1
|
Costa AC, Ahamed T, Jordan D, Stephens GJ. A Markovian dynamics for Caenorhabditis elegans behavior across scales. Proc Natl Acad Sci U S A 2024; 121:e2318805121. [PMID: 39083417 PMCID: PMC11317559 DOI: 10.1073/pnas.2318805121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
How do we capture the breadth of behavior in animal movement, from rapid body twitches to aging? Using high-resolution videos of the nematode worm Caenorhabditis elegans, we show that a single dynamics connects posture-scale fluctuations with trajectory diffusion and longer-lived behavioral states. We take short posture sequences as an instantaneous behavioral measure, fixing the sequence length for maximal prediction. Within the space of posture sequences, we construct a fine-scale, maximum entropy partition so that transitions among microstates define a high-fidelity Markov model, which we also use as a means of principled coarse-graining. We translate these dynamics into movement using resistive force theory, capturing the statistical properties of foraging trajectories. Predictive across scales, we leverage the longest-lived eigenvectors of the inferred Markov chain to perform a top-down subdivision of the worm's foraging behavior, revealing both "runs-and-pirouettes" as well as previously uncharacterized finer-scale behaviors. We use our model to investigate the relevance of these fine-scale behaviors for foraging success, recovering a trade-off between local and global search strategies.
Collapse
Affiliation(s)
- Antonio C. Costa
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam1081HV, The Netherlands
| | | | - David Jordan
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Greg J. Stephens
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam1081HV, The Netherlands
- Biological Physics Theory Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa904-0495, Japan
| |
Collapse
|
2
|
Madirolas G, Al-Asmar A, Gaouar L, Marie-Louise L, Garza-Enríquez A, Rodríguez-Rada V, Khona M, Dal Bello M, Ratzke C, Gore J, Pérez-Escudero A. Caenorhabditis elegans foraging patterns follow a simple rule of thumb. Commun Biol 2023; 6:841. [PMID: 37580527 PMCID: PMC10425387 DOI: 10.1038/s42003-023-05220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Rules of thumb are behavioral algorithms that approximate optimal behavior while lowering cognitive and sensory costs. One way to reduce these costs is by simplifying the representation of the environment: While the theoretically optimal behavior may depend on many environmental variables, a rule of thumb may use a smaller set of variables that performs reasonably well. Experimental proof of this simplification requires an exhaustive mapping of all relevant combinations of several environmental parameters, which we performed for Caenorhabditis elegans foraging by covering systematically combinations of food density (across 4 orders of magnitude) and food type (across 12 bacterial strains). We found that worms' response is dominated by a single environmental variable: food density measured as number of bacteria per unit surface. They disregard other factors such as biomass content or bacterial strain. We also measured experimentally the impact on fitness of each type of food, determining that the rule is near-optimal and therefore constitutes a rule of thumb that leverages the most informative environmental variable. These results set the stage for further investigations into the underlying genetic and neural mechanisms governing this simplification process, and into its role in the evolution of decision-making strategies.
Collapse
Affiliation(s)
- Gabriel Madirolas
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Alid Al-Asmar
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Lydia Gaouar
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Leslie Marie-Louise
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Andrea Garza-Enríquez
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Valentina Rodríguez-Rada
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Mikail Khona
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martina Dal Bello
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christoph Ratzke
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen, Calwerstrasse 7/1, 72076, Tübingen, Germany
| | - Jeff Gore
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alfonso Pérez-Escudero
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France.
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Roman A, Palanski K, Nemenman I, Ryu WS. A dynamical model of C. elegans thermal preference reveals independent excitatory and inhibitory learning pathways. Proc Natl Acad Sci U S A 2023; 120:e2215191120. [PMID: 36940330 PMCID: PMC10068832 DOI: 10.1073/pnas.2215191120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/19/2023] [Indexed: 03/22/2023] Open
Abstract
Caenorhabditis elegans is capable of learning and remembering behaviorally relevant cues such as smells, tastes, and temperature. This is an example of associative learning, a process in which behavior is modified by making associations between various stimuli. Since the mathematical theory of conditioning does not account for some of its salient aspects, such as spontaneous recovery of extinguished associations, accurate modeling of behavior of real animals during conditioning has turned out difficult. Here, we do this in the context of the dynamics of the thermal preference of C. elegans. We quantify C. elegans thermotaxis in response to various conditioning temperatures, starvation durations, and genetic perturbations using a high-resolution microfluidic droplet assay. We model these data comprehensively, within a biologically interpretable, multi-modal framework. We find that the strength of the thermal preference is composed of two independent, genetically separable contributions and requires a model with at least four dynamical variables. One pathway positively associates the experienced temperature independently of food and the other negatively associates with the temperature when food is absent. The multidimensional structure of the association strength provides an explanation for the apparent classical temperature-food association of C. elegans thermal preference and a number of longstanding questions in animal learning, including spontaneous recovery, asymmetric response to appetitive vs. aversive cues, latent inhibition, and generalization among similar cues.
