1
|
Chenafa A, Ji N, Gu Y, Zhao B, Xu L, Zhu Y. Isolation, characterization, and immobilization of β-galactosidase from Klebsiella michiganensis B5582Y for enhanced transgalactosylation. Int J Biol Macromol 2024; 287:138582. [PMID: 39662551 DOI: 10.1016/j.ijbiomac.2024.138582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
β-Galactosidases are highly desirable in various biotechnological applications. However, research on those obtained from Klebsiella strains has been noticeably restricted. The present investigation centers on the isolation, purification, and characterization of a β-galactosidase enzyme derived from Klebsiella michiganensis (GALB5582Y). Additionally, the study aims to immobilize GALB5582Y onto functionalized graphene oxide (GO)-based polystyrene electrospun nanofibrous membranes (ENMs). The ultimate goal is to enhance the enzyme's transgalactosylation and catalytic efficiency, thereby expanding its range of potential applications. The GALB5582Y gene was sequenced, revealing a 3354 bp sequence that encodes 1024 amino acids. This discovery provides vital information about the gene's structural arrangement. The effectiveness of functionalized graphene oxide (GO)-based engineered nanomaterials (ENMs) in immobilising GALB5582Y was confirmed using SEM, FTIR, and XRD investigations. Significant stability was reported during assessments, with the enzyme activity remaining extended. Additionally, it was shown that the enzyme was efficiently distributed across the surface of the ENM. Although there have been breakthroughs in enzyme production and immobilisation techniques, there is still room for improvement in maximizing the effectiveness of GALB5582Y immobilisation and increasing the yield of galactooligosaccharides (GOS). This calls for additional investigation and refinement.
Collapse
Affiliation(s)
- Aicha Chenafa
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Nairu Ji
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yangyang Gu
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bingyu Zhao
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liya Xu
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yunping Zhu
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Wang B, Wang Z, Chen M, Du Y, Li N, Chai Y, Wang L, Zhang Y, Liu Z, Guo C, Jiang X, Guo X, Tian Z, Yang J, Zhu C, Li W, Ou L. Immobilized Urease Vector System Based on the Dynamic Defect Regeneration Strategy for Efficient Urea Removal. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39051622 DOI: 10.1021/acsami.4c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The clearance of urea poses a formidable challenge, and its excessive accumulation can cause various renal diseases. Urease demonstrates remarkable efficacy in eliminating urea, but cannot be reused. This study aimed to develop a composite vector system comprising microcrystalline cellulose (MCC) immobilized with urease and metal-organic framework (MOF) UiO-66-NH2, denoted as MCC@UiO/U, through the dynamic defect generation strategy. By utilizing competitive coordination, effective immobilization of urease into MCC@UiO was achieved for efficient urea removal. Within 2 h, the urea removal efficiency could reach up to 1500 mg/g, surpassing an 80% clearance rate. Furthermore, an 80% clearance rate can also be attained in peritoneal dialyzate from patients. MCC@UiO/U also exhibits an exceptional bioactivity even after undergoing 5 cycles of perfusion, demonstrating remarkable stability and biocompatibility. This innovative approach and methodology provide a novel avenue and a wide range of immobilized enzyme vectors for clinical urea removal and treatment of kidney diseases, presenting immense potential for future clinical applications.
Collapse
Affiliation(s)
- Biao Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zimeng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengya Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nan Li
- Changping Laboratory, Beijing 102200, China
| | - Yamin Chai
- General Hospital Tianjin Medical University, Tianjin 300052, China
| | - Lichun Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yanjia Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaofang Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziying Tian
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingxuan Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chunling Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Khafaga DSR, Muteeb G, Elgarawany A, Aatif M, Farhan M, Allam S, Almatar BA, Radwan MG. Green nanobiocatalysts: enhancing enzyme immobilization for industrial and biomedical applications. PeerJ 2024; 12:e17589. [PMID: 38993977 PMCID: PMC11238728 DOI: 10.7717/peerj.17589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Nanobiocatalysts (NBCs), which merge enzymes with nanomaterials, provide a potent method for improving enzyme durability, efficiency, and recyclability. This review highlights the use of eco-friendly synthesis methods to create sustainable nanomaterials for enzyme transport. We investigate different methods of immobilization, such as adsorption, ionic and covalent bonding, entrapment, and cross-linking, examining their pros and cons. The decreased environmental impact of green-synthesized nanomaterials from plants, bacteria, and fungi is emphasized. The review exhibits the various uses of NBCs in food industry, biofuel production, and bioremediation, showing how they can enhance effectiveness and eco-friendliness. Furthermore, we explore the potential impact of NBCs in biomedicine. In general, green nanobiocatalysts are a notable progression in enzyme technology, leading to environmentally-friendly and effective biocatalytic methods that have important impacts on industrial and biomedical fields.
Collapse
Affiliation(s)
- Doaa S. R. Khafaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Salma Allam
- Faculty of Medicine, Galala University, Suez, Egypt
| | - Batool Abdulhadi Almatar
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | | |
Collapse
|
4
|
Chen J, Zhao Q, Tang J, Lei X, Zhang J, Li Y, Li J, Li Y, Zuo Y. Enzyme-Activated Biomimetic Vesicles Confining Mineralization for Bone Maturation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33005-33020. [PMID: 38900067 DOI: 10.1021/acsami.4c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Inspired by the crucial role of matrix vesicles (MVs), a series of biomimetic vesicles (BVs) fabricated by calcium glycerophosphate (CaGP) modified polyurethane were designed to mediate the mineralization through in situ enzyme activation for bone therapy. In this study, alkaline phosphatase (ALP) was harbored in the porous BVs by adsorption (Ad-BVs) or entrapment (En-BVs). High encapsulation of ALP on En-BVs was effectively self-activating by calcium ions of CaGP-modified PU that specifically hydrolyzed the organophosphorus (CaGP) to inorganic phosphate, thus promoting the formation of the highly oriented bone-like apatite in vitro. Enzyme-catalyzed kinetics confirms the regulation of apatite crystallization by the synergistic action of self-activated ALP and the confined microcompartments of BVs. This leads to a supersaturated microenvironment, with the En-BVs group exhibiting inorganic phosphate (Pi) levels 4.19 times higher and Ca2+ levels 3.67 times higher than those of simulated body fluid (SBF). Of note, the En-BVs group exhibited excellent osteo-inducing differentiation of BMSCs in vitro and the highest maturity with reduced bone loss in rat femoral defect in vivo. This innovative strategy of biomimetic vesicles is expected to provide valuable insights into the enzyme-activated field of bone therapy.
Collapse
Affiliation(s)
- Jieqiong Chen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Qing Zhao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jiajing Tang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Xiaoyu Lei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jinzheng Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yuping Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|
5
|
Çalbaş B, Keobounnam AN, Korban C, Doratan AJ, Jean T, Sharma AY, Wright TA. Protein-polymer bioconjugation, immobilization, and encapsulation: a comparative review towards applicability, functionality, activity, and stability. Biomater Sci 2024; 12:2841-2864. [PMID: 38683585 DOI: 10.1039/d3bm01861j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Polymer-based biomaterials have received a lot of attention due to their biomedical, agricultural, and industrial potential. Soluble protein-polymer bioconjugates, immobilized proteins, and encapsulated proteins have been shown to tune enzymatic activity, improved pharmacokinetic ability, increased chemical and thermal stability, stimuli responsiveness, and introduced protein recovery. Controlled polymerization techniques, increased protein-polymer attachment techniques, improved polymer surface grafting techniques, controlled polymersome self-assembly, and sophisticated characterization methods have been utilized for the development of well-defined polymer-based biomaterials. In this review we aim to provide a brief account of the field, compare these methods for engineering biomaterials, provide future directions for the field, and highlight impacts of these forms of bioconjugation.
Collapse
Affiliation(s)
- Berke Çalbaş
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Ashley N Keobounnam
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Christopher Korban
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ainsley Jade Doratan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Tiffany Jean
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Aryan Yashvardhan Sharma
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Thaiesha A Wright
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Christ HA, Daniel NP, Solarczek J, Fresenborg LS, Schallmey A, Menzel H. Application of electrospun chitosan-based nanofibers as immobilization matrix for biomolecules. Appl Microbiol Biotechnol 2023; 107:7071-7087. [PMID: 37755509 PMCID: PMC10638201 DOI: 10.1007/s00253-023-12777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Nanofiber meshes from electrospun chitosan, highly modified with biotin and arylazides, are well-suited for application as enzyme immobilization matrices. To test this, catalytically active biomolecules were immobilized onto photocrosslinked nanofibrous nonwovens consisting mainly of biotinylated fungal chitosan and a small amount (10 w%) of poly ethylene oxide. In this study, we show that over 10 μg eugenol oxidase per milligram dry polymer matrix can be loaded on UV-crosslinked chitosan nanofibers. We further demonstrate that bound enzyme activity can be fully retained for over 7 days of storage at ambient conditions in aqueous buffer. Samples loaded at maximum enzyme carrying capacity were tested in a custom-made plug-flow reactor system with online UV-VIS spectroscopy for activity determination. High wettability and durability of the hydrophilic chitosan support matrix enabled continuous oxidation of model substrate vanillyl alcohol into vanillin with constant turnover at flow rates of up to 0.24 L/h for over 6 h. This proves the above hypothesis and enables further application of the fibers as stacked microfluidic membranes, biosensors, or structural starting points for affinity crosslinked enzyme gels. KEY POINTS: • Biotinylated chitosan-based nanofibers retain enzymes via mild affinity interactions • Immobilized eugenol oxidase shows high activity and resists continuous washing • Nanofiber matrix material tolerated high flow rates in a continuous-flow setup.
