbial Disease Yale School of Public Health New Haven Connecticut USA
| | - James E. Childs
- Department of Epidemiology of Microbial Disease Yale School of Public Health New Haven Connecticut USA
| | - Eduardo M. Silva
- Instituto de Biologia, Instituto de Ciências da Saúde, Faculdade de Medicina, Instituto de Saúde Coletiva Federal University of Bahia (UFBA) Salvador Brazil
| | - Federico Costa
- Instituto de Biologia, Instituto de Ciências da Saúde, Faculdade de Medicina, Instituto de Saúde Coletiva Federal University of Bahia (UFBA) Salvador Brazil
- Instituto Gonçalo Moniz Fundação Oswaldo Cruz Ministério da Saúde Salvador Brazil
- Institute of Integrative Biology University of Liverpool Liverpool UK
- Department of Epidemiology of Microbial Disease Yale School of Public Health New Haven Connecticut USA
| | - Mike Begon
- Institute of Integrative Biology University of Liverpool Liverpool UK
| |
Collapse
|
26
|
Plowright RK, Becker DJ, McCallum H, Manlove KR. Sampling to elucidate the dynamics of infections in reservoir hosts. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180336. [PMID: 31401966 PMCID: PMC6711310 DOI: 10.1098/rstb.2018.0336] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2019] [Indexed: 01/20/2023] Open
Abstract
The risk of zoonotic spillover from reservoir hosts, such as wildlife or domestic livestock, to people is shaped by the spatial and temporal distribution of infection in reservoir populations. Quantifying these distributions is a key challenge in epidemiology and disease ecology that requires researchers to make trade-offs between the extent and intensity of spatial versus temporal sampling. We discuss sampling methods that strengthen the reliability and validity of inferences about the dynamics of zoonotic pathogens in wildlife hosts. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Daniel J. Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Brisbane, Queensland 4111, Australia
| | - Kezia R. Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT 84321, USA
| |
Collapse
|
27
|
Tanner E, White A, Acevedo P, Balseiro A, Marcos J, Gortázar C. Wolves contribute to disease control in a multi-host system. Sci Rep 2019; 9:7940. [PMID: 31138835 PMCID: PMC6538665 DOI: 10.1038/s41598-019-44148-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/02/2019] [Indexed: 11/08/2022] Open
Abstract
We combine model results with field data for a system of wolves (Canis lupus) that prey on wild boar (Sus scrofa), a wildlife reservoir of tuberculosis, to examine how predation may contribute to disease control in multi-host systems. Results show that predation can lead to a marked reduction in the prevalence of infection without leading to a reduction in host population density since mortality due to predation can be compensated by a reduction in disease induced mortality. A key finding therefore is that a population that harbours a virulent infection can be regulated at a similar density by disease at high prevalence or by predation at low prevalence. Predators may therefore provide a key ecosystem service which should be recognised when considering human-carnivore conflicts and the conservation and re-establishment of carnivore populations.
Collapse
Affiliation(s)
- E Tanner
- Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - A White
- Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - P Acevedo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
| | - A Balseiro
- SERIDA, Gobierno del Principado de Asturias, Gijón, Spain
- Animal Health Department, University of León, León, Spain
| | - J Marcos
- Gobierno del Principado de Asturias, Oviedo, Spain
| | - C Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
| |
Collapse
|
28
|
Parasitic nematodes simultaneously suppress and benefit from coccidian coinfection in their natural mouse host. Parasitology 2019; 146:1096-1106. [PMID: 30915927 PMCID: PMC6603796 DOI: 10.1017/s0031182019000192] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Within-host interactions among coinfecting parasites are common and have important consequences for host health and disease dynamics. However, these within-host interactions have traditionally been studied in laboratory mouse models, which often exclude important variation and use unnatural host-parasite combinations. Conversely, the few wild studies of within-host interactions often lack knowledge of parasite exposure and infection history. Here we exposed laboratory-reared wood mice (Apodemus sylvaticus) that were derived from wild-caught animals to two naturally-occurring parasites (nematode: Heligmosomoides polygyrus, coccidia: Eimeria hungaryensis) to investigate the impact of coinfection on parasite infection dynamics, and to determine if the host immune response mediates this interaction. Coinfection led to delayed worm expulsion and prolonged egg shedding in H. polygyrus infections and lower peak E. hungaryensis oocyst burdens. By comparing antibody levels between wild and colony-housed mice, we also found that wild mice had elevated H. polygyrus-IgG1 titres even if currently uninfected with H. polygyrus. Using this unique wild-laboratory system, we demonstrate, for the first time, clear evidence for a reciprocal interaction between these intestinal parasites, and that there is a great discrepancy between antibody levels measured in the wild vs those measured under controlled laboratory conditions in relation to parasite infection and coinfection.