Collapse
Affiliation(s)
- Ahmed Roman
- Department of Physics, Emory University, Atlanta, GA30322
| | | | - Ilya Nemenman
- Department of Physics, Emory University, Atlanta, GA30322
- Department of Biology, Emory University, Atlanta, GA30322
- Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, GA30322
| | - William S. Ryu
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
4
|
Garg K, Kello CT, Smaldino PE. Individual exploration and selective social learning: balancing exploration-exploitation trade-offs in collective foraging. J R Soc Interface 2022; 19:20210915. [PMID: 35472271 PMCID: PMC9042579 DOI: 10.1098/rsif.2021.0915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Search requires balancing exploring for more options and exploiting the ones previously found. Individuals foraging in a group face another trade-off: whether to engage in social learning to exploit the solutions found by others or to solitarily search for unexplored solutions. Social learning can better exploit learned information and decrease the costs of finding new resources, but excessive social learning can lead to over-exploitation and too little exploration for new solutions. We study how these two trade-offs interact to influence search efficiency in a model of collective foraging under conditions of varying resource abundance, resource density and group size. We modelled individual search strategies as Lévy walks, where a power-law exponent (μ) controlled the trade-off between exploitative and explorative movements in individual search. We modulated the trade-off between individual search and social learning using a selectivity parameter that determined how agents responded to social cues in terms of distance and likely opportunity costs. Our results show that social learning is favoured in rich and clustered environments, but also that the benefits of exploiting social information are maximized by engaging in high levels of individual exploration. We show that selective use of social information can modulate the disadvantages of excessive social learning, especially in larger groups and when individual exploration is limited. Finally, we found that the optimal combination of individual exploration and social learning gave rise to trajectories with μ ≈ 2 and provide support for the general optimality of such patterns in search. Our work sheds light on the interplay between individual search and social learning, and has broader implications for collective search and problem-solving.
Collapse
Affiliation(s)
- Ketika Garg
- Department of Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Christopher T Kello
- Department of Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Paul E Smaldino
- Department of Cognitive and Information Sciences, University of California, Merced, CA, USA
| |
Collapse
|
5
|
Zjacic N, Scholz M. The role of food odor in invertebrate foraging. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12793. [PMID: 34978135 PMCID: PMC9744530 DOI: 10.1111/gbb.12793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Foraging for food is an integral part of animal survival. In small insects and invertebrates, multisensory information and optimized locomotion strategies are used to effectively forage in patchy and complex environments. Here, the importance of olfactory cues for effective invertebrate foraging is discussed in detail. We review how odors are used by foragers to move toward a likely food source and the recent models that describe this sensory-driven behavior. We argue that smell serves a second function by priming an organism for the efficient exploitation of food. By appraising food odors, invertebrates can establish preferences and better adapt to their ecological niches, thereby promoting survival. The smell of food pre-prepares the gastrointestinal system and primes feeding motor programs for more effective ingestion as well. Optimizing resource utilization affects longevity and reproduction as a result, leading to drastic changes in survival. We propose that models of foraging behavior should include odor priming, and illustrate this with a simple toy model based on the marginal value theorem. Lastly, we discuss the novel techniques and assays in invertebrate research that could investigate the interactions between odor sensing and food intake. Overall, the sense of smell is indispensable for efficient foraging and influences not only locomotion, but also organismal physiology, which should be reflected in behavioral modeling.
Collapse
Affiliation(s)
- Nicolina Zjacic
- Max Planck Research Group Neural Information FlowCenter of Advanced European Studies and Research (Caesar)BonnGermany
| | - Monika Scholz
- Max Planck Research Group Neural Information FlowCenter of Advanced European Studies and Research (Caesar)BonnGermany
| |
Collapse
|
6
|
Mangiarotti S, Fu E, Jouquet P, Tran MT, Huc M, Bottinelli N. Earthworm activity and its coupling to soil hydrology: A deterministic analysis. CHAOS (WOODBURY, N.Y.) 2021; 31:013134. [PMID: 33754768 DOI: 10.1063/5.0029969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Considering in situ observations, chaos theory was taken as a basis to study the activity of anecic earthworms based on cast production from September 2016 to January 2018 in the Dong Cao watershed (Vietnam). To study this activity, the global modeling technique was used to obtain deterministic models of ordinary differential equations directly from observational time series. The obtained models show that the behavior of earthworms is chaotic; it is coupled to the dynamics of soil water content in a complex (integrative) way and can be interpreted as an habituation/sensitization process. However, this coupling is insufficient to explain the desynchronization of the cast production variations observed at different study sites. The retroaction of earthworm activity on soil is required to explain the spatiotemporal discrepancies.
Collapse
Affiliation(s)
- S Mangiarotti
- Centre d'Études Spatiales de la Biosphère, UPS-CNRS-CNES-IRD-INRAe, Observatoire Midi-Pyrénées, 18 avenue Édouard Belin, 31401 Toulouse, France
| | - E Fu
- Centre d'Études Spatiales de la Biosphère, UPS-CNRS-CNES-IRD-INRAe, Observatoire Midi-Pyrénées, 18 avenue Édouard Belin, 31401 Toulouse, France
| | - P Jouquet
- Institute of Ecology and Environmental Sciences (UMR 242 iEES-Paris), Sorbonne Université, 75252 Paris, France
| | - M T Tran
- Department of Soil Sciences, Soils and Fertilizers Research Institute, Bac Tu Liem District, Hanoi, Vietnam
| | - M Huc
- Centre d'Études Spatiales de la Biosphère, UPS-CNRS-CNES-IRD-INRAe, Observatoire Midi-Pyrénées, 18 avenue Édouard Belin, 31401 Toulouse, France
| | - N Bottinelli
- Institute of Ecology and Environmental Sciences (UMR 242 iEES-Paris), Sorbonne Université, 75252 Paris, France
| |
Collapse
|
7
|
Abstract
Caenorhabditis elegans' behavioral states, like those of other animals, are shaped by its immediate environment, its past experiences, and by internal factors. We here review the literature on C. elegans behavioral states and their regulation. We discuss dwelling and roaming, local and global search, mate finding, sleep, and the interaction between internal metabolic states and behavior.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Young-Jai You
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan
| |
Collapse
|
8
|
Neural Coding of Thermal Preferences in the Nematode Caenorhabditis elegans. eNeuro 2020; 7:ENEURO.0414-19.2020. [PMID: 32253198 PMCID: PMC7322292 DOI: 10.1523/eneuro.0414-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/09/2020] [Accepted: 02/08/2020] [Indexed: 02/02/2023] Open
Abstract
Animals are capable to modify sensory preferences according to past experiences. Surrounded by ever-changing environments, they continue assigning a hedonic value to a sensory stimulus. It remains to be elucidated however how such alteration of sensory preference is encoded in the nervous system. Here we show that past experiences alter temporal interaction between the calcium responses of sensory neurons and their postsynaptic interneurons in the nematode Caenorhabditis elegans. C. elegans exhibits thermotaxis, in which its temperature preference is modified by the past feeding experience: well-fed animals are attracted toward their past cultivation temperature on a thermal gradient, whereas starved animals lose that attraction. By monitoring calcium responses simultaneously from both AFD thermosensory neurons and their postsynaptic AIY interneurons in well-fed and starved animals under time-varying thermal stimuli, we found that past feeding experiences alter phase shift between AFD and AIY calcium responses. Furthermore, the difference in neuronal activities between well-fed and starved animals observed here are able to explain the difference in the behavioral output on a thermal gradient between well-fed and starved animals. Although previous studies have shown that C. elegans executes thermotaxis by regulating amplitude or frequency of the AIY response, our results proposed a new mechanism by which thermal preference is encoded by phase shift between AFD and AIY activities. Given these observations, thermal preference is likely to be computed on synapses between AFD and AIY neurons. Such a neural strategy may enable animals to enrich information processing within defined connectivity via dynamic alterations of synaptic communication.