Collapse
Affiliation(s)
- Henrik-Alexander Christ
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106, Braunschweig, Germany
| | - Nils Peter Daniel
- Institute for Biochemistry, Braunschweig University of Technology, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Jennifer Solarczek
- Institute for Biochemistry, Braunschweig University of Technology, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Leonard Sebastian Fresenborg
- Department of Molecular Cell Biology of Plants, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Anett Schallmey
- Institute for Biochemistry, Braunschweig University of Technology, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106, Braunschweig, Germany.
| |
Collapse
|
7
|
Kaur G, Taggar MS, Kalia A. Cellulase-immobilized chitosan-coated magnetic nanoparticles for saccharification of lignocellulosic biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111627-111647. [PMID: 37280490 DOI: 10.1007/s11356-023-27919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
Devising and consolidating cost-effective and greener technologies for sustainable energy production pertain to some of the most pressing needs of the present times. Bioconversion of abundantly available lignocellulosic materials into fermentable sugars to produce biofuels involves the cost-extensive requirement of hydrolytic enzymes called cellulases. Cellulases are highly selective and eco-friendly biocatalysts responsible for deconstruction of complex polysaccharides into simple sugars. Currently, immobilization of cellulases is being carried out on magnetic nanoparticles functionalized with suitable biopolymers such as chitosan. Chitosan, a biocompatible polymer, exhibits high surface area, chemical/thermal stability, functionality, and reusability. The chitosan-functionalized magnetic nanocomposites (Ch-MNCs) present a nanobiocatalytic system that enables easy retrieval, separation, and recycling of cellulases, thereby offering a cost-effective and sustainable approach for biomass hydrolysis. These functional nanostructures show enormous potential owing to certain physicochemical and structural features that have been discussed in a comprehensive manner in this review. It provides an insight into the synthesis, immobilization, and application of cellulase immobilized Ch-MNCs for biomass hydrolysis. This review aims to bridge the gap between sustainable utilization and economic viability of employing replenishable agro-residues for cellulosic ethanol production by incorporating the recently emerging nanocomposite immobilization approach.
Collapse
Affiliation(s)
- Gurkanwal Kaur
- Department of Biochemistry, College of Basic Sciences & Humanities, Punjab Agricultural University, Ludhiana-141004, Punjab, India.
| | - Monica Sachdeva Taggar
- Department of Renewable Energy Engineering, College of Agricultural Engineering & Technology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| |
Collapse
|
8
|
Anwar A, Imran M, Iqbal HM. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord Chem Rev 2023; 493:215329. [DOI: 10.1016/j.ccr.2023.215329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
9
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
10
|
Ayub J, Saeed MU, Hussain N, Zulfiqar I, Mehmood T, Iqbal HMN, Bilal M. Designing robust nano-biocatalysts using nanomaterials as multifunctional carriers - expanding the application scope of bio-enzymes. Top Catal 2023; 66:625-648. [DOI: 10.1007/s11244-022-01657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
|
11
|
Ghalkhani M, Teymourinia H, Ebrahimi F, Irannejad N, Karimi-Maleh H, Karaman C, Karimi F, Dragoi EN, Lichtfouse E, Singh J. Engineering and application of polysaccharides and proteins-based nanobiocatalysts in the recovery of toxic metals, phosphorous, and ammonia from wastewater: A review. Int J Biol Macromol 2023; 242:124585. [PMID: 37105252 DOI: 10.1016/j.ijbiomac.2023.124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Global waste production is anticipated reach to 2.59 billion tons in 2030, thus accentuating issues of environmental pollution and health security. 37 % of waste is landfilled, 33 % is discharged or burned in open areas, and only 13.5 % is recycled, which makes waste management poorly efficient in the context of the circular economy. There is therefore a need for methods to recycle waste into valuable materials through resource recovery process. Progress in the field of recycling is strongly dependent on the development of efficient, stable, and reusable, yet inexpensive catalysts. In this case, a growing attention has been paid to development and application of nanobiocatalysts with promising features. The main purpose of this review paper is to: (i) introduce nanobiomaterials and describe their effective role in the preparation of functional nanobiocatalysts for the recourse recovery aims; (ii) provide production methods and the efficiency improvement of nanobaiocatalysts; (iii) give comprehensive description of valued resource recovery for reducing toxic chemicals from the contaminated environment; (iv) describe various technologies for the valued resource recovery; (v) state the limitation of the valued resource recovery; (vi) and finally economic importance and current scenario of nanobiocatalysts strategies applicable for the resource recovery processes.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | | | - Fatemeh Ebrahimi
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Neda Irannejad
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron no 73, 700050, Iasi, Romania
| | - Eric Lichtfouse
- Tate Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| | - Jagpreet Singh
- Department of Chemical Engineering, University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| |
Collapse
|
12
|
Rai SK, Singh A, Kauldhar BS, Yadav SK. Robust nano-enzyme conjugates for the sustainable synthesis of a rare sugar D-tagatose. Int J Biol Macromol 2023; 231:123406. [PMID: 36702217 DOI: 10.1016/j.ijbiomac.2023.123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
Aim of present study was to develop biological catalysts of L-arabinose isomerase (L-AI) by immobilizing on four different supports such as multiwalled carbon nanotube (MWCNT), graphene oxide (GOx), Santa Barbara Amorphous (SBA-15) and mobile composite matter (MCM-41). Also, comparative analysis of the developed catalysts was performed to evolve the best in terms of transformation efficiency for D-tagatose production. The developed nano-enzyme conjugates (NECs) were characterized using the high resolution transmission electron microscopy (HR-TEM) and elemental analysis was performed by energy dispersive X-ray spectroscopy (EDS). The functional groups were investigated by Fourier transform infra red spectroscopy. Also, the thermo gravimetric analysis (TGA) was employed to plot a thermal degradation weight loss profile of NECs. The conjugated L-AI with MWCNT and GOx were found to be more promising immobilized catalysts due to their ability to provide more surface area. Conversion of D-Galactose to D-Tagatose at moderate temperature and pH was observed to attain the equilibrium level of transformation (~50%). On the contrary, NECs prepared using SBA-15 and MCM-41 as support matrix were unable to reach the equilibrium level of conversion. Additionally, the developed NECs were suitable for reuse in multiple batch cycles. Thus, promising nanotechnology coupled with biocatalysis made the transformation of D-Galactose into D-tagatose more economically sustainable.
Collapse
Affiliation(s)
- Shushil Kumar Rai
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali, Punjab 140306, India; Dept. of Microbial Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Aishwarya Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Baljinder Singh Kauldhar
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali, Punjab 140306, India; Dept. of Microbial Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
13
|
The application of conventional or magnetic materials to support immobilization of amylolytic enzymes for batch and continuous operation of starch hydrolysis processes. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
In the production of ethanol, starches are converted into reducing sugars by liquefaction and saccharification processes, which mainly use soluble amylases. These processes are considered wasteful operations as operations to recover the enzymes are not practical economically so immobilizations of amylases to perform both processes appear to be a promising way to obtain more stable and reusable enzymes, to lower costs of enzymatic conversions, and to reduce enzymes degradation/contamination. Although many reviews on enzyme immobilizations are found, they only discuss immobilizations of α-amylase immobilizations on nanoparticles, but other amylases and support types are not well informed or poorly stated. As the knowledge of the developed supports for most amylase immobilizations being used in starch hydrolysis is important, a review describing about their preparations, characteristics, and applications is herewith presented. Based on the results, two major groups were discovered in the last 20 years, which include conventional and magnetic-based supports. Furthermore, several strategies for preparation and immobilization processes, which are more advanced than the previous generation, were also revealed. Although most of the starch hydrolysis processes were conducted in batches, opportunities to develop continuous reactors are offered. However, the continuous operations are difficult to be employed by magnetic-based amylases.
