1
|
Andersson B, Berglund O, Filipsson HL, Kourtchenko O, Godhe A, Johannesson K, Töpel M, Pinder MIM, Hoepfner L, Rengefors K. Strain-specific metabarcoding reveals rapid evolution of copper tolerance in populations of the coastal diatom Skeletonema marinoi. Mol Ecol 2024; 33:e17116. [PMID: 37697448 DOI: 10.1111/mec.17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
Phytoplankton have short generation times, flexible reproduction strategies, large population sizes and high standing genetic diversity, traits that should facilitate rapid evolution under directional selection. We quantified local adaptation of copper tolerance in a population of the diatom Skeletonema marinoi from a mining-exposed inlet in the Baltic Sea and in a non-exposed population 100 km away. We hypothesized that mining pollution has driven evolution of elevated copper tolerance in the impacted population of S. marinoi. Assays of 58 strains originating from sediment resting stages revealed no difference in the average tolerance to copper between the two populations. However, variation within populations was greater at the mining site, with three strains displaying hyper-tolerant phenotypes. In an artificial evolution experiment, we used a novel intraspecific metabarcoding locus to track selection and quantify fitness of all 58 strains during co-cultivation in one control and one toxic copper treatment. As expected, the hyper-tolerant strains enabled rapid evolution of copper tolerance in the mining-exposed population through selection on available strain diversity. Within 42 days, in each experimental replicate a single strain dominated (30%-99% abundance) but different strains dominated the different treatments. The reference population developed tolerance beyond expectations primarily due to slowly developing plastic response in one strain, suggesting that different modes of copper tolerance are present in the two populations. Our findings provide novel empirical evidence that standing genetic diversity of phytoplankton resting stage allows populations to evolve rapidly (20-50 generations) and flexibly on timescales relevant for seasonal bloom progressions.
Collapse
Affiliation(s)
- Björn Andersson
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | - Olof Berglund
- Department of Biology, Lund University, Lund, Sweden
| | | | - Olga Kourtchenko
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | - Anna Godhe
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | | | - Mats Töpel
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
- IVL Swedish Environmental Research Institute, Gothenburg, Sweden
| | - Matthew I M Pinder
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | - Lara Hoepfner
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
- Institute for Plant Biochemistry and Biotechnology, University of Münster, Münster, Germany
| | | |
Collapse
|
2
|
Filatov DA, Kirkpatrick M. How does evolution work in superabundant microbes? Trends Microbiol 2024; 32:836-846. [PMID: 38360431 DOI: 10.1016/j.tim.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
Marine phytoplankton play crucial roles in the Earth's ecological, chemical, and geological processes. They are responsible for about half of global primary production and drive the ocean biological carbon pump. Understanding how plankton species may adapt to the Earth's rapidly changing environments is evidently an urgent priority. This problem requires evolutionary genetic approaches as evolution occurs at the level of allele frequency change within populations driven by genetic drift and natural selection (microevolution). Plankters such as the coccolithophore Gephyrocapsa huxleyi and the cyanobacterium Prochlorococcus 'marinus' are among Earth's most abundant organisms. In this opinion paper we discuss how evolution in astronomically large populations of superabundant microbes (SAMs) may act fundamentally differently than it does in the populations of more modest size found in well-studied organisms. This offers exciting opportunities to study evolution in the conditions that have yet to be explored and also leads to unique challenges. Exploring these opportunities and challenges is the goal of this article.
Collapse
Affiliation(s)
- Dmitry A Filatov
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
3
|
Lenski RE. Revisiting the Design of the Long-Term Evolution Experiment with Escherichia coli. J Mol Evol 2023; 91:241-253. [PMID: 36790511 DOI: 10.1007/s00239-023-10095-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
The long-term evolution experiment (LTEE) with Escherichia coli began in 1988 and it continues to this day, with its 12 populations having recently reached 75,000 generations of evolution in a simple, well-controlled environment. The LTEE was designed to explore open-ended questions about the dynamics and repeatability of phenotypic and genetic evolution. Here I discuss various aspects of the LTEE's experimental design that have enabled its stability and success, including the choices of the culture regime, growth medium, ancestral strain, and statistical replication. I also discuss some of the challenges associated with a long-running project, such as handling procedural errors (e.g., cross-contamination) and managing the expanding collection of frozen samples. The simplicity of the experimental design and procedures have supported the long-term stability of the LTEE. That stability-along with the inherent creativity of the evolutionary process and the emergence of new genomic technologies-provides a platform that has allowed talented students and collaborators to pose questions, collect data, and make discoveries that go far beyond anything I could have imagined at the start of the LTEE.
Collapse
Affiliation(s)
- Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Brennan GL, Logares R. Tracking contemporary microbial evolution in a changing ocean. Trends Microbiol 2023; 31:336-345. [PMID: 36244921 DOI: 10.1016/j.tim.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 10/16/2022]
Abstract
Ocean microbes are fundamental for the functioning of the Earth system. Yet, our understanding of how they are reacting to global change in terms of evolution is limited. Microbes typically grow in large populations and reproduce quickly, which may allow them to rapidly adapt to environmental stressors compared to larger organisms. However, genetic evidence of contemporary evolution in wild microbes is scarce. We must begin coordinated efforts to establish new microbial time-series and explore novel tools, experiments, and data to fill this knowledge gap. The development of coordinated microbial 'genomic' observatories will provide the unprecedented opportunity to track contemporary microbial evolution in the ocean and explore the role of evolution in enabling wild microbes to respond to global change.
Collapse
Affiliation(s)
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Spain.
| |
Collapse
|
5
|
Bishop IW, Anderson SI, Collins S, Rynearson TA. Thermal trait variation may buffer Southern Ocean phytoplankton from anthropogenic warming. GLOBAL CHANGE BIOLOGY 2022; 28:5755-5767. [PMID: 35785458 DOI: 10.1111/gcb.16329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Despite the potential of standing genetic variation to rescue communities and shape future adaptation to climate change, high levels of uncertainty are associated with intraspecific trait variation in marine phytoplankton. Recent model intercomparisons have pointed to an urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change, including Southern Ocean (SO) surface waters, which are among the most rapidly warming habitats on Earth. Because SO phytoplankton growth responses to warming sea surface temperature (SST) are poorly constrained, we developed a high-throughput growth assay to simultaneously examine inter- and intra-specific thermal trait variation in a group of 43 taxonomically diverse and biogeochemically important SO phytoplankton called diatoms. We found significant differential growth performance among species across thermal traits, including optimum and maximum tolerated growth temperatures. Within species, coefficients of variation ranged from 3% to 48% among strains for those same key thermal traits. Using SO SST projections for 2100, we predicted biogeographic ranges that differed by up to 97% between the least and most tolerant strains for each species, illustrating the role that strain-specific differences in temperature response can play in shaping predictions of future phytoplankton biogeography. Our findings revealed the presence and scale of thermal trait variation in SO phytoplankton and suggest these communities may already harbour the thermal trait diversity required to withstand projected 21st-century SST change in the SO even under severe climate forcing scenarios.
