1
|
Später T, Del Rio P, Shelest O, Wechsler JT, Kaneda G, Chavez M, Sheyn J, Yu V, Metzger W, Huang D, Metzger M, Tawackoli W, Sheyn D. Collagen scaffold-seeded iTenocytes accelerate the healing and functional recovery of Achilles tendon defects in a rat model. Front Bioeng Biotechnol 2024; 12:1407729. [PMID: 39713100 PMCID: PMC11658981 DOI: 10.3389/fbioe.2024.1407729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Tendon injuries represent an ongoing challenge in clinical practice due to poor regenerative capacity, structure, and biomechanical function recovery of ruptured tendons. This study is focused on the assessment of a novel strategy to repair ruptured Achilles tendons in a Nude rat model using stem cell-seeded biomaterial. Methods Specifically, we have used induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) overexpressing the early tendon marker Scleraxis (SCX, iMSCSCX+, iTenocytes) in combination with an elastic collagen scaffold. Achilles tendon defects in Nude rat models were created by isolating the tendon and excising 3 mm of the midsection. The Achilles tendon defects were then repaired with iTenocyte-seeded scaffolds, unseeded scaffolds, or suture only and compared to native Nude rat tendon tissue using gait analyses, biomechanical testing, histology, and immunohistochemistry. Results The results show faster functional recovery of gait in iTenocyte-seeded scaffold group comparing to scaffold only and suture only groups. Both iTenocyte-seeded scaffold and scaffold only treatment groups had improved biomechanical properties when compared to suture only treatment group, however no statistically significant difference was found in comparing the cell seeding scaffold an scaffold only group in terms of biomechanical properties. Immunohistochemistry staining further demonstrated that iTenocytes successfully populated the collagen scaffolds and survived 9 weeks after implantation in vivo. Additionally, the repaired tissue of iTenocyte-treated injuries exhibited a more organized structure when compared to tendon defects that were repaired only with suturing or unseeded scaffolds. Conclusion We suggest that iTenocyte-seeded DuRepair™ collagen scaffold can be used as potential treatment to regenerate the tendon tissue biomechanically and functionally.
Collapse
Affiliation(s)
- Thomas Später
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Patricia Del Rio
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jacob T. Wechsler
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Melissa Chavez
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Victoria Yu
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Dave Huang
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Melodie Metzger
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
2
|
Liang W, Zhou C, Meng Y, Fu L, Zeng B, Liu Z, Ming W, Long H. An overview of the material science and knowledge of nanomedicine, bioscaffolds, and tissue engineering for tendon restoration. Front Bioeng Biotechnol 2023; 11:1199220. [PMID: 37388772 PMCID: PMC10306281 DOI: 10.3389/fbioe.2023.1199220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Tendon wounds are a worldwide health issue affecting millions of people annually. Due to the characteristics of tendons, their natural restoration is a complicated and lengthy process. With the advancement of bioengineering, biomaterials, and cell biology, a new science, tissue engineering, has developed. In this field, numerous ways have been offered. As increasingly intricate and natural structures resembling tendons are produced, the results are encouraging. This study highlights the nature of the tendon and the standard cures that have thus far been utilized. Then, a comparison is made between the many tendon tissue engineering methodologies proposed to date, concentrating on the ingredients required to gain the structures that enable appropriate tendon renewal: cells, growth factors, scaffolds, and scaffold formation methods. The analysis of all these factors enables a global understanding of the impact of each component employed in tendon restoration, thereby shedding light on potential future approaches involving the creation of novel combinations of materials, cells, designs, and bioactive molecules for the restoration of a functional tendon.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, Zhejiang, China
| | - Yanfeng Meng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| |
Collapse
|
3
|
Bianchi E, Ruggeri M, Vigani B, Del Favero E, Ricci C, Boselli C, Icaro Cornaglia A, Viseras C, Rossi S, Sandri G. Cerium Oxide and Chondroitin Sulfate Doped Polyurethane Scaffold to Bridge Tendons. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37220144 DOI: 10.1021/acsami.3c06144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tendon disorders are common medical conditions, which can be greatly debilitating as they are often accompanied by great pain and inflammation. The techniques used nowadays for the treatment of chronic tendon injuries often involve surgery. However, one critical aspect of this procedure involves the scar tissue, characterized by mechanical properties that vary from healthy tissue, rendering the tendons inclined to reinjury or rupture. Synthetic polymers, such as thermoplastic polyurethane, are of special interest in the tissue engineering field as they allow the production of scaffolds with controlled elastic and mechanical properties, which could guarantee an effective support during the new tissue formation. The aim of this work was the design and the development of tubular nanofibrous scaffolds based on thermoplastic polyurethane and enriched with cerium oxide nanoparticles and chondroitin sulfate. The scaffolds were characterized by remarkable mechanical properties, especially when tubular aligned, reaching values comparable to the ones of the native tendons. A weight loss test was performed, suggesting a degradation in prolonged times. In particular, the scaffolds maintained their morphology and also remarkable mechanical properties after 12 weeks of degradation. The scaffolds promoted the cell adhesion and proliferation, in particular when in aligned conformation. Finally, the systems in vivo did not cause any inflammatory effect, representing interesting platforms for the regeneration of injured tendons.