Collapse
|
14
|
Wang W, Yin Y, Gunasekaran S. Oxygen-terminated few-layered Ti3C2Tx MXene nanosheets as peroxidase-mimic nanozyme for colorimetric detection of kanamycin. Biosens Bioelectron 2022; 218:114774. [DOI: 10.1016/j.bios.2022.114774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/21/2022]
|
15
|
Markandan K, Chai WS. Perspectives on Nanomaterials and Nanotechnology for Sustainable Bioenergy Generation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7769. [PMID: 36363361 PMCID: PMC9658981 DOI: 10.3390/ma15217769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The issue of global warming calls for a greener energy production approach. To this end, bioenergy has significant greenhouse gas mitigation potential, since it makes use of biological products/wastes and can efficiently counter carbon dioxide emission. However, technologies for biomass processing remain limited due to the structure of biomass and difficulties such as high processing cost, development of harmful inhibitors and detoxification of produced inhibitors that hinder widespread usage. Additionally, cellulose pre-treatment is often required to be amenable for an enzymatic hydrolysis process. Nanotechnology (usage of nanomaterials, in this case) has been employed in recent years to improve bioenergy generation, especially in terms of catalyst and feedstock modification. This review starts with introducing the potential nanomaterials in bioenergy generation such as carbon nanotubes, metal oxides, silica and other novel materials. The role of nanotechnology to assist in bioenergy generation is discussed, particularly from the aspects of enzyme immobilization, biogas production and biohydrogen production. Future applications using nanotechnology to assist in bioenergy generation are also prospected.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Wai Siong Chai
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
16
|
Budhiraja M, Chudasama B, Ali A, Tyagi V. Production of a recyclable nanobiocatalyst to synthesize quinazolinone derivatives. RSC Adv 2022; 12:31734-31746. [PMID: 36425315 PMCID: PMC9667765 DOI: 10.1039/d2ra04405f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/06/2022] [Indexed: 09/08/2024] Open
Abstract
Nanobiocatalysts (NBCs) are an emerging innovation that paves the way toward sustainable and eco-friendly endeavors. In the quest for a robust and reusable nanobiocatalyst, herein, we report a nanobiocatalyst, namely CALB@MrGO, developed via immobilizing Candida antarctica lipase B onto the surface of Fe3O4-decorated reduced graphene oxide (MrGO). Next, the enormous potential of the NBC (CALB@MrGO) was checked by employing it to synthesize clinically important quinazolinone derivatives in good to excellent yield (70-95%) using differently substituted aryl aldehydes with 2-aminobenzamide. Further, the synthetic utility and generality of this protocol was proved by setting up a gram-scale reaction, which afforded the product in 87% yield. The green chemistry metrics calculated for the gram-scale reaction those prove the greenness of this protocol.
Collapse
Affiliation(s)
- Meenakshi Budhiraja
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
| | - Bhupendra Chudasama
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Amjad Ali
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Vikas Tyagi
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
17
|
Saratale RG, Cho SK, Bharagava RN, Patel AK, Varjani S, Mulla SI, Kim DS, Bhatia SK, Ferreira LFR, Shin HS, Saratale GD. A critical review on biomass-based sustainable biorefineries using nanobiocatalysts: Opportunities, challenges, and future perspectives. BIORESOURCE TECHNOLOGY 2022; 363:127926. [PMID: 36100182 DOI: 10.1016/j.biortech.2022.127926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Biocatalysts, including live microbial cells/enzymes, have been considered a predominant and advantageous tool for effectively transforming biomass into biofuels and valued biochemicals. However, high production costs, separation, and reusability limit its practical application. Immobilization of single and multi-enzymes by employing different nano-supports have gained massive attention because of its elevated exterior domain and high enzymatic performance. Application of nanobiocatalyst can overcome the drawbacks mainly, stability and reusability, thus reflecting the importance of biomass-based biorefinery to make it profitable and sustainable. This review provides an in-depth, comprehensive analysis of nanobiocatalysts systems concerning nano supports and biocatalytic performance characteristics. Furthermore, the effects of nanobiocatalyst on waste biomass to biofuel and valued bioproducts in the biorefinery approach and their critical assessment are discussed. Lastly, this review elaborates commercialization and market outlooks of the bioconversion process using nanobiocatalyst, followed by different strategies to overcome the limitations and future research directions on nanobiocatalytic-based industrial bioprocesses.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Ram Naresh Bharagava
- Department of Environmental Microbiology, School for Environmental Sciences Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore 560 064, India
| | - Dong Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Luiz Fernando Romanholo Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), Tiradentes University, Farolândia, Aracaju, SE, Brazil
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| |
Collapse
|
18
|
Araújo R, González-González RB, Martinez-Ruiz M, Coronado-Apodaca KG, Reyes-Pardo H, Morreeuw ZP, Oyervides-Muñoz MA, Sosa-Hernández JE, Barceló D, Parra-Saldívar R, Iqbal HM. Expanding the Scope of Nanobiocatalysis and Nanosensing: Applications of Nanomaterial Constructs. ACS OMEGA 2022; 7:32863-32876. [PMID: 36157779 PMCID: PMC9494649 DOI: 10.1021/acsomega.2c03155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 05/25/2023]
Abstract
The synergistic interaction between advanced biotechnology and nanotechnology has allowed the development of innovative nanomaterials. Those nanomaterials can conveniently act as supports for enzymes to be employed as nanobiocatalysts and nanosensing constructs. These systems generate a great capacity to improve the biocatalytic potential of enzymes by improving their stability, efficiency, and product yield, as well as facilitating their purification and reuse for various bioprocessing operating cycles. The different specific physicochemical characteristics and the supramolecular nature of the nanocarriers obtained from different economical and abundant sources have allowed the continuous development of functional nanostructures for different industries such as food and agriculture. The remarkable biotechnological potential of nanobiocatalysts and nanosensors has generated applied research and use in different areas such as biofuels, medical diagnosis, medical therapies, environmental bioremediation, and the food industry. The objective of this work is to present the different manufacturing strategies of nanomaterials with various advantages in biocatalysis and nanosensing of various compounds in the industry, providing great benefits to society and the environment.
Collapse
Affiliation(s)
- Rafael
G. Araújo
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Manuel Martinez-Ruiz
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Humberto Reyes-Pardo
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
| | - Zoé P. Morreeuw
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Damià Barceló
- Department
of Environmental Chemistry, Institute of
Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
- Catalan
Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
- Sustainability
Cluster, School of Engineering, UPES, 248007 Dehradun, India
| | - Roberto Parra-Saldívar
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M.N. Iqbal
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
19
|
Preparation and characterization of sugilite glass from basalt for α -amylase immobilization, statistical optimization of the immobilization process and description of free and immobilized enzyme. Heliyon 2022; 8:e09960. [PMID: 35874060 PMCID: PMC9305367 DOI: 10.1016/j.heliyon.2022.e09960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial α-amylase was immobilized on sugilite from modified basalt rock as a new carrier. A set of glass compositions based on sugilite formula KNa2M2Li3Si12O30 (M = Al or Mn or Fe) were prepared. The glasses were prepared through melting–quenching technique and samples of glass were converted to glass ceramic. Among the tested glasses and glass ceramic only sugilite glass based on M = Fe (BSF) give promising results. The sugilite BSF glass was characterized using DSC analysis, FTIR absorption, and SEM. The sugilite glass revealed high thermal resistant till ∼770 °C. Under optimized conditions of the Central composite design, the immobilization yield improved by 4.7-fold. The affinity to starch increased after enzyme immobilization by 4.3-fold. The lower rate of deactivation constant and the increase of t½ and D-value confirm the suitability of BSF and immobilization method in enhancing enzyme stability. The improvement in thermostability of immobilized α-amylase was judged by the change in thermodynamic parameters. In conclusion, the prepared sugilite BSF glass can be utilized as a new carrier suitable for stabilization of α-amylase enzyme by immobilization. Lemon peels induced α-amylase production by isolated Rhizobium sp. strain A1. Using basalt as raw material for sugilite glass synthesis as new immobilization carriers. Sugilite BSF glass the suitable carrier was characterized by DSC, FTIR and SEM. Central composite design increased immobilization yield by 4.7–fold. Thermal and thermodynamic properties emphasize increased stability upon immobilization.
Collapse
|
20
|
Sheng R, Sun R, Chen L, Lv R, Li Y, Du T, Zhang Y, Qi Y. Recent Advances in Polyoxometalates with Enzyme-like Characteristics for Analytical Applications. Crit Rev Anal Chem 2022; 54:315-332. [PMID: 35549959 DOI: 10.1080/10408347.2022.2073432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Artificial enzymes based on inorganic solids with both enzyme-mimetic activities and the special material features has been a promising candidate to overcome many deleterious effects of native enzymes in analytical applications. Polyoxometalates (POMs) are an importance class of molecular metal-oxygen anionic clusters. Their outstanding physicochemical properties, versatility and potential applications in energy conversion, magnetism, catalysis, molecular electronics and biomedicine have long been studied. However, the analytical applications of them is limited. Recently, the intrinsic enzymatic activities of POMs have also been found and become an area of growing interest. In this review, along with other reports, we aimed to classify the enzymatic activity of POMs, summarize the construction of POMs-based enzymes, and survey their recent advances in analytical fields. Finally, the current challenges and trends of the polyoxometalates with enzymatic activity in future chemo-/bio-sensing applications are briefly discussed.