Collapse
Affiliation(s)
- Ian W Bishop
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Stephanie I Anderson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Sinead Collins
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
6
|
Cherabier P, Ferrière R. Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production. THE ISME JOURNAL 2022; 16:1130-1139. [PMID: 34864820 PMCID: PMC8940968 DOI: 10.1038/s41396-021-01166-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022]
Abstract
Predicting the response of ocean primary production to climate warming is a major challenge. One key control of primary production is the microbial loop driven by heterotrophic bacteria, yet how warming alters the microbial loop and its function is poorly understood. Here we develop an eco-evolutionary model to predict the physiological response and adaptation through selection of bacterial populations in the microbial loop and how this will impact ecosystem function such as primary production. We find that the ecophysiological response of primary production to warming is driven by a decrease in regenerated production which depends on nutrient availability. In nutrient-poor environments, the loss of regenerated production to warming is due to decreasing microbial loop activity. However, this ecophysiological response can be opposed or even reversed by bacterial adaptation through selection, especially in cold environments: heterotrophic bacteria with lower bacterial growth efficiency are selected, which strengthens the "link" behavior of the microbial loop, increasing both new and regenerated production. In cold and rich environments such as the Arctic Ocean, the effect of bacterial adaptation on primary production exceeds the ecophysiological response. Accounting for bacterial adaptation through selection is thus critically needed to improve models and projections of the ocean primary production in a warming world.
Collapse
Affiliation(s)
- Philippe Cherabier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Université Paris Sciences et Lettres, CNRS, INSERM, Paris, 75005, France.
| | - Régis Ferrière
- grid.462036.5Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Université Paris Sciences et Lettres, CNRS, INSERM, Paris, 75005 France ,grid.134563.60000 0001 2168 186XDepartment of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XInternational Research Laboratory for Interdisciplinary Global Environmental Studies (iGLOBES), CNRS, ENS-PSL University, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
7
|
Olofsson M, Almén AK, Jaatinen K, Scheinin M. OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6524179. [PMID: 35137038 PMCID: PMC8973911 DOI: 10.1093/femsle/fnac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Diatoms commonly set off the spring-bloom in temperate coastal environments. However, their temporal offset may change in regions subject to nutrient enrichment, and by peaking earlier, such populations can maintain their position in the vernal plankton succession. We tested whether the marine keystone diatom Skeletonema marinoi can accomplish this through thermal evolutionary adaptation. Eight geographically separated subpopulations, representing hydromorphologically and climatologically similar inlets displaying a range of trophic states, were compared in a common-garden experiment. At early-spring temperatures, both doubling times and variation coefficients thereof, correlated negatively with the trophic state of the environment of origin, indicating selection for fast growth due to eutrophication. At mid-spring temperatures, the relationships were reversed, indicating selection in the opposite direction. At late-spring temperatures, no significant relationships were detected, suggesting relaxed selection. Subsequent field observations reflected these findings, where blooming temperatures decreased with trophic state. Natural selection thus moves along with eutrophication towards colder temperatures earlier in the spring, favouring genotypes with the capacity to grow fast. The thermal niche shift demonstrated herein may be an evolutionary mechanism essentially leading to trophic changes in the local ecosystem.
Collapse
Affiliation(s)
- Malin Olofsson
- Corresponding author: Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07 Uppsala, Sweden. E-mail:
| | - Anna-Karin Almén
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménintie 260, 10900 Hanko, Finland
| | - Kim Jaatinen
- Nature and Game Management Trust Finland, Degerbyvägen 176, 10160 Degerby, Finland
| | - Matias Scheinin
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménintie 260, 10900 Hanko, Finland
- Department of Environmental Protection, City of Hanko, Santalantie 2, 10900 Hanko, Finland
- Pro Litore, Långgatan 13, 10620 Ekenäs, Finland
| |
Collapse
|
8
|
Faillace CA, Sentis A, Montoya JM. Eco-evolutionary consequences of habitat warming and fragmentation in communities. Biol Rev Camb Philos Soc 2021; 96:1933-1950. [PMID: 33998139 PMCID: PMC7614044 DOI: 10.1111/brv.12732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 01/17/2023]
Abstract
Eco-evolutionary dynamics can mediate species and community responses to habitat warming and fragmentation, two of the largest threats to biodiversity and ecosystems. The eco-evolutionary consequences of warming and fragmentation are typically studied independently, hindering our understanding of their simultaneous impacts. Here, we provide a new perspective rooted in trade-offs among traits for understanding their eco-evolutionary consequences. On the one hand, temperature influences traits related to metabolism, such as resource acquisition and activity levels. Such traits are also likely to have trade-offs with other energetically costly traits, like antipredator defences or dispersal. On the other hand, fragmentation can influence a variety of traits (e.g. dispersal) through its effects on the spatial environment experienced by individuals, as well as properties of populations, such as genetic structure. The combined effects of warming and fragmentation on communities should thus reflect their collective impact on traits of individuals and populations, as well as trade-offs at multiple trophic levels, leading to unexpected dynamics when effects are not additive and when evolutionary responses modulate them. Here, we provide a road map to navigate this complexity. First, we review single-species responses to warming and fragmentation. Second, we focus on consumer-resource interactions, considering how eco-evolutionary dynamics can arise in response to warming, fragmentation, and their interaction. Third, we illustrate our perspective with several example scenarios in which trait trade-offs could result in significant eco-evolutionary dynamics. Specifically, we consider the possible eco-evolutionary consequences of (i) evolution in thermal performance of a species involved in a consumer-resource interaction, (ii) ecological or evolutionary changes to encounter and attack rates of consumers, and (iii) changes to top consumer body size in tri-trophic food chains. In these scenarios, we present a number of novel, sometimes counter-intuitive, potential outcomes. Some of these expectations contrast with those solely based on ecological dynamics, for example, evolutionary responses in unexpected directions for resource species or unanticipated population declines in top consumers. Finally, we identify several unanswered questions about the conditions most likely to yield strong eco-evolutionary dynamics, how better to incorporate the role of trade-offs among traits, and the role of eco-evolutionary dynamics in governing responses to warming in fragmented communities.