Collapse
|
29
|
Fountain-Jones NM, Packer C, Jacquot M, Blanchet FG, Terio K, Craft ME. Endemic infection can shape exposure to novel pathogens: Pathogen co-occurrence networks in the Serengeti lions. Ecol Lett 2019; 22:904-913. [PMID: 30861289 PMCID: PMC7163671 DOI: 10.1111/ele.13250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Accepted: 02/11/2019] [Indexed: 11/30/2022]
Abstract
Pathogens are embedded in a complex network of microparasites that can collectively or individually alter disease dynamics and outcomes. Endemic pathogens that infect an individual in the first years of life, for example, can either facilitate or compete with subsequent pathogens thereby exacerbating or ameliorating morbidity and mortality. Pathogen associations are ubiquitous but poorly understood, particularly in wild populations. We report here on 10 years of serological and molecular data in African lions, leveraging comprehensive demographic and behavioural data to test if endemic pathogens shape subsequent infection by epidemic pathogens. We combine network and community ecology approaches to assess broad network structure and characterise associations between pathogens across spatial and temporal scales. We found significant non‐random structure in the lion‐pathogen co‐occurrence network and identified both positive and negative associations between endemic and epidemic pathogens. Our results provide novel insights on the complex associations underlying pathogen co‐occurrence networks.
Collapse
Affiliation(s)
- Nicholas M Fountain-Jones
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, St Paul, MN, 55108, USA
| | - Craig Packer
- Department of Ecology Evolution and Behavior, University of Minnesota, St Paul, MN, 55408, USA
| | - Maude Jacquot
- INRA, UMR346 EPIA, Epidémiologie des maladies Animales et zoonotiques, 63122, Saint-Genès-Champanelle, France
| | - F Guillaume Blanchet
- Département de biologie, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, Canada, J1K 2R1
| | - Karen Terio
- Zoological Pathology Program, University of Illinois, Urbana-Champaign, IL, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, St Paul, MN, 55108, USA
| |
Collapse
|
30
|
Lello J, McClure SJ, Tyrrell K, Viney ME. Predicting the effects of parasite co-infection across species boundaries. Proc Biol Sci 2019. [PMID: 29540516 PMCID: PMC5879626 DOI: 10.1098/rspb.2017.2610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
It is normal for hosts to be co-infected by parasites. Interactions among co-infecting species can have profound consequences, including changing parasite transmission dynamics, altering disease severity and confounding attempts at parasite control. Despite the importance of co-infection, there is currently no way to predict how different parasite species may interact with one another, nor the consequences of those interactions. Here, we demonstrate a method that enables such prediction by identifying two nematode parasite groups based on taxonomy and characteristics of the parasitological niche. From an understanding of the interactions between the two defined groups in one host system (wild rabbits), we predict how two different nematode species, from the same defined groups, will interact in co-infections in a different host system (sheep), and then we test this experimentally. We show that, as predicted, in co-infections, the blood-feeding nematode Haemonchus contortus suppresses aspects of the sheep immune response, thereby facilitating the establishment and/or survival of the nematode Trichostrongylus colubriformis; and that the T. colubriformis-induced immune response negatively affects H. contortus This work is, to our knowledge, the first to use empirical data from one host system to successfully predict the specific outcome of a different co-infection in a second host species. The study therefore takes the first step in defining a practical framework for predicting interspecific parasite interactions in other animal systems.
Collapse
Affiliation(s)
- Joanne Lello
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK .,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trentino 38010, Italy.,Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia
| | - Susan J McClure
- Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia
| | - Kerri Tyrrell
- Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia
| | - Mark E Viney
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
31
|
Zélé F, Magalhães S, Kéfi S, Duncan AB. Ecology and evolution of facilitation among symbionts. Nat Commun 2018; 9:4869. [PMID: 30451829 PMCID: PMC6242936 DOI: 10.1038/s41467-018-06779-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/31/2018] [Indexed: 01/30/2023] Open
Abstract
Facilitation occurs when one species positively impacts the fitness of another, and has predominantly been studied in free-living species like plants. Facilitation can also occur among symbiont (mutualistic or parasitic) species or strains, but equivalent studies are scarce. To advance an integrated view of the effect of facilitation on symbiont ecology and evolution, we review empirical evidence and their underlying mechanisms, explore the factors favouring its emergence, and discuss its consequences for virulence and transmission. We argue that the facilitation concept can improve understanding of the evolutionary forces shaping symbiont communities and their effects on hosts.