Collapse
|
9
|
Context-dependent operation of neural circuits underlies a navigation behavior in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2020; 117:6178-6188. [PMID: 32123108 PMCID: PMC7084152 DOI: 10.1073/pnas.1918528117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A free-living nematode Caenorhabditis elegans memorizes an environmental temperature and migrates toward the remembered temperature on a thermal gradient by switching movement up or down the gradient. How does the C. elegans brain, consisting of 302 neurons, achieve this memory-dependent thermotaxis behavior? Here, we addressed this question through large-scale single-cell ablation, high-resolution behavioral analysis, and computational modeling. We found that depending on whether the environmental temperature is below or above the remembered temperature, distinct sets of neurons are responsible to generate opposing motor biases, thereby switching the movement up or down the thermal gradient. Our study indicates that such a context-dependent operation in neural circuits is essential for flexible execution of animal behavior. The nervous system evaluates environmental cues and adjusts motor output to ensure navigation toward a preferred environment. The nematode Caenorhabditis elegans navigates in the thermal environment and migrates toward its cultivation temperature by moving up or down thermal gradients depending not only on absolute temperature but on relative difference between current and previously experienced cultivation temperature. Although previous studies showed that such thermal context-dependent opposing migration is mediated by bias in frequency and direction of reorientation behavior, the complete neural pathways—from sensory to motor neurons—and their circuit logics underlying the opposing behavioral bias remain elusive. By conducting comprehensive cell ablation, high-resolution behavioral analyses, and computational modeling, we identified multiple neural pathways regulating behavioral components important for thermotaxis, and demonstrate that distinct sets of neurons are required for opposing bias of even single behavioral components. Furthermore, our imaging analyses show that the context-dependent operation is evident in sensory neurons, very early in the neural pathway, and manifested by bidirectional responses of a first-layer interneuron AIB under different thermal contexts. Our results suggest that the contextual differences are encoded among sensory neurons and a first-layer interneuron, processed among different downstream neurons, and lead to the flexible execution of context-dependent behavior.
Collapse
|
10
|
Helms SJ, Rozemuller WM, Costa AC, Avery L, Stephens GJ, Shimizu TS. Modelling the ballistic-to-diffusive transition in nematode motility reveals variation in exploratory behaviour across species. J R Soc Interface 2019; 16:20190174. [PMID: 31455164 DOI: 10.1098/rsif.2019.0174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A quantitative understanding of organism-level behaviour requires predictive models that can capture the richness of behavioural phenotypes, yet are simple enough to connect with underlying mechanistic processes. Here, we investigate the motile behaviour of nematodes at the level of their translational motion on surfaces driven by undulatory propulsion. We broadly sample the nematode behavioural repertoire by measuring motile trajectories of the canonical laboratory strain Caenorhabditis elegans N2 as well as wild strains and distant species. We focus on trajectory dynamics over time scales spanning the transition from ballistic (straight) to diffusive (random) movement and find that salient features of the motility statistics are captured by a random walk model with independent dynamics in the speed, bearing and reversal events. We show that the model parameters vary among species in a correlated, low-dimensional manner suggestive of a common mode of behavioural control and a trade-off between exploration and exploitation. The distribution of phenotypes along this primary mode of variation reveals that not only the mean but also the variance varies considerably across strains, suggesting that these nematode lineages employ contrasting 'bet-hedging' strategies for foraging.