Collapse
Affiliation(s)
- Cara A. Faillace
- Theoretical and Experimental Ecology Station, French National Centre of Scientific Research (CNRS), 2 Route du CNRS, Moulis, 09200, France,Address for correspondence (Tel: +33 5 61 04 05 89; )
| | - Arnaud Sentis
- Theoretical and Experimental Ecology Station, French National Centre of Scientific Research (CNRS), 2 Route du CNRS, Moulis, 09200, France,INRAE, Aix Marseille University, UMR RECOVER, 3275 Route de Cézanne- CS 40061, Aix-en-Provence Cedex 5, 13182, France
| | - José M. Montoya
- Theoretical and Experimental Ecology Station, French National Centre of Scientific Research (CNRS), 2 Route du CNRS, Moulis, 09200, France
| |
Collapse
|
9
|
Quispe-Cardenas E, Rogers S. Microbial adaptation and response to high ammonia concentrations and precipitates during anaerobic digestion under psychrophilic and mesophilic conditions. WATER RESEARCH 2021; 204:117596. [PMID: 34530226 DOI: 10.1016/j.watres.2021.117596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
This study explored microbial adaptation to high ammonia concentrations (<1000 mg/L to 4000 mg/L) during anaerobic digestion (AD) under psychrophilic and mesophilic conditions, the latter of which yielded precipitates facilitating investigation of microbial response. The experimental setup was performed at bench-scale using microbial consortia from four different operating anaerobic digesters treating different organic wastes (WW-wastewater sludge, MN-manure, FW- food waste and CO-co-digestion (FW & MN)). Adaptation experiments were conducted with semi-continuous flow mode to resemble large-scale operation. Metagenome and 16S RNA analysis were performed for the first time in a psychrophilic reactor during an ammonia acclimation process. These analyses were also performed in mesophilic reactor exposed to precipitates and high ammonia levels. Diversity reduced when adaptation occurred successfully from 1.1 to 4 g/L of total ammonia nitrogen (TAN) under psychrophilic conditions, while the microbial community became more diverse under mesophilic conditions with ammonia inhibition. We report for the first time Methanocorposculum as a robust hydrogenotrophic methanogen at high ammoniacal concentrations under psychrophilic conditions. Additionally, Methanosarcina was present in low and high ammoniacal concentrations in mesophilic conditions, but there was a shift in species dominance. Methanosarcina barkeri stands out as a more resilient methanogen compared to Methanosarcina mazei, which initially dominated at <1.1 g/L TAN. We also explored the effects of sudden precipitates on methanogenic communities and methane production when they occurred under mesophilic conditions in two reactors. Methane production declined by more than 50% when precipitates occurred and was accompanied by pH reduction and VFA accumulation. Diversity data corroborated that methanogens were severely reduced. These two reactors were not able to recover with 50 days of added operation, demonstrating potential for long-term negative impacts of precipitate formation on AD performance stemming from negative impact to methanogenic communities.
Collapse
Affiliation(s)
| | - Shane Rogers
- Institute for a Sustainable Environment, Clarkson University, Potsdam 13699, NY, USA; Civil and Environmental Engineering, Clarkson University, Potsdam 13699, NY, USA.
| |
Collapse
|
10
|
Collins S, Schaum CE. Growth strategies of a model picoplankter depend on social milieu and pCO 2. Proc Biol Sci 2021; 288:20211154. [PMID: 34315257 PMCID: PMC8316809 DOI: 10.1098/rspb.2021.1154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 11/12/2022] Open
Abstract
Phytoplankton exist in genetically diverse populations, but are often studied as single lineages (single strains), so that interpreting single-lineage studies relies critically on understanding how microbial growth differs with social milieu, defined as the presence or absence of conspecifics. The properties of lineages grown alone often fail to predict the growth of these same lineages in the presence of conspecifics, and this discrepancy points towards an opportunity to improve our understanding of the factors that affect lineage growth rates. We demonstrate that different lineages of a marine picoplankter modulate their maximum lineage growth rate in response to the presence of non-self conspecifics, even when resource competition is effectively absent. This explains why growth rates of lineages in isolation do not reliably predict their growth rates in mixed culture, or the lineage composition of assemblages under conditions of rapid growth. The diversity of growth strategies observed here are consistent with lineage-specific energy allocation that depends on social milieu. Since lineage growth is only one of many traits determining fitness in natural assemblages, we hypothesize that intraspecific variation in growth strategies should be common, with more strategies possible in ameliorated environments that support higher maximum growth rates, such as high CO2 for many marine picoplankton.
Collapse
Affiliation(s)
- Sinead Collins
- Institute of Evolutionary Biology, University of Edinburgh, IEB, Ashworth Laboratories, The King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - C. Elisa Schaum
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Chan WY, Oakeshott JG, Buerger P, Edwards OR, van Oppen MJH. Adaptive responses of free-living and symbiotic microalgae to simulated future ocean conditions. GLOBAL CHANGE BIOLOGY 2021; 27:1737-1754. [PMID: 33547698 DOI: 10.1111/gcb.15546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Marine microalgae are a diverse group of microscopic eukaryotic and prokaryotic organisms capable of photosynthesis. They are important primary producers and carbon sinks but their physiology and persistence are severely affected by global climate change. Powerful experimental evolution technologies are being used to examine the potential of microalgae to respond adaptively to current and predicted future conditions, as well as to develop resources to facilitate species conservation and restoration of ecosystem functions. This review synthesizes findings and insights from experimental evolution studies of marine microalgae in response to elevated temperature and/or pCO2 . Adaptation to these environmental conditions has been observed in many studies of marine dinoflagellates, diatoms and coccolithophores. An enhancement in traits such as growth and photo-physiological performance and an increase in upper thermal limit have been shown to be possible, although the extent and rate of change differ between microalgal taxa. Studies employing multiple monoclonal replicates showed variation in responses among replicates and revealed the stochasticity of mutations. The work to date is already providing valuable information on species' climate sensitivity or resilience to managers and policymakers but extrapolating these insights to ecosystem- and community-level impacts continues to be a challenge. We recommend future work should include in situ experiments, diurnal and seasonal fluctuations, multiple drivers and multiple starting genotypes. Fitness trade-offs, stable versus plastic responses and the genetic bases of the changes also need investigating, and the incorporation of genome resequencing into experimental designs will be invaluable.