Collapse
Affiliation(s)
- Rongtian Sheng
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Ruimeng Sun
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Lixia Chen
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Ruijuan Lv
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Yuhan Li
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Ting Du
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Yang Zhang
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
21
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Razzaghi M, Homaei A, Vianello F, Azad T, Sharma T, Nadda AK, Stevanato R, Bilal M, Iqbal HMN. Industrial applications of immobilized nano-biocatalysts. Bioprocess Biosyst Eng 2022; 45:237-256. [PMID: 34596787 DOI: 10.1007/s00449-021-02647-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023]
Abstract
Immobilized enzyme-based catalytic constructs could greatly improve various industrial processes due to their extraordinary catalytic activity and reaction specificity. In recent decades, nano-enzymes, defined as enzyme immobilized on nanomaterials, gained popularity for the enzymes' improved stability, reusability, and ease of separation from the biocatalytic process. Thus, enzymes can be strategically incorporated into nanostructured materials to engineer nano-enzymes, such as nanoporous particles, nanofibers, nanoflowers, nanogels, nanomembranes, metal-organic frameworks, multi-walled or single-walled carbon nanotubes, and nanoparticles with tuned shape and size. Surface-area-to-volume ratio, pore-volume, chemical compositions, electrical charge or conductivity of nanomaterials, protein charge, hydrophobicity, and amino acid composition on protein surface play fundamental roles in the nano-enzyme preparation and catalytic properties. With proper understanding, the optimization of the above-mentioned factors will lead to favorable micro-environments for biocatalysts of industrial relevance. Thus, the application of nano-enzymes promise to further strengthen the advances in catalysis, biotransformation, biosensing, and biomarker discovery. Herein, this review article spotlights recent progress in nano-enzyme development and their possible implementation in different areas, including biomedicine, biosensors, bioremediation of industrial pollutants, biofuel production, textile, leather, detergent, food industries and antifouling.
Collapse
Affiliation(s)
- Mozhgan Razzaghi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Waknaghat, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Waknaghat, India
| | - Roberto Stevanato
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Venice, Italy
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849, Monterrey, Mexico
| |
Collapse
|
23
|
Sankaran R, Markandan K, Khoo KS, Cheng CK, Ashokkumar V, Deepanraj B, Show PL. The Expansion of Lignocellulose Biomass Conversion Into Bioenergy via Nanobiotechnology. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.793528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lignocellulosic biomass has arisen as a solution to our energy and environmental challenges because it is rich in feedstock that can be converted to biofuels. Converting lignocellulosic biomass to sugar is a complicated system involved in the bioconversion process. There are indeed a variety of techniques that have been utilized in the bioconversion process consisting of physical, chemical, and biological approaches. However, most of them have drawbacks when used on a large scale, which include the high cost of processing, the development of harmful inhibitors, and the detoxification of the inhibitors that have been produced. These constraints, taken together, hinder the effectiveness of current solutions and demand for the invention of a new, productive, cost-effective, and environmentally sustainable technique for LB processing. In this context, the approach of nanotechnology utilizing various nanomaterials and nanoparticles in treating lignocellulose biomass and bioenergy conversion has achieved increased interest and has been explored greatly in recent times. This mini review delves into the application of nanotechnological techniques in the bioconversion of lignocellulose biomass into bioenergy. This review on nanotechnological application in biomass conversion provides insights and development tools for the expansion of new sectors, resulting in excellent value and productivity, contributing to the long-term economic progress.
Collapse
|
24
|
Lambhiya S, Patel G, Banerjee UC. Immobilization of transaminase from Bacillus licheniformis on copper phosphate nanoflowers and its potential application in the kinetic resolution of RS-α-methyl benzyl amine. BIORESOUR BIOPROCESS 2021; 8:126. [PMID: 38650298 PMCID: PMC10992165 DOI: 10.1186/s40643-021-00474-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
This study reports the isolation and partial purification of transaminase from the wild species of Bacillus licheniformis. Semi-purified transaminase was immobilized on copper nanoflowers (NFs) synthesized through sonochemical method and explored it as a nanobiocatalyst. The conditions for the synthesis of transaminase NFs [TA@Cu3(PO4)2NF] were optimized. Synthesized NFs revealed the protein loading and activity yield-60 ± 5% and 70 ± 5%, respectively. The surface morphology of the synthesized hybrid NFs was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the average size to be around 1 ± 0.5 μm. Fourier-transform infrared (FTIR) was used to confirm the presence of the enzyme inside the immobilized matrix. In addition, circular dichroism and florescence spectroscopy were also used to confirm the integrity of the secondary and tertiary structures of the protein in the immobilized material. The transaminase hybrid NFs exhibited enhanced kinetic properties and stability over the free enzyme and revealed high reusability. Furthermore, the potential application of the immobilized transaminase hybrid NFs was demonstrated in the resolution of racemic α-methyl benzylamine.
Collapse
Affiliation(s)
- Shraddha Lambhiya
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
| | - Gopal Patel
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
- Sagar Institute of Pharmacy and Technology, Gandhi Nagar Campus Opposite International Airport, Bhopal, 462036, MP, India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India.
- Departments of Biotechnology, Amity University, Sector 82A, IT City, International Airport Road, Mohali, 5300016, India.
| |
Collapse
|
25
|
Wang Y, Milewska M, Foster H, Chapman R, Stenzel MH. The Core-Shell Structure, Not Sugar, Drives the Thermal Stabilization of Single-Enzyme Nanoparticles. Biomacromolecules 2021; 22:4569-4581. [PMID: 34617439 DOI: 10.1021/acs.biomac.1c00871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trehalose is widely assumed to be the most effective sugar for protein stabilization, but exactly how unique the structure is and the mechanism by which it works are still debated. Herein, we use a polyion complex micelle approach to control the position of trehalose relative to the surface of glucose oxidase within cross-linked and non-cross-linked single-enzyme nanoparticles (SENs). The distribution and density of trehalose molecules in the shell can be tuned by changing the structure of the underlying polymer, poly(N-[3-(dimethylamino)propyl] acrylamide (PDMAPA). SENs in which the trehalose is replaced with sucrose and acrylamide are prepared as well for comparison. Isothermal titration calorimetry, dynamic light scattering, and asymmetric flow field-flow fraction in combination with multiangle light scattering reveal that two to six polymers bind to the enzyme. Binding either trehalose or sucrose close to the enzyme surface has very little effect on the thermal stability of the enzyme. By contrast, encapsulation of the enzyme within a cross-linked polymer shell significantly enhances its thermal stability and increases the unfolding temperature from 70.3 °C to 84.8 °C. Further improvements (up to 92.8 °C) can be seen when trehalose is built into this shell. Our data indicate that the structural confinement of the enzyme is a far more important driver in its thermal stability than the location of any sugar.
Collapse
Affiliation(s)
- Yiping Wang
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Malgorzata Milewska
- Department of Organic Chemistry, Bioorganic Chemistry, and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice 44 100, Poland
| | - Henry Foster
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| |
Collapse
|
26
|
Nanomaterial conjugated lignocellulosic waste: cost-effective production of sustainable bioenergy using enzymes. 3 Biotech 2021; 11:480. [PMID: 34790504 DOI: 10.1007/s13205-021-03002-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/26/2021] [Indexed: 01/28/2023] Open
Abstract
The demand for novel and renewable sources of energy has increased as a result of rapid population growth, limited sources of bioenergy, and environmental pollution, caused by excessive use of fossil fuels. The need to meet future energy demands have motivated researchers to search for alternative and sustainable sources of energy. The bioconversion of lignocellulosic waste (agricultural and food waste) into biofuels shows competitive promises. Lignocellulosic waste is easily accessible and has a large enzyme system that can be immobilised onto nano-matrices. Consequently, resulting in higher biofuel production and process efficiency. However, the excessive production cost of the current procedures, which involve physical, chemical, and enzymatic reactions, is limited. The use of nanomaterials has recently been shown to concentrate lignocellulosic waste, therefore, reviewing the quest for efficient production of sustainable and cost-effective development of bioenergy from lignocellulosic wastes. This review paper explores the advanced strategies of using nanobiotechnology to combine enzyme-conjugated nanosystems for the cost-effective production of sustainable bioenergy solutions. This research will help to develop an inexpensive, eco-friendly technology for biofuels production and also help overcome the environmental burden of lignocellulosic waste worldwide.