Collapse
Affiliation(s)
| | | | - Antonio Carlos Costa
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| | - Leon Avery
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Greg J Stephens
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands.,Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | | |
Collapse
|
11
|
Ding SS, Schumacher LJ, Javer AE, Endres RG, Brown AEX. Shared behavioral mechanisms underlie C. elegans aggregation and swarming. eLife 2019; 8:e43318. [PMID: 31021320 PMCID: PMC6522220 DOI: 10.7554/elife.43318] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/19/2019] [Indexed: 11/13/2022] Open
Abstract
In complex biological systems, simple individual-level behavioral rules can give rise to emergent group-level behavior. While collective behavior has been well studied in cells and larger organisms, the mesoscopic scale is less understood, as it is unclear which sensory inputs and physical processes matter a priori. Here, we investigate collective feeding in the roundworm C. elegans at this intermediate scale, using quantitative phenotyping and agent-based modeling to identify behavioral rules underlying both aggregation and swarming-a dynamic phenotype only observed at longer timescales. Using fluorescence multi-worm tracking, we quantify aggregation in terms of individual dynamics and population-level statistics. Then we use agent-based simulations and approximate Bayesian inference to identify three key behavioral rules for aggregation: cluster-edge reversals, a density-dependent switch between crawling speeds, and taxis towards neighboring worms. Our simulations suggest that swarming is simply driven by local food depletion but otherwise employs the same behavioral mechanisms as the initial aggregation.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Instititue of Clinical SciencesImperial College LondonLondonUnited Kingdom
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - Linus J Schumacher
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Avelino E Javer
- Instititue of Clinical SciencesImperial College LondonLondonUnited Kingdom
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - Robert G Endres
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - André EX Brown
- Instititue of Clinical SciencesImperial College LondonLondonUnited Kingdom
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| |
Collapse
|
12
|
López-Cruz A, Sordillo A, Pokala N, Liu Q, McGrath PT, Bargmann CI. Parallel Multimodal Circuits Control an Innate Foraging Behavior. Neuron 2019; 102:407-419.e8. [PMID: 30824353 PMCID: PMC9161785 DOI: 10.1016/j.neuron.2019.01.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/27/2018] [Accepted: 01/25/2019] [Indexed: 11/20/2022]
Abstract
Foraging strategies emerge from genetically encoded programs that are similar across animal species. Here, we examine circuits that control a conserved foraging state, local search behavior after food removal, in Caenorhabditis elegans. We show that local search is triggered by two parallel groups of chemosensory and mechanosensory glutamatergic neurons that detect food-related cues. Each group of sensory neurons suppresses distinct integrating neurons through a G protein-coupled metabotropic glutamate receptor, MGL-1, to release local search. The chemosensory and mechanosensory modules are separate and redundant; glutamate release from either module can drive the full behavior. A transition from local search to global search over several minutes after food removal is associated with two changes in circuit function. First, the spontaneous activity of sensory neurons falls. Second, the motor pattern generator for local search becomes less responsive to sensory input. This multimodal, distributed short-term food memory provides robust control of an innate behavior.
Collapse
Affiliation(s)
- Alejandro López-Cruz
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Aylesse Sordillo
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Navin Pokala
- New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Qiang Liu
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA; Chan Zuckerberg Initiative, Redwood City, CA 94063, USA.
| |
Collapse
|
13
|
Javer A, Ripoll-Sánchez L, Brown AEX. Powerful and interpretable behavioural features for quantitative phenotyping of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0375. [PMID: 30201839 PMCID: PMC6158219 DOI: 10.1098/rstb.2017.0375] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2018] [Indexed: 01/20/2023] Open
Abstract
Behaviour is a sensitive and integrative readout of nervous system function and therefore an attractive measure for assessing the effects of mutation or drug treatment on animals. Video data provide a rich but high-dimensional representation of behaviour, and so the first step of analysis is often some form of tracking and feature extraction to reduce dimensionality while maintaining relevant information. Modern machine-learning methods are powerful but notoriously difficult to interpret, while handcrafted features are interpretable but do not always perform as well. Here, we report a new set of handcrafted features to compactly quantify Caenorhabditis elegans behaviour. The features are designed to be interpretable but to capture as much of the phenotypic differences between worms as possible. We show that the full feature set is more powerful than a previously defined feature set in classifying mutant strains. We then use a combination of automated and manual feature selection to define a core set of interpretable features that still provides sufficient power to detect behavioural differences between mutant strains and the wild-type. Finally, we apply the new features to detect time-resolved behavioural differences in a series of optogenetic experiments targeting different neural subsets. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.
Collapse
Affiliation(s)
- Avelino Javer
- MRC London Institute of Medical Sciences, London, UK.,Institute of Clinical Sciences, Imperial College London, London, UK
| | - Lidia Ripoll-Sánchez
- MRC London Institute of Medical Sciences, London, UK.,Institute of Clinical Sciences, Imperial College London, London, UK
| | - André E X Brown
- MRC London Institute of Medical Sciences, London, UK .,Institute of Clinical Sciences, Imperial College London, London, UK
| |
Collapse
|
14
|
Kuśmierz Ł, Toyoizumi T. Emergence of Lévy Walks from Second-Order Stochastic Optimization. PHYSICAL REVIEW LETTERS 2017; 119:250601. [PMID: 29303344 DOI: 10.1103/physrevlett.119.250601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Indexed: 06/07/2023]
Abstract
In natural foraging, many organisms seem to perform two different types of motile search: directed search (taxis) and random search. The former is observed when the environment provides cues to guide motion towards a target. The latter involves no apparent memory or information processing and can be mathematically modeled by random walks. We show that both types of search can be generated by a common mechanism in which Lévy flights or Lévy walks emerge from a second-order gradient-based search with noisy observations. No explicit switching mechanism is required-instead, continuous transitions between the directed and random motions emerge depending on the Hessian matrix of the cost function. For a wide range of scenarios, the Lévy tail index is α=1, consistent with previous observations in foraging organisms. These results suggest that adopting a second-order optimization method can be a useful strategy to combine efficient features of directed and random search.
Collapse
Affiliation(s)
- Łukasz Kuśmierz
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Taro Toyoizumi
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Gomez-Marin A, Stephens GJ, Brown AEX. Hierarchical compression of Caenorhabditis elegans locomotion reveals phenotypic differences in the organization of behaviour. J R Soc Interface 2017; 13:rsif.2016.0466. [PMID: 27581484 PMCID: PMC5014070 DOI: 10.1098/rsif.2016.0466] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/05/2016] [Indexed: 02/05/2023] Open
Abstract
Regularities in animal behaviour offer insights into the underlying organizational and functional principles of nervous systems and automated tracking provides the opportunity to extract features of behaviour directly from large-scale video data. Yet how to effectively analyse such behavioural data remains an open question. Here, we explore whether a minimum description length principle can be exploited to identify meaningful behaviours and phenotypes. We apply a dictionary compression algorithm to behavioural sequences from the nematode worm Caenorhabditis elegans freely crawling on an agar plate both with and without food and during chemotaxis. We find that the motifs identified by the compression algorithm are rare but relevant for comparisons between worms in different environments, suggesting that hierarchical compression can be a useful step in behaviour analysis. We also use compressibility as a new quantitative phenotype and find that the behaviour of wild-isolated strains of C. elegans is more compressible than that of the laboratory strain N2 as well as the majority of mutant strains examined. Importantly, in distinction to more conventional phenotypes such as overall motor activity or aggregation behaviour, the increased compressibility of wild isolates is not explained by the loss of function of the gene npr-1, which suggests that erratic locomotion is a laboratory-derived trait with a novel genetic basis. Because hierarchical compression can be applied to any sequence, we anticipate that compressibility can offer insights into the organization of behaviour in other animals including humans.