Collapse
Affiliation(s)
- Flore Zélé
- cE3c: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Edifício C2, piso-3, 1749-016, Lisboa, Portugal
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Edifício C2, piso-3, 1749-016, Lisboa, Portugal
| | - Sonia Kéfi
- ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, Cedex 05, France
| | - Alison B Duncan
- ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, Cedex 05, France.
| |
Collapse
|
32
|
Byrne RL, Fogarty U, Mooney A, Marples NM, Holland CV. A comparison of helminth infections as assessed through coprological analysis and adult worm burdens in a wild host. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:439-444. [PMID: 30533382 PMCID: PMC6261086 DOI: 10.1016/j.ijppaw.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/25/2023]
Abstract
Coprological analysis is the most widely used diagnostic tool for helminth infection in both domestic and wild mammals. Evaluation of the efficacy of this technique is rare, due to the lack of availability of adult worm burden. Where information is available the majority of studies are in small ruminants and seldom in a wild host. This study of 289 wild badgers is the first to report the relationship between faecal egg/larval counts and adult worm burden in badgers whilst also evaluating the reliability of coprological analysis as a diagnostic tool for hookworm (Uncinaria criniformis) and lungworm (Aelurostrongylus falciformis) infection. The prevalence of hookworm and lungworm infection, as assessed through adult worm burden was 59.2% and 20.8% respectively. For both species of helminth, infection was consistently under-reported by coprological analysis compared to adult worm burden with a reported 41% sensitivity for hookworm and 10% for lungworm. A significant positive relationship was found between faecal counts and adult worm burden for both species of helminths. Additionally the density –dependent relationship often reported in helminth infection appears to be weak or non-existent in this study, up to the observed worm intensity of 500. Hookworm infection is endemic within the Irish badger population. Lungworm infection is also common in Irish badgers. Coprological analysis has a low sensitivity for diagnosing infection compared to adult worm burden. Faecal is a reliable indicator of intensity of infection. Density-dependence is weak, or non-existent up to the observed intensity of 500 worms.
Collapse
Affiliation(s)
- Rachel L. Byrne
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
- Corresponding author.
| | - Ursula Fogarty
- Irish Equine Centre, Johnstown, Naas, County Kildare, Ireland
| | - Andrew Mooney
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
| | - Nicola M. Marples
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
| | - Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
| |
Collapse
|
33
|
Antaki-Zukoski EM, Li X, Pesavento PA, Nguyen THB, Hoar BR, Atwill ER. Comparative Pathogenicity of Wildlife and Bovine Escherichia coli O157:H7 Strains in Experimentally Inoculated Neonatal Jersey Calves. Vet Sci 2018; 5:E88. [PMID: 30326606 PMCID: PMC6313898 DOI: 10.3390/vetsci5040088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 11/23/2022] Open
Abstract
Shiga toxin-producing Escherichia coli, like E. coli O157:H7, are important human and animal pathogens. Naturally-acquired E. coli O157:H7 infections occur in numerous species but, particularly, cattle have been identified as a significant reservoir for human cases. E. coli O157:H7 are isolated from a number of domestic and wild animals, including rodents that share a living space with cattle. These Shiga toxin-producing E. coli O157:H7 strains can be highly virulent in humans, but little is known about the sequelae of interspecies transfer. In a group of neonatal calves, we determined the differences in colonization patterns and lesions associated with infection using either a wildlife or bovine E. coli O157:H7 strain. In calves challenged with the wildlife E. coli O157:H7 strain, the large (descending) colon was solely colonized, which differed substantially from the calves inoculated with the bovine E. coli O157:H7 strain, where the spiral colon was the principal target of infection. This study also demonstrated that while both interspecies- and intraspecies-derived E. coli O157:H7 can infect young calves, the distribution and severity differs.
Collapse
Affiliation(s)
- Elizabeth M Antaki-Zukoski
- Department of Population Health and Reproduction, University of California, Davis, CA 95616, USA.
- Western Institute for Food Safety and Security, University of California, Davis, CA 95618, USA.
| | - Xunde Li
- Department of Population Health and Reproduction, University of California, Davis, CA 95616, USA.
- Western Institute for Food Safety and Security, University of California, Davis, CA 95618, USA.
| | - Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA.
| | - Tran H B Nguyen
- Department of Population Health and Reproduction, University of California, Davis, CA 95616, USA.
| | - Bruce R Hoar
- College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, USA.
| | - Edward R Atwill
- Department of Population Health and Reproduction, University of California, Davis, CA 95616, USA.