Collapse
Affiliation(s)
- Wing Yan Chan
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - John G Oakeshott
- CSIRO Synthetic Biology Future Science Platform, Land & Water, Canberra, ACT, Australia
- Applied Biosciences, Macquarie University, North Ryde, NSW, Australia
| | - Patrick Buerger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
- CSIRO Synthetic Biology Future Science Platform, Land & Water, Canberra, ACT, Australia
| | - Owain R Edwards
- CSIRO Synthetic Biology Future Science Platform, Land & Water, Canberra, ACT, Australia
- Applied Biosciences, Macquarie University, North Ryde, NSW, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
12
|
LaPanse AJ, Krishnan A, Posewitz MC. Adaptive Laboratory Evolution for algal strain improvement: methodologies and applications. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Wolf KKE, Hoppe CJM, Leese F, Weiss M, Rost B, Neuhaus S, Gross T, Kühne N, John U. Revealing environmentally driven population dynamics of an Arctic diatom using a novel microsatellite PoolSeq barcoding approach. Environ Microbiol 2021; 23:3809-3824. [PMID: 33559305 DOI: 10.1111/1462-2920.15424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022]
Abstract
Ecological stability under environmental change is determined by both interspecific and intraspecific processes. Particularly for planktonic microorganisms, it is challenging to follow intraspecific dynamics over space and time. We propose a new method, microsatellite PoolSeq barcoding (MPB), for tracing allele frequency changes in protist populations. We successfully applied this method to experimental community incubations and field samples of the diatom Thalassiosira hyalina from the Arctic, a rapidly changing ecosystem. Validation of the method found compelling accuracy in comparison with established genotyping approaches within different diversity contexts. In experimental and environmental samples, we show that MPB can detect meaningful patterns of population dynamics, resolving allelic stability and shifts within a key diatom species in response to experimental treatments as well as different bloom phases and years. Through our novel MPB approach, we produced a large dataset of populations at different time-points and locations with comparably little effort. Results like this can add insights into the roles of selection and plasticity in natural protist populations under stable experimental but also variable field conditions. Especially for organisms where genotype sampling remains challenging, MPB holds great potential to efficiently resolve eco-evolutionary dynamics and to assess the mechanisms and limits of resilience to environmental stressors.
Collapse
Affiliation(s)
- Klara K E Wolf
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Clara J M Hoppe
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Florian Leese
- Faculty of Biology, Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Martina Weiss
- Faculty of Biology, Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Björn Rost
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,University of Bremen, FB2, Bremen, Germany
| | - Stefan Neuhaus
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Thilo Gross
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,University of Oldenburg, ICBM, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Nancy Kühne
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Uwe John
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| |
Collapse
|
14
|
Bullard EM, Torres I, Ren T, Graeve OA, Roy K. Shell mineralogy of a foundational marine species, Mytilus californianus, over half a century in a changing ocean. Proc Natl Acad Sci U S A 2021; 118:e2004769118. [PMID: 33431664 PMCID: PMC7826377 DOI: 10.1073/pnas.2004769118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Anthropogenic warming and ocean acidification are predicted to negatively affect marine calcifiers. While negative effects of these stressors on physiology and shell calcification have been documented in many species, their effects on shell mineralogical composition remains poorly known, especially over longer time periods. Here, we quantify changes in the shell mineralogy of a foundation species, Mytilus californianus, under 60 y of ocean warming and acidification. Using historical data as a baseline and a resampling of present-day populations, we document a substantial increase in shell calcite and decrease in aragonite. These results indicate that ocean pH and saturation state, not temperature or salinity, play a strong role in mediating the shell mineralogy of this species and reveal long-term changes in this trait under ocean acidification.
Collapse
Affiliation(s)
- Elizabeth M Bullard
- Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA 92093-0116;
| | - Ivan Torres
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Tianqi Ren
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Olivia A Graeve
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Kaustuv Roy
- Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
15
|
Collins S, Boyd PW, Doblin MA. Evolution, Microbes, and Changing Ocean Conditions. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:181-208. [PMID: 31451085 DOI: 10.1146/annurev-marine-010318-095311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Experimental evolution and the associated theory are underutilized in marine microbial studies; the two fields have developed largely in isolation. Here, we review evolutionary tools for addressing four key areas of ocean global change biology: linking plastic and evolutionary trait changes, the contribution of environmental variability to determining trait values, the role of multiple environmental drivers in trait change, and the fate of populations near their tolerance limits. Wherever possible, we highlight which data from marine studies could use evolutionary approaches and where marine model systems can advance our understanding of evolution. Finally, we discuss the emerging field of marine microbial experimental evolution. We propose a framework linking changes in environmental quality (defined as the cumulative effect on population growth rate) with population traits affecting evolutionary potential, in order to understand which evolutionary processes are likely to be most important across a range of locations for different types of marine microbes.
Collapse
Affiliation(s)
- Sinéad Collins
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania 7004, Australia;
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales 2007, Australia;
| |
Collapse
|
16
|
Wolf KKE, Romanelli E, Rost B, John U, Collins S, Weigand H, Hoppe CJM. Company matters: The presence of other genotypes alters traits and intraspecific selection in an Arctic diatom under climate change. GLOBAL CHANGE BIOLOGY 2019; 25:2869-2884. [PMID: 31058393 PMCID: PMC6852494 DOI: 10.1111/gcb.14675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 05/11/2023]
Abstract
Arctic phytoplankton and their response to future conditions shape one of the most rapidly changing ecosystems on the planet. We tested how much the phenotypic responses of strains from the same Arctic diatom population diverge and whether the physiology and intraspecific composition of multistrain populations differs from expectations based on single strain traits. To this end, we conducted incubation experiments with the diatom Thalassiosira hyalina under present-day and future temperature and pCO2 treatments. Six fresh isolates from the same Svalbard population were incubated as mono- and multistrain cultures. For the first time, we were able to closely follow intraspecific selection within an artificial population using microsatellites and allele-specific quantitative PCR. Our results showed not only that there is substantial variation in how strains of the same species cope with the tested environments but also that changes in genotype composition, production rates, and cellular quotas in the multistrain cultures are not predictable from monoculture performance. Nevertheless, the physiological responses as well as strain composition of the artificial populations were highly reproducible within each environment. Interestingly, we only detected significant strain sorting in those populations exposed to the future treatment. This study illustrates that the genetic composition of populations can change on very short timescales through selection from the intraspecific standing stock, indicating the potential for rapid population level adaptation to climate change. We further show that individuals adjust their phenotype not only in response to their physicochemical but also to their biological surroundings. Such intraspecific interactions need to be understood in order to realistically predict ecosystem responses to global change.