Collapse
Affiliation(s)
- Alex Gomez-Marin
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal Behavior of Organisms Laboratory, Instituto de Neurociencias CSIC-UMH, Alicante, Spain
| | - Greg J Stephens
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands Okinawa Institute of Science and Technology, Okinawa, Japan
| | - André E X Brown
- MRC Clinical Sciences Centre, London, UK Institute of Clinical Sciences, Imperial College London, London, UK
| |
Collapse
|
16
|
Campos D, Bartumeus F, Méndez V. Nonstationary dynamics of encounters: Mean valuable territory covered by a random searcher. Phys Rev E 2017; 96:032111. [PMID: 29346884 DOI: 10.1103/physreve.96.032111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 06/07/2023]
Abstract
Inspired by recent experiments on the organism Caenorhabditis elegans we present a stochastic problem to capture the adaptive dynamics of search in living beings, which involves the exploration-exploitation dilemma between remaining in a previously preferred area and relocating to new places. We assess the question of search efficiency by introducing a new magnitude, the mean valuable territory covered by a Browinan searcher, for the case where each site in the domain becomes valuable only after a random time controlled by a nonhomogeneous rate which expands from the origin outwards. We explore analytically this magnitude for domains of dimensions 1, 2, and 3 and discuss the theoretical and applied (biological) interest of our approach. As the main results here, we (i) report the existence of some universal scaling properties for the mean valuable territory covered as a function of time and (ii) reveal the emergence of an optimal diffusivity which appears only for domains in two and higher dimensions.
Collapse
Affiliation(s)
- Daniel Campos
- Grup de Física Estadística, Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Frederic Bartumeus
- Centre d'Estudis Avanats de Blanes (CEAB-CSIC), 17300 Girona, Spain
- CREAF, 08193 Barcelona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Vicenç Méndez
- Grup de Física Estadística, Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
17
|
Alves LGA, Winter PB, Ferreira LN, Brielmann RM, Morimoto RI, Amaral LAN. Long-range correlations and fractal dynamics in C. elegans: Changes with aging and stress. Phys Rev E 2017; 96:022417. [PMID: 28950588 PMCID: PMC6011659 DOI: 10.1103/physreve.96.022417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Indexed: 12/21/2022]
Abstract
Reduced motor control is one of the most frequent features associated with aging and disease. Nonlinear and fractal analyses have proved to be useful in investigating human physiological alterations with age and disease. Similar findings have not been established for any of the model organisms typically studied by biologists, though. If the physiology of a simpler model organism displays the same characteristics, this fact would open a new research window on the control mechanisms that organisms use to regulate physiological processes during aging and stress. Here, we use a recently introduced animal-tracking technology to simultaneously follow tens of Caenorhabdits elegans for several hours and use tools from fractal physiology to quantitatively evaluate the effects of aging and temperature stress on nematode motility. Similar to human physiological signals, scaling analysis reveals long-range correlations in numerous motility variables, fractal properties in behavioral shifts, and fluctuation dynamics over a wide range of timescales. These properties change as a result of a superposition of age and stress-related adaptive mechanisms that regulate motility.
Collapse
Affiliation(s)
- Luiz G A Alves
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Physics, State University of Maringá, Maringá, PR 87020-900, Brazil
- National Institute of Science and Technology for Complex Systems, CNPq, Rio de Janeiro, RJ 22290-180, Brazil
| | - Peter B Winter
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Leonardo N Ferreira
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Renée M Brielmann
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Luís A N Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
18
|
Farming and public goods production in Caenorhabditis elegans populations. Proc Natl Acad Sci U S A 2017; 114:2289-2294. [PMID: 28183799 DOI: 10.1073/pnas.1608961114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ecological and evolutionary dynamics of populations are shaped by the strategies they use to produce and use resources. However, our understanding of the interplay between the genetic, behavioral, and environmental factors driving these strategies is limited. Here, we report on a Caenorhabditis elegans-Escherichia coli (worm-bacteria) experimental system in which the worm-foraging behavior leads to a redistribution of the bacterial food source, resulting in a growth advantage for both organisms, similar to that achieved via farming. We show experimentally and theoretically that the increased resource growth represents a public good that can benefit all other consumers, regardless of whether or not they are producers. Mutant worms that cannot farm bacteria benefit from farming by other worms in direct proportion to the fraction of farmers in the worm population. The farming behavior can therefore be exploited if it is associated with either energetic or survival costs. However, when the individuals compete for resources with their own type, these costs can result in an increased population density. Altogether, our findings reveal a previously unrecognized mechanism of public good production resulting from the foraging behavior of C. elegans, which has important population-level consequences. This powerful system may provide broad insight into exploration-exploitation tradeoffs, the resultant ecoevolutionary dynamics, and the underlying genetic and neurobehavioral driving forces of multispecies interactions.