- Western Institute for Food Safety and Security, University of California, Davis, CA 95618, USA.
| |
Collapse
|
34
|
Barnett LK, Prowse TAA, Peacock DE, Mutze GJ, Sinclair RG, Kovaliski J, Cooke BD, Bradshaw CJA. Previous exposure to myxoma virus reduces survival of European rabbits during outbreaks of rabbit haemorrhagic disease. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Louise K. Barnett
- Global EcologyCollege of Science and EngineeringFlinders University Adelaide South Australia Australia
| | - Thomas A. A. Prowse
- School of Mathematical SciencesUniversity of Adelaide Adelaide South Australia Australia
| | - David E. Peacock
- Biosecurity South AustraliaDepartment of Primary Industries and Regions Adelaide South Australia Australia
| | - Gregory J. Mutze
- Biosecurity South AustraliaDepartment of Primary Industries and Regions Adelaide South Australia Australia
| | - Ron G. Sinclair
- School of Biological SciencesUniversity of Adelaide Adelaide South Australia Australia
| | - John Kovaliski
- Biosecurity South AustraliaDepartment of Primary Industries and Regions Adelaide South Australia Australia
| | - Brian D. Cooke
- Institute for Applied EcologyUniversity of Canberra Canberra ACT Australia
| | - Corey J. A. Bradshaw
- Global EcologyCollege of Science and EngineeringFlinders University Adelaide South Australia Australia
| |
Collapse
|
35
|
Duncan AB, Dusi E, Schrallhammer M, Berendonk T, Kaltz O. Population-level dynamics in experimental mixed infections: evidence for competitive exclusion among bacterial parasites ofParamecium caudatum. OIKOS 2018. [DOI: 10.1111/oik.05280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alison B. Duncan
- Inst. of Evolutionary Sciences; Univ. of Montpellier; Montpellier France
| | - Eike Dusi
- Inst. of Hydrobiology; Technische Univ. Dresden; Germany
| | - Martina Schrallhammer
- Inst. of Hydrobiology; Technische Univ. Dresden; Germany
- Microbiology; Inst. of Biology II, Albert-Ludwigs Univ. Freiburg; Freiburg Germany
| | | | - Oliver Kaltz
- Inst. of Evolutionary Sciences; Univ. of Montpellier; Montpellier France
| |
Collapse
|
36
|
Comparative ecology of Escherichia coli in endangered Australian sea lion (Neophoca cinerea) pups. INFECTION GENETICS AND EVOLUTION 2018; 62:262-269. [PMID: 29730275 DOI: 10.1016/j.meegid.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
The dissemination of human-associated bacteria into the marine environment has the potential to expose wildlife populations to atypical microbes that can alter the composition of the gut microbiome or act as pathogens. The objective of the study was to determine whether endangered Australian sea lion (Neophoca cinerea) pups from two South Australian colonies, Seal Bay, Kangaroo Island and Dangerous Reef, Spencer Gulf, have been colonised by human-associated Escherichia coli. Faecal samples (n = 111) were collected to isolate E. coli, and molecular screening was applied to assign E. coli isolates (n = 94) to phylotypes and detect class 1 integrons; mobile genetic elements that confer resistance to antimicrobial agents. E. coli phylotype distribution and frequency differed significantly between colonies with phylotypes B2 and D being the most abundant at Seal Bay, Kangaroo Island (55% and 7%) and Dangerous Reef, Spencer Gulf (36% and 49%), respectively. This study reports the first case of antimicrobial resistant E. coli in free-ranging Australian sea lions through the identification of class 1 integrons from an individual pup at Seal Bay. A significant relationship between phylotype and total white cell count (WCC) was identified, with significantly higher WCC seen in pups with human-associated phylotypes at Dangerous Reef. The difference in phylotype distribution and presence of human-associated E. coli suggests that proximity to human populations can influence sea lion gut microbiota. The identification of antimicrobial resistance in a free-ranging pinniped population provides crucial information concerning anthropogenic influences in the marine environment.
Collapse
|
37
|
Schwartz C, Hams E, Fallon PG. Helminth Modulation of Lung Inflammation. Trends Parasitol 2018; 34:388-403. [PMID: 29339033 DOI: 10.1016/j.pt.2017.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Parasitic helminths must establish chronic infections to complete their life cycle and therefore are potent modulators of multiple facets of host physiology. Parasitic helminths have coevolved with humans to become arguably master selectors of our immune system, whereby they have impacted on the selection of genes with beneficial mutations for both host and parasite. While helminth infections of humans are a significant health burden, studies have shown that helminths or helminth products can alter susceptibility to unrelated infectious or inflammatory diseases. This has generated interest in the use of helminth infections or molecules as therapeutics. In this review, we focus on the impact of helminth infections on pulmonary immunity, especially with regard to homeostatic lung function, pulmonary viral and bacterial (co)infections, and asthma.