Collapse
|
27
|
Reshmy R, Philip E, Sirohi R, Tarafdar A, Arun KB, Madhavan A, Binod P, Kumar Awasthi M, Varjani S, Szakacs G, Sindhu R. Nanobiocatalysts: Advancements and applications in enzyme technology. BIORESOURCE TECHNOLOGY 2021; 337:125491. [PMID: 34320770 DOI: 10.1016/j.biortech.2021.125491] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Nanobiocatalysts are one of the most promising biomaterials produced by synergistically integrating advanced biotechnology and nanotechnology. These have a lot of potential to improve enzyme stability, function, efficiencyand engineering performance in bioprocessing. Functional nanostructures have been used to create nanobiocatalystsbecause of their specific physicochemical characteristics and supramolecular nature. This review covers a wide range of nanobiocatalysts including polymeric, metallic, silica and carbon nanocarriers as well as their recent developments in controlling enzyme activity. The enormous potential of nanobiocatalysts in bioprocessing in designing effective laboratory trials forapplications in various fields such as food, pharmaceuticals, biofuel, and bioremediation is also discussed extensively.
Collapse
Affiliation(s)
- R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Kerala 690 110, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Kerala 690 110, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - K B Arun
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, Kerala 695 014, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, Kerala 695 014, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | | | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India.
| |
Collapse
|
28
|
Li W, Zhang X, Xue Z, Mi Y, Ma P, Fan D. Ginsenoside CK production by commercial snailase immobilized onto carboxylated chitosan-coated magnetic nanoparticles. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Magnetic Nanomaterials as Biocatalyst Carriers for Biomass Processing: Immobilization Strategies, Reusability, and Applications. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7100133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental concerns, along with oil shortages, have increased industrial interest in biomass conversion to produce biofuels and other valuable chemicals. A green option in biomass processing is the use of enzymes, such as cellulases, hemicellulases, and ligninolytic (laccase and peroxidases), which have outstanding specificity toward their substrates and can be reused if immobilized onto magnetic nanocarriers. Numerous studies report the biocatalysts’ performance after covalent binding or adsorption on differently functionalized magnetic nanoparticles (MNPs). Functionalization strategies of MNPs include silica-based surfaces obtained through a sol–gel process, graphene oxide-based nanocomposites, polymer-coated surfaces, grafting polymer brushes, and others, which have been emphasized in this review of the immobilization and co-immobilization of enzymes used for biomass conversion. Careful analysis of the parameters affecting the performance of enzyme immobilization for new hybrid matrices has enabled us to achieve wider tolerance to thermal or chemical stress by these biosystems during saccharification. Additionally, it has enabled the application of immobilized laccase to remove toxic organic compounds from lignin, among other recent advances addressed here related to the use of reusable magnetic carriers for bioderived chemical manufacturing.
Collapse
|
30
|
Shelar A, Singh AV, Maharjan RS, Laux P, Luch A, Gemmati D, Tisato V, Singh SP, Santilli MF, Shelar A, Chaskar M, Patil R. Sustainable Agriculture through Multidisciplinary Seed Nanopriming: Prospects of Opportunities and Challenges. Cells 2021; 10:2428. [PMID: 34572078 PMCID: PMC8472472 DOI: 10.3390/cells10092428] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 11/18/2022] Open
Abstract
The global community decided in 2015 to improve people's lives by 2030 by setting 17 global goals for sustainable development. The second goal of this community was to end hunger. Plant seeds are an essential input in agriculture; however, during their developmental stages, seeds can be negatively affected by environmental stresses, which can adversely affect seed vigor, seedling establishment, and crop production. Seeds resistant to high salinity, droughts and climate change can result in higher crop yield. The major findings suggested in this review refer nanopriming as an emerging seed technology towards sustainable food amid growing demand with the increasing world population. This novel growing technology could influence the crop yield and ensure the quality and safety of seeds, in a sustainable way. When nanoprimed seeds are germinated, they undergo a series of synergistic events as a result of enhanced metabolism: modulating biochemical signaling pathways, trigger hormone secretion, reduce reactive oxygen species leading to improved disease resistance. In addition to providing an overview of the challenges and limitations of seed nanopriming technology, this review also describes some of the emerging nano-seed priming methods for sustainable agriculture, and other technological developments using cold plasma technology and machine learning.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India;
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (R.S.M.); (P.L.); (A.L.)
| | - Romi Singh Maharjan
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (R.S.M.); (P.L.); (A.L.)
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (R.S.M.); (P.L.); (A.L.)
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (R.S.M.); (P.L.); (A.L.)
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (D.G.); (V.T.)
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (D.G.); (V.T.)
| | | | | | - Akanksha Shelar
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India;
| | - Manohar Chaskar
- Ramkrishna More Arts, Commerce and Science College, Pune 411044, India;
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
31
|
Schuphan J, Commandeur U. Analysis of Engineered Tobacco Mosaic Virus and Potato Virus X Nanoparticles as Carriers for Biocatalysts. FRONTIERS IN PLANT SCIENCE 2021; 12:710869. [PMID: 34421958 PMCID: PMC8377429 DOI: 10.3389/fpls.2021.710869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Plant virus nanoparticles are promising candidates for the development of novel materials, including nanocomposites and scaffolds/carriers for functional molecules such as enzymes. Their advantages for enzyme immobilization include a modular organization, a robust and programmable structure, and a simple, cost-effective production. However, the activity of many enzymes relies on posttranslational modification and most plant viruses replicate in the cytoplasm, so functional enzymes cannot be displayed on the virus surface by direct coat protein fusions. An alternative display system to present the Trichoderma reesei endoglucanase Cel12A on potato virus X (PVX) using SpyTag/SpyCatcher (ST/SC) technology was recently developed by the authors, which allows the carrier and enzyme to be produced separately before isopeptide conjugation. Although kinetic analysis clearly indicated efficient biocatalyst activity, the PVX carrier interfered with substrate binding. To overcome this, the suitability of tobacco mosaic virus (TMV) was tested, which can also accommodate a larger number of ST peptides. We produced TMV particles displaying ST as a new platform for the immobilization of enzymes such as Cel12A, and compared its performance to the established PVX-ST platform in terms of catalytic efficiency. Although more enzyme molecules were immobilized on the TMV-ST particles, we found that the rigid scaffold and helical spacing significantly affected enzyme activity.
Collapse
|
32
|
Wang X, Bowman J, Tu S, Nykypanchuk D, Kuksenok O, Minko S. Polyethylene Glycol Crowder's Effect on Enzyme Aggregation, Thermal Stability, and Residual Catalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8474-8485. [PMID: 34236863 DOI: 10.1021/acs.langmuir.1c00872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein stability and performance in various natural and artificial systems incorporating many other macromolecules for therapeutic, diagnostic, sensor, and biotechnological applications attract increasing interest with the expansion of these technologies. Here we address the catalytic activity of lysozyme protein (LYZ) in the presence of a polyethylene glycol (PEG) crowder in a broad range of concentrations and temperatures in aqueous solutions of two different molecular mass PEG samples (Mw = 3350 and 10000 g/mol). The phase behavior of PEG-protein solutions is examined by using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), while the enzyme denaturing is monitored by using an activity assay (AS) and circular dichroism (CD) spectroscopy. Molecular dynamic (MD) simulations are used to illustrate the effect of PEG concentration on protein stability at high temperatures. The results demonstrate that LYZ residual activity after 1 h incubation at 80 °C is improved from 15% up to 55% with the addition of PEG. The improvement is attributed to two underlying mechanisms. (i) Primarily, the stabilizing effect is due to the suppression of the enzyme aggregation because of the stronger PEG-protein interactions caused by the increased hydrophobicity of PEG and lysozyme at elevated temperatures. (ii) The MD simulations showed that the addition of PEG to some degree stabilizes the secondary structures of the enzyme by delaying unfolding at elevated temperatures. The more pronounced effect is observed with an increase in PEG concentration. This trend is consistent with CD and AS experimental results, where the thermal stability is strengthened with increasing of PEG concentration and molecular mass. The results show that the highest stabilizing effect is approached at the critical overlap concentration of PEG.
Collapse
Affiliation(s)
- Xue Wang
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Jeremy Bowman
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Sidong Tu
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sergiy Minko
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
33
|
Tavernini L, Romero O, Aburto C, López-Gallego F, Illanes A, Wilson L. Development of a Hybrid Bioinorganic Nanobiocatalyst: Remarkable Impact of the Immobilization Conditions on Activity and Stability of β-Galactosidase. Molecules 2021; 26:molecules26144152. [PMID: 34299429 PMCID: PMC8303607 DOI: 10.3390/molecules26144152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/15/2023] Open
Abstract
Hybrid bioinorganic biocatalysts have received much attention due to their simple synthesis, high efficiency, and structural features that favor enzyme activity and stability. The present work introduces a biomineralization strategy for the formation of hybrid nanocrystals from β-galactosidase. The effects of the immobilization conditions were studied, identifying the important effect of metal ions and pH on the immobilization yield and the recovered activity. For a deeper understanding of the biomineralization process, an in silico study was carried out to identify the ion binding sites at the different conditions. The selected β-galactosidase nanocrystals showed high specific activity (35,000 IU/g biocatalyst) and remarkable thermal stability with a half-life 11 times higher than the soluble enzyme. The nanobiocatalyst was successfully tested for the synthesis of galacto-oligosaccharides, achieving an outstanding performance, showing no signs of diffusional limitations. Thus, a new, simple, biocompatible and inexpensive nanobiocatalyst was produced with high enzyme recovery (82%), exhibiting high specific activity and high stability, with promising industrial applications.
Collapse
Affiliation(s)
- Luigi Tavernini
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Oscar Romero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (O.R.); (L.W.)
| | - Carla Aburto
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Fernando López-Gallego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain;
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Andrés Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
- Correspondence: (O.R.); (L.W.)
| |
Collapse
|
34
|
Chen X, Miao X, Ma T, Leng Y, Hao L, Duan H, Yuan J, Li Y, Huang X, Xiong Y. Gold Nanobeads with Enhanced Absorbance for Improved Sensitivity in Competitive Lateral Flow Immunoassays. Foods 2021; 10:1488. [PMID: 34198969 PMCID: PMC8307668 DOI: 10.3390/foods10071488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Colloidal gold based lateral flow immunoassay (LFIA) commonly suffers from relatively low detection sensitivity due to the insufficient brightness of conventional gold nanoparticles (AuNPs) with the size of 20-40 nm. METHODS Herein, three kinds of gold nanobeads (GNBs) with the size of 94 nm, 129 nm, and 237 nm, were synthesized by encapsulating numerous hydrophobic AuNPs (10 nm) into polymer matrix. The synthesized GNBs exhibited the enhanced colorimetric signal intensity compared with 20-40 nm AuNPs. The effects of the size of GNBs on the sensitivity of LFIA with competitive format were assessed. RESULTS The results showed that the LFIA using 129 nm GNBs as amplified signal probes exhibits the best sensitivity for fumonisin B1 (FB1) detection with a cut-off limit (for visual qualitative detection) at 125 ng/mL, a half maximal inhibitory concentration at 11.27 ng/mL, and a detection limit at 1.76 ng/mL for detection of real corn samples, which are 8-, 3.82-, and 2.89-fold better than those of conventional AuNP40-based LFIA, respectively. The developed GNB-LFIA exhibited negligible cross-reactions with other common mycotoxins. In addition, the accuracy, precision, reliability, and practicability were demonstrated by determining real corn samples. CONCLUSIONS All in all, the proposed study provides a promising strategy to enhance the sensitivity of competitive LFIA via using the GNBs as amplified signal probes.
Collapse
Affiliation(s)
- Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xintao Miao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Tongtong Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liangwen Hao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jing Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
35
|
Isanapong J, Pornwongthong P. Immobilized laccase on zinc oxide nanoarray for catalytic degradation of tertiary butyl alcohol. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125104. [PMID: 33482503 DOI: 10.1016/j.jhazmat.2021.125104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Laccase is an effective biocatalyst in bioremediation process; however, the application of the enzyme is limited due to its cost, recovery, and stability. In this study, we developed, characterized and evaluated the efficiency of immobilized laccase on zinc oxide nanostructure to catalyze biodegradation of TBA in comparison to the suspended enzyme. The results showed that both immobilized and suspended laccase were capable of catalyzing TBA biodegradation; however, the efficiency of the immobilized laccase on TBA removal was higher than that of the suspended enzyme. The repeatability testing revealed the potential of the immobilized laccase for repeatedly catalyzing TBA biodegradation with storage capacity. While the Vmax of immobilized enzyme was higher than suspended laccase (2.25 ± 0.542 mg TBA/h∙U vs. 1.47 ± 0.185 mg TBA/h∙U), the km of the immobilized enzyme was higher than the suspended laccase (67.9 ± 20.5 mg TBA/L vs. 33.5 ± 7.10 mg TBA/L). This suggests that the immobilized laccase is better in TBA removal, but has lower affinity with TBA than the suspended enzyme. Thus, immobilization of the enzyme can be applied to increase the efficiency and minimize the use of laccase for TBA remediation.
Collapse
Affiliation(s)
- Jantiya Isanapong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok Thailand
| | - Peerapong Pornwongthong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok Thailand.
| |
Collapse
|
36
|
Scano A, Cabras V, Ennas G. A New One-Pot Way to Prepare Enzyme-Containing Coordination Polymers by Sonochemistry. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2935-2938. [PMID: 33653461 DOI: 10.1166/jnn.2021.19042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enzyme-containing Coordination Polymers (CPs) were prepared by a one-pot sonochemical method, mixing Glucose Oxidase (GOx) enzyme, 4,4'-bipyridine as spacer ligand, and chloride zinc salt. The reaction took place in a very short time (a few minutes) with a minimum use of solvents compared to conventional methods. The obtained composite material, named GOx-[Zn(4,4'-bipy)Cl₂]∞, resulted from embedding the GOx molecules into uniformly sized [Zn(4,4'-bipy)Cl₂] nanocrystals. The structural and thermal characterization, confirmed that the adopted strategy allows the preparation of hybrid bio-nanomaterials in a very fast, facile and eco-friendly method, by simply synthesising the [Zn(4,4'-bipy)Cl₂] nanocrystals in the presence of the enzyme.
Collapse
Affiliation(s)
- Alessandra Scano
- Chemical and Geological Science Department, National Interuniversity Consortium of Materials Science and Technology Unit, University of Cagliari, SS 554 Bivio per Sestu, 09042 Monserrato (CA), Italy
| | - Valentina Cabras
- Chemical and Geological Science Department, National Interuniversity Consortium of Materials Science and Technology Unit, University of Cagliari, SS 554 Bivio per Sestu, 09042 Monserrato (CA), Italy
| | - Guido Ennas
- Chemical and Geological Science Department, National Interuniversity Consortium of Materials Science and Technology Unit, University of Cagliari, SS 554 Bivio per Sestu, 09042 Monserrato (CA), Italy
| |
Collapse
|
37
|
Yu C, Li Q, Tian J, Zhan H, Zheng X, Wang S, Sun X, Sun X. A facile preparation of immobilized naringinase on polyethyleneimine-modified Fe 3O 4 magnetic nanomaterials with high activity. RSC Adv 2021; 11:14568-14577. [PMID: 35424008 PMCID: PMC8698058 DOI: 10.1039/d1ra01449h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 01/13/2023] Open
Abstract
Polyethyleneimine-modified Fe3O4 nanoparticles (Fe3O4-PEI) were synthesized by the one-step co-precipitation method, and the resulting material was used to immobilize naringinase from the fermentation broth of Aspergillus niger FFCC uv-11. The immobilized naringinase activity could reach up to 690.74 U per g-support at the conditions of initial naringinase activity of 406.25 U mL-1, immobilization time of 4 h, glutaraldehyde concentration of 40% (w/v), immobilization temperature of 35 °C, and pH value of 5.5, with naringinase-carrying rate and naringinase activity recovery of 92.93% and 20.89%, respectively. In addition, the immobilized naringinase exhibited good pH and temperature stability in a pH range of 3.5-6.0 and temperature range of 40-70 °C, and the optimal reaction pH and reaction temperature were optimized as 5.5 and 60 °C, respectively. Besides, the immobilized naringinase could maintain 60.58% of the original activity after 10 reuse cycles, indicating that the immobilized naringinase had good reusability. Furthermore, the immobilized naringinase also performed excellent storage stability, 87.52% of enzyme activity still remained as stored at 4 °C for one month. In conclusion, the Fe3O4-PEI could be considered as a promising support for naringinase immobilization, with the advantages of high enzyme activity loading, good reusability, storage stability and rapid recovery.
Collapse
Affiliation(s)
- Chan Yu
- School of Biological Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China +86-411-86323725 +86-411-86323725
| | - Qian Li
- School of Biological Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China +86-411-86323725 +86-411-86323725
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China +86-411-86323725 +86-411-86323725
| | - Honglei Zhan
- School of Biological Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China +86-411-86323725 +86-411-86323725
| | - Xinyu Zheng
- School of Biological Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China +86-411-86323725 +86-411-86323725
| | - Shujing Wang
- School of Biological Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China +86-411-86323725 +86-411-86323725
| | - Xitong Sun
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University No. 1st Qinggongyuan, Ganjingzi Dalian 116034 P. R. China
| | - Xiyan Sun
- Department of Chemical and Environmental Engineering, University of California Riverside Riverside CA 92521 USA
| |
Collapse
|
38
|
Botewad SN, Gaikwad DK, Girhe NB, Thorat HN, Pawar PP. Urea biosensors: A comprehensive review. Biotechnol Appl Biochem 2021; 70:485-501. [PMID: 33847399 DOI: 10.1002/bab.2168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023]
Abstract
Present study is specially designed for the recent advances in biosensors to detect and quantify urea concentration. Urea (carbamide) is an organic compound made up of the carbonyl (C=O) functional group with two -NH2 groups having chemical formula CO (NH2 )2 . In nature, urea is found everywhere as the result of various processes, and in the human body, urea is an end product of nitrogen metabolism. An excessive concentration of urea in the human body is responsible for different critical diseases such as indigestion, acidity, ulcers, cancer, malfunctioning of kidneys, renal failure, urinary tract obstruction, dehydration, shock, burns, gastrointestinal bleeding, and so on. Moreover, below the normal level may cause hepatic failure, nephritic syndrome, cachexia, and so on. As well as in various fields such as fishery, dairy, food preservation, agriculture, and so on, urea is normally found and its detection is necessary. In urea biosensors, enzyme urease (Urs) is used as a bioreceptor element and retains its long last activity is the critical issue in front of the researcher. During recent decades, different nanoparticles (zinc oxide, nickel oxide, iron oxide, titanium dioxide, tin(IV) oxide, etc.), conducting polymer (polyaniline, polypyrrole, etc.), conducting polymer-nanoparticles composites, carbon materials (carbon nanotubes, graphene oxide, reduced graphene oxide graphene), and so on are used in urea biosensors. The main emphasis of the present study is to provide cumulative and comprehensive information about the sensing parameters of urea biosensors based on the materials used for enzyme immobilization. Besides this special task, this review provides a fruitful discussion on the basics of biosensors briefly for new and upcoming researchers. Thus, the present study may act as a gift for a large audience that come from different fields and are working in biosensors research.
Collapse
Affiliation(s)
- Sunil N Botewad
- Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| | | | - Nitin B Girhe
- Jawahar Science, Commerce and Arts College, Andoor, Tq. Tuljapur District, Osmanabad, India
| | - Hanuman N Thorat
- Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| | - Pravina P Pawar
- Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
39
|
Ferreira AM, Valente AI, Castro LS, Coutinho JAP, Freire MG, Tavares APM. Sustainable liquid supports for laccase immobilization and reuse: Degradation of dyes in aqueous biphasic systems. Biotechnol Bioeng 2021; 118:2514-2523. [PMID: 33764496 DOI: 10.1002/bit.27764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023]
Abstract
Novel liquid supports for enzyme immobilization and reuse based on aqueous biphasic systems (ABS) constituted by cholinium-based ionic liquids (ILs) and polymers for the degradation of dyes are here proposed. The biocatalytic reaction for dye decolorization using laccase occured in the biphasic medium, with the enzyme being "supported" in the IL-rich phase and the dye and degradation products being enriched in the polymer-rich phase. An initial screening of the laccase activity in aqueous solutions of ABS constituents, namely cholinium dihydrogen citrate ([Ch][DHC]), cholinium dihydrogen phosphate ([Ch][DHP]), cholinium acetate ([Ch][Acet]), polypropylene glycol 400 (PPG 400), polyethylene glycol 400 (PEG 400) and K2 HPO4 was carried out. Compared to the buffered control, a relative laccase activity of up to 170%, 257%, and 530% was observed with PEG 400, [Ch][DHP], and [Ch][DHC], respectively. These ABS constituents were then investigated for the in situ enzymatic biodegradation of the Remazol Brilliant Blue R (RBBR) dye. At the optimized conditions, the ABS constituted by PPG 400 at 46 wt% and [Ch][DHC] at 16 wt% leads to the complete degradation of the RBBR dye, further maintaining the enzyme activity. This ABS also allows an easy immobilization, recovery, and reuse of the biocatalyst for six consecutive reaction cycles, achieving a degradation yield of the dye of 96% in the last cycle. In summary, if properly designed, high enzymatic activities and reaction yields are obtained with ABS as liquid supports, while simultaneously overcoming the safety and environmental concerns of conventional organic solvents used in liquid-liquid heterogeneous reactions, thus representing more sustainable biocatalytic processes.
Collapse
Affiliation(s)
- Ana M Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Ana I Valente
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Leonor S Castro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - João A P Coutinho
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Mara G Freire
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Ana P M Tavares
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
40
|
Gkantzou E, Chatzikonstantinou AV, Fotiadou R, Giannakopoulou A, Patila M, Stamatis H. Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations. Biotechnol Adv 2021; 51:107738. [PMID: 33775799 DOI: 10.1016/j.biotechadv.2021.107738] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
The ever-growing demand for cost-effective and innocuous biocatalytic transformations has prompted the rational design and development of robust biocatalytic tools. Enzyme immobilization technology lies in the formation of cooperative interactions between the tailored surface of the support and the enzyme of choice, which result in the fabrication of tremendous biocatalytic tools with desirable properties, complying with the current demands even on an industrial level. Different nanoscale materials (organic, inorganic, and green) have attracted great attention as immobilization matrices for single or multi-enzymatic systems. Aiming to unveil the potentialities of nanobiocatalytic systems, we present distinct immobilization strategies and give a thorough insight into the effect of nanosupports specific properties on the biocatalysts' structure and catalytic performance. We also highlight the development of nanobiocatalysts for their incorporation in cascade enzymatic processes and various types of batch and continuous-flow reactor systems. Remarkable emphasis is given on the application of such nanobiocatalytic tools in several biocatalytic transformations including bioremediation processes, biofuel production, and synthesis of bioactive compounds and fine chemicals for the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Elena Gkantzou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Alexandra V Chatzikonstantinou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Renia Fotiadou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Archontoula Giannakopoulou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Michaela Patila
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
41
|
Baruah P, Das A, Paul D, Chakrabarty S, Aguan K, Mitra S. Sulfonylurea Class of Antidiabetic Drugs Inhibit Acetylcholinesterase Activity: Unexplored Auxiliary Pharmacological Benefit toward Alzheimer's Disease. ACS Pharmacol Transl Sci 2021; 4:193-205. [PMID: 33615172 PMCID: PMC7887854 DOI: 10.1021/acsptsci.0c00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 12/21/2022]
Abstract
Contemporary literature documents extensive research on common causative mechanisms, pathogenic pathways and dual effective remedies for Alzheimer's disease (AD) and Type 2 diabetes mellitus (T2DM). Tolbutamide (TBM), chlorpropamide (CPM), and glyburide (GLY) are three sulfonylurea antidiabetic drugs of different generations. All these drugs were found to exhibit moderate to strong inhibitory efficiency on the neurotransmitter degrading enzyme acetylcholinesterase (AChE) with GLY (IC50 = 0.74 ± 0.02 μM) being the most potent, followed by CPM (IC50 = 5.72 ± 0.24 μM) and TBM (IC50 = 28.9 ± 1.60 μM). Notably, the inhibition efficiency of GLY is even comparable with the FDA approved AD drug, donepezil (DON). The larger size of GLY spans almost the full gorge of AChE ranging from catalytic active site (CAS) to the peripheral active site (PAS) with relatively strong binding affinity (6.0 × 105 M-1) and acts as a competitive inhibitor for AChE. On the other hand, while they show relatively weak binding ((2-6) × 104 M-1), both CPM and TBM act as noncompetitive binders. While these two drugs can bind to PAS, MD simulation results predict an alternative noncompetitive inhibition mechanism for CPM. These results open the possibility of repurposing the antidiabetic drugs, particularly GLY, in the treatment of AD. The consequential side effect of excess acetylcholine production, due to the administration of these drugs to AD-unaffected patients, can be rectified by using colloidal gold and silver nanofluids as potential AChE activity boosters.
Collapse
Affiliation(s)
- Prayasee Baruah
- Centre
for Advanced Studies in Chemistry and Department of Biotechnology &
Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Abhinandan Das
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata 700106, India
| | - Debojit Paul
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, India
| | - Suman Chakrabarty
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata 700106, India
| | - Kripamoy Aguan
- Centre
for Advanced Studies in Chemistry and Department of Biotechnology &
Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Sivaprasad Mitra
- Centre
for Advanced Studies in Chemistry and Department of Biotechnology &
Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
42
|
Soy S, Prabha R, Kumar Nigam V. Potential of Biocatalysis in Pharmaceuticals. Mol Biotechnol 2021. [DOI: 10.5772/intechopen.90459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biocatalysis has been continuously evolving as an essential tool which is playing a significant role in the industrial synthesis of chemicals, active pharmaceuticals, pharmaceutical intermediates, etc. where the high-yielding chemo-, regio-, and enantioselective reactions are needed. Despite its vital importance, industrial biocatalysis is facing certain limitations such as operational stability, economic viability, efficient recovery, and reusability. The limitations mentioned can be overcome by the isolation of specific enzyme producers from extreme environment by protein engineering, bioinformatics, and recombinant DNA technologies. Recently, chemoenzymatic pathway and biological cascade reactions have also been developed and designed to perform the synthesis of pharmaceuticals. In this chapter, we compile the broad applications of biocatalysts in the synthesis of pharmaceuticals.
Collapse
|
43
|
Status of the application of exogenous enzyme technology for the development of natural plant resources. Bioprocess Biosyst Eng 2020; 44:429-442. [PMID: 33146790 DOI: 10.1007/s00449-020-02463-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Exogenous enzymes are extraneous enzymes that are not intrinsic to the subject. The exogenous enzyme industry has been rapidly developing recently. Successful application of recombinant DNA amplification, high-efficiency expression, and immobilization technology to genetically engineered bacteria provides a rich source of enzymes. Amylase, cellulase, protease, pectinase, glycosidase, tannase, and polyphenol oxidase are among the most widely used such enzymes. Currently, the application of exogenous enzyme technology in the development of natural plant resources mainly focuses on improving the taste and flavor of the product, enriching the active ingredient contents, deriving and transforming the structure of a chosen compound, and enhancing the biological activity and utilization of the functional ingredient. In this review, we discuss the application status of exogenous enzyme technology for the development of natural plant resources using typical natural active ingredients from plant, such as resveratrol, steviosides, catechins, mogrosides, and ginsenosides, as examples, to provide basis for further exploitation and utilization of exogenous enzyme technology.
Collapse
|
44
|
Fatima SW, Barua S, Sardar M, Khare SK. Immobilization of Transglutaminase on multi-walled carbon nanotubes and its application as bioinspired hydrogel scaffolds. Int J Biol Macromol 2020; 163:1747-1758. [DOI: 10.1016/j.ijbiomac.2020.09.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
|
45
|
Bilal M, Ashraf SS, Ferreira LFR, Cui J, Lou WY, Franco M, Iqbal HMN. Nanostructured materials as a host matrix to develop robust peroxidases-based nanobiocatalytic systems. Int J Biol Macromol 2020; 162:1906-1923. [PMID: 32818568 DOI: 10.1016/j.ijbiomac.2020.08.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/05/2023]
Abstract
Nanostructured materials constitute an interesting and novel class of support matrices for the immobilization of peroxidase enzymes. Owing to the high surface area, robust mechanical stability, outstanding optical, thermal, and electrical properties, nanomaterials have been rightly perceived as immobilization matrices for enzyme immobilization with applications in diverse areas such as nano-biocatalysis, biosensing, drug delivery, antimicrobial activities, solar cells, and environmental protection. Many nano-scale materials have been employed as support matrices for the immobilization of different classes of enzymes. Nanobiocatalysts, enzymes immobilized on nano-size materials, are more stable, catalytically robust, and could be reused and recycled in multiple reaction cycles. In this review, we illustrate the unique structural/functional features and potentialities of nanomaterials-immobilized peroxidase enzymes in different biotechnological applications. After a comprehensive introduction to the immobilized enzymes and nanocarriers, the first section reviewed carbonaceous nanomaterials (carbon nanotube, graphene, and its derivatives) as a host matrix to constitute robust peroxidases-based nanobiocatalytic systems. The second half covers metallic nanomaterials (metals, and metal oxides) and some other novel materials as host carriers for peroxidases immobilization. The next section vetted the potential biotechnological applications of the resulted nanomaterials-immobilized robust peroxidases-based nanobiocatalytic systems. Concluding remarks, trends, and future recommendations for nanomaterial immobilized enzymes are also given.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - S Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300 - Prédio do ITP, Farolândia, 49032-490 Aracaju, SE, Brazil
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, 45654-370 Ilhéus, Brazil
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
46
|
Characterization of biogenically synthesized silver nanoparticles for therapeutic applications and enzyme nanocomplex generation. 3 Biotech 2020; 10:462. [PMID: 33088659 DOI: 10.1007/s13205-020-02450-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
The present study describes green synthesis of silver nanoparticles (AgNPs) and inulin hydrolyzing enzyme nanocomplexes (ENC) using Azadirachta indica (Ai) and Punica granatum (Pg) leaf extracts. Surface topology and physico-chemical characteristics of AgNPs were studied using surface plasmon resonance (SPR), FTIR, SEM, AFM and EDX analyses. Particle size analysis using dynamic light scattering and AFM studies revealed that Ai-AgNPs (76.4 nm) were spherical in shape having central bigger nano-regime with smaller surroundings while Pg-AgNPs (72.1 nm) and ENCs (Inulinase-Pg-AgNPs ~ 145 nm) were spherical particles having smooth surfaces. Pg-AgNPs exhibited significant photocatalysis of a thiazine dye, methylene blue. Both Ai- and Pg-AgNPs showed selective antibacterial action by inhibiting pathogenic Bacillus cereus, while the probiotic Lactobacillus strains remained unaffected. Ai-AgNPs showed potential anti-biofilm effect (30% viability) on B. cereus biofilms. Pg-AgNPs showed anti-cancer effect against human colon cancer cell lines (Caco-2) resulting in 40% cell death in 48 h. Enzymes (inulinase, L-asparaginase and glucose oxidase) were successfully immobilized onto nanoparticles together with the biogenic synthesis of AgNPs and recyclability of the Inulinase-Pg-AgNPs complex was demonstrated. The study elaborates characteristics of green synthesized nanoparticles and their potential applications as anti-cancer, antibacterial and antioxidant nano drugs that could be used in food and nutraceutical industries. Enzyme immobilization on AgNPs without any toxic cross-linker opens up newer possibilites in enzyme-nanocomplex research.
Collapse
|
47
|
Current Developments in Lignocellulosic Biomass Conversion into Biofuels Using Nanobiotechology Approach. ENERGIES 2020. [DOI: 10.3390/en13205300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The conversion of lignocellulosic biomass (LB) to sugar is an intricate process which is the costliest part of the biomass conversion process. Even though acid/enzyme catalysts are usually being used for LB hydrolysis, enzyme immobilization has been recognized as a potential strategy nowadays. The use of nanobiocatalysts increases hydrolytic efficiency and enzyme stability. Furthermore, biocatalyst/enzyme immobilization on magnetic nanoparticles enables easy recovery and reuse of enzymes. Hence, the exploitation of nanobiocatalysts for LB to biofuel conversion will aid in developing a lucrative and sustainable approach. With this perspective, the effects of nanobiocatalysts on LB to biofuel production were reviewed here. Several traits, such as switching the chemical processes using nanomaterials, enzyme immobilization on nanoparticles for higher reaction rates, recycling ability and toxicity effects on microbial cells, were highlighted in this review. Current developments and viability of nanobiocatalysts as a promising option for enhanced LB conversion into the biofuel process were also emphasized. Mostly, this would help in emerging eco-friendly, proficient, and cost-effective biofuel technology.
Collapse
|
48
|
Nadar SS, Patil PD, Rohra NM. Magnetic nanobiocatalyst for extraction of bioactive ingredients: A novel approach. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Manigandan A, Vimalanadhan M, Dhandapani R, Bagewadi S, Kannan V, Sethuraman S, Subramanian A. Marigold-like tyrosinase-embedded nanostructures-a nano-in-micro system. Dalton Trans 2020; 49:11329-11335. [PMID: 32760996 DOI: 10.1039/d0dt02358b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marigold-like tyrosinase-entrenched nanostructures were developed by a facile method using a metal cofactor to overcome the limitations of conventional enzyme immobilization techniques. The protein-copper complex promotes the hierarchical self-assembly of nanopetals into marigold-like microstructures through a sequential germination process. Nanopetals, which originated from bead-like tiny projections, showed budding over the surface and promoted the anisotropic growth of copper phosphate nanocrystals upon co-ordination with the active functional groups in protein. This organic-inorganic hybrid showed excellent re-usability, comparable catalytic efficiency, faster reaction rate, improved storage, and thermal stability without affecting the enzyme activity.
Collapse
Affiliation(s)
- Amrutha Manigandan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Mangalagowri Vimalanadhan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Ramya Dhandapani
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Shambhavi Bagewadi
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Vishal Kannan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Anuradha Subramanian
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
50
|
Taheri-Kafrani A, Kharazmi S, Nasrollahzadeh M, Soozanipour A, Ejeian F, Etedali P, Mansouri-Tehrani HA, Razmjou A, Yek SMG, Varma RS. Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit Rev Food Sci Nutr 2020; 61:3160-3196. [PMID: 32715740 DOI: 10.1080/10408398.2020.1793726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The demand for food and beverage markets has increased as a result of population increase and in view of health awareness. The quality of products from food processing industry has to be improved economically by incorporating greener methodologies that enhances the safety and shelf life via the enzymes application while maintaining the essential nutritional qualities. The utilization of enzymes is rendered more favorable in industrial practices via the modification of their characteristics as attested by studies on enzyme immobilization pertaining to different stages of food and beverage processing; these studies have enhanced the catalytic activity, stability of enzymes and lowered the overall cost. However, the harsh conditions of industrial processes continue to increase the propensity of enzyme destabilization thus shortening their industrial lifespan namely enzyme leaching, recoverability, uncontrollable orientation and the lack of a general procedure. Innovative studies have strived to provide new tools and materials for the development of systems offering new possibilities for industrial applications of enzymes. Herein, an effort has been made to present up-to-date developments on enzyme immobilization and current challenges in the food and beverage industries in terms of enhancing the enzyme stability.
Collapse
Affiliation(s)
- Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara Kharazmi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parisa Etedali
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Samaneh Mahmoudi-Gom Yek
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.,Department of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| |
Collapse
|