Collapse
|
19
|
Winter PB, Brielmann RM, Timkovich NP, Navarro HT, Teixeira-Castro A, Morimoto RI, Amaral LAN. A network approach to discerning the identities of C. elegans in a free moving population. Sci Rep 2016; 6:34859. [PMID: 27725712 PMCID: PMC5057085 DOI: 10.1038/srep34859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
The study of C. elegans has led to ground-breaking discoveries in gene-function, neuronal circuits, and physiological responses. Subtle behavioral phenotypes, however, are often difficult to measure reproducibly. We have developed an experimental and computational infrastructure to simultaneously record and analyze the physical characteristics, movement, and social behaviors of dozens of interacting free-moving nematodes. Our algorithm implements a directed acyclic network that reconstructs the complex behavioral trajectories generated by individual C. elegans in a free moving population by chaining hundreds to thousands of short tracks into long contiguous trails. This technique allows for the high-throughput quantification of behavioral characteristics that require long-term observation of individual animals. The graphical interface we developed will enable researchers to uncover, in a reproducible manner, subtle time-dependent behavioral phenotypes that will allow dissection of the molecular mechanisms that give rise to organism-level behavior.
Collapse
Affiliation(s)
- Peter B Winter
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Renee M Brielmann
- Department of Molecular Biosciences, Rice Institute for Biomedical Sciences, Northwestern University, Evanston, IL, USA
| | - Nicholas P Timkovich
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Helio T Navarro
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Andreia Teixeira-Castro
- Department of Molecular Biosciences, Rice Institute for Biomedical Sciences, Northwestern University, Evanston, IL, USA.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Sciences, Northwestern University, Evanston, IL, USA
| | - Luis A N Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.,Northwestern Institute on Complex Systems and Data Science, Northwestern University, Evanston, IL, USA.,Howard Hughes Medical Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
20
|
Broekmans OD, Rodgers JB, Ryu WS, Stephens GJ. Resolving coiled shapes reveals new reorientation behaviors in C. elegans. eLife 2016; 5. [PMID: 27644113 PMCID: PMC5030097 DOI: 10.7554/elife.17227] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/19/2016] [Indexed: 12/30/2022] Open
Abstract
We exploit the reduced space of C. elegans postures to develop a novel tracking algorithm which captures both simple shapes and also self-occluding coils, an important, yet unexplored, component of 2D worm behavior. We apply our algorithm to show that visually complex, coiled sequences are a superposition of two simpler patterns: the body wave dynamics and a head-curvature pulse. We demonstrate the precise Ω-turn dynamics of an escape response and uncover a surprising new dichotomy in spontaneous, large-amplitude coils; deep reorientations occur not only through classical Ω-shaped postures but also through larger postural excitations which we label here as δ-turns. We find that omega and delta turns occur independently, suggesting a distinct triggering mechanism, and are the serpentine analog of a random left-right step. Finally, we show that omega and delta turns occur with approximately equal rates and adapt to food-free conditions on a similar timescale, a simple strategy to avoid navigational bias. DOI:http://dx.doi.org/10.7554/eLife.17227.001 We all instinctively recognize behavior: it’s what organisms do, whether they are single cells searching for food, or birds singing to mark their territory. If we want to understand behavior, however, we have to be able to characterize such actions as precisely and completely as their underlying molecular and cellular mechanisms. For the millimeter-sized roundworm C. elegans, video tracking and analysis has produced a compact characterization of naturally occurring worm postures. Simply put: every body posture of the worm is a different mix of four fundamental postures called ‘eigenworms’. The worm’s snake-like motion is then a series of combinations of these projections, which can be analyzed to provide an automatic and measureable read-out of the worm’s behavior. There is, however, an important caveat: when the worm makes a ‘loop’, and crosses over itself, such posture analysis is inapplicable. That is unfortunate: some of the worm’s most interesting behavior involves looping. One example is the “omega turn”, named after the shape of the Greek letter Ω. This sharp turn is used by the worm to steer away from harm, and more generally to abruptly reorient during the search for food and for mates. Broekmans et al. have now created an algorithm, based on eigenworms, which can analyze worm images that encompass both looped and normal shapes. The result is a complete ‘behavioral microscope’ that shows how C. elegans moves in 2D. Focusing this microscope in particular on the omega turn, Broekmans et al. found that such turns are not, as has been previously described, a single behavior. Instead, they are two separate behaviors that represent the worm’s equivalent of a left-right step. Together with previous posture analysis the work presented by Broekmans et al. allows for the full and precise measurement of the body shapes of C. elegans in 2D. This, combined with remarkable recent progress in global brain and gene expression imaging, should help to uncover new mechanisms that ultimately produce and control a worm’s behavior. DOI:http://dx.doi.org/10.7554/eLife.17227.002
Collapse
Affiliation(s)
- Onno D Broekmans
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jarlath B Rodgers
- Donnelly Center, University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - William S Ryu
- Donnelly Center, University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Physics, University of Toronto, Toronto, Canada
| | - Greg J Stephens
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands.,OIST Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
21
|
Bartumeus F, Campos D, Ryu WS, Lloret-Cabot R, Méndez V, Catalan J. Foraging success under uncertainty: search tradeoffs and optimal space use. Ecol Lett 2016; 19:1299-1313. [PMID: 27634051 DOI: 10.1111/ele.12660] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/16/2016] [Accepted: 07/12/2016] [Indexed: 11/28/2022]
Abstract
Understanding the structural complexity and the main drivers of animal search behaviour is pivotal to foraging ecology. Yet, the role of uncertainty as a generative mechanism of movement patterns is poorly understood. Novel insights from search theory suggest that organisms should collect and assess new information from the environment by producing complex exploratory strategies. Based on an extension of the first passage time theory, and using simple equations and simulations, we unveil the elementary heuristics behind search behaviour. In particular, we show that normal diffusion is not enough for determining optimal exploratory behaviour but anomalous diffusion is required. Searching organisms go through two critical sequential phases (approach and detection) and experience fundamental search tradeoffs that may limit their encounter rates. Using experimental data, we show that biological search includes elements not fully considered in contemporary physical search theory. In particular, the need to consider search movement as a non-stationary process that brings the organism from one informational state to another. For example, the transition from remaining in an area to departing from it may occur through an exploratory state where cognitive search is challenged. Therefore, a more comprehensive view of foraging ecology requires including current perspectives about movement under uncertainty.