Collapse
Affiliation(s)
- Klara K. E. Wolf
- Marine BiogeosciencesAlfred Wegener Institut – Helmholtz‐Zentrum für Polar‐ und MeeresforschungBremerhavenGermany
| | - Elisa Romanelli
- Marine BiogeosciencesAlfred Wegener Institut – Helmholtz‐Zentrum für Polar‐ und MeeresforschungBremerhavenGermany
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCalifornia
| | - Björn Rost
- Marine BiogeosciencesAlfred Wegener Institut – Helmholtz‐Zentrum für Polar‐ und MeeresforschungBremerhavenGermany
- University of BremenBremenGermany
| | - Uwe John
- Marine BiogeosciencesAlfred Wegener Institut – Helmholtz‐Zentrum für Polar‐ und MeeresforschungBremerhavenGermany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB)OldenburgGermany
| | - Sinead Collins
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Hannah Weigand
- Aquatic Ecosystem Research, Faculty of BiologyUniversity of Duisburg‐EssenEssenGermany
| | - Clara J. M. Hoppe
- Marine BiogeosciencesAlfred Wegener Institut – Helmholtz‐Zentrum für Polar‐ und MeeresforschungBremerhavenGermany
| |
Collapse
|
17
|
Beckmann A, Schaum CE, Hense I. Phytoplankton adaptation in ecosystem models. J Theor Biol 2019; 468:60-71. [PMID: 30796940 DOI: 10.1016/j.jtbi.2019.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/03/2018] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ with respect to the underlying conceptual framework. The first one (MuSe-IBM) explicitly considers a population of individuals that are subject to random mutation during cell division. The second is a deterministic multi-compartment model (MuSe-MCM) that considers numerous genotypes of the population and where mutations are treated as a transfer of biomass between neighboring genotypes (i.e., a diffusion of characteristics in trait space). Focusing on the adaptation of optimal temperature, we show model results for different scenarios: a sudden change in environmental temperature, a seasonal variation and high frequency fluctuations. In addition, we investigate the effect of different shapes of thermal reaction norms as well as the role of alternating growth and resting phases on the adaptation process. For all cases, the differences between MuSe-IBM and MuSe-MCM are found to be negligible. Both models produce a number of well-known and plausible features. While the IBM has the advantage of including more mechanistic (i.e., probabilistic) processes, the MCM is much less computationally demanding and therefore suitable for implementation in three-dimensional ecosystem models.
Collapse
Affiliation(s)
| | | | - Inga Hense
- IMF, CEN, Universität Hamburg, Grosse Elbstrasse 133, Germany.
| |
Collapse
|
18
|
Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso JP, Havenhand J, Hutchins DA, Riebesell U, Rintoul MS, Vichi M, Biswas H, Ciotti A, Gao K, Gehlen M, Hurd CL, Kurihara H, McGraw CM, Navarro JM, Nilsson GE, Passow U, Pörtner HO. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review. GLOBAL CHANGE BIOLOGY 2018; 24:2239-2261. [PMID: 29476630 DOI: 10.1111/gcb.14102] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 05/19/2023]
Abstract
Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation.
Collapse
Affiliation(s)
- Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tas., Australia
| | - Sinead Collins
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Sam Dupont
- Department of Biological & Environmental Sciences - Kristineberg, University of Gothenburg, Gothenburg, Sweden
| | | | - Jean-Pierre Gattuso
- Observatoire Océanologique, Laboratoire d'Océanographie, CNRS-UPMC, Villefranche-Sur-Mer, France
| | - Jonathan Havenhand
- Department of Marine Sciences - Tjärnö, University of Gothenburg, Gothenburg, Sweden
| | | | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Max S Rintoul
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tas., Australia
| | - Marcello Vichi
- Marine Research Institute and Department of Oceanography, University of Cape Town, Cape Town, South Africa
| | | | - Aurea Ciotti
- Centro de Biologia Marinha, Universidade de São Paulo, Sao Sebastiao, São Paulo, Brazil
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Marion Gehlen
- Laboratoire des Sciences du Climat et de l'Environnement, Gif-Sur-Yvette, France
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | | | - Christina M McGraw
- Department of Chemistry, NIWA/University of Otago Research Centre for Oceanography, University of Otago, Dunedin, New Zealand
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | | | - Uta Passow
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA, USA
| | - Hans-Otto Pörtner
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| |
Collapse
|
19
|
Godhe A, Rynearson T. The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0399. [PMID: 28717025 DOI: 10.1098/rstb.2016.0399] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 01/27/2023] Open
Abstract
Intraspecific variation in diatoms has been shown to play a key role in species' responses to several important environmental factors such as light, salinity, temperature and nutrients. Furthermore, modelling efforts indicate that this variation within species extends bloom periods, and likely provides sufficient variability in competitive interactions between species under hydrographically variable conditions. The intraspecific variation most likely corresponds to optimal fitness in temporary microhabitats and may help to explain the paradox of the plankton. Here, we examine the implications of intraspecific variation for the ecology and success of diatoms in general and emphasize the potential implications for our understanding of carbon metabolism in these important organisms. Additionally, data from palaeoecological studies have the potential for evaluating genetic variation through past climate changes, going thousands of years back in time. We suggest pathways for future research including the adoption of multiple strains of individual species into studies of diatom carbon metabolism, to refine our understanding of the variation within and between species, and the inclusion of experimental evolution as a tool for understanding potential evolutionary responses of diatom carbon metabolism to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Anna Godhe
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Tatiana Rynearson
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI 02882, USA
| |
Collapse
|
20
|
Ecoevolutionary Dynamics of Carbon Cycling in the Anthropocene. Trends Ecol Evol 2018; 33:213-225. [DOI: 10.1016/j.tree.2017.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 11/17/2022]
|
21
|
Rapid evolution of highly variable competitive abilities in a key phytoplankton species. Nat Ecol Evol 2018; 2:611-613. [PMID: 29434348 DOI: 10.1038/s41559-018-0474-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/11/2018] [Indexed: 11/09/2022]
Abstract
Climate change challenges plankton communities, but evolutionary adaptation could mitigate the potential impacts. Here, we tested with the phytoplankton species Emiliania huxleyi whether adaptation to a stressor under laboratory conditions leads to equivalent fitness gains in a more natural environment. We found that fitness advantages that had evolved under laboratory conditions were masked by pleiotropic effects in natural plankton communities. Moreover, new genotypes with highly variable competitive abilities evolved on timescales significantly shorter than climate change.