Collapse
Affiliation(s)
- Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA Viale Fratelli Cervi 93, Segrate 20090, Italy
| | - Caterina Ricci
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA Viale Fratelli Cervi 93, Segrate 20090, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, Pavia 27100 , Italy
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada 18071, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
4
|
Ruhela A, Bhatt A, Rath SN, Sharma CS. Biomimicking tendon by electrospinning
tissue‐derived
decellularized extracellular matrix for tendon tissue engineering. J Appl Polym Sci 2022. [DOI: 10.1002/app.53368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Aakanksha Ruhela
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering Indian Institute of Technology Hyderabad Kandi Telangana India
| | - Akshay Bhatt
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering Indian Institute of Technology Hyderabad Kandi Telangana India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering Indian Institute of Technology Hyderabad Kandi Telangana India
| | - Chandra Shekhar Sharma
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering Indian Institute of Technology Hyderabad Kandi Telangana India
| |
Collapse
|
5
|
Rajasekaran RB, Ashford R, Stevenson JD, Pollock R, Rankin KS, Patton JT, Gupta S, Cosker TDA. Reconstruction after resection of a proximal humeral tumour : what challenges remain? Bone Joint J 2022; 104-B:3-5. [PMID: 34969269 DOI: 10.1302/0301-620x.104b1.bjj-2021-1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Raja B Rajasekaran
- Department of Orthopaedics, University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford, UK
| | - Robert Ashford
- East Midlands Sarcoma Service, Nottingham University Hospitals, Nottingham, UK
| | | | - Rob Pollock
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Kenneth S Rankin
- North of England Bone and Soft Tissue Tumour Service, Newcastle upon Tyne University Hospitals, Newcastle upon Tyne, UK
| | | | - Sanjay Gupta
- Glasgow Royal Infirmary, University of Glasgow, Glasgow, UK
| | - Thomas D A Cosker
- Department of Orthopaedics, University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford, UK
| |
Collapse
|
6
|
Tendon Tissue Repair in Prospective of Drug Delivery, Regenerative Medicines, and Innovative Bioscaffolds. Stem Cells Int 2021; 2021:1488829. [PMID: 34824586 PMCID: PMC8610661 DOI: 10.1155/2021/1488829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
The natural healing capacity of the tendon tissue is limited due to the hypovascular and cellular nature of this tissue. So far, several conventional approaches have been tested for tendon repair to accelerate the healing process, but all these approaches have their own advantages and limitations. Regenerative medicine and tissue engineering are interdisciplinary fields that aspire to develop novel medical devices, innovative bioscaffold, and nanomedicine, by combining different cell sources, biodegradable materials, immune modulators, and nanoparticles for tendon tissue repair. Different studies supported the idea that bioscaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potentiality. However, available data are lacking to allow definitive conclusion on the use of bioscaffolds for tendon regeneration and repairing. In this review, we provide an overview of the current basic understanding and material science in the field of bioscaffolds, nanomedicine, and tissue engineering for tendon repair.
Collapse
|
7
|
Cook JA, Baldwin M, Cooper C, Nagra NS, Crocker JC, Glaze M, Greenall G, Rangan A, Kottam L, Rees JL, Farrar-Hockley D, Merritt N, Hopewell S, Beard D, Thomas M, Dritsaki M, Carr AJ. Findings from the patch augmented rotator cuff surgery (PARCS) feasibility study. Pilot Feasibility Stud 2021; 7:163. [PMID: 34416915 PMCID: PMC8377837 DOI: 10.1186/s40814-021-00899-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Background A rotator cuff tear is a common disabling shoulder problem. Symptoms include pain, weakness, lack of mobility and sleep disturbance. Many patients require surgery to repair the tear; however, there is a high failure rate. There is a pressing need to improve the outcome of rotator cuff surgery. The use of patch augmentation to provide support to the healing process and improve patient outcomes holds new promise. Different materials (e.g. human/animal skin or intestine tissue, and completely synthetic materials) and processes (e.g. woven or a mesh) have been used to produce patches. However, clinical evidence on their use is limited. The patch augmented rotator cuff surgery (PARCS) feasibility study aimed to determine the design of a definitive randomised controlled trial (RCT) assessing the effectiveness and cost-effectiveness of a patch to augment surgical repair of the rotator cuff that is both acceptable to stakeholders and feasible. Methods A mixed methods feasibility study of conducing a subsequent RCT. The project involved six stages: a systematic review of clinical evidence; a survey of the British Elbow and Shoulder Society’s (BESS) surgical membership; a survey of surgeon trialists; focus groups and interviews with stakeholders; a two-round Delphi study administered via online questionnaires and a 2-day consensus meeting. Results The BESS surgeons’ survey identified a variety of patches in use (105 (21%) responses received). Twenty-four surgeons (77%) completed the trialist survey relating to trial design. Four focus groups were conducted involving 24 stakeholders. Twenty-nine (67% of invited) individuals took part in the Delphi. Differing views were held on a number of aspects including the appropriate patient population for trial participation. Agreement on the key research questions and the outline of two potential RCTs were achieved through the Delphi study and the consensus meeting. Conclusions Randomised comparisons of on-lay patch use for completed rotator cuff repairs, and bridging patch use for partial rotator cuff repairs were identified as areas for further research. The value of an observational study to assess safety concerns of patch use was also highlighted. The main limitation was that the findings were influenced by the participants, who might not necessarily reflect all stakeholders.
Collapse
Affiliation(s)
- Jonathan A Cook
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Mathew Baldwin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Cushla Cooper
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Navraj S Nagra
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Joanna C Crocker
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Molly Glaze
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Gemma Greenall
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Amar Rangan
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.,The James Cook University Hospital, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Lucksy Kottam
- The James Cook University Hospital, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Jonathan L Rees
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Dair Farrar-Hockley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Naomi Merritt
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sally Hopewell
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - David Beard
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Melina Dritsaki
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Cook JA, Baldwin M, Cooper C, Nagra NS, Crocker JC, Glaze M, Greenall G, Rangan A, Kottam L, Rees JL, Farrar-Hockley D, Merritt N, Hopewell S, Beard D, Thomas M, Dritsaki M, Carr AJ. Patch augmentation surgery for rotator cuff repair: the PARCS mixed-methods feasibility study. Health Technol Assess 2021; 25:1-138. [PMID: 33646096 PMCID: PMC7958078 DOI: 10.3310/hta25130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A rotator cuff tear is a common, disabling shoulder problem. Symptoms may include pain, weakness, lack of shoulder mobility and sleep disturbance. Many patients require surgery to repair the tear; however, there is a high failure rate. There is a need to improve the outcome of rotator cuff surgery, and the use of patch augmentation (on-lay or bridging) to provide support to the healing process and improve patient outcomes holds promise. Patches have been made using different materials (e.g. human/animal skin or tissue and synthetic materials) and processes (e.g. woven or mesh). OBJECTIVES The aim of the Patch Augmented Rotator Cuff Surgery (PARCS) feasibility study was to determine the design of a definitive randomised controlled trial assessing the clinical effectiveness and cost-effectiveness of a patch to augment surgical repair of the rotator cuff that is both acceptable to stakeholders and feasible. DESIGN A mixed-methods feasibility study of a randomised controlled trial. DATA SOURCES MEDLINE, EMBASE and the Cochrane Library databases were searched between April 2006 and August 2018. METHODS The project involved six stages: a systematic review of clinical evidence, a survey of the British Elbow and Shoulder Society's surgical membership, a survey of surgeon triallists, focus groups and interviews with stakeholders, a two-round Delphi study administered via online questionnaires and a 2-day consensus meeting. The various stakeholders (including patients, surgeons and industry representatives) were involved in stages 2-6. RESULTS The systematic review comprised 52 studies; only 15 were comparative and, of these, 11 were observational (search conducted in August 2018). These studies were typically small (median number of participants 26, range 5-152 participants). There was some evidence to support the use of patches, although most comparative studies were at a serious risk of bias. Little to no published clinical evidence was available for a number of patches in clinical use. The membership survey of British Elbow and Shoulder surgeons [105 (21%) responses received] identified a variety of patches in use. Twenty-four surgeons (77%) completed the triallist survey relating to trial design. Four focus groups were conducted, involving 24 stakeholders. Differing views were held on a number of aspects of trial design, including the appropriate patient population (e.g. patient age) to participate. Agreement on the key research questions and the outline of two potential randomised controlled trials were achieved through the Delphi study [29 (67%)] and the consensus meeting that 22 participants attended. LIMITATIONS The main limitation was that the findings were influenced by the participants, who are not necessarily representative of the views of the relevant stakeholder groups. CONCLUSION The need for further clinical studies was clear, particularly given the range and number of different patches available. FUTURE WORK Randomised comparisons of on-lay patch use for completed rotator cuff repairs and bridging patch use for partial rotator cuff repairs were identified as areas for further research. The value of an observational study to assess safety concerns of patch use was also highlighted. These elements are included in the trial designs proposed in this study. STUDY REGISTRATION The systematic review is registered as PROSPERO CRD42017057908. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 25, No. 13. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Jonathan A Cook
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Mathew Baldwin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Cushla Cooper
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Navraj S Nagra
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Joanna C Crocker
- Health Experiences Research Group, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, UK
| | - Molly Glaze
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Gemma Greenall
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Amar Rangan
- The James Cook University Hospital, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Lucksy Kottam
- The James Cook University Hospital, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Jonathan L Rees
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Dair Farrar-Hockley
- Patient representative, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Naomi Merritt
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sally Hopewell
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - David Beard
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Melina Dritsaki
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
The Role of Scaffolds in Tendon Tissue Engineering. J Funct Biomater 2020; 11:jfb11040078. [PMID: 33139620 PMCID: PMC7712651 DOI: 10.3390/jfb11040078] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Tendons are unique forms of connective tissue aiming to transmit the mechanical force of muscle contraction to the bones. Tendon injury may be due to direct trauma or might be secondary to overuse injury and age-related degeneration, leading to inflammation, weakening and subsequent rupture. Current traditional treatment strategies focus on pain relief, reduction of the inflammation and functional restoration. Tendon repair surgery can be performed in people with tendon injuries to restore the tendon's function, with re-rupture being the main potential complication. Novel therapeutic approaches that address the underlying pathology of the disease is warranted. Scaffolds represent a promising solution to the challenges associated with tendon tissue engineering. The ideal scaffold for tendon tissue engineering needs to exhibit physiologically relevant mechanical properties and to facilitate functional graft integration by promoting the regeneration of the native tissue.
Collapse
|
10
|
Haase T, Klopfleisch R, Krost A, Sauter T, Kratz K, Peter J, Jung F, Lendlein A, Zohlnhöfer D, Rüder C. In vivo biocompatibility study of degradable homo- versus multiblock copolymers and their (micro)structure compared to an established biomaterial. Clin Hemorheol Microcirc 2020; 75:163-176. [PMID: 31929151 DOI: 10.3233/ch-190748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copolyetheresterurethane (PDC) is a biodegradable, shape-memory biomaterial, which has been shown to be of low toxicity and pro-angiogenic in vitro. In the present study we examined the in vivo compatibility of PDC as a compression molded film and as electrospun scaffolds and its well established constituent, the homopolymer poly(p-dioxanone) (PPDO), which were compared with the clinically used poly[(vinylidene fluoride)-co-hexafluoropropene] (PVDF) as reference material. The materials were implanted in the subcutaneous tissue of mice and the host responses were analyzed histologically 7 and 28 days after implantation.All materials induced a foreign body response (FRB) including the induction of foreign body giant cells and a peripheral fibrous capsule. PDC, PPDO and PVDF films showed no signs of degradation after 28 days. PDC films showed a significantly reduced associated macrophage layer and fibrous capsule on their surface. Few fragments of PDC and PPDO scaffolds were present at the implantation site, while PVDF scaffolds were still present in large amounts at day 28. Especially aligned electrospun PDC scaffold induced a significantly thinner fibrous and a slightly reduced inflammatory response after 28 days of implantation. In addition, only PDC aligned fibrous scaffold structures induced a significant increase in angiogenesis.In summary, PDC films outperformed PPDO and PVDF films in terms of compatibility, especially in capsule and macrophage layer thickness. Through microstructuring of PDC and PPDO into scaffolds an almost complete degradation was observed after 28 days, while their respective films remained almost unchanged. However, the capsule thickness of all scaffolds was comparable to the films after 28 days. Finally, the parallel arrangement of PDC fibers enabled a strong enhancement of angiogenesis within the scaffold. Hence, material chemistries influence overall compatibility in vivo, while angiogenesis could be influenced more strongly by microstructural parameters than chemical ones.
Collapse
Affiliation(s)
- Tobias Haase
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, Berlin, Germany
| | - Robert Klopfleisch
- Institute for Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Annalena Krost
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Tilman Sauter
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Evonik Creavis GmbH, Marl, Germany
| | - Karl Kratz
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Jan Peter
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, Berlin, Germany
| | - Friedrich Jung
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Andreas Lendlein
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Dietlind Zohlnhöfer
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, Berlin, Germany
| | - Constantin Rüder
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, Berlin, Germany
| |
Collapse
|
11
|
Nanotailored hyaluronic acid modified methylcellulose as an injectable scaffold with enhanced physico-rheological and biological aspects. Carbohydr Polym 2020; 237:116146. [PMID: 32241450 DOI: 10.1016/j.carbpol.2020.116146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022]
Abstract
The collaborative endeavor in tissue engineering is to fabricate a bio-mimetic extracellular matrix to assist tissue regeneration. Thus, a novel injectable tissue scaffold was fabricated by exploring nanotailored hyaluronic acid (nHA) and methylcellulose (MC) (nHAMC) along with pristine HA based MC scaffold (HAMC). nHA with particle size ∼22 ± 5.3 nm were obtained and nHAMC displayed a honeycomb-like 3D microporous architecture. Nano-HA bestowed better gel strength, physico-rheological and biological properties than HA. It creditably reduced the high content of salt to reduce the gelation temperature of MC. The properties ameliorated with increased in-corporation of nano-HA. The addition of salt showed more prominent effect on gelation temperature of nHAMC than in HAMC; and salting-out effect was dependent on nHA/HA content. Biocompatible nHAMC assisted adequate cell adherence and proliferation with more extended protrusions with better migration rate than control. Thus, biomodulatory effect of nanotailored glycosaminoglycan could be asserted to design an efficient thermo-responsive scaffold.
Collapse
|
12
|
Veronesi F, Borsari V, Contartese D, Xian J, Baldini N, Fini M. The clinical strategies for tendon repair with biomaterials: A review on rotator cuff and Achilles tendons. J Biomed Mater Res B Appl Biomater 2019; 108:1826-1843. [PMID: 31785081 DOI: 10.1002/jbm.b.34525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 10/07/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
Tendon repair is a complex process due to the low tenocyte density, metabolism, and vascularization. Tears of rotator cuff (RCT) and Achilles tendons ruptures have a major impact on healthcare costs and quality of life of patients. Scaffolds are used to improve the healing rate after surgery and long-term results. A systematic search was carried out to identify the different types of scaffolds used during RCT and Achilles tendon repair surgery in the last 10 years. A higher number of clinical studies were reported on RCT ruptures. Biological scaffolds were used more than synthetic ones, for both rotator cuff and Achilles tendons. Moreover, platelet-rich plasma (PRP)-based scaffolds were the most widely used in RCT. A different type of synthetic scaffold was used in each of the five studies found. Biological scaffolds either provide variable results, in particular PRP-based ones, or poor results, such as bovine equine pericardium. All the synthetic scaffolds demonstrated a significant increase in clinical and functional scores in biomechanics, and a significant decrease in pain and re-tear rate in comparison to conventional surgery. Despite the limited number of studies, further investigation in the clinical use of synthetic scaffolds should be carried out.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Veronica Borsari
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Deyanira Contartese
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Jie Xian
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Nicola Baldini
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
13
|
Anton-Sales I, Beekmann U, Laromaine A, Roig A, Kralisch D. Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Curr Drug Targets 2019; 20:808-822. [PMID: 30488795 PMCID: PMC7046991 DOI: 10.2174/1389450120666181129092144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
In this mini-review, we highlight the potential of the biopolymer bacterial cellulose to treat damaged epithelial tissues. Epithelial tissues are cell sheets that delimitate both the external body surfaces and the internal cavities and organs. Epithelia serve as physical protection to underlying organs, regulate the diffusion of molecules and ions, secrete substances and filtrate body fluids, among other vital functions. Because of their continuous exposure to environmental stressors, damage to epithelial tissues is highly prevalent. Here, we first compare the properties of bacterial cellulose to the current gold standard, collagen, and then we examine the use of bacterial cellulose patches to heal specific epithelial tissues; the outer skin, the ocular surface, the oral mucosa and other epithelial surfaces. Special emphasis is made on the dermis since, to date, this is the most widespread medical use of bacterial cellulose. It is important to note that some epithelial tissues represent only the outermost layer of more complex structures such as the skin or the cornea. In these situations, depending on the penetration of the lesion, bacterial cellulose might also be involved in the regeneration of, for instance, inner connective tissue.
Collapse
Affiliation(s)
| | | | - Anna Laromaine
- Address correspondence to these authors at the Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Catalunya, Spain; Tel: +34935801853; E-mails: ;
| | - Anna Roig
- Address correspondence to these authors at the Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Catalunya, Spain; Tel: +34935801853; E-mails: ;
| | | |
Collapse
|