Collapse
Affiliation(s)
- Frederic Bartumeus
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Cala Sant Francesc 14, 17300, Girona, Spain. .,CREAF, Cerdanyola del Vallès, 08193, Barcelona, Spain. .,ICREA, Pg Lluís Companys 23, 08010, Barcelona, Spain.
| | - Daniel Campos
- Grup de Física Estadística, Departament de Física, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - William S Ryu
- Department of Physics and the Donnelly Centre, University of Toronto, 60 St George St., Toronto, ON, M5S1A7, Canada
| | - Roger Lloret-Cabot
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Cala Sant Francesc 14, 17300, Girona, Spain.,CREAF, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Vicenç Méndez
- Grup de Física Estadística, Departament de Física, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Jordi Catalan
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Cala Sant Francesc 14, 17300, Girona, Spain.,CREAF, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
22
|
Szigeti B, Deogade A, Webb B. Searching for motifs in the behaviour of larval Drosophila melanogaster and Caenorhabditis elegans reveals continuity between behavioural states. J R Soc Interface 2016; 12:20150899. [PMID: 26609067 PMCID: PMC4707863 DOI: 10.1098/rsif.2015.0899] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a novel method for the unsupervised discovery of behavioural motifs in larval Drosophila melanogaster and Caenorhabditis elegans. A motif is defined as a particular sequence of postures that recurs frequently. The animal's changing posture is represented by an eigenshape time series, and we look for motifs in this time series. To find motifs, the eigenshape time series is segmented, and the segments clustered using spline regression. Unlike previous approaches, our method can classify sequences of unequal duration as the same motif. The behavioural motifs are used as the basis of a probabilistic behavioural annotator, the eigenshape annotator (ESA). Probabilistic annotation avoids rigid threshold values and allows classification uncertainty to be quantified. We apply eigenshape annotation to both larval Drosophila and C. elegans and produce a good match to hand annotation of behavioural states. However, we find many behavioural events cannot be unambiguously classified. By comparing the results with ESA of an artificial agent's behaviour, we argue that the ambiguity is due to greater continuity between behavioural states than is generally assumed for these organisms.
Collapse
Affiliation(s)
- Balázs Szigeti
- Neuroinformatics Doctoral Training Centre, University of Edinburgh, Edinburgh, UK
| | | | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Roberts WM, Augustine SB, Lawton KJ, Lindsay TH, Thiele TR, Izquierdo EJ, Faumont S, Lindsay RA, Britton MC, Pokala N, Bargmann CI, Lockery SR. A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans. eLife 2016; 5:12572. [PMID: 26824391 PMCID: PMC4798983 DOI: 10.7554/elife.12572] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022] Open
Abstract
Random search is a behavioral strategy used by organisms from bacteria to humans to locate food that is randomly distributed and undetectable at a distance. We investigated this behavior in the nematode Caenorhabditis elegans, an organism with a small, well-described nervous system. Here we formulate a mathematical model of random search abstracted from the C. elegans connectome and fit to a large-scale kinematic analysis of C. elegans behavior at submicron resolution. The model predicts behavioral effects of neuronal ablations and genetic perturbations, as well as unexpected aspects of wild type behavior. The predictive success of the model indicates that random search in C. elegans can be understood in terms of a neuronal flip-flop circuit involving reciprocal inhibition between two populations of stochastic neurons. Our findings establish a unified theoretical framework for understanding C. elegans locomotion and a testable neuronal model of random search that can be applied to other organisms. An animal’s ability to rapidly and efficiently locate new sources of food in its environment can mean the difference between life and death. As a result, animals have evolved foraging strategies that are adapted to the distribution and detectability of food sources. Organisms ranging from bacteria to humans use one such strategy, called random search, to locate food that cannot be detected at a distance and that is randomly distributed in their surroundings. The biological mechanisms that underpin random search are relatively well understood in single-cell organisms such as bacteria, but this information tells us little about the mechanisms that are used by animals, which use their nervous system to control their foraging behavior. Roberts et al. have now investigated the biological basis for random search behavior in a tiny roundworm called Caenorhabditis elegans. This worm forages for pockets of bacteria in decaying plant matter and has a simple and well-understood nervous system. Roberts et al. used information on how the cells in this worm’s nervous system connect together into so-called “neural circuits” to generate a mathematical model of random searching. The model revealed that the worm’s neural circuitry for random searching can be understood in terms of two groups of neuron-like components that switch randomly between “ON” and “OFF” states. While one group promotes forward movement, the other promotes backward movement, which is associated with a change in search direction. These two groups inhibit each other so that only one group usually is active at a given time. By adjusting this model to reproduce the behavioral records of real worms searching for food, Roberts et al. could predict the key neuronal connections involved. These predictions were then confirmed by taking electrical recordings from neurons. The model could also account for the unexpected behavioral effects that are seen when a neuron in one of these groups was destroyed or altered by a genetic mutation. These findings thus reveal a biological mechanism for random search behavior in worms that might operate in other animals as well. The findings might also provide future insight into the neural circuits involved in sleep and wakefulness in mammals, which is organized in a similar way.