Collapse
Affiliation(s)
- Christian Schwartz
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
38
|
McCallum H, Fenton A, Hudson PJ, Lee B, Levick B, Norman R, Perkins SE, Viney M, Wilson AJ, Lello J. Breaking beta: deconstructing the parasite transmission function. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0084. [PMID: 28289252 PMCID: PMC5352811 DOI: 10.1098/rstb.2016.0084] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 01/29/2023] Open
Abstract
Transmission is a fundamental step in the life cycle of every parasite but it is also one of the most challenging processes to model and quantify. In most host–parasite models, the transmission process is encapsulated by a single parameter β. Many different biological processes and interactions, acting on both hosts and infectious organisms, are subsumed in this single term. There are, however, at least two undesirable consequences of this high level of abstraction. First, nonlinearities and heterogeneities that can be critical to the dynamic behaviour of infections are poorly represented; second, estimating the transmission coefficient β from field data is often very difficult. In this paper, we present a conceptual model, which breaks the transmission process into its component parts. This deconstruction enables us to identify circumstances that generate nonlinearities in transmission, with potential implications for emergent transmission behaviour at individual and population scales. Such behaviour cannot be explained by the traditional linear transmission frameworks. The deconstruction also provides a clearer link to the empirical estimation of key components of transmission and enables the construction of flexible models that produce a unified understanding of the spread of both micro- and macro-parasite infectious disease agents. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’.
Collapse
Affiliation(s)
- Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Nathan 4111, Queensland, Australia
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Peter J Hudson
- Center for Infectious Disease Dynamics, Penn State University, University Park, PA 16802, USA
| | - Brian Lee
- School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Beth Levick
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Rachel Norman
- School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Sarah E Perkins
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trentino, Italy
| | - Mark Viney
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Anthony J Wilson
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
| | - Joanne Lello
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK .,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trentino, Italy
| |
Collapse
|
39
|
Ezenwa VO. Helminth-microparasite co-infection in wildlife: lessons from ruminants, rodents and rabbits. Parasite Immunol 2017; 38:527-34. [PMID: 27426017 DOI: 10.1111/pim.12348] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Co-infection is now recognized as the natural state of affairs in most hosts and co-infecting parasites interact in a variety of ways that can impact host health and parasite fitness. Interactions between helminths and microparasites have captured particular attention in this regard owing to the ubiquity of helminth infections in many host populations. The mechanistic underpinnings and health implications of co-infection are typically studied in laboratory and clinical settings, but recently studies of wild species have begun to tackle similar issues. Case studies from three wild mammal groups-ruminants, rodents and rabbits-serve to highlight how wild studies are contributing to the broader co-infection literature. This work suggests that wildlife research can generate new and unique insights about helminth-microparasite co-infection that are fostered in part by studying parasite interactions in a natural context. For this reason, increased integration of wild studies with research in human, laboratory and veterinary animal populations can help pave the way towards a more complete understanding of the issue of co-infection.
Collapse
Affiliation(s)
- V O Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, USA. .,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
40
|
Perkins SE, White TA, Pascoe EL, Gillingham EL. Parasite community dynamics in an invasive vole - From focal introduction to wave front. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2017; 6:412-419. [PMID: 30951575 PMCID: PMC5715215 DOI: 10.1016/j.ijppaw.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
Multiple parasite species simultaneously infecting a host can interact with one another, which has the potential to influence host-parasite interactions. Invasive species typically lose members of their parasite community during the invasion process. Not only do the founding population escape their parasites, but the rapid range expansion of invaders once in the invaded range can lead to additional stochastic loss of parasites. As such, parasite community dynamics may change along an invasion gradient, with consequences for host invasion success. Here, we use the bank vole, Myodes glareolus, introduced as a small founding population at a point source in the Republic of Ireland in c.1920's and its ecto- and endoparasites to ask: i) how does the parasite community vary across an invasion gradient, and ii) are parasite community associations driven by host traits and/or distance from the point of host introduction? We sampled the parasite community of M. glareolus at the proposed focal site of introduction, at mid-wave and the invasion front, and used a parasite interactivity index and statistical models to determine the potential for the parasite community to interact. Bank voles harboured up to six different parasite taxa, with a significantly higher parasite interactivity index at the foci of introduction (z = 2.33, p = 0.02) than elsewhere, suggesting the most established parasite community has greater opportunities to interact. All but one of four synergistic parasite community associations were driven by host traits; sex and body mass. The remaining parasite-parasite associations occurred at the mid-point of the invasion wave, suggesting that specific parasite-parasite interactions are not mediated by distance from a focal point of host introduction. We propose that host traits rather than location along an invasion gradient are more likely to determine parasite-parasite interactions in the invasive bank vole. Parasite communities are more interactive in established introduction sites. Isolationist parasite communities are more likely towards an invasion front. Host traits, not location, drive parasite associations across an invasion gradient. A predominance of key host traits may aid invasion success.
Collapse
Affiliation(s)
- Sarah E Perkins
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Tom A White
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Emily L Pascoe
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Emma L Gillingham
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
41
|
Ahmed N, French T, Rausch S, Kühl A, Hemminger K, Dunay IR, Steinfelder S, Hartmann S. Toxoplasma Co-infection Prevents Th2 Differentiation and Leads to a Helminth-Specific Th1 Response. Front Cell Infect Microbiol 2017; 7:341. [PMID: 28791259 PMCID: PMC5524676 DOI: 10.3389/fcimb.2017.00341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023] Open
Abstract
Nematode infections, in particular gastrointestinal nematodes, are widespread and co-infections with other parasites and pathogens are frequently encountered in humans and animals. To decipher the immunological effects of a widespread protozoan infection on the anti-helminth immune response we studied a co-infection with the enteric nematode Heligmosomoides polygyrus in mice previously infected with Toxoplasma gondii. Protective immune responses against nematodes are dependent on parasite-specific Th2 responses associated with IL-4, IL-5, IL-13, IgE, and IgG1 antibodies. In contrast, Toxoplasma gondii infection elicits a strong and protective Th1 immune response characterized by IFN-γ, IL-12, and IgG2a antibodies. Co-infected animals displayed significantly higher worm fecundity although worm burden remained unchanged. In line with this, the Th2 response to H. polygyrus in co-infected animals showed a profound reduction of IL-4, IL-5, IL-13, and GATA-3 expressing T cells. Co-infection also resulted in the lack of eosinophilia and reduced expression of the Th2 effector molecule RELM-β in intestinal tissue. In contrast, the Th1 response to the protozoan parasite was not diminished and parasitemia of T. gondii was unaffected by concurrent helminth infection. Importantly, H. polygyrus specific restimulation of splenocytes revealed H. polygyrus-reactive CD4+ T cells that produce a significant amount of IFN-γ in co-infected animals. This was not observed in animals infected with the nematode alone. Increased levels of H. polygyrus-specific IgG2a antibodies in co-infected mice mirrored this finding. This study suggests that polarization rather than priming of naive CD4+ T cells is disturbed in mice previously infected with T. gondii. In conclusion, a previous T. gondii infection limits a helminth-specific Th2 immune response while promoting a shift toward a Th1-type immune response.
Collapse
Affiliation(s)
- Norus Ahmed
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Timothy French
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Sebastian Rausch
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Anja Kühl
- Division of Gastroenterology, Medical Department, Infection and Rheumatology, Research Center ImmunoSciencesBerlin, Germany
| | - Katrin Hemminger
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Svenja Steinfelder
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
42
|
Stephenson JF, Young KA, Fox J, Jokela J, Cable J, Perkins SE. Host heterogeneity affects both parasite transmission to and fitness on subsequent hosts. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160093. [PMID: 28289260 PMCID: PMC5352819 DOI: 10.1098/rstb.2016.0093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
Infectious disease dynamics depend on the speed, number and fitness of parasites transmitting from infected hosts ('donors') to parasite-naive 'recipients'. Donor heterogeneity likely affects these three parameters, and may arise from variation between donors in traits including: (i) infection load, (ii) resistance, (iii) stage of infection, and (iv) previous experience of transmission. We used the Trinidadian guppy, Poecilia reticulata, and a directly transmitted monogenean ectoparasite, Gyrodactylus turnbulli, to experimentally explore how these sources of donor heterogeneity affect the three transmission parameters. We exposed parasite-naive recipients to donors (infected with a single parasite strain) differing in their infection traits, and found that donor infection traits had diverse and sometimes interactive effects on transmission. First, although transmission speed increased with donor infection load, the relationship was nonlinear. Second, while the number of parasites transmitted generally increased with donor infection load, more resistant donors transmitted more parasites, as did those with previous transmission experience. Finally, parasites transmitting from experienced donors exhibited lower population growth rates on recipients than those from inexperienced donors. Stage of infection had little effect on transmission parameters. These results suggest that a more holistic consideration of within-host processes will improve our understanding of between-host transmission and hence disease dynamics.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Jessica F Stephenson
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Center for Adaptation to a Changing Environment, ETH Zürich, 8092 Zürich, Switzerland
| | - Kyle A Young
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland
| | - Jordan Fox
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Jukka Jokela
- Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Sarah E Perkins
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
43
|
Rückerl D, Campbell SM, Duncan S, Sutherland TE, Jenkins SJ, Hewitson JP, Barr TA, Jackson-Jones LH, Maizels RM, Allen JE. Macrophage origin limits functional plasticity in helminth-bacterial co-infection. PLoS Pathog 2017; 13:e1006233. [PMID: 28334040 PMCID: PMC5364000 DOI: 10.1371/journal.ppat.1006233] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell.
Collapse
Affiliation(s)
- Dominik Rückerl
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Sharon M. Campbell
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sheelagh Duncan
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tara E. Sutherland
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Stephen J. Jenkins
- Centre for Inflammation Research, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - James P. Hewitson
- Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Tom A. Barr
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Lucy H. Jackson-Jones
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cardiovascular Science, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rick M. Maizels
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Judith E. Allen
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
44
|
Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nat Commun 2017; 8:14446. [PMID: 28194016 PMCID: PMC5316840 DOI: 10.1038/ncomms14446] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/30/2016] [Indexed: 11/17/2022] Open
Abstract
The Egyptian rousette bat (ERB) is a natural reservoir host for Marburg virus (MARV); however, the mechanisms by which MARV is transmitted bat-to-bat and to other animals are unclear. Here we co-house MARV-inoculated donor ERBs with naive contact ERBs. MARV shedding is detected in oral, rectal and urine specimens from inoculated bats from 5–19 days post infection. Simultaneously, MARV is detected in oral specimens from contact bats, indicating oral exposure to the virus. In the late study phase, we provide evidence that MARV can be horizontally transmitted from inoculated to contact ERBs by finding MARV RNA in blood and oral specimens from contact bats, followed by MARV IgG antibodies in these same bats. This study demonstrates that MARV can be horizontally transmitted from inoculated to contact ERBs, thereby providing a model for filovirus maintenance in its natural reservoir host and a potential mechanism for virus spillover to other animals. Bats are natural hosts for Marburg virus (MARV), but the mechanism of bat-to-bat transmission is unclear. Here, Schuh et al. monitor MARV infection in a cohort of 38 bats over nine months, find ‘supershedders' and show that MARV can horizontally transmit between bats.
Collapse
|
45
|
Keiser CN, Pinter-Wollman N, Augustine DA, Ziemba MJ, Hao L, Lawrence JG, Pruitt JN. Individual differences in boldness influence patterns of social interactions and the transmission of cuticular bacteria among group-mates. Proc Biol Sci 2016; 283:20160457. [PMID: 27097926 PMCID: PMC4855390 DOI: 10.1098/rspb.2016.0457] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/30/2016] [Indexed: 12/15/2022] Open
Abstract
Despite the importance of host attributes for the likelihood of associated microbial transmission, individual variation is seldom considered in studies of wildlife disease. Here, we test the influence of host phenotypes on social network structure and the likelihood of cuticular bacterial transmission from exposed individuals to susceptible group-mates using female social spiders (Stegodyphus dumicola). Based on the interactions of resting individuals of known behavioural types, we assessed whether individuals assorted according to their behavioural traits. We found that individuals preferentially interacted with individuals of unlike behavioural phenotypes. We next applied a green fluorescent protein-transformed cuticular bacterium,Pantoeasp., to individuals and allowed them to interact with an unexposed colony-mate for 24 h. We found evidence for transmission of bacteria in 55% of cases. The likelihood of transmission was influenced jointly by the behavioural phenotypes of both the exposed and susceptible individuals: transmission was more likely when exposed spiders exhibited higher 'boldness' relative to their colony-mate, and when unexposed individuals were in better body condition. Indirect transmission via shared silk took place in only 15% of cases. Thus, bodily contact appears key to transmission in this system. These data represent a fundamental step towards understanding how individual traits influence larger-scale social and epidemiological dynamics.
Collapse
Affiliation(s)
- Carl N Keiser
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Noa Pinter-Wollman
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - David A Augustine
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael J Ziemba
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lingran Hao
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey G Lawrence
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jonathan N Pruitt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
46
|
Levy MZ, Tustin A, Castillo-Neyra R, Mabud TS, Levy K, Barbu CM, Quispe-Machaca VR, Ancca-Juarez J, Borrini-Mayori K, Naquira-Velarde C, Ostfeld RS. Bottlenecks in domestic animal populations can facilitate the emergence of Trypanosoma cruzi, the aetiological agent of Chagas disease. Proc Biol Sci 2016; 282:rspb.2014.2807. [PMID: 26085582 DOI: 10.1098/rspb.2014.2807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Faeces-mediated transmission of Trypanosoma cruzi (the aetiological agent of Chagas disease) by triatomine insects is extremely inefficient. Still, the parasite emerges frequently, and has infected millions of people and domestic animals. We synthesize here the results of field and laboratory studies of T. cruzi transmission conducted in and around Arequipa, Peru. We document the repeated occurrence of large colonies of triatomine bugs (more than 1000) with very high infection prevalence (more than 85%). By inoculating guinea pigs, an important reservoir of T. cruzi in Peru, and feeding triatomine bugs on them weekly, we demonstrate that, while most animals quickly control parasitaemia, a subset of animals remains highly infectious to vectors for many months. However, we argue that the presence of these persistently infectious hosts is insufficient to explain the observed prevalence of T. cruzi in vector colonies. We posit that seasonal rains, leading to a fluctuation in the price of guinea pig food (alfalfa), leading to annual guinea pig roasts, leading to a concentration of vectors on a small subpopulation of animals maintained for reproduction, can propel T. cruzi through vector colonies and create a considerable force of infection for a pathogen whose transmission might otherwise fizzle out.
Collapse
Affiliation(s)
- Michael Z Levy
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Aaron Tustin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ricardo Castillo-Neyra
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Tarub S Mabud
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katelyn Levy
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corentin M Barbu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Victor R Quispe-Machaca
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Jenny Ancca-Juarez
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Katty Borrini-Mayori
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Cesar Naquira-Velarde
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | | | | |
Collapse
|
47
|
Affiliation(s)
- Kimberly L. VanderWaal
- Department of Veterinary Population Medicine University of Minnesota 1365 Gortner Avenue St. Paul MN 55108 USA
| | - Vanessa O. Ezenwa
- Odum School of Ecology and Department of Infectious Diseases University of Georgia 140 East Green Street Athens GA 30602 USA
| |
Collapse
|
48
|
White LA, Forester JD, Craft ME. Using contact networks to explore mechanisms of parasite transmission in wildlife. Biol Rev Camb Philos Soc 2015; 92:389-409. [DOI: 10.1111/brv.12236] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Lauren A. White
- Department of Ecology, Evolution and Behaviour University of Minnesota 140 Gortner Laboratory, 1479 Gortner Avenue St. Paul MN 55108 U.S.A
| | - James D. Forester
- Department of Fisheries, Wildlife and Conservation Biology University of Minnesota 135 Skok Hall, 2003 Upper Buford Circle St. Paul MN 55108 U.S.A
| | - Meggan E. Craft
- Department of Veterinary Population Medicine University of Minnesota 225 Veterinary Medical Center, 1365 Gortner Avenue St. Paul MN 55108 U.S.A
| |
Collapse
|
49
|
Vaumourin E, Vourc'h G, Gasqui P, Vayssier-Taussat M. The importance of multiparasitism: examining the consequences of co-infections for human and animal health. Parasit Vectors 2015; 8:545. [PMID: 26482351 PMCID: PMC4617890 DOI: 10.1186/s13071-015-1167-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
Most parasites co-occur with other parasites, although the importance of such multiparasitism has only recently been recognised. Co-infections may result when hosts are independently infected by different parasites at the same time or when interactions among parasite species facilitate co-occurrence. Such interactions can have important repercussions on human or animal health because they can alter host susceptibility, infection duration, transmission risks, and clinical symptoms. These interactions may be synergistic or antagonistic and thus produce diverse effects in infected humans and animals. Interactions among parasites strongly influence parasite dynamics and therefore play a major role in structuring parasite populations (both within and among hosts) as well as host populations. However, several methodological challenges remain when it comes to detecting parasite interactions. The goal of this review is to summarise current knowledge on the causes and consequences of multiparasitism and to discuss the different methods and tools that researchers have developed to study the factors that lead to multiparasitism. It also identifies new research directions to pursue.
Collapse
Affiliation(s)
- Elise Vaumourin
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France. .,USC BIPAR, INRA-ANSES-ENVA, Maisons-Alfort, France.
| | - Gwenaël Vourc'h
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France.
| | - Patrick Gasqui
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France.
| | | |
Collapse
|
50
|
Castillo-Neyra R, Borrini Mayorí K, Salazar Sánchez R, Ancca Suarez J, Xie S, Náquira Velarde C, Levy MZ. Heterogeneous infectiousness in guinea pigs experimentally infected with Trypanosoma cruzi. Parasitol Int 2015; 65:50-54. [PMID: 26432777 DOI: 10.1016/j.parint.2015.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/30/2015] [Accepted: 09/28/2015] [Indexed: 01/05/2023]
Abstract
Guinea pigs are important reservoirs of Trypanosoma cruzi, the causative parasite of Chagas disease, and in the Southern Cone of South America, transmission is mediated mainly by the vector Triatoma infestans. Interestingly, colonies of Triatoma infestans captured from guinea pig corrals sporadically have infection prevalence rates above 80%. Such high values are not consistent with the relatively short 7-8 week parasitemic period that has been reported for guinea pigs in the literature. We experimentally measured the infectious periods of a group of T. cruzi-infected guinea pigs by performing xenodiagnosis and direct microscopy each week for one year. Another group of infected guinea pigs received only direct microscopy to control for the effect that inoculation by triatomine saliva may have on parasitemia in the host. We observed infectious periods longer than those previously reported in a number of guinea pigs from both the xenodiagnosis and control groups. While some guinea pigs were infectious for a short time, other "super-shedders" were parasitemic up to 22 weeks after infection, and/or positive by xenodiagnosis for a year after infection. This heterogeneity in infectiousness has strong implications for T. cruzi transmission dynamics and control, as super-shedder guinea pigs may play a disproportionate role in pathogen spread.
Collapse
Affiliation(s)
- Ricardo Castillo-Neyra
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, PA, USA; Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Katty Borrini Mayorí
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | - Jenny Ancca Suarez
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Sherrie Xie
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, PA, USA.
| | | | - Michael Z Levy
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, PA, USA.
| |
Collapse
|