Collapse
|
22
|
Brennan GL, Colegrave N, Collins S. Evolutionary consequences of multidriver environmental change in an aquatic primary producer. Proc Natl Acad Sci U S A 2017; 114:9930-9935. [PMID: 28847969 PMCID: PMC5604004 DOI: 10.1073/pnas.1703375114] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Climate change is altering aquatic environments in a complex way, and simultaneous shifts in many properties will drive evolutionary responses in primary producers at the base of both freshwater and marine ecosystems. So far, evolutionary studies have shown how changes in environmental drivers, either alone or in pairs, affect the evolution of growth and other traits in primary producers. Here, we evolve a primary producer in 96 unique environments with different combinations of between one and eight environmental drivers to understand how evolutionary responses to environmental change depend on the identity and number of drivers. Even in multidriver environments, only a few dominant drivers explain most of the evolutionary changes in population growth rates. Most populations converge on the same growth rate by the end of the evolution experiment. However, populations adapt more when these dominant drivers occur in the presence of other drivers. This is due to an increase in the intensity of selection in environments with more drivers, which are more likely to include dominant drivers. Concurrently, many of the trait changes that occur during the initial short-term response to both single and multidriver environmental change revert after about 450 generations of evolution. In future aquatic environments, populations will encounter differing combinations of drivers and intensities of selection, which will alter the adaptive potential of primary producers. Accurately gauging the intensity of selection on key primary producers will help in predicting population size and trait evolution at the base of aquatic food webs.
Collapse
Affiliation(s)
- Georgina L Brennan
- Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Nick Colegrave
- Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Sinéad Collins
- Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom;
| |
Collapse
|
23
|
Rillig MC, Muller LAH, Lehmann A. Soil aggregates as massively concurrent evolutionary incubators. THE ISME JOURNAL 2017; 11:1943-1948. [PMID: 28409772 PMCID: PMC5563948 DOI: 10.1038/ismej.2017.56] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Plant Ecology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Ludo AH Muller
- Freie Universität Berlin, Institut für Biologie, Plant Ecology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Anika Lehmann
- Freie Universität Berlin, Institut für Biologie, Plant Ecology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| |
Collapse
|
24
|
Raven JA, Beardall J, Sánchez-Baracaldo P. The possible evolution and future of CO2-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3701-3716. [PMID: 28505361 DOI: 10.1093/jxb/erx110] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Functional Plant Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Building 18, Clayton Campus, Vic 3800, Australia
| | | |
Collapse
|
25
|
|
26
|
Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME JOURNAL 2017; 11:2181-2194. [PMID: 28509909 DOI: 10.1038/ismej.2017.69] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 01/01/2023]
Abstract
Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of Escherichia coli in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria's mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.
Collapse
|
27
|
Abstract
Ever since Darwin, the role of natural selection in shaping the morphological, physiological, and behavioral adaptations of animals and plants across generations has been central to understanding life and its diversity. New discoveries have shown with increasing precision how genetic, molecular, and biochemical processes produce and express those organismal features during an individual's lifetime. When it comes to microorganisms, however, understanding the role of natural selection in producing adaptive solutions has historically been, and sometimes continues to be, contentious. This tension is curious because microbes enable one to observe the power of adaptation by natural selection with exceptional rigor and clarity, as exemplified by the burgeoning field of experimental microbial evolution. I trace the development of this field, describe an experiment with Escherichia coli that has been running for almost 30 years, and highlight other experiments in which natural selection has led to interesting dynamics and adaptive changes in microbial populations.
Collapse
Affiliation(s)
- Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
28
|
Algueró-Muñiz M, Alvarez-Fernandez S, Thor P, Bach LT, Esposito M, Horn HG, Ecker U, Langer JAF, Taucher J, Malzahn AM, Riebesell U, Boersma M. Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment. PLoS One 2017; 12:e0175851. [PMID: 28410436 PMCID: PMC5391960 DOI: 10.1371/journal.pone.0175851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
Ocean acidification may affect zooplankton directly by decreasing in pH, as well as indirectly via trophic pathways, where changes in carbon availability or pH effects on primary producers may cascade up the food web thereby altering ecosystem functioning and community composition. Here, we present results from a mesocosm experiment carried out during 113 days in the Gullmar Fjord, Skagerrak coast of Sweden, studying plankton responses to predicted end-of-century pCO2 levels. We did not observe any pCO2 effect on the diversity of the mesozooplankton community, but a positive pCO2 effect on the total mesozooplankton abundance. Furthermore, we observed species-specific sensitivities to pCO2 in the two major groups in this experiment, copepods and hydromedusae. Also stage-specific pCO2 sensitivities were detected in copepods, with copepodites being the most responsive stage. Focusing on the most abundant species, Pseudocalanus acuspes, we observed that copepodites were significantly more abundant in the high-pCO2 treatment during most of the experiment, probably fuelled by phytoplankton community responses to high-pCO2 conditions. Physiological and reproductive output was analysed on P. acuspes females through two additional laboratory experiments, showing no pCO2 effect on females' condition nor on egg hatching. Overall, our results suggest that the Gullmar Fjord mesozooplankton community structure is not expected to change much under realistic end-of-century OA scenarios as used here. However, the positive pCO2 effect detected on mesozooplankton abundance could potentially affect biomass transfer to higher trophic levels in the future.
Collapse
Affiliation(s)
- María Algueró-Muñiz
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Santiago Alvarez-Fernandez
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Peter Thor
- Norwegian Polar Institute, Framcentre, Tromsø, Norway
| | - Lennart T. Bach
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Mario Esposito
- National Oceanography Centre (NOC) University of Southampton, Southampton, United Kingdom
| | - Henriette G. Horn
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Ursula Ecker
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Julia A. F. Langer
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Jan Taucher
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Arne M. Malzahn
- Sintef Ocean AS, Marine Resource Technology, Trondheim, Norway
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Maarten Boersma
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
- FB2, University of Bremen, Bremen, Germany
| |
Collapse
|
29
|
Grear JS, Rynearson TA, Montalbano AL, Govenar B, Menden-Deuer S. pCO2 effects on species composition and growth of an estuarine phytoplankton community. ESTUARINE, COASTAL AND SHELF SCIENCE 2017; 190:40-49. [PMID: 30820069 PMCID: PMC6390971 DOI: 10.1016/j.ecss.2017.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effects of ongoing changes in ocean carbonate chemistry on plankton ecology have important implications for food webs and biogeochemical cycling. However, conflicting results have emerged regarding species-specific responses to pCO2 enrichment and thus community responses have been difficult to predict. To assess community level effects (e.g., production) of altered carbonate chemistry, studies are needed that capitalize on the benefits of controlled experiments but also retain features of intact ecosystems that may exacerbate or ameliorate the effects observed in single-species or single cohort experiments. We performed incubations of natural plankton communities from Narragansett Bay, RI, USA in winter at ambient bay temperatures (5-13 °C), light and nutrient concentrations under three levels of controlled and constant CO2 concentrations, simulating past, present and future conditions at mean pCO2 levels of 224, 361, and 724 μatm respectively. Samples for carbonate analysis, chlorophyll a, plankton size-abundance, and plankton species composition were collected daily and phytoplankton growth rates in three different size fractions (<5, 5-20, and >20 μm) were measured at the end of the 7-day incubation period. Community composition changed during the incubation period with major increases in relative diatom abundance, which were similar across pCO2 treatments. At the end of the experiment, 24-hr growth responses to pCO2 levels varied as a function of cell size. The smallest size fraction (<5 μm) grew faster at the elevated pCO2 level. In contrast, the 5-20 μm size fraction grew fastest in the Present treatment and there were no significant differences in growth rate among treatments in the > 20 μm size fraction. Cell size distribution shifted toward smaller cells in both the Past and Future treatments but remained unchanged in the Present treatment. Similarity in Past and Future treatments for cell size distribution and growth rate (5-20 μm size fraction) illustrate non-monotonic effects of increasing pCO2 on ecological indicators and may be related to opposing physiological effects of high CO2 and low pH both within and among species. Interaction of these effects with other factors (e.g., nutrients, light, temperature, grazing, initial species composition) may explain variability among published studies. The absence of clear treatment-specific effects at the community level suggest that extrapolation of species-specific responses or experiments with only present day and future pCO2 treatments levels would produce misleading predictions of ocean acidification impacts on plankton production.
Collapse
Affiliation(s)
- Jason S Grear
- Atlantic Ecology Division, US Environmental Protection Agency, 27 Tarzwell Dr, Narragansett, RI 02882, USA
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, South Ferry Rd, Narragansett, RI, 02882, USA
| | - Amanda L Montalbano
- Graduate School of Oceanography, University of Rhode Island, South Ferry Rd, Narragansett, RI, 02882, USA
| | - Breea Govenar
- Biology Department, Rhode Island College, Providence, RI 02098, USA
| | - Susanne Menden-Deuer
- Graduate School of Oceanography, University of Rhode Island, South Ferry Rd, Narragansett, RI, 02882, USA
| |
Collapse
|
30
|
Collins S. Growth rate evolution in improved environments under Prodigal Son dynamics. Evol Appl 2016; 9:1179-1188. [PMID: 27695525 PMCID: PMC5039330 DOI: 10.1111/eva.12403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/06/2016] [Indexed: 01/17/2023] Open
Abstract
I use an individual-based model to investigate the evolution of cell division rates in asexual populations under chronic environmental enrichment. I show that maintaining increased growth rates over hundreds of generations following environmental improvement can be limited by increases in cellular damage associated with more rapid reproduction. In the absence of further evolution to either increase damage tolerance or decrease the cost of repair or rate of damage, environmental improvement does not reliably lead to long-term increases in reproductive rate in microbes. Here, more rapid cell division rates also increases damage, leading to selection for damage avoidance or repair, and a subsequent decrease in population growth, which I call Prodigal Son dynamics, because the consequences of 'living fast' force a return to ancestral growth rates. Understanding the conditions under which environmental enrichment is expected to sustainably increase cell division rates is important in applications that require rapid cell division (e.g. biofuel reactors) or seek to avoid the emergence of rapid cell division rates (controlling biofouling).
Collapse
Affiliation(s)
- Sinéad Collins
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
31
|
Bach LT, Taucher J, Boxhammer T, Ludwig A, Achterberg EP, Algueró-Muñiz M, Anderson LG, Bellworthy J, Büdenbender J, Czerny J, Ericson Y, Esposito M, Fischer M, Haunost M, Hellemann D, Horn HG, Hornick T, Meyer J, Sswat M, Zark M, Riebesell U. Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations. PLoS One 2016; 11:e0159068. [PMID: 27525979 PMCID: PMC4985126 DOI: 10.1371/journal.pone.0159068] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022] Open
Abstract
Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2) leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes–summarized by the term ocean acidification (OA)–could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (~380 μatm pCO2), whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (~760 μatm pCO2). We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a “long-term mesocosm” approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1) Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2) Plankton communities fueled by regenerated nutrients may be more responsive to changing carbonate chemistry than those having access to high inorganic nutrient concentrations and may deserve particular attention in future studies.
Collapse
Affiliation(s)
- Lennart T. Bach
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- * E-mail:
| | - Jan Taucher
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Tim Boxhammer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Andrea Ludwig
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | - María Algueró-Muñiz
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Leif G. Anderson
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jessica Bellworthy
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Ocean and Earth Sciences, University of Southampton, Southampton, United Kingdom
| | - Jan Büdenbender
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jan Czerny
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ylva Ericson
- The University Centre in Svalbard (UNIS), Longyearbyen, Norway
| | - Mario Esposito
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Ocean and Earth Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Mathias Haunost
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Dana Hellemann
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Henriette G. Horn
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Thomas Hornick
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Experimental Limnology, Stechlin, Germany
| | - Jana Meyer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Michael Sswat
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Maren Zark
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Carl von Ossietzky University, Oldenburg, Germany
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
32
|
Abstract
Rising atmospheric CO2 concentrations are likely to affect many ecosystems worldwide. However, to what extent elevated CO2 will induce evolutionary changes in photosynthetic organisms is still a major open question. Here, we show rapid microevolutionary adaptation of a harmful cyanobacterium to changes in inorganic carbon (Ci) availability. We studied the cyanobacterium Microcystis, a notorious genus that can develop toxic cyanobacterial blooms in many eutrophic lakes and reservoirs worldwide. Microcystis displays genetic variation in the Ci uptake systems BicA and SbtA, where BicA has a low affinity for bicarbonate but high flux rate, and SbtA has a high affinity but low flux rate. Our laboratory competition experiments show that bicA + sbtA genotypes were favored by natural selection at low CO2 levels, but were partially replaced by the bicA genotype at elevated CO2 Similarly, in a eutrophic lake, bicA + sbtA strains were dominant when Ci concentrations were depleted during a dense cyanobacterial bloom, but were replaced by strains with only the high-flux bicA gene when Ci concentrations increased later in the season. Hence, our results provide both laboratory and field evidence that increasing carbon concentrations induce rapid adaptive changes in the genotype composition of harmful cyanobacterial blooms.
Collapse
|
33
|
Jin P, Gao K. Reduced resilience of a globally distributed coccolithophore to ocean acidification: Confirmed up to 2000 generations. MARINE POLLUTION BULLETIN 2016; 103:101-108. [PMID: 26746379 DOI: 10.1016/j.marpolbul.2015.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Ocean acidification (OA), induced by rapid anthropogenic CO2 rise and its dissolution in seawater, is known to have consequences for marine organisms. However, knowledge on the evolutionary responses of phytoplankton to OA has been poorly studied. Here we examined the coccolithophore Gephyrocapsa oceanica, while growing it for 2000 generations under ambient and elevated CO2 levels. While OA stimulated growth in the earlier selection period (from generations ~700 to ~1550), it reduced it in the later selection period up to 2000 generations. Similarly, stimulated production of particulate organic carbon and nitrogen reduced with increasing selection period and decreased under OA up to 2000 generations. The specific adaptation of growth to OA disappeared in generations 1700 to 2000 when compared with that at 1000 generations. Both phenotypic plasticity and fitness decreased within selection time, suggesting that the species' resilience to OA decreased after 2000 generations under high CO2 selection.
Collapse
Affiliation(s)
- Peng Jin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
34
|
Harvey EL, Menden-Deuer S, Rynearson TA. Persistent Intra-Specific Variation in Genetic and Behavioral Traits in the Raphidophyte, Heterosigma akashiwo. Front Microbiol 2015; 6:1277. [PMID: 26635748 PMCID: PMC4658419 DOI: 10.3389/fmicb.2015.01277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/31/2015] [Indexed: 01/04/2023] Open
Abstract
Motility is a key trait that phytoplankton utilize to navigate the heterogeneous marine environment. Quantifying both intra- and inter-specific variability in trait distributions is key to utilizing traits to distinguish groups of organisms and assess their ecological function. Because examinations of intra-specific variability are rare, here we measured three-dimensional movement behaviors and distribution patterns of seven genetically distinct strains of the ichthyotoxic raphidophyte, Heterosigma akashiwo. Strains were collected from different ocean basins but geographic distance between isolates was a poor predictor of genetic relatedness among strains. Observed behaviors were significantly different among all strains examined, with swimming speed and turning rate ranging from 33–115 μm s-1 and 41–110° s-1, respectively. Movement behaviors were consistent over at least 12 h, and in one case identical when measured several years apart. Movement behaviors were not associated with a specific cell size, carbon content, genetic relatedness, or geographic distance. These strain-specific behaviors resulted in algal populations that had distinct vertical distributions in the experimental tank. This study demonstrates that the traits of genetic identity and motility can provide resolution to distinguish strains of species, where variations in size or biomass are insufficient characteristics.
Collapse
Affiliation(s)
- Elizabeth L Harvey
- Skidaway Institute of Oceanography, University of Georgia, Savannah GA, USA
| | - Susanne Menden-Deuer
- Graduate School of Oceanography, University of Rhode Island, Narragansett RI, USA
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett RI, USA
| |
Collapse
|
35
|
Veresoglou SD, Halley JM, Rillig MC. Extinction risk of soil biota. Nat Commun 2015; 6:8862. [PMID: 26593272 PMCID: PMC4673489 DOI: 10.1038/ncomms9862] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 10/09/2015] [Indexed: 01/01/2023] Open
Abstract
No species lives on earth forever. Knowing when and why species go extinct is crucial for a complete understanding of the consequences of anthropogenic activity, and its impact on ecosystem functioning. Even though soil biota play a key role in maintaining the functioning of ecosystems, the vast majority of existing studies focus on aboveground organisms. Many questions about the fate of belowground organisms remain open, so the combined effort of theorists and applied ecologists is needed in the ongoing development of soil extinction ecology.
Collapse
Affiliation(s)
- Stavros D. Veresoglou
- Freie Universität Berlin, Institut für Biologie, Plant Ecology, Altensteinstrasse 6, D-14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - John M. Halley
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Matthias C. Rillig
- Freie Universität Berlin, Institut für Biologie, Plant Ecology, Altensteinstrasse 6, D-14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| |
Collapse
|
36
|
Environmental stability affects phenotypic evolution in a globally distributed marine picoplankton. ISME JOURNAL 2015; 10:75-84. [PMID: 26125683 DOI: 10.1038/ismej.2015.102] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 11/08/2022]
Abstract
Marine phytoplankton can evolve rapidly when confronted with aspects of climate change because of their large population sizes and fast generation times. Despite this, the importance of environment fluctuations, a key feature of climate change, has received little attention-selection experiments with marine phytoplankton are usually carried out in stable environments and use single or few representatives of a species, genus or functional group. Here we investigate whether and by how much environmental fluctuations contribute to changes in ecologically important phytoplankton traits such as C:N ratios and cell size, and test the variability of changes in these traits within the globally distributed species Ostreococcus. We have evolved 16 physiologically distinct lineages of Ostreococcus at stable high CO2 (1031±87 μatm CO2, SH) and fluctuating high CO2 (1012±244 μatm CO2, FH) for 400 generations. We find that although both fluctuation and high CO2 drive evolution, FH-evolved lineages are smaller, have reduced C:N ratios and respond more strongly to further increases in CO2 than do SH-evolved lineages. This indicates that environmental fluctuations are an important factor to consider when predicting how the characteristics of future phytoplankton populations will have an impact on biogeochemical cycles and higher trophic levels in marine food webs.
Collapse
|