Collapse
Affiliation(s)
- William M Roberts
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Steven B Augustine
- School of Nursing, University of Pennsylvania, Philadelphia, United States
| | | | - Theodore H Lindsay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Tod R Thiele
- Department of Biological Sciences, University of Toronto, Toronto, Canada
| | | | - Serge Faumont
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Rebecca A Lindsay
- Department of Ophthalmology, The Vision Center, Children's Hospital Los Angeles, Los Angeles, United States
| | | | - Navin Pokala
- Department of Life Sciences, New York Institute of Technology, Old Westbury, United States
| | - Cornelia I Bargmann
- Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Shawn R Lockery
- Institute of Neuroscience, University of Oregon, Eugene, United States
| |
Collapse
|
24
|
Korshunova TA, Vorontsov DD, Dyakonova VE. Previous motor activity affects transition from uncertainty to decision-making in snails. J Exp Biol 2016; 219:3635-3641. [DOI: 10.1242/jeb.146837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/02/2016] [Indexed: 11/20/2022]
Abstract
One of the most commonly accepted benefits of enhanced physical activity is the improvement in the symptoms of depression, including the facilitation of decision-making. Up until now, these effects have been shown in rodents and humans only. Little is known about their evolutionary origin or biological basis, and the underlying cellular mechanisms also remain relatively elusive. Here, we demonstrate for the first time that preceding motor activity accelerates decision-making in an invertebrate, the pond snail Lymnaea stagnalis. To investigate decision-making in a novel environment, snails, which normally live in water, were placed on a flat dry surface to simulate the potentially threatening consequence of being in an arid environment. This stimulus initiated two distinct phases in snail behavior: slow circular movements, followed by intense locomotion in a chosen direction. The first phase was prolonged when the test arena was symmetrically lit, compared to one with an apparent gradient of light. However, forced muscular locomotion for two hours prior to the test promoted the transition from random circular motions to a directional crawl, accompanied by an increase in crawling speed but with no effect on the choice of direction. Two hours of intense locomotion produced also strong excitatory effect on the activity of serotonergic neurons in L. stagnalis. Our results suggest that the beneficial effects of physical exercise on cognitive performance in mammals might have deep roots in evolution, granting the opportunity to unravel the origins of such effects at the single neuron and network levels.
Collapse
Affiliation(s)
- T. A. Korshunova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - D. D. Vorontsov
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - V. E. Dyakonova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Benhamou S, Collet J. Ultimate failure of the Lévy Foraging Hypothesis: Two-scale searching strategies outperform scale-free ones even when prey are scarce and cryptic. J Theor Biol 2015; 387:221-7. [PMID: 26463680 DOI: 10.1016/j.jtbi.2015.09.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/15/2015] [Accepted: 09/23/2015] [Indexed: 11/30/2022]
Abstract
The "Lévy Foraging Hypothesis" promotes Lévy walk (LW) as the best strategy to forage for patchily but unpredictably located prey. This strategy mixes extensive and intensive searching phases in a mostly cue-free way through strange, scale-free kinetics. It is however less efficient than a cue-driven two-scale Composite Brownian walk (CBW) when the resources encountered are systematically detected. Nevertheless, it could be assumed that the intrinsic capacity of LW to trigger cue-free intensive searching at random locations might be advantageous when resources are not only scarcely encountered but also so cryptic that the probability to detect those encountered during movement is low. Surprisingly, this situation, which should be quite common in natural environments, has almost never been studied. Only a few studies have considered "saltatory" foragers, which are fully "blind" while moving and thus detect prey only during scanning pauses, but none of them compared the efficiency of LW vs. CBW in this context or in less extreme contexts where the detection probability during movement is not null but very low. In a study based on computer simulations, we filled the bridge between the concepts of "pure continuous" and "pure saltatory" foraging by considering that the probability to detect resources encountered while moving may range from 0 to 1. We showed that regularly stopping to scan the environment can indeed improve efficiency, but only at very low detection probabilities. Furthermore, the LW is then systematically outperformed by a mixed cue-driven/internally-driven CBW. It is thus more likely that evolution tends to favour strategies that rely on environmental feedbacks rather than on strange kinetics.
Collapse
Affiliation(s)
- Simon Benhamou
- Centre d׳Ecologie Fonctionnelle et Evolutive, CNRS, 34293 Montpellier, France.
| | - Julien Collet
- Centre d׳Ecologie Fonctionnelle et Evolutive, CNRS, 34293 Montpellier, France; Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
26
|
|
27
|
Liberating Lévy walk research from the shackles of optimal foraging. Phys Life Rev 2015; 14:59-83. [DOI: 10.1016/j.plrev.2015.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/09/2023]
|
28
|
Schwarz RF, Branicky R, Grundy LJ, Schafer WR, Brown AEX. Changes in Postural Syntax Characterize Sensory Modulation and Natural Variation of C. elegans Locomotion. PLoS Comput Biol 2015; 11:e1004322. [PMID: 26295152 PMCID: PMC4546679 DOI: 10.1371/journal.pcbi.1004322] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/05/2015] [Indexed: 01/26/2023] Open
Abstract
Locomotion is driven by shape changes coordinated by the nervous system through time; thus, enumerating an animal's complete repertoire of shape transitions would provide a basis for a comprehensive understanding of locomotor behaviour. Here we introduce a discrete representation of behaviour in the nematode C. elegans. At each point in time, the worm's posture is approximated by its closest matching template from a set of 90 postures and locomotion is represented as sequences of postures. The frequency distribution of postural sequences is heavy-tailed with a core of frequent behaviours and a much larger set of rarely used behaviours. Responses to optogenetic and environmental stimuli can be quantified as changes in postural syntax: worms show different preferences for different sequences of postures drawn from the same set of templates. A discrete representation of behaviour will enable the use of methods developed for other kinds of discrete data in bioinformatics and language processing to be harnessed for the study of behaviour.
Collapse
Affiliation(s)
| | - Robyn Branicky
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Laura J. Grundy
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - André E. X. Brown
- MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Sims DW. Intrinsic Lévy behaviour in organisms--searching for a mechanism: Comment on "Liberating Lévy walk research from the shackles of optimal foraging" by A.M. Reynolds. Phys Life Rev 2015; 14:111-4. [PMID: 26101186 DOI: 10.1016/j.plrev.2015.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/18/2022]
Affiliation(s)
- David W Sims
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK; Centre for Biological Sciences, Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| |
Collapse
|
30
|
Spiegel O, Harel R, Centeno-Cuadros A, Hatzofe O, Getz WM, Nathan R. Moving beyond Curve Fitting: Using Complementary Data to Assess Alternative Explanations for Long Movements of Three Vulture Species. Am Nat 2015. [DOI: 10.1086/679